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Abstract— The Galerkin finite element method is used to
develop procedures for the optimal drug delivery to brain
tumors. The mathematical model comprises of a system of
three coupled reaction diffusion models, involving the density of
tumor cells and normal tissue as also the drug concentration.
An optimal control problem is formulated with the goal of
minimizing the tumor cell density and reducing the side
effects of the drug. A distributed parameter method based on
the application of variational calculus is used on a pseudo-
Hamiltonian, which is then used to obtain a coupled system of
forward state equations and backward co-state equations. The
Galerkin finite element method is used to realistically represent
the brain structure. Finally a three dimensional test case is
considered and partitioned into a set of brick finite elements
in spherical coordinates, with tri-linear basis functions. Non-
uniqueness of nodes in spherical coordinates is removed by
combining like nodes, such as at the origin, at the poles and at
the polar angle discontinuity. The Galerkin ODEs are solved
by a combination of Crank-Nicolson and predictor-corrector
methods.

I. I NTRODUCTION

Varius kinds of cancerous growth have been studied
not only from the medical perspective, but also from the
mathematical point of view. One such kind is the brain
tumor, which like most cancerous cells originates from a
single cell and proliferates into the neighboring normal cells.
Understanding the mechanism behind the growth of tumors
is necessary for designing an optimal treatment.Gliomas, a
very deadly form of brain tumors, account for a majority
of the cases [10], [12]. Despite the advanced disgnostic
procedures available, their benefits have been limited due
to various impedimets like the existence of theblood brain
barrier (BBB) [3]. The commonly used forms of drug
delivery are drugs congugated with polymer and delivery
by optimal distribution of drugs about the original tumor
site. Wang et al. [13], [14] have worked extensively on drug
delivery to tumors in three dimensions. In this paper we focus
on post-operative treatment of the resection that occurs after
the bulk of the tumor has been removed.

The tumor-drug model here has been taken from
Chakrabarty and Hanson [1], [2], which in turn was influ-
enced by the works of Gatenby et al. [4] and Mansuri [8].
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Murray’s fine text [9] and the paper by Westman et al. [15]
are good sources of different types of growth mechanishms.

The paper is organized in the following manner. In section
II, we have the mathematical model. In section III, the op-
timal control problem is formulated, apseudo-Hamiltonian
is defined and then calculus of variations [5] is applied to it
to obtain a forward state equation and a backward co-state
equation. In the next two sections we present the Galerkin
finite element method and finite element test configuration
using the spherical co-ordinates. Finally we present the
computational results of numerical implementation of this
finite element formulation.

II. M ATHEMATICAL MODEL

In thedistributed parameter controlmodel of Chakrabarty
and Hanson [1], [2], the tumor cell and normal cell density
and the drug concentration at any position vectorx and time
t ∈ [0, tf ], in the interior Ω of the domain, denoted by
n1(x, t), n2(x, t) and c(x, t) respectively, are taken as the
state variables. Defining the global state vector as

Y(x, t) ≡
[
n1(x, t) n2(x, t) c(x, t)

]>
, (1)

the governing nonlinear vector PDE is given by

Yt(x, t) = D∇2
x[Y] + (A+B)(Y)Y + U, (2)

where the nonlinearities are given by

A(Y) = a1(1−Y1/k1)e1e>1 +a2(1−Y2/k2)e2e>2 −a3e3e>3 ,

B(Y) = −(α1,2Y2+κ1,3Y3)e1e>1 −(α2,1Y1+κ2,3Y3)e2e>2 ,

U(x, t) = U3(x, t)e3. (3)

Here,Di > 0 is theith component of the diagonal diffusion
coefficientD (could be inhomogeneous depending on the
brain matter [12]),Ai,i(Y)Yi is theith growth rate (logistic
for i = 1 : 2 and exponentially decaying fori = 3 for our
test case)αi,j are death rates due to competition,κi,j are
the death rates due to treatment andu = U3(x, t) is the rate
at which the drug is being delivered and will be the control
variable in an optimal control system. Also,ei is the ith
unit vector. The initial conditions and the no-flux boundary
conditions on the boundary∂Ω are, respectively,

Y(x, 0) = Y0(x), (4)

−D(N̂ · ∇x)[Y](x, t) = 0. (5)



III. T HE OPTIMAL CONTROL PROBLEM

The quadratic objective functional for running and termi-
nal costs is given by,

J [Y,U] =
1
2

∫ tf

0

dt

∫
Ω

dx
(
Y>RY+(U−U0)

>
S (U−U0)

)
+

1
2

∫
Ω

dx
(
Y>QY

)
(x, tf ), (6)

where coefficientsR = r1e1e>1 , S = s3e3e>3 and Q =
q1e1e>1 + q3e3e>3 , while U0 = U0,3(x, t)e3. The goal is
to minimize this functional with respect to the drug input
rate relative to some threshold rateU0,3 and the terminal
costs attf , i.e., minu [J(u)] also reduces the effects of
toxicity. Note that herer1 > 0 is the tumor burden cost
coefficient ands3 > 0 is the drug delivery cost coefficient,
while q1 > 0 andq3 > 0 are the corresponding final costs. In
addition, no assumption is made about the control constraints
like physical restriction on the amount of drugs that can be
administered.

Using threeLagrange multipliervectors, two of which are
functions of space and time and one is independent of time,
and lettingZ = (Y,U, ξ,η,χ) be an extended state vector,
we define thepseudo-Hamiltonianas,

H(Z) ≡ 1

2

Z tf

0

dt

Z
Ω

dx
“
Y>RY+(U−U0)

>S (U−U0)
”

+
1

2

Z
Ω

dx
“
Y>QY

”
(x, tf )

+

Z tf

0

dt

Z
Ω

dx ξ>
„
Yt−D∇2

x[Y]

−(A+B)(Y)Y −U

«
+

Z tf

0

dt

Z
∂Ω

dΓ η>
“
−D

“ bN·∇x”
[Y]

”
+

Z
Ω

dx
“
χ>(Y−Y0)

”
(x, 0). (7)

The calculus of variationsis used to determine the critical
point necessary condition for the first variation [5] of the
pseudo-HamiltonianH(Z). Let the perturbationδZ about
the optimal trajectoryZ∗, be defined asδZ = Z− Z∗. The
pseudo-Hamiltonian is expanded as follows,

H(Z∗ + δZ) = H(Z∗) + δH(Z∗, δZ) +O((δZ)2).

The quadratic order terms, including the 2nd variation of
H are neglected. In addition the functional dependence of
the higher derivatives in time and state of the extended state
perturbations must be eliminated on lower order terms by
one or two integrations by parts, (using Green’s formula
[6]). Merging these identities, rearranging inner products and
collecting terms, the extended state equations yields an inter-
mediate form (for details see [1] for one space dimension and
[2] for two space dimensions formulations). The coefficients
of independent variations in this intermediate form are set to
zero to obtain the state, control and the co-state equations.

A. State Equations

The optimal state equation is recovered by setting the
coefficient of(δξ)> to zero:

Y∗
t = D∇2

x[Y
∗] + (A+B)(Y∗)Y∗ + U∗ (8)

on Ω×(0, tf ], with boundary conditions on∂Ω×[0, tf ] from
the coefficient of(δη)>, i.e.,

−D(N̂·∇x)[Y∗](x, t) = 0, (9)

for (x, t) ∈ ∂Ω × [0, tf ] and with initial conditions on the
interior Ω from the coefficient of(δχ)>, i.e.,

Y∗(x, 0) = Y0(x) (10)

for x ∈ Ω. Due to the presence of the functionsA(Y)Y and
B(Y)Y the forward PDE (8) will be nonlinear.

B. Regular Optimal Control

Since the control has been defined in (3) with only one
component, only the coefficient ofδU3 is set to zero giving
the corresponding drug regular control

U∗
3 (x, t) = U0,3(x, t) + ξ∗3(x, t)/s3, (11)

on Ω × [0, tf ],provideds3 6= 0. Note that this control law
only requires solving for the 3rd component of the 1st co-
state vectorξ∗(x, t), sinceδU1 ≡ 0 andδU2 ≡ 0.

C. Co-State Equations

Setting the functional coefficient of(δY)> to zero yields
the primary co-state backward PDE:

0 = ξ∗t +∇2
x[Dξ

∗] + (A+B)(Y∗)ξ∗ (12)

+∇Y [A+B](Y∗):(ξ∗(Y∗)>)−RY∗,

for (x, t) ∈ Ω × [0, tf ). This PDE (12) isunidirectionally
coupled to the state PDE (8), except that only the 3rd
componentξ∗3(x, t) is needed for the regular optimal control
input U∗

3 (x, t) from (11). The boundary condition follows
from setting the functional coefficient ofδY(x, t) for x on
Γ=∂Ω to zero, so

(N̂·∇x)[Dξ∗](x, t) = 0, (x, t) ∈ ∂Ω× [0, tf ) (13)

and the final condition for this backward PDE follows from
forcing the coefficient ofδY(x, tf ) to be zero onΩ,

ξ∗(x, tf ) = −QY∗(x, tf ). (14)

The two other co-state vectors should not be needed, but
satisfy rather simple equations [1], [2].

IV. GALERKIN FINITE ELEMENT METHOD

In [1], [2] the Crank-Nicolson implicit method combined
with predictor-corrector methodsare used to study the prob-
lem numerically. However, using finite difference methods
like Crank-Nicolson implicit methodalone andalternating
directions implicit methodhave serious drawbacks. Finite
difference techniques are more likely to have higher com-
putational requirements,i.e, they suffer from thecurse of
dimensionality. Finite element methods require a relatively
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smaller number of nodes as compared to the finite difference
methods while maintaining the same level of accuracy.
Also, the finite element method can better handle irregular
structure, such as a brain tumor or ventricles. Hanson [7] has
worked extensively in this area and has made a comparative
study of different numerical methods for stochastic dynamic
programming. For the problem under consideration, we use
the Galerkin finite element methodso as to reduce the
number of state nodes. The following steps can be used to get
an approximate numerical solution. Note that the assumption
made in this paper is that the growth islogistic for the tumor
and normal cells.

1) The firstdouble shotstep (δ = 1) of forward-backward
iteration shots is to guess the controlU∗

3 (x, t) '
U

(1)
3 (x, t), substitute it into the forward state equations

and use the finite element method to solve for the state
Y∗(x, t)'Y(1)(x, t) for t > 0. Initially, Y∗(x, 0) =
Y0(x). Let the Galerkin approximation for the state
vector be

Y∗(x, t) ' Ŷ(x, t) ≡
cM∑
k̂=1

Ŷk̂(t) · φk̂(x), (15)

along with a similar approximation for the optimal
control,

U∗(x, t) ' Û(x, t) ≡
cM∑
k̂=1

Ûk̂(t) · φk̂(x), (16)

where,[φi(x)]cM×1
, is a set ofM̂ linearly independent

continuous basis functions, with the interpolation con-
dition φk̂(xĵ) = δĵ,k̂, at the element nodexĵ , implying

that Y∗(xĵ , t) = Ŷĵ(t) for ĵ = 1:M̂ finite element
nodes.

2) Before applying the Galerkin approximation (15) to
the state equation (8), the equation must be put into
integral form onΩ with respect to a test function
φĵ(x) taken from the basis and then further prepared
for low order basis function by reducing the 2nd order
derivatives to 1st order derivatives by integration by
parts (Green’s formula [6]), so

0 =

Z
Ω

dxφĵ(x)
`
Y∗
t −D∇2

x[Y
∗]

−(A+B)(Y∗)Y∗−U∗)

=

Z
Ω

dx
“
φĵY

∗
t +D∇>

x [φĵ ]∇x[Y
∗]

−φĵ ((A+B)(Y∗)Y∗+U∗)
´

−
Z
∂Ω

dΓφĵD
“ bN·∇x”

[Y∗]

=

Z
Ω

dx
“
φĵY

∗
t +D∇>

x [φĵ ]∇x[Y
∗]

−φĵ ((A+B)(Y∗)Y∗+U∗)
´
,

for ĵ = 1 : M̂ , where the exact no-flux boundary
condition has been used.

3) Now, the Galerkin approximation (15) can be applied

0 '
cM∑
k̂=1

∫
Ω

dx
(
Ŷ′
k̂
φĵφk̂+DŶk̂

(
∇>
x [φĵ ]∇x[φk̂]

)
−

(
(A+B)

(
Ŷ

)
Ŷk̂+Ûk̂

)
φĵφk̂

)
,

for ĵ = 1 : M̂ . Futher reduction to finite element
integrals is accomplished by letting

M̂ĵ,k̂ ≡
∫

Ω

dxφĵ(x)φk̂(x) (17)

be an element mass integral forĵ, k̂ = 1:M̂ ,

K̂ĵ,k̂ ≡
∫

Ω

dx∇>
x [φĵ ]∇x[φk̂] (18)

be an element stiffness integral forĵ, k̂ = 1:M̂ , and

T̂ĵ,k̂,l̂ ≡
∫

Ω

dxφĵ(x)φk̂(x)φl̂(x) (19)

be a triple basis element integral forĵ, k̂, l̂ = 1 : M̂
arising from the purely bilinear terms inA(Y)Y and
B(Y)Y. Thus, the Galerkin equation becomes,

0 =

cMX
k̂=1

“ cMĵ,k̂

“ bY′
k̂(t)−

“
a1e1e

>
1 +a2e2e

>
2

−a3e3e
>
3

” bYk̂(t)− bUk̂(t)
”

+D bKĵ,k̂ bYk̂(t)

+

cMX
l̂=1

bTĵ,k̂,l̂„a1

k1

bY1,k̂(t)
bY1,l̂(t)e1 (20)

+
a2

k2

bY2,k̂(t)
bY2,l̂(t)e2

+
“
α1,2

bY2,l̂(t)+κ1,3
bY3,l̂(t)

” bY1,k̂(t)e1

+
“
α2,1

bY1,l̂(t)+κ2,3
bY3,l̂(t)

” bY2,k̂(t)e2

””
,

for ĵ = 1 : M̂ . This Galerkin ODE can be solved by
approximating the Galerkin basis integral coefficients
(M̂ĵ,k̂, K̂ĵ,k̂, T̂ĵ,k̂,l̂) using symbolic methods and two-
point Gaussian quadrature in case of singularities,
and then the ODE system is solved by the combined
Crank-Nicolson and predictor-corrector methods. The
coefficients can be computed for all double shots for
fixed finite elements off-line since they will be fixed.
These coefficients can be calculated on an element-by-
element decomposition and element results can later be
reassembled to form the global solution [11].

4) In the second, backward shot of the double shot
algorithm [1], the final condition (14),

ξ(δ)(x, tf ) ' −QŶ(δ)(x, tf )

= −Q
cM∑
k̂=1

Ŷ(δ)

k̂
(tf )φk̂(x),

for δ = 1 ::L double shots, is used to start the back-
ward co-state solution. Similar to the state equation, a
Galerkin approximation for the co-state equation (after
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dropping the(δ) subscript) using the same basis is
given by,

ξ∗(x, t) ' ξ̂(x, t) ≡
cM∑
k̂=1

ξ̂k̂(t) · φk̂(x) (21)

for t < tf . As with the state Galerkin variational
formulation, the variation formulation for the co-state
equation (12) is

0 =

Z
Ω

dxφĵ(x)
`
ξ∗t+∇

2
x[Dξ∗]+(A+B)(Y∗)ξ∗

+∇Y [A+B](Y∗):(ξ∗(Y∗)>)−RY∗
”

=

Z
Ω

dx
`
φĵ (ξ∗t+ (A+B)(Y∗)ξ∗

+∇Y [A+B](Y∗):(ξ∗(Y∗)>)−RY∗
”

−∇>
x [φĵ ]∇x[Dξ∗]

”
+

Z
∂Ω

dΓφĵ

“ bN·∇x”
[Dξ∗].

A form with reduced order derivatives is derived by
eliminating the boundary integral by the no-flux con-
dition (13) and then the Galerkin approximations are
substituted for the state and co-state, thus producing

0 '
cM∑
k̂=1

∫
Ω

dx
((
ξ̂
′
k̂(t)+ (A+B)(Ŷ)ξ̂k̂

+∇Y [A+B](Ŷ):(ξ̂k̂(Ŷ)>)−RŶk̂

)
φĵφk̂

−Dξ̂k̂∇
>
x [φĵ ]∇x[φk̂]

)
,

except that the bilinear terms are only symbolically
designated bŷY, for ĵ = 1 : M̂ . Next by substituting
the Galerkin approximation for̂Y in the nonlinear
terms, using the element Galerkin integral notation for
the massM̂ĵ,k̂ (17), stiffnessK̂ĵ,k̂ (18) and the pure

bilinear triple T̂ĵ,k̂,l̂ (19), the compact Galerkin ODEs
are obtained:

0 =

cMX
k̂=1

“ cMĵ,k̂

“bξ ′
k̂(t)+a1

bξ1,k̂e1+a2
bξ2,k̂e2

−a3
bξ3,k̂e3−R bYk̂(t)

”
−D bKĵ,k̂bξk̂(t)

−
cMX
l̂=1

bTĵ,k̂,l̂„2a1

k1

bY1,l̂(t)
bξ1,k̂(t)e1 (22)

+
2a2

k2

bY2,l̂(t)
bξ2,k̂(t)e2

+α1,2

“ bY2,l̂(t)e1 + bY1,l̂(t)e2

” bξ1,k̂(t)
+κ1,3

“ bY3,l̂(t)e1 + bY1,l̂(t)e3

” bξ1,k̂(t)
+α2,1

“ bY2,l̂(t)e1 + bY1,l̂(t)e2

” bξ1,k̂(t)
+κ2,3

“ bY3,l̂(t)e2 + bY2,l̂(t)e3

” bξ2,k̂(t)””
,

for ĵ = 1 :: M̂ . This Galerkin ODE (22) may be
computed by the appropriate numerical methods using
the same Galerkin integral basis coefficients.

5) For each completed double shot forδ = 1:L, the co-

state approximation̂ξ
(δ)

(x, t) =
∑cM
k̂=1 ξ̂

(δ)

k̂ (t)φk̂(x)
is used to determine theregular optimal control(11)
updated value third component

Û
(δ+1)
3 (x, t) = U0,3(x, t) + ξ̂

(δ)
3 (x, t)/s3. (23)

6) This process is repeated forδ = 2 : L double shot
iterations until a convergence criterion for sufficiently
largeL is reached, e.g., the relative criterion for the
control,∣∣∣∣∣∣U (δ)

3 (x, t)−U (δ−1)
3 (x, t)

∣∣∣∣∣∣<tolu
∣∣∣∣∣∣U (δ−1)

3 (x, t)
∣∣∣∣∣∣ ,

and say,∣∣∣∣∣∣Y(δ)(x, t)−Y(δ−1)(x, t)
∣∣∣∣∣∣<toly

∣∣∣∣∣∣Y(δ−1)(x, t)
∣∣∣∣∣∣ ,

for δ = 2:L until satisfied, provided||U (δ−1)
3 (x, t)|| 6=

0 and||Y(δ−1)(x, t)|| 6= 0, wheretolu > 0 andtoly >
0 are some prescribed tolerances.

V. SPHERICAL FINITE ELEMENT TEST CONFIGURATION

Consider a three dimensional test configuration that is a
sphere of radiusRr. Transforming the spherical coordinates
in space as usual,

(x, y, z) = r(cos(θ) sin(ψ), sin(θ) sin(ψ), cos(ψ)) (24)

wherer, θ, ψ are the radius, polar angle and azimuthal angle,
respectively. Also

0 ≤ r ≤ Rr, 0 ≤ θ ≤ 2π and 0 ≤ ψ ≤ π.

The brick element grid in spherical coordinates is constructed
of Mr radial sectors of width∆r = Rr/Mr, Mθ polar
sectors of width∆θ = 2π/Mθ andMψ azimuthal sectors
of width ∆ψ = π/Mψ. The nodal values are given by

(θie , ψje , rke) = ((ie − 1)∆θ, (je − 1)∆ψ, (ke − 1)∆r)

for ie = 1:Mθ + 1, je = 1:Mψ + 1 and ke = 1:Mr + 1.

The elements are numbered in(θ, ψ, r) linear priority order
like the nodal values,

eie,je,ke = ie + (je − 1) ·Mθ + (ke − 1) ·Mθ ·Mψ,

for ie = 1:Mθ, je = 1:Mψ and ke = 1:Mr.

Within elementeie,je,ke , the element primary node with local
node numberi = 1 has the same global node numberk̄e =
{ie, je, ke} as the element, i.e.,

nk̄e,1 = eie,je,ke for ie = 1:Mψ, je = 1:Mθ, ke = 1:Mr.

The element local node numbering isi = 1 : 8 as shown in
the Figure 1.

For simplicity, trilinear basis functionsare used for all
brick elements in spherical coordinates. The trilinear bases
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eie,je,ke
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1
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5

6

7

8

r -

6

θ ���
ψ

Fig. 1. Local node numbering withi = 1:8 for general elementeie,je,ke .

are constructed from the more basic one-dimensional linear
bases with only two nodes labeled 1 and 2:

φ
(ke)
1r (r) =

“rke+1 − r

∆r

”
, φ

(ke)
2r (r) =

“r − rke
∆r

”
; (25)

φ
(ie)
1θ (θ) =

„
θie+1 − θ

∆θ

«
, φ

(ie)
2θ (θ) =

„
θ − θie

∆θ

«
; (26)

φ
(je)
1ψ (ψ) =

„
ψje+1 − ψ

∆ψ

«
, φ

(je)
2ψ (ψ) =

„
ψ − ψje

∆ψ

«
; (27)

For the general element

eie,je,ke on [θie , θie+1]× [ψje , ψje+1]× [rke , rke+1]

for ie = 1:Mθ, je = 1:Mψ and ke = 2:Mr

in the i = 1:8 element node numbering,

φ
(ie,je,ke)
1 (r, θ, ψ) = φ

(ke)
1r (r) · φ(ie)

1θ (θ) · φ(je)
1ψ (ψ); (28)

·φ(ie,je,ke)
2 (r, θ, ψ) = φ

(ke)
1r (r) · φ(ie)

2θ (θ) · φ(je)
1ψ (ψ); (29)

φ
(ie,je,ke)
3 (r, θ, ψ) = φ

(ke)
1r (r) · φ(ie)

1θ (θ) · φ(je)
2ψ (ψ); (30)

φ
(ie,je,ke)
4 (r, θ, ψ) = φ

(ke)
1r (r) · φ(ie)

2θ (θ) · φ(je)
2ψ (ψ); (31)

φ
(ie,je,ke)
5 (r, θ, ψ) = φ

(ke)
2r (r) · φ(ie)

1θ (θ) · φ(je)
1ψ (ψ); (32)

φ
(ie,je,ke)
6 (r, θ, ψ) = φ

(ke)
2r (r) · φ(ie)

2θ (θ) · φ(je)
1ψ (ψ); (33)

φ
(ie,je,ke)
7 (r, θ, ψ) = φ

(ke)
2r (r) · φ(ie)

1θ (θ) · φ(je)
2ψ (ψ); (34)

φ
(ie,je,ke)
8 (r, θ, ψ) = φ

(ke)
2r (r) · φ(ie)

2θ (θ) · φ(je)
2ψ (ψ) . (35)

The mapping (24) from spherical to cartesian coordinates
is not unique since the mapping is a many-to-one. The non-
unique nodes arise at theorigin for r = r1 = 0 and
any (θ, ψ) or at the poles for ψ = 0, π and any (r, θ)
or at the polar angle line of discontinuity forθ = 2π
for any (r, ψ) (really a periodic boundary condition). The
non-uniqueness or resulting over-determinism can simply be
removed by adding together the appropriate bases in (28)-
(31) corresponding to the same non-unique nodes, using the
identities for the one-dimensional bases and their derivatives,

φ
(`e)
1ρ (ρ) + φ

(`e)
2ρ (ρ) = 1, φ

(`e) ′
1ρ (ρ) + φ

(`e) ′
2ρ (ρ) = 0; (36)

for ρ = r, θ or ψ and`e = ke, ie or je. While it may appear
awkward to have to make this adjustment, the disadvantage
is out-weighed by the ease of deforming a sphere into a brain
geometry than deforming a brick or rectangular solid into a

brain geometry. Another advantage of spherical coordinates
is the ease of imposing theno-flux boundary condition (BC)
at r = Rr, since on the elementeie,je,ke the isth state
solution foris = 1:3 is expressed as a preliminary Galerkin
approximation,

Y
(ie,je,ke)
is

(r, θ, ψ, t) '
8X
j=1

eY (ie,je,ke)
is,j

(t) · φ(ie,je,ke)
j (r, θ, ψ), (37)

so the normal gradient, at boundary elementke = Mr with
rMr+1 = Rr for local nodesj = 5:8, reduces to

Y
(ie,je,Mr)
is,r

(Rr, θ, ψ, t) '
8X
j=5

“ eY (ie,je,Mr)
is,j

(t)− eY (ie,je,Mr)
is,j−4 (t)

”
·φ(ie,je,Mr)
j,r (Rr, θ, ψ),

and then

Ỹ
(ie,je,Mr)
is,j

(t) = Ỹ
(ie,je,Mr)
is,j−4 (t) (38)

for j = 5:8 and arbitrary(θ, ψ) if Y (ie,je,Mr)
is,r

(Rr, θ, ψ, t) =
0 with no-flux, where the symmetries and asymmetries of the
bases functions (25-35) and derivatives have been used. This
version of the no-flux condition is much better and simpler
to use than that in [2], even when dealing with a deformed
sphere in the form of a brain case.

The element matrices for local node numbersi, j, k = 1:8
are,

M(ie,je,ke)
i,j =

Z θie+1

θie

dθ

Z ψje+1

ψie

dψ

Z rke+1

rke

drr2 sin(ψ)“
φ

(ie,je,ke)
i φ

(ie,je,ke)
j

”
(r, θ, ψ), (39)

K(ie,je,ke)
i,j =

Z θie+1

θie

dθ

Z ψje+1

ψie

dψ

Z rke+1

rke

drr2 sin(ψ)“
φ

(ie,je,ke)
i,r φ

(ie,je,ke)
j,r (40)

+
1

r2
φ

(ie,je,ke)
i,ψ φ

(ie,je,ke)
j,ψ

+
1

r2 sin2(ψ)
φ

(ie,je,ke)
i,θ φ

(ie,je,ke)
j,θ

«
(r, θ, ψ),

T (ie,je,ke)
i,j,k =

Z θie+1

θie

dθ

Z ψje+1

ψie

dψ

Z rke+1

rke

drr2 sin(ψ)“
φ

(ie,je,ke)
i φ

(ie,je,ke)
j φ

(ie,je,ke)
k

”
(r, θ, ψ), (41)

where in (40)φ(ie,je,ke)
i,ρ (ρ) denotes the partial derivative of

φ
(ie,je,ke)
i (ρ) with respect to generic spherical coordinateρ.

In the stiffness matrix (40), the mapping singularities of the
gradient lead to reciprocal factors inr andsin(ψ), but ther
factors are simply cancelled by the Jacobianr2 sin(ψ) and
leave uncanceledsin(ψ)-denominators in theθ-derivative
term. However, thesesin(ψ)-denominators are completely
eliminated in later analysis upon eliminating non-unique
nodes by combining terms and associated ODEs.

VI. COMPUTATIONAL RESULTS

The double shot, forward-backward iteration algorithm
using the finite element method outlined in Section IV is
implemented on three-dimensional space with the three states
and the drug input control. The numerical implementation of
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the algorithm is similar to our one-dimensional application
in [1], except there the finite difference version ofCrank
Nicolson’smethod was used and is too costly to extend to
another dimension. The implementation is more similar to
the two-dimensional problem treated in [2], except that the
complexity of the mapping from spherical to cartesian is
much greater than the polar mapping due to the degeneracy
at the poles. Once the non-unique degeneracies of states
and co-states due to aliases and boundary conditions are
eliminated so that there are onlŷM linearly independent
Galerkin coefficients,̂Yk̂(t) in ODE (20),ξ̂k̂(t) in ODE (22)
and controlÛk̂(t). This non-uniqueness elimination keeps
the system of ODEs from being over-determined, preserving
the symmetry of the mass and other coefficient arrays, and
eliminating the1/ sin(ψ) singularity in the stiffness integrals
by virtue of identities (36). A summary of the degeneracy
removal by combining unknowns and the corresponding
equations follows;

1) Origin: r = 0, ke = 1, (x, y, z) = (0, 0, 0) for ie = 1:
Mθ, je = 1:Mψ, i = 1:4 (see Fig. 1 to see why only
local nodesi = 1:4 are involved), so

Y
(ie,je,1)
is,i

(t) = Y
(1,1,1)
is,1

(t) = bYis,ĵ(t),
where the initial count iŝj = 1 of an independent
set of unknowns; then the ODEs must be combined
corresponding to the combined aliased unknowns, but
this is only illustrated on the central derivative terms
as cMĵ,ĵ · bY ′

is,ĵ
(t) ≡ Y

(1,1,1) ′
is,1

(t)

·
PMθ
ie=1

PMψ
je=1

P4
i=1

P4
j=1M

(ie,je,1)
i,j .

2) Higher Pole: ψ = 0, (x, y, z) = r(0, 0,+1) for
elementsie = 1 : Mθ, je = 1, ke = 2 : Mr − 1 for
i = 1:2 (see Fig. 1),

Y
(ie,1,ke)
is,i

(t) = Y
(1,1,ke)
is,1

(t) = bYis,ĵ(t)
whereĵ = 2+(ke−2)(Mθ(Mψ−1)+2), but also in the
ke − 1 neighboring elementY (ie,1,ke−1)

is,i
(t) = Ŷis,ĵ(t)

for i = 5:6, thencMĵ,ĵ · bY ′
is,ĵ

(t),≡ Y
(1,1,ke) ′
is,1

(t)

·
PMθ
ie=1

P1
k=0

Pīk+1

i=īk

Pīk+1

j=īk
M

(ie,1,ke−k)
i,j ,

where ī0 = 1 and ī1 = 5.
If ke = Mr when je = 1, then the no-flux BC (38)
holds so these terms must be added,cMĵ,ĵ · bY ′

is,ĵ
(t) ≡ Y

(1,1,Mr) ′
is,1

(t)

·
PMθ
ie=1

“P1
k=0

Pīk+1

i=īk

Pīk+1

j=īk
M

(ie,1,Mr−k)
i,j

+
P6
i=5

P6
j=5M

(ie,1,Mr)
i,j

”
,

where ĵ = 2 + (Mr − 2)(Mθ(Mψ − 1) + 2).
3) Lower Pole: ψ = π, (x, y, z) = r(0, 0,−1) for

elementsie = 1 : Mθ, je = Mψ, ke = 2 : Mr − 1
for i = 3:4 (see Fig. 1),

Y
(ie,Mψ,ke)

is,i
(t) = Y

(1,Mψ,ke)

is,3
(t) = bYis,ĵ(t)

where ĵ = 1 + (ke − 1)(Mθ(Mψ − 1) + 2), but also
in theke− 1 neighboring elementY (ie,Mψ,ke−1)

is,i
(t) =

Ŷis,ĵ(t) for i = 7:8, thencMĵ,ĵ · bY ′
is,ĵ

(t) ≡ Y
(1,Mψ,ke) ′
is,3

(t)

·
PMθ
ie=1

P1
k=0

Pīk+1

i=īk

Pīk+1

j=īk
M

(ie,Mψ,ke−k)
i,j ,

where ī0 = 3 and ī1 = 7.
If ke = Mr whenje = Mψ, then the no-flux BC (38)
holds so these terms must be added,cMĵ,ĵ · bY ′

is,ĵ
(t) ≡ Y

(1,Mψ,Mr) ′
is,m

(t)

·
PMθ
ie=1

“P1
k=0

Pīk+1

i=īk

Pīk+1

j=īk
M

(ie,Mψ,Mr−k)
i,j

+
P8
i=7

P8
j=7M

(ie,Mψ,Mr)

i,j

”
,

where ĵ = 2 + (Mr − 1)(Mθ(Mψ − 1) + 2).
4) Periodic BC: θ = 2π, ie = Mθ, (x, y, z) =

r(sin(ψ), 0, cos(ψ)), the same ifθ = 0 or θ = 2π, for
elementie = Mθ, je = 1 :Mψ − 1, ke = 2 :Mr − 1
for local nodei = 4 (see Fig. 1), so

Y
(Mθ,je,ke)
is,4

(t) = Y
(1,je,ke)
is,3

(t) = bYis,ĵ(t)
whereĵ = 3+(ke−2)(Mθ(Mψ−1)+2)+(je−1)Mθ,
but alsoY (Mθ,je+j̄m,ke−k̄m)

is,2m
(t) = Ŷis,ĵ(t) when j̄m =

1, 0, 1, 0 andk̄m = 0, 0, 1, 1, respectively form = 1:4,
then cMĵ,ĵ · bY ′

is,ĵ
(t) ≡

“
M

(1,je,ke)
3,3

+
P4
m=1M

(Mθ,je+j̄m,ke−k̄m)
2m,2m

”
· Y (1,je,ke) ′

is,3
(t).

If ke = Mr when ie = Mθ and je = 1:Mψ − 1, then
the no-flux BC must be added, so

cMĵ,ĵ · bY ′
is,ĵ

(t) ≡ Y
(1,je,Mr) ′
is,3

(t)

·
“
M

(1,je,Mr)
3,3 +

P4
m=1M

(Mθ,je+j̄m,Mr−k̄m)
2m,2m

+M
(Mθ,je+1,Mr)
6,6 +M

(Mθ,je,Mr)
8,8

”
,

whereĵ = 3+(Mr−2)(Mθ(Mψ−1)+2)+(je−1)Mθ.

The actual implementation uses subscripted subscripts to
gather the aliased unknowns and equation into their unique
locations.

The general method uses a combination of Crank-Nicolson
and prediction-correction methods developed in [7] for solv-
ing high dimensional stochastic control problems on super-
computers. The general method can handle both implicit and
nonlinear terms. For simplicity, the forward ODE (20) for the
degeneracy removedisth-stateŶis,ĵ at nodêj can be written

symbolically, foris = 1:3 and nodeŝj = 1:M̂ , asP cM
k̂=1Mĵ,k̂

bY ′
is,k̂

(t) =P3
js=1

P cM
k̂=1Ais,js,ĵ,k̂( bY(t)) · bYjs,k̂(t)−P cM

k̂=1Mĵ,k̂
bUk̂(t),

where Ais,js,ĵ,k̂(Ŷ(t)) symbolically represents theright-

hand-side matrices including nonlinear terms andŶ(t) rep-
resents the combined states and nodes array. A similar
backward ODE can be written for the co-stateξ̂isk̂(t) with
the state replacing the role of the control in the source
while with remaining in the general nonlinear coefficient
Bis,js,ĵ,k̂(Ŷ(t))as in (22), i.e.,P cM

k̂=1Mĵ,k̂
bξ ′
is,k̂

(t) =

−
P3
js=1

P cM
k̂=1 Bis,js,ĵ,k̂( bY(t)) · bξjs,k̂(t)

+
P cM
k̂=1Mĵ,k̂R

bYisk̂(t).
The essential setup for a general Crank-Nicolson method is
to use the midpoint approximation on the integral form of the
differential equations followed by an average approximation
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of the midpoint values, producing from the state ODE for
Ŷis,k̂,`+1 at time t` = (`− 1) ∗∆t with ` = 1:Nt,P cM

k̂=1Mĵ,k̂

“ bYis,k̂,`+1 − bYis,k̂,`” =

+∆t
P3
js=1

P cM
k̂=1Ais,js,ĵ,k̂,`+0.5 · bYjs,k̂,`+0.5

−∆t
P cM
k̂=1Mĵ,k̂

bUk̂,`+0.5,

where the average approximation at the midpoint isbYjs,k̂,`+0.5 ' 0.5 ∗
“ bYis,k̂,`+1 + bYis,k̂,`” ,bUk̂,`+0.5 ' 0.5 ∗

“ bUk̂,`+1 + bUk̂,`”
and is compatible with the midpoint approximation in ac-
curacy. The approximationAis,js,ĵ,k̂,`+0.5 is similar com-
puted.Similarly, except for backward integration, the co-state
ξ̂is,k̂,`−1 satisfiesP cM

k̂=1Mĵ,k̂

“bξis,k̂,`−1 − bξis,k̂,`” =

+∆t
P3
js=1

P cM
k̂=1 Bis,js,ĵ,k̂,`−0.5 · bξjs,k̂,`−0.5

−∆t
P cM
k̂=1Mĵ,k̂R

bYk̂,`−0.5,

where thee average approximation at the midpoint isbξjs,k̂,`−0.5 ' 0.5 ∗
“bξis,k̂,`−1 + bξis,k̂,`” ,

Next thepredictor-correctorprocedure is used to handle
the remaining implicit and nonlinear terms. The zeroth
corrector, given the final correction̂Yis,ĵ,` at time stagei
is the predictor,

YC
(0)

is,ĵ,`+1
= bYis,ĵ,`.

This initialization permits finding the(γ + 1)th correction
YC(γ+1)

ĵ,`+1
fromP cM
k̂=1Mĵ,k̂

“
YC

(γ+1)

is,k̂,`+1
−YC

(γ)

is,k̂,`

”
=

+∆t
P3
js=1

P cM
k̂=1 AC

(γ)

is,js,ĵ,k̂,`+0.5
·YC

(γ)

js,k̂,`+0.5

−∆t
P cM
k̂=1Mĵ,k̂UC

(γ)

k̂,`+0.5
,

whereY C(γ)

js,k̂,`+0.5
and other midpoint terms are evaluated

as before by averaging. The final correction at the final
time of thestate-shot forward iteration, Ŷĵ,Nt+1 yields the

starting or final-time condition for̂ξis,k̂,Nt+1 using (14).
Then the final correction at the initial time of thecostate-
shot backward iterationproduces the initial control condition
(23) whenis = 3 which is used to begin another double for
δ = 2 :L. The algorithm is implemented in MATLABTM on
a desktop computer.

The data for the numerical parameters are drawn from
various sources including Wang et al. [13], [14], Swanson
[12] and Murray [10], while unavailable parameters were
estimated. The diffusion diagonal vector isD = [4.2e-3,
1.e-15, 0.216] cm2 per day. The quadratic cost coefficients
are r1 = 0.1 = q1 = q3 and s3 = 0.2. The net growth
coefficient isa =[1.2e-2, 8.64e-7, 11.3] per day. The other
coefficients areki = 1, i= 1 : 2, α1,2 = α2,1 = κ2,3 =1.e-
4 andκ1,3 = 0.5. Following Murray the initial state for the
normal tissue is assumed to be 1. The initial tumor spread and
drug concentration are assumed to be Gaussian with scale
and state dependent means, spread and weights. MapleTM 9.5
was used to exactly evaluate the integrals of the element
matrices off-line.

A sample history of the optimal relative tumor density
Y ∗

1 (r, θ, ψ, t) for r over [0, 5] in centimeters at fixed(θ, ψ) =
(0, 0) in radians and at quartiles in time of a 5 day treatment
schedule is given in Figure 2. The initial tumor peak is
at (r, θ, ψ) = (0.5, 0, 0). This test case shows significant
reduction of the tumor density over the treatment schedule.
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Y1

* (r,!,",tq1)

Y1
* (r,!,",tmid)

Y1
* (r,!,",tq3)

Y1
* (r,!,",tf)

Fig. 2. The optimal, relative tumor densityY ∗
1 (r, θ, ψ, t) versusr at time,

t = 0 days, as a cross-section at(θ, ψ) = (0, 0) radians, with the initial
tumor density peak location with(r, θ, ψ) = (0.5, 0, 0). The grid size is
(Mr,Mθ,Mψ) = (10, 3, 3).

A more detailed presentation of the initial to final tumor
density fromt= t0 =0 to t= tmid=2.5 to t= tf =5 days is
given in Figs. 3–5 over the larger(r, ψ) plane section with
fixed θ = 0 showing that the final peak value is small and
the tumor has not spread significantly through the rest of
the plane in spherical coordinates, although somewhat in the
ψ–direction but not much in ther–direction.
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Fig. 3. The initial relative tumor densityY ∗
1 (r, θ, ψ, t) over (r, ψ) plane

θ = 0 and at timet = 0 days. The FEM grid size is(Mr,Mθ,Mψ) =
(10, 3, 3), with the mid-time and final distributions given in Figs. 4–5,
respectively.

VII. C ONCLUSION AND FUTURE DIRECTIONS

The theory of Galerkin finite elements is used to develop
approximations to the distributed parameter optimal control
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Fig. 4. The mid-time optimal, relative tumor densityY ∗
1 (r, θ, ψ, t) over

(r, θ) plane atθ = 0 and timet = tmid = 2.5 days. The FEM grid size
is (Mr,Mθ,Mψ) = (10, 3, 3), starting from the distribution displayed in
Fig. 3.
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Fig. 5. The final optimal, relative tumor densityY ∗
1 (r, θ, ψ, t) over (r, θ)

plane atθ = 0 and time t = T = 5.0 days. The FEM grid size is
(Mr,Mθ,Mψ) = (10, 3, 3), starting from the initial distribution displayed
in Fig. 3 through mid-time distribution in Fig; 4. The tumor has shrunk down
to very small values over this plane section.

problem of cancer drug delivery to the brain governed by
a coupled set of three reaction diffusion PDEs in three
space dimensions. The three state variables are the tumor
cell density, the normal cell density and the cancer drug
concentration. While the tumor and normal cells are highly
coupled through intrinsic and competitive interactions, the
concentration is directly controlled by the drug delivery
control rate. The optimally controlled distributed parameter
system is derived by a straight-forward calculus of variations
technique without resort to an extremely abstract formula-
tion, and that should be useful in other similar scientific or
engineering applications.

The system of optimal PDEs in three state and three co-
state dimensions is reduced by Galerkin approximations of
the state, co-state and control vectors to a system of six ODEs
in time with three fundamental element integral coefficient
forms: the mass, the stiffness and nonlinear coefficients.

The finite element configuration is given for a spherical
geometry that can be used to test the optimal drug delivery
computations. This finite element configuration will be more
amenable to complex brain structures and three-dimensional
geometries than the finite difference method and low dimen-
sion of our earlier work.

Future directions include:

• Application to general curvilinear coordinates for gen-
eral brain geometries;

• Application to heterogeneous brain structures such as
spinal fluid cavities, variable brain matter, vascular
system and the blood brain barrier.

• For the final paper, there will be more results with more
quantitative descriptions.
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