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Abstract—The Galerkin finite element method is used to Murray’s fine text [9] and the paper by Westman et al. [15]
develop procedures for the optimal drug delivery to brain are good sources of different types of growth mechanishms.
tumors. The mathematical model comprises of a system of  rpe naner is organized in the following manner. In section
three coupled reaction diffusion models, involving the density of . .
tumor cells and normal tissue as also the drug concentration. I_I’ we have the mathematlcal model. In section ”,I’ th_e op-
An optimal control problem is formulated with the goal of  timal control problem is formulated, pseudo-Hamiltonian
minimizing the tumor cell density and reducing the side is defined and then calculus of variations [5] is applied to it
effects of the drug. A distributed parameter method based on o obtain a forward state equation and a backward co-state
the application of variational calculus is used on a pseudo- equation. In the next two sections we present the Galerkin
Hamiltonian, which is then used to obtain a coupled system of _ ™. ) . . .
forward state equations and backward co-state equations. The finite element method and finite element test configuration

Galerkin finite element method is used to realistically represent Using the spherical co-ordinates. Finally we present the
the brain structure. Finally a three dimensional test case is computational results of numerical implementation of this
considered and partitioned into a set of brick finite elements finite element formulation.

in spherical coordinates, with tri-linear basis functions. Non-
uniqgueness of nodes in spherical coordinates is removed by
combining like nodes, such as at the origin, at the poles and at

the polar angle discontinuity. The Galerkin ODEs are solved |n thedistributed parameter contrahodel of Chakrabarty
by a combination of Crank-Nicolson and predictor-corrector and Hanson [1], [2], the tumor cell and normal cell density
methods. T . .. -
and the drug concentration at any position vest@nd time
|. INTRODUCTION t € [0,ty], in the interior 2 of the domain, denoted by

Varius kinds of cancerous growth have been studieti1(X:?), n2(x,t) andc(x,t) respectively, are taken as the
not only from the medical perspective, but also from thétate variables. Defining the global state vector as
mathematical point of view. One such kind is the brain T
tumor, which like most cancerous cells originates from a Y(x,0) = [m(x,1) na(x,1) e(x,1)] @
single cell and proliferates into the neighboring normal cellghe governing nonlinear vector PDE is given by
Understanding the mechanism behind the growth of tumors
is necessary for designing an optimal treatm&itomas a Y. (x,t) = DV2]Y]+ (A+ B)(Y)Y + U, )
very deadly form of brain tumors, account for a majority ) N )
of the cases [10], [12]. Despite the advanced disgnostinere the nonlinearities are given by
procedures available, their benefits have been limited du _ T T T
to various impedimets like the existence of thleod brain HY) = a(1-Yi/k)ere] +as(1-Ya/ka)ese; —asese;
barrier (BBB) [3]. The commonly used forms of drug B(Y) = —(a1,2Ya+r13Y3)ere] —(az1Yi+ko3Y3)ese,
delivery are drugs congugated with polymer and delivery
by optimal distribution of drugs about the or!ginal tumor U(x, t) = Us(x, t)es. ©)
site. Wang et al. [13], [14] have worked extensively on drug
delivery to tumors in three dimensions. In this paper we focudere, D; > 0 is theith component of the diagonal diffusion
on post-operative treatment of the resection that occurs aftesefficient D (could be inhomogeneous depending on the
the bulk of the tumor has been removed. brain matter [12]),4; ;(Y)Y; is theith growth rate (logistic

The tumor-drug model here has been taken frorfor i = 1:2 and exponentially decaying far= 3 for our
Chakrabarty and Hanson [1], [2], which in turn was influtest case)y; ; are death rates due to competition,; are
enced by the works of Gatenby et al. [4] and Mansuri [8]the death rates due to treatment ang Us(x,t) is the rate

_ _ _ _ at which the drug is being delivered and will be the control
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Il. MATHEMATICAL MODEL



I11. THE OPTIMAL CONTROL PROBLEM A. State Equations

The optimal state equation is recovered by setting the
coefficient of (6¢) T to zero:

Y; = DV2[Y*|+ (A+ B)(Y*)Y* + U* (8)

1 [t
J[Y,U]= 5/ dt /dx (YTRY+(U—UO)TS (U—Uo)) on % (0,ty], with boundary conditions 002 x [0, ¢ ] from
o JQ the coefficient of(én) T, i.e.,

3 J I (Y RY) b ty), ®) DRV Y1) = 0, ©

The quadratic objective functional for running and termi-
nal costs is given by,

for (x,t) € 0Q x [0,t;] and with initial conditions on the

where coefficientsR = reje/, S = szese; and@Q = |~ = .
e SO @ interior © from the coefficient of(dx) T, i.e.,

Q16161r + Q3ege:;r, while Uy = ong(X, t)eg. The goal is
to minimize this functional with respect to the drug input Y*(x,0) = Yo(x) (10)
rate relative to some threshold rat& ; and the terminal
costs atty, i.e., min, [J(u)] also reduces the effects of for x € 2. Due to the presence of the functioA¢Y)Y and
toxicity. Note that herer; > 0 is the tumor burden cost B(Y)Y the forward PDE (8) will be nonlinear.
coefficient ands; > 0 is the drug delivery cost coefficient, g Regular Optimal Control
while ¢; > 0 andgs > 0 are the corresponding final costs. In h 'h . ) ith onl
addition, no assumption is made about the control constraintsSince the control has been defined in (3) with only one
like physical restriction on the amount of drugs that can bEOMPOnent, only the coefficient 6l is set to zero giving
administered. the corresponding drug regular control
Using threeLagrange multipliervectors, two of which are U*(x.1) = U, ¢ *(x.t 11
functions of space and time and one is independent of time, 3(x,1) 03(%,8) +&(x, ) /5, (11)
and lettingZ = (Y, U, &, n, x) be an extended state vector,on  x [0,¢/],provided s; # 0. Note that this control law
we define thepseudo-Hamiltoniaras, only requires solving for the 3rd component of the 1st co-
Lt state vecto™(x, t), sincedU; = 0 and§U; = 0.
H(Z) == [ dt [d YTRY U-U,) 'S (U-U .
@) / / * i o) §( 0)) C. Co-State Equations
/dx (Y QY) (x,t5) Setting the functional coefficient ¢6Y)" to zero yields
the primary co-state backward PDE:

+f o faxe” (Yepviy 0= & + VIDE ]+ (A+B)(Y e’ 12)
{A+B)(Y)Y — U) +Vy [A+BI(Y*):(€"(Y")T) - RY",
for (x,t) € Q x [0,¢s). This PDE (12) isunidirectionally

ty ~
+/ dt [ dr ' (—D (N'Vm) [Y}) coupled to the state PDE (8), except that only the 3rd
0 o0 component;(x,t) is needed for the regular optimal control
+/QdX(XT(Y* YO)) (x,0). (7)  input U;(x,t) from (11). The boundary condition follows

from setting the functional coefficient @fY (x,¢) for x on
The calculus of variationds used to determine the critical I'=052 to zero, so
point necessary condition for the first variation [5] of the N. De* _ Q 1
pseudo-Hamiltoniar?(Z). Let the perturbationyZ about (N-Vo)[DE(x8) =0, (x,1) €02 x[0,87)  (13)
the optimal trajectoryZ*, be defined a$Z = Z — Z*. The and the final condition for this backward PDE follows from
pseudo-Hamiltonian is expanded as follows, forcing the coefficient oBY (x,t;) to be zero orf,

H(Z* + 0Z) = H(Z*) + 6H(Z*,6Z) + O((6Z)?). & (x,ty) = —QY"(x,ty). (14)
The two other co-state vectors should not be needed, but

The quadratic order terms, including the 2nd variation ofatisfy rather simple equations [1], [2].
‘H are neglected. In addition the functional dependence of
the higher derivatives in time and state of the extended state IV. GALERKIN FINITE ELEMENT METHOD
perturbations must be eliminated on lower order terms by In [1], [2] the Crank-Nicolson implicit method combined
one or two integrations by parts, (using Green's formulavith predictor-corrector methodare used to study the prob-
[6]). Merging these identities, rearranging inner products anlém numerically. However, using finite difference methods
collecting terms, the extended state equations yields an intdike Crank-Nicolson implicit methodlone andalternating
mediate form (for details see [1] for one space dimension ardirections implicit methodhave serious drawbacks. Finite
[2] for two space dimensions formulations). The coefficientslifference techniques are more likely to have higher com-
of independent variations in this intermediate form are set foutational requirements,e, they suffer from thecurse of
zero to obtain the state, control and the co-state equationsimensionality Finite element methods require a relatively



smaller number of nodes as compared to the finite difference3) Now, the Galerkin approximation (15) can be applied
methods while maintaining the same level of accuracy.
Also, the finite element method can better handle irregular
structure, such as a brain tumor or ventricles. Hanson [7] has
worked extensively in this area and has made a comparative
study of different numerical methods for stochastic dynamic -
programming. For the problem under consideration, we use A -
the Galerkin finite element methodo as to reduce the for j = 1: M. Futher reduction to finite element
number of state nodes. The following steps can be used to get  integrals is accomplished by letting

an approximate numerical solution. Note that the assumption —

made in this paper is that the growthidgistic for the tumor M; ;= /dx¢j(x)¢1; (%) 7
and normal cells. ¢

1) The firstdouble shostep ¢ = 1) of forward-backward
iteration shots is to guess the contrbl(x,t) ~ c.. = /d V61V [ 18
UM (x, 1), substitute it into the forward state equations N o [951Valéil (18)
and use the finite element method to solve for the state
Y*(x,t) =~ YN (x,t) for t > 0. Initially, Y*(x,0) =
Yo (x). Let the Galerkin approximation for the state = X X R
vector be 7}7]@71 = de¢j (X)¢k(x)¢l(x) (19)
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be an element mass integral fprk = 1: M,
be an element stiffness integral fork = 1:M, and

i be a triple basis element integral fork,i = 1: M

M
* — _ V() arising from the purely bilinear terms IA(Y)Y and
Yt = Y(x1) = ZYk(t) (%), (15) B(Y)Y. Thus, the Galerkin equation becomes,

k=1
hvg

along with a similar approximation for the optimal 0= Z (ﬂ]k (?é(t)f(alelelTJrazege;
control, =1

_ —asese] ) Yi(t) = U (1) +DK; ; ¥5()

U'(x,t) ~U(x,t) = > U(t) - ¢(x),  (16) 78 o
; o 37 (Vs OF (e (20)
=1
—~ aos ~ -~

where,[¢;(x)] 57, is @ set ofM linearly independent +,72Y2,;;(t Y, i(t)e:

-~

continuous basis functions, with the interpolation con- -~ =
P +(Oél,QYQ’l‘(t)+/€1,3Y3’l‘(t)) Yl’,;(t)el

dition ¢;,(x;) = 05 ;, at the element node;, implying

that Y*(x;,t) = ?E(t) for j = 1:M finite element JF(042,1?1,1”(75)+’i2,3?3,i(t)) 572,;;(15)92»,
nodes. . —

2) Before applying the Galerkin approximation (15) to for ; = 1: M. This Galerkin ODE can be solved by
the Stal'tef equa’EIOP2 (8),hthe equation must bfe put into  approximating the Galerkin basis integral coefficients
integral form onQ) with respect to a test function (M- .,K- .7 ; ;) using symbolic methods and two-

R i e NGk 45k
¢;(x) taken from the basis and then further prepared poir{t Gaussian quadrature in case of singularities,

for low order basis function by reducing the 2nd order . .
derivatives to 1st order derivatives by integration by ~ &nd then the ODE system is solved by the combined

parts (Green's formula [6]), so Crank-Nicolson and predictor-corrector methods. The
coefficients can be computed for all double shots for
0 — /dxd)}(x) (Y;—DV2[Y"] fixed finite elements off-line since they will be fixed.
Q These coefficients can be calculated on an element-by-
—(A+B)(Y)Y ' -U") element decomposition and element results can later be
_ /dx (¢~Y§+DVI[¢~WI Y7 reassembled to form the global solution [11].
Q ! ! 4) In the second, backward shot of the double shot
—¢; (A+B)(Y")Y"+U")) algorithm [1], the final condition (14),
- dl“ab;D(N'Vz) (Y] 0 (x,tp) ~ QY (x, 1)
1519} —~
M
_ . * T N * ~
- /ﬂdx (quYtJrDvng [6:]V.[Y"] _ _QZYS)(tf)QSl%(X)’
—6; (A+B)(Y)Y"+U")), k=1
R . for 6 = 1 :L double shots, is used to start the back-
for j = 1: M, where the exact no-flux boundary ward co-state solution. Similar to the state equation, a
condition has been used. Galerkin approximation for the co-state equation (after



dropping the(d) subscript) using the same basis is 5) For each completed double shot for= 1: L the co-

given by, state approximatiorf(é)( t) = Zk 1Ek (t) oy (x)
7 is used to determine thegular optimal control(11)
£ (x,t) ~ E(th) = ng(t) - (x) 1) updated value third component

U5V (x,1) = Uoa(x, ) + &7 (x,6) /53 (23)

for t < ty. As with the state Galerkin variational ) )
formulat|on the variation formulation for the co-state 6) This process is repeated fér= 2: L double shot

equation (12) is iterations until a convergence criterion for sufficiently
large L is reached, e.g., the relative criterion for the
0 = [ dx6;(x) (65 + VEDE 1+ (A+B)(Y )’ control,
Q
VY [ALB(Y *):(é*(Y*)T)—RY*) "Uéé)(x,t)—Uéé_l)(x,t)"<toluHU§‘H)(x, 1|,
/dx + (A+B)(Y")¢" and say,
Yy [A+B|(Y )€ (Y))-RY") "Y(‘S)(x,t)—Y(‘s_l)(x,t)"<t01yHY(5_1)(x,t)"7

VI [6;]V[DE"]) + /anRsz. (N-v.) [Dg7.

A form with reduced order derivatives is derived by
eliminating the boundary integral by the no-flux con-
dition (13) and then the Galerkin approximations are
substituted for the state and co-state, thus producing

for 6 = 2:L until satisfied, provideqi|U§5_1)(x, t)|| #
0 and||Y©®~1(x,)|| # 0, wheretol, > 0 andtol, >
0 are some prescribed tolerances.

V. SPHERICAL FINITE ELEMENT TEST CONFIGURATION

Consider a three dimensional test configuration that is a
sphere of radiugz,.. Transforming the spherical coordinates
in space as usual,

O~Z/dx &)+ (A+B)(VE

+Vy[A+B]( ): (£k( ) )— R?k) o (z,y,2) = r(cos(0) sin(v)),sin(#) sin()), cos(y))  (24)

,ngvl [¢;Wx[¢,;]) 7 wherer, 6, are the radius, polar angle and azimuthal angle,
‘ respectively. Also
except that the bilinear terms are only symbolically
designated byY, for j = 1: 1. Next by substituting 0<r<R, 0<6<2r and 0<¢ <m.
the Galerkin approximation fofy in the nonlinear
terms, using the element Galerkin integral notation fo

the mass/\/l i an, sUffnesle i (18) and the pure

bilinear trlpIeT i (19), the compact Galerkin ODEs
are obtained:

The brick element grid in spherical coordinates is constructed
of M, radial sectors of widthAr = R,./M,, M, polar
sectors of widthAd = 2x /My and M, azimuthal sectors

of width Ay = n/M,. The nodal values are given by

Mo ~ R (Oi. e me.) = ((ie = 1)AD, (je — 1)AY, (ke — 1)Ar)
0= Z (MJA’,; (Sk(t)+a1£1,ke1+a2€2,l§e2

h=1 for i = 1:Mg + 1, jo = 1:My + 1 and k. = 1:M, + 1.

_a3£3 keS_RYA(t)) —DR;&i(1) The elements are numbered (s +/, ) linear priority order

like the nodal values,

Z i (2“1 (18, 4(Des (22)
h Civiuee = e+ (Je — 1) - Mg + (ke — 1) - My - My,
2(12
iy Vi i(0)e: for io = 1: My, jo = 1: My, and ke = 1: M,..

. Within elemente;, ;. x , the element primary node with local
§1i(t) node numbei = 1 has the same global node numbigr=
= {ic, je, ke} as the element, i.e.,

)eg)/\ . ))7 n;—ceJ = € je ke for Z'QZIZMw,j6=1:M97k‘e:1ZMT.

The element local node numberingiis= 1:8 as shown in
for j = 1: M. This Galerkin ODE (22) may be ihe Figure 1.

computed by the appropriate numerical methods using For simplicity, trilinear basis functionsare used for all
the same Galerkin integral basis coefficients. brick elements in spherical coordinates. The trilinear bases



brain geometry. Another advantage of spherical coordinates
is the ease of imposing the-flux boundary condition (BC)

at r = R,, since on the element;, ; . the i;th state
solutlon foris = 1:3 is expressed as A prehmmary Galerkin
approximation,

2 6 8
eiej K Yi(je,je,ke)(r’ 0,4,t) ~ Z ziizyje;ke>(t) . ¢§z‘e,je,ke)(ne7w)7 37)
Werre =1
T 3 7 so the normal gradient, at boundary elemgat= M, with
rum,+1 = R, for local nodesj = 5:8, reduces to
0 A s
icoje, My T (e des My T (e de My
(o YOI (R 0,9,0) = Y (VUM (0 -T 75 @)
j=5
1 r— 5 .d);fi,je,zw,.)(Rh19’1/})7
and then
Fig. 1. Local node numbering with= 1:8 for general element;, ;_ .- (i o, M) G M)
leJe My TerJes
YoM ) = I o) (38)
. . . . s E. H H (te,Je, M) _
are constructed from the more basic one-dimensional linefg" 7 = 5:8 and arbitrary(, ) if Y; * (R, 0,,1) =
bases with only two nodes labeled 1 and 2: 0 with no-flux, where the symmetries and asymmetries of the
(ko) Fhot1 () S bases functions (25-35) and derivatives have been used. This
i (r) = (T) ;o Py (r) = (Tr) (25)  version of the no-flux condition is much better and simpler

_ 0. . _8 _ 0_ o to use than that in [2], even when dealing with a deformed
o) (0) = (%) . o)) = ( Ae“) :  (26) sphere in the form of a brain case.
The element matrices for local node numbersk = 1:8

. Yjet1 =Y (Ge) Y — P, are

¢<J)w:<77>, B w:< >; 7) . Giotr [Uiet1 [Then

N " Ay ) AY Mgf;"ﬂe’ke) = / +d0/ +d¢/ * +drr2sin(’¢)
For the general element ; Yie The

€icyjeke ON [Oic, Oic11] X [Yje, Yjet1] X [Pk, Thet] (¢Eze’h’kﬂ)¢§%]mkg)) (r.6.9), (39)
for ic =1:Mp, je =1:My and k. = 2: M, Gererke) _ [Tiet! Yiet1 Thetl
in thei = 1:8 element node numbering, i B / de/w w /m drrsinte)
BT (1,0,0) = $5(r) - 0 (0) - 0V (0); (28) (¢(ie’je’ke)¢<‘i:’jm (40)
BGeI R (1 g ) = G (1) . L) (9) . <Je W) (29) T (b(ze ko) glicsdeke)
957 (1,0,0) = ¢17(1) - 61 (60) - W(w), (30) Lok g ek >> (r.0. ).
qs(“ P 0,4) = o () 0l (0) - 08 (W) (31) e sin®(v)
G571, 0,4) = 6, (1) - 617 (6) - o “f () @D sk _ /da /wwdw [ sini)
O (r,0,0) = o (1) - 647 (0) - o “e w; @3 i duen
e 00, 4) = 656 6(0) 0w (3 (gl it t gl I4) (,0,), (41)
BT (r,0,0) = 95 (1) - d55” (0) - QWE)W’) - 33 where in (40)¢;" (ic.de:ke) () denotes the partial derivative of

~ The mapping (24) from spherical to cartesian coordinateﬁ“e Jeske )( ) W|th respect to generic spherical coordinate
is not unique since the mapping is a many-to-one. The Nofy; the stiffness matrix (40), the mapping singularities of the

;Ry?g Ur)l)o c:)(?sa?r{ﬁg ng'et%?% fo:r 6 ﬁ: agld ;nyo(rag)d gradient lead to reciprocal factors inandsin(%), but ther

or at the polar angle line of discontinuity fat — 2x factors are simply cancelled by the Jacobiémin(s)) and
for any (r,¢) (really a periodic boundary condition). The leave uncanceledin()-denominators in the)-derivative
non-uniqueness or resulting over-determinism can simply herm. However, thesein(1)-denominators are completely
removed by adding together the appropriate bases in (Z?‘Iminated in later analysis upon eliminating non-unique

(31) corresponding to the same non-unique nodes, using t . .
identities for the one-dimensional bases and their derivative ,Sdes by combining terms and associated ODEs.

¢(2 )(p )+¢<é (p) =1, ¢(é ) (p )+¢<e () =0; (36) VI. COMPUTATIONAL RESUL-TS _ _
for p=r, 0 or ¢ andl, = ke, i, or j.. While it may appear The double shot, forward-backward iteration algorithm

awkward to have to make this adjustment, the disadvantalf§'nd the finite element method outlined in Section IV is
is out-weighed by the ease of deforming a sphere into a brafifiplemented on three-dimensional space with the three states
geometry than deforming a brick or rectangular solid into and the drug input control. The numerical implementation of



the algorithm is similar to our one-dimensional application
in [1], except there the finite difference version Gfank
Nicolson’smethod was used and is too costly to extend to
another dimension. The implementation is more similar to
the two-dimensional problem treated in [2], except that the
complexity of the mapping from spherical to cartesian is
much greater than the polar mapping due to the degeneracy
at the poles. Once the non-unique degeneracies of states
and co-states due to aliases and boundary conditions are
eliminated so that there are onlzyl linearly independent
Galerkin coefﬁuentsYk( ) in ODE (20), £k( ) in ODE (22)
and controlU; i+ (t). This non-uniqueness elimination keeps
the system of ODEs from being over-determined, preserving
the symmetry of the mass and other coefficient arrays, and
eliminating thel/ sin(¢) singularity in the stiffness integrals
by virtue of identities (36). A summary of the degeneracy
removal by combining unknowns and the corresponding
equations follows;
1) Origin: r =0, k. =1, (z,y,2) = (0,0,0) for i, = 1:
My, je=1:My, i =1:4 (see Fig. 1 to see why only
local nodesi = 1 4 are involved), so
Yo ) =Y ) =Y, 50,

where the initial count isj = 1 of an independent
set of unknowns; then the ODEs must be combined
corresponding to the combined aliased unknowns, but

whereiy = 3 andi; = 7.
If k. = M, whenj. = M,, then the no-flux BC (38)
holds so these terms must be added,

— Y(l,Md,,]W,.) ,(t)

ig,M
1 i+l g1 g pie, My, Mr—k)
(Zk 0 Z; ;k Z] Zk Mzg
(25. My, M)
+ Zz 7 Z] =7 M I

wherej = 2 + (M, — 1)(Mp(My — 1) + 2).

7 5
M; 5 - Y7 5(1)
'Zfil

) Periodic BC 6 = 2m, i, = My, (z,y,2) =
r(sin(t), 0, cos(v))), the same i) = 0 or § = 2, for
elementi, = My, jo =1: My —1, ke =2: M, — 1

for local nodei = 4 (see Fig. l) S0

Al a'eaké‘. 11 .€7k€ %
yMederd ) = y ek (1) = ¥, (1)

wherej = 3+ (k. —2)(Mo(My—1)+2) + (je —1) Mo,
but alsoy, "0 Fimke=kn) (1) = V. - (t) whenj,, =
1,0,1 Oandkm =0,0,1,1, respectwely form = 1:4,
then

M, -Y!

753 is

— 1,je,ke
73(t):(M§733 )
Mg,je+im ke —Ekm 1,je,ke
fnigietd Ny et ),

+ o M.

If k. = M, wheni, = My andj. = 1: M, — 1, then
the no- qux BC must be added, so

this is only illustrated on the central derivative terms

as )
T % 1,1,1) s
M-V (1) =YD (1)

e, ”,z L X M.
Higher Pole ¢ = 0, (z,y,2) = r(0,0,+1) for
elementSze =1:My, je =1, ke = 2: M, —1 for
i =1:2 (see Fig. 1),

ie,1,ke 1,1,ke %
Yoo ) = v @) = Y, 50

wherej = 2+ (k. —2)(M9(Mw 1)+2), but also in the
ke — 1 neighboring eIemenY “3 Lk 1)( t) = Ylb 5@
fori = 5: 6, then
M; ;Y 5(0),
N S S S M
whereiy = 1 andi; = 5.
If k. = M, whenj., = 1, then the no-flux BC (38)
holds so these terms must be added,
M- Y, () =Y ()
M (Thoo T o Mt
EXLL M),

wherej = 2 + (M —2)(Mg(My — 1) + 2).

Lower Pole ¢ = =, (x,y,2) = r(0,0,—1) for
elementSZe = 1: My, jo = My, k: =2:M,—-1
for i = 3:4 (see Fig. 1),

K-iiﬁ’Mw’k‘J(t) _ YSSMw ke)

2)

= Y(l,l,lce) /(t)

(lc 1,ke—k)
1,7 )

3)

(1) =Y, ;)
wherej = 14 (k. — 1)(My(My — 1) + 2), but also
in the k. — 1 neighboring eIemenY(’e My ke 1)(t) =
-(¢t) for i = 7:8, then
]\//f“ }/}1:]( )= Y(l]\/l¢ ke )/( £
DIHID DAND DUELD DIV

ZsJ

(le My, ke —k)
i, ’

- S _ 1,je, M
M, ;Y S =Y (@)
) (Mg(}?;je,wfr) P M Me JetTmMr—Fom)

2m,2m

Myg,je+1,M Mg ,je, M
+M6(’69 e T)+M8<’89 e 7‘)),

wherej = 3+ (M, —2)(My(My—1)+2)+(j.—1) M.
The actual implementation uses subscripted subscripts to
gather the aliased unknowns and equation into their unique
locations.
The general method uses a combination of Crank-Nicolson
and prediction-correction methods developed in [7] for solv-
ing high dimensional stochastic control problems on super-

computers. The general method can handle both implicit and
nonlinear terms. For simplicity, the forward ODE (20) for the

degeneracy removegth-statey; ; at nodej can be written
symbolically, fori, = 1 3 and nodeg =1:M, as

e My Y () =
DDV Ais,js,;,,;o?(t)) (0 -
where A, ]k(f)(t)) symbolically represents theright-

hand-side matrices including nonlinear terms a?(d) rep-
resents the combined states and nodes array. A similar
backward ODE can be written for the co- st@;ek( ) with

the state replacing the role of the control in the source
while with remaining in the general nonlinear coefficient

B. (Y(t))as in (22), i.e.,
¥ M; & () =
=3 SR B, (V1) € (1)
+ 3L, M RY, (D).

The essential setup for a general Crank-Nicolson method is
to use the midpoint approximation on the integral form of the
differential equations followed by an average approximation

M M LU (),

is,ds.d .k



of the midpoint values, producing from the state ODE for A sample history of the optimal relative tumor density

Y, joyr attimet, = (€ —1)* At with £ =1: Ny, Yi*(r, 0,4, t) for r over [0, 5] in centimeters at fixed, ¢) =
ZM M. - (? A v ) _ (0, 0) in radians and at quartiles in time of a 5 day treatment
RELTTOR ek L ekt schedule is given in Figure 2. The initial tumor peak is
FALYS A A s kesos Yiskeros at (r,0,v) = (0.5,0,0). This test case shows significant
M 77 reduction of the tumor density over the treatment schedule.
—At 22/1:1 Mj',chI;:,leOj? y

where the average approximation at the midpoint is ) ) o
R thlmal Relative Tumor Density Y1(r,6,1p,t), (6,y)=(0,0)

X ~ v . v . 12107
Yiaharos = 05% (Yis,k,ul + Yis,k,e> ’ I

~ ~ A» Ah 0.9r o Y,(r6,y,0)
Ui tr05 =05 % (Uk,éJrl + Uk,é) Yi(r,enlv,tq‘)

and is compatible with the midpoint approximation in ac- o8 LYt ) |
curacy. 'The ::1pprOX|mat|on4isy,5,57,;7%0_5 is §|m|Iar com- o7t Vet |1
puted.Similarly, except for backward integration, the co-state R
- i . 0.6r 1 L
& ko Satisfies E

M = = N

r=1 Mk (&-S,I;,e_l - &-S,fc,e) = > odt

3 M =

+At stzl 2=t B, j.ihe—05" & keo0s b T

e
N
T

]\’/7 ~
—ALY 5 M5 RY o5
where thee average approximation at the midpoint is
5]'57}%’(_0,5 =~ 0.5 (51'5,1;,4—1 + gis,fe,e) ) 05 1 15 2 25 5 35 4 a5
) / r, Space in cm.
Next the predictor-correctorprocedure is used to handle
the remaining implicit and nonlinear terms. The zerothrig. 2. The optimal, relative tumor densil* (r, 6, 1, t) versusr at time,

i i ol - ; - ¢t =0 days, as a cross-section @, ) = (0,0) radians, with the initial
ICSO[Leng)I’re’d?(I:\t/gp the final CorreCtIOHlsJa@ at ime stagel tumor density peak location wittr, 8,4) = (0.5,0,0). The grid size is

(M, Mg, My) = (10,3,3).

e
o

(0) _v
PO AR Bk M N

A more detailed presentation of the initial to final tumor
density fromt=to=0 t0 t =t,,;4=2.5 t0 t=t; =5 days is

given in Figs. 3-5 over the largér, ) plane section with

This initialization permits finding th€~ + 1)th correction
YCEWZTB from

221 M; (YC(.VE?H - Ycﬁ)k 4) - fixed 8 = 0 showing that the final peak value is small and
ALY Iy AC(:)’ o the tumor has not spread significantly through the rest of
Js=1 £ek=1"""4; 4o .G k,0+0.5 Js ki £40.5 the plane in spherical coordinates, although somewhat in the
At M;,I;UC,SZNS, y—direction but not much in the—direction.
whereY ") and other midpoint terms are evaluated

Js ,15,2—5-0.5 Optimal Relative Tumor Density Y1 *(r,e,lp,t), (6,t)=(0,0)
as before by averaging. The final correction at the final

time of the state-shot forward iteratio,n?j N,4+1 Yields the

starting or final-time condition forgim,%)NHl using (14).
Then the final correction at the initial time of tlwostate-
shot backward iteratioproduces the initial control condition
(23) wheni; = 3 which is used to begin another double for
§ = 2: L. The algorithm is implemented in MATLAB' on

a desktop computer.

The data for the numerical parameters are drawn fron
various sources including Wang et al. [13], [14], Swanson
[12] and Murray [10], while unavailable parameters were
estimated. The diffusion diagonal vector I3 = [4.2e-3,
1.e-15, 0.216] crh per day. The quadratic cost coefficients
arer; = 0.1 = ¢ = g3 and sz = 0.2. The net growth

coefficient isa =[1.2e-2, 8.64e-7, 11.3] per day. The otherFig. 3. The initial relative tumor density}* (r, 6, v,t) over (r, ) plane
iai R B — — —1e- 0 =0andattimet = 0 days. The FEM grid size i$M;-, Mg, M) =

coefficients arek; = 1, . 1:2, on5 Q2,1 = 2,3 le (10,3, 3), with the mid-time and final distributions given in Figs. 4-5,

4 andr1,3 = 0.5. Following Murray the initial state for the respectively.

normal tissue is assumed to be 1. The initial tumor spread and

drug concentration are assumed to be Gaussian with scale

and state dependent means, spread and weights. NMdpi VIl. CONCLUSION AND FUTURE DIRECTIONS
was used to exactly evaluate the integrals of the elementThe theory of Galerkin finite elements is used to develop
matrices off-line. approximations to the distributed parameter optimal control



Optimal Relative Tumor Density Y1 '(r,e,xp,t), (6,£)=(0,2.5)

Fig. 4. The mid-time optimal, relative tumor densityf*(r, 8,,t) over
(r,0) plane at9 = 0 and timet = t,,,;,g = 2.5 days. The FEM grid size
is (M, Mg, My,) = (10, 3, 3), starting from the distribution displayed in
Fig. 3.

Optimal Relative Tumor Density Y1 ‘(r,e,w,t), (6,t)=(0,5)

The finite element configuration is given for a spherical
geometry that can be used to test the optimal drug delivery
computations. This finite element configuration will be more
amenable to complex brain structures and three-dimensional
geometries than the finite difference method and low dimen-
sion of our earlier work.

Future directions include

« Application to general curvilinear coordinates for gen-
eral brain geometries;

« Application to heterogeneous brain structures such as
spinal fluid cavities, variable brain matter, vascular
system and the blood brain barrier.

« For the final paper, there will be more results with more
quantitative descriptions.
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1 (1]

(2]

(3]

(4]

(5]
(6]

Fig. 5. The final optimal, relative tumor densit{*(r, 6, v, t) over (r, )
plane atdé = 0 and timet = T = 5.0 days. The FEM grid size is
(M., My, M) = (10, 3, 3), starting from the initial distribution displayed
in Fig. 3 through mid-time distribution in Fig; 4. The tumor has shrunk down
to very small values over this plane section.

(7]

problem of cancer drug delivery to the brain governed byjg;
a coupled set of three reaction diffusion PDEs in three
space dimensions. The three state variables are the tumb¥
cell density, the normal cell density and the cancer drugoj
concentration. While the tumor and normal cells are highl
coupled through intrinsic and competitive interactions, th 1
concentration is directly controlled by the drug deliveryiz
control rate. The optimally controlled distributed parameter
system is derived by a straight-forward calculus of variationg®!
technique without resort to an extremely abstract formula-
tion, and that should be useful in other similar scientific of14]
engineering applications. [
The system of optimal PDEs in three state and three co-
state dimensions is reduced by Galerkin approximations of
the state, co-state and control vectors to a system of six ODEs
in time with three fundamental element integral coefficient
forms: the mass, the stiffness and nonlinear coefficients.
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