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Abstract searched rather than the whole state space. The caution term
presents the error between the deterministic feedbatk co

The discrete-time stochastic optimal control problem is a i ;
proximated by a variation of differential dynamic program—rOI and the stochastic optimal control [6]. Care must baluse

ming with systematic calculations of the perturbations uluein fiqding the. caution term, and here the re_Iative size of the
small stochastic noise. This problem s related to the dual ¢ caution term is not assumed before calculations.

trol aspects of stochastic optimal control problems. The m
tivation is to correct prior calculations for missing terarsd
to examine the foundations of the method. The state vecto
properly expanded asymptotically, in addition to the cohtr
vector, in contrast to previous solutions. Correctionggren
for the small noise expansions of the solution.

Phe stochastic optimal control problem in discrete timevis f
mulated and the reduced equations for expansions of the reg-
UBr control up to quadratic order in the stochastic paramet
are found in Section 2. Unlike the previous derivation in [6]
both the control and the state vectors are expanded asymptot
ically for consistency. In addition, the expectation operés
applied to the entire cost-to-go for that stage, insteachtyf o
the cost-to-go found from the previous stage of the backsvard

. . . . L sweep.
Conventional discrete dynamic programming [5] is still com

monly used, but aside from a few specific problem formg; order to find a caution term of the same type as Kitanidis
Bellman's curse of dimensionality in the state space limitg), the state vector in Section 3 is not expanded until after
its use in numerical methods to those with a relatively smalhjculations for each stage in the DDP backwards sweep. This
number of state and control variables, though the use of higfpans that the control is not the same as the consistent form

performance computing permits the treatment of largeestagund in Section 2, but second order control terms missing
spaces [3]. The need to search the entire state space infgym [6] are included.

namic programming, both for deterministic and stochastic

problems, can lead to large scale computational demanda. Appendix gives a scalar counter-example to show that
Thus the method has limited usefulness to applications susshitching the order of the expectation and minimum opera-
as reservoir management [6, 7], groundwater quality remetlirs is generally incorrect.

ation [2, 4], and others.

1. Introduction

An alternate method, used by Kitanidis et al. [6, 7], for ap- 2. Control Problem and Stochastic Perturbation
proximate solutions to the optimal control and cost-to-go p

formance index utilizes a stochastic perturbation of dffe The general discrete-time stochastic optimal control emb
tial dynamic programming (DDP) [5, 3] to find an analytitas the cost objective

solution of both the deterministic and caution (i.e., hadgr

stochastic correction) terms. These terms are relatedeto th N-1

interaction of estimation and control as found in dual con- D] =Ew | In(N) + D (R Uicra) | (1)
trol concepts [1]. This stochastically perturbed DDP mdtho k=t

gives a formally closed form expansion of the solution arsl hyhere fy is the specified final cost anck is the kth stage
the added advantage in dimensional computational compl@yst fork = 1,...,N — 1. The expectation operataE, =
ity over stochastic dynami<_: p_rogramming. The decr_ease @{]wk,kzz wony = M Ew,. denotes the expectation over inde-
the computational complexity is because for small noisg orhendent component, discrete noitie and thus ensuring sep-
a small neighborhood of the deterministic trajectory neteds grapility of E,, over each stage The goal is to minimize the
cost objective subject to the linear state transition égoat

1work supported in part by the National Science FoundaticonGDMS-
96-26692. This paper will appear in tReoceedings of 37th IEEE Conference
on Decision and Controls pages, December 1998 Xir1 = PRk + Wil 1 + Pr1 + Wi 1, (2)
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from [6], wherek = 1,...,N — 1. Thedy andWy are known Substituting the above expansions into the transition ggua
state and control coefficient matrices, respectively; thieof (2) implies the coefficient relations
the systen¥, is an x 1 dimension vector, the contrd is a

mx 1 dimension vectoif is a known input vector of dimen- X|(<0> = d>k,1Xi(£>1 + LPk,lﬂi((()) + P, (10)
sionn x 1, andwy is a stochastic noise vector of dimension 1 1 1) .1
nx 1, such that %) = oWt W, A
. (2 _ (2) (2)
Bl =0, Ev [WhW] | = Q. ®) A= Berdey t Pl (12)

for k=1,...,N. The control constraint for theth stage is as- upon matching terms of o(d®), ord(c'), and orda?), re-
sumed to be given component-wisela ki < Ukj < Umaxki SPectively. HereF (o) = ord(G(o)) means thaF (o) is the
fori=1tonandk=2toN. same orderas G(0) or thatF (o) = O((G(0)), but F (o) #
o((G(o)), asa — 0.
The optimal, expected total cost is
N1 In order to properly find the minimum specified in (7), a spe-
i —mi cial commutativity of the expectation and gradient, a resul
minll= m" [EW lfN(XN) * k; Ol%o Ukﬂ)H ’ “) with proof attributed to J.M.C.Clark in [5], is needed:

where mip = I'Ii'\‘:zminui, satisfying the separability prop- Oue [Ew [V (X, T, Wi )] = Ewg [Ou [V (X, Tk, Wio)]],

erty of the minimization operator needed to apply the deter-

ministic dynamic programming method, while separability ccast in the vector-gradient notation here, under the fajely-
the expectation operator over the stages permits extetsioral conditions with state as a parameter:

stochastic dynamic programming. The final cost condition is -
denoted by Ew [V (X, U, Wi)] < o atli=4d,

b
= fn(Xn) = R(Xn), Euw l/a |V(X,Uk,wk)|dﬂk] < oo,

where the %" denotes the optimal value.

S q ) . ds backward th h excluding zero or infinite singular conditions. This
ince dynamic programming proceeds backward throug the ot the same as MifiEu, [V (%1, O, W)]] =

_stage; from the known _flnz_sil cond|t|on, sta_(ge— 1)is exam- Ev [Ming, [V (X1, T, Wi)]], which is generally not true

ined first. Using the Principle of Optimality and substitigti , 4 4 scalar counter-example is given in the Appendix.

for Xy from the state transition equation gives the decomposi-

tion recursion Using the commutativity of gradient and expectation opera-

Jy (%) + N1 (R 1, TN) tors to compute the regular or unconstrained control vector

I
N1 Oregx from (7),

= J(Pn_1Xn—1+ PN_10N + Py + W)

+ON-1(%n-1, ). (5) 0 = Oy B[ fi(R)+C1(Reo1, U)]] (13)
The cost-to-go function for stagé— 1 is = Bw[Oue[fid () +DuC-1) (Re—1, U]
_ T
fn-1(n-1) = Roa(n-1) (6) = B [Wea D[ R0+ O[O 1] (R, 8]
= ”J,i”[EWN [fn(Rn)+Cn-1(Rn-1, TUn)]]- to focus on the systematic perturbation without the conaplic
_ _ _ _ tions due to the corresponding constrained optimal conitnol
By induction the cost-to-go function for stage—1) is the above, the first of the following chain rules were used to
fr(R1) = nJLn [Ewk [fk(xk)‘FCkfl(kal,Uk)H . convert control to state derivatives:
T
= I'len [EWk[fk(q)kflxkfl"'quflUk Duk[fk] (Xk) = L'kalmxk[fk] (Xk)a (14)
k T T T
o Ou Oy [l (X)) = (Wke1Wi_q @ Oy O fi] (%),
i) bocatentol). @) DM = (et DB T

Therefore, the cost-to-go at stage- 1) has to be minimized Where ‘A: B’ represents the trace of the matrix prodad".
given that the cost-to-go at thkéh stage is already computed.UPon substituting expansions (8) for control and (9) fotesta

gives

Since the control affects the state at #ib stage according . 0 L ,
to the dynamics (2)pothy and¥ are expanded to order, 0 = Ew {LPLlDXk[fk] %O 4+ oxP + o))
whereao is the stochastic covariance scaling factor, such that ) B 2(2)
02 = TracdQy] with 0 < ¢ < 1 for small stochastic noise, F0u[Ck-1] (K1 + 0% + 07K,
W = ow.”, and 6 + ot +o%g?) +0(%)] . (15)

G _ U(O) + O'U(l) +0'2U(2) + 0(0.3) (8) . . . . .. .

k k k k ’ Next, using Taylor approximations, assuming sufficient dif

X = 7|(<0> +0%f(l> +022f<2) +O(03). (9) ferentiability of fy andck_1, for perturbations abodt((o) for
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fx and abou(X@l, Uﬁo)) for cx_1. Grouping together terms of
ordera® and higher intd(a®) perturbation error results in

0 = B [WE 10k 14+ Do 1)y, )

91O O IR (0% +0%R2)
1
2
+0u 08 [ee 2] (82, 69 (0% +0%2)
+04 07 o 2] (82, 02 (otM + 0%

1 1 0
Wit (% (03T Dk ) B[ (R)

o

-

(0@ T 0407, ) Ou o182, 6)
+02 (R @) : O, T, ) D for 1)(%2,, 0
O (T 0T
Oulo 1104,8) + 0(c%)|.

(0}
+—
)

DT

k-1

(16)

Next, replacingx’l((l) and X’l((z) with their recursive expansion
formulas in (11,12), applying the expectation operatongsi
Wi = oW,
after much algebra, the largest order equations are

ordc®):0 = W 0 [fi®X)+
O [oc1) (%3, UﬁS;k), 17)
ordic}):0 = Goxiil,)1+HoU£elék, (18)
where
Gy = GO(x@lvuﬁgék)
= W0 0L [ (R) Pt
+Ou T8 (01 (47 B0
Ho = HO(XIS)DUQQ)LK)

Wl 1O O [ () W1
0o T fee 1139 ©
+ Uy Uk[ kfl](xkflv regk)

is the Hessian matrix. This notation helps to simplify th
ord(c?) equation to

6 - cull ol
1
+§qu71 ((Cbk,lii(i)l)(d)k,lxﬂlf 3

O 0%) Ok [ (R
+%WL (w202
O O ) O [ (R2)
+%L|J-Ll (Qk: kaDIk) O [ (%)
+W ((q’kfﬂ& gt
O 05,) O [Fi (R

1 (U(l) @ T DukDIk)

1
) (kafluse&k

)"

)(Wk-10

+ é regk \ “regk

0 0
Ouc o1 (%, USeg);k

D (1) \T.
+ (Xtijl(ufe;k)T : DXHDEK)
Duk[ckfl](

0 0
£ Ul
1/ 1) .\7.
+5 (X&Jl(X&Jl)T POx s lefl)
2
(0) )

0
DUk [Ckfl] (xi(gl’ l"ireggol<
where@k :_Qk/oz._ Since the state depends on the control
from (2), &) — X%k, but the state rég’ subscript is sup-
pressed here to focus on getting the regular control. We can
clearly solve for the critical (regular) contralegk through

ord(a?) provided (17) is solvable foﬁ:iggék and H, is invert-
ible. '

)

(19)

3. General Caution Term for Cost-To-Go

Kitanidis does not expand the state vector asymptotically i
[6] consistently as above, so when the deterministic and cau

and collecting terms of the same order, so thafgn terms of the cost-to-go are found, different solution f

the controls are found. However, the expansion of the cbntro
vector induces an expansion of the state vector according to
the transition equation (2) for each stageso that for con-
sistency the state vector should be expanded with the dontro
vector for eachik — 1)st stage as well as theh stage.

This section will follow the dual expansion of state and coht

of only thekth stage in examining the asymptotics of the cost-
to-go performance index. The section initially looks at the
case for a general cost-to-go. Note tiWatwill be used to
denote the control vector in this section to distinguishati
the controlli used above.

3.1. Stage (k—1)

As above, there is a backward sweep through the stages. The
objective to be minimized and the state transition equatien

the same as before:

N-1
€ DI=E | fn@&)+ ) k(R Viera) | » (20)
&1

X = DOy 1%1 + Wk 1V + Pl + W, (21)

fork=2,...,N—1, exceptVg is now used for the control.
Since the first stagek(= 1) involves an initial condition, it
will be treated separately. The cost-to-go for stége 1) is

f-1(Re1) = min[Bu [fe(Xo) + G-1(Re-1, VOl (22)
The critical control vector satisfies
0 = Oy [Ewe[fi(%)+Cc1(Xe1. V)] (23)
= B[ Who2 O fid (%) + O[O 1] (K1, V).
Expanding/i andx, asymptotically up to ordes?,
W = Wior!+0%? +0(0?) (24)
% = % +ox+0%2+0(c%, (25
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holding X, temporarily unexpanded. Substituting this intevhere here
the previous equation yields 40
HO reg(xk 1, regk)
o = WLy O O [ (g Wt
+0y, k1] (Rk—1, V" + 0OV, ' + 0%V,

Vi [3k 1]( k=1 Yk k k ) +ka|:|xk71[ckfl](kalavggg}k%
+0(a%)]. (26) 0 o -

Kegk = Pr-1X-1+Wk-1Viggy+k:

Using a Taylor approximation aboiff) for fy, and about?l((o)
for c_1, assuming sufficient differentiability o andck-1,  The orda®) equation implicitly defines a solution faf!

= (1)
0 = Euw, [q’I O[] (Xt((O)) Since the Hessiandtmust be positive definitd),, = =0. This

simplifies the ordo?) equation to the form:

Ho

egk"

VLT O E) (314077 )
0 = HoWit Wi s (QuOy )

o’ 1) (1
+5 (Xﬁ)(xﬁ))T:DXkDT) - (2 ) ”
DX k k/» 34
D[ i (%) + Oy [oc 1] (% 9 e
2 so that
+DVKDJk[ck,l] (%19 (ovf(uozv@)
0 (o) D) v — —Hgt( typ (6 :0 DT)
+7 (vk (V )T:DVkD\-II-) regk ¢} 2 k—1 K« g e
(0)
Ovefo 1) (% 1.4%)+O(6%)] 27) T (Keg)) - (35)
From (24) and (21), provided H is invertible.
0 _ ) | -
X = PeaXert PV +Ho (28) 3.1.1. Caution Term: In this subsection, the<y’ no-
= W fw, (29) tation is dropped for the sake of simplicity. Taking Tay-
Xff) -y V(Z) (30) lor approximations abOLﬁf(o) for f(X) and aboutvii0> for
¥ ck_1(%_1,%), then substituting into (22),
Replacmgik andxk with their recursive expansion formu- 0 a
las above, and applying the expectation operator as in Sec fe1(Re1) = fk(xk )+0DXk[fk](Xk ) W1V,
tion 2 yields xk[fk] (Xti ))kaﬁﬁ )
- 0 0 2
6 = WLLOWME) + Oufor 11K 4) % (W72 @172
+OW 3 O O, [ () Wi 2

2 © (2 ) D[ R)
+02W_ 3 Oy 0%, [ (%) W19 2 0

+5 (Q 0 0L (R
+Ck—1(xk—lav|(( b
» Oy o 1)(%-1,9) (UVS) +02V|(<2))
+%W171 (éki ka[l;(rk) D&[fk](xg)) 0?2 (

_l’__
2
030 o )00 (002 + )
2

0% T o o
+?ka—l ((kaflvk )(kaflvk ):

D 0% ) O [fid (%)

vl((l) (v(l))T : ka DT )

e 1) (%e_1,%)+0(0®), (36)

0% (1) gD\ . T
+ 2 (vk (%) 'D"kD ) where use has been made of the recursive expansion state for-
Oy [C1] (%1, )+ O(o ) (31) mulas (29,30) for fixed_1.
whereQx = Qc/0? andQx = Ey, [ViVj ], here. Let
Collecting terms of like order, results in fic1(®e1) = (Dkc1+0Zc1+0°Sc1) (K1), (37)
ord(@®):0 = W Ok [fi] (%) (32) which s the Kitanidis [6] decomposition of thie— 1)st stage
Oy [c ](X(O) v(0)) cost into deterministi®y_1 and caution terng._, but here
. W L1 T with an extraZy 1 term linear in the scaling parameteffor
ord(ol) :0 = Hg %k, (33) generality. Matching terms of the same order with those of
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(36) and using the fact thﬁil> =0, equation then simplifies to,

0y . = =~
OI‘d(O ) 0 = Ho géfr“"{ (QZ:szmlz) DXz[fZ](X(ZC»)’
Dk 1(% 1) = Di(R)+cc 1(% 1,90), 38 T (A
k1 ( 11) k(X )+Ck-1(R-1,V ") (38) V%z —HolyT (inDxZDIZ) 0o [BEY),  (46)
ord(o”) :
Zi1(R%1) = Zk(if(o)), (39) completing the solution fafeg2. We can now find
ord(c?) : Xegz = P1X1+W1Vrego+f2+W,, and (47)
S 1% 1) = &(X‘((O)) (Qk Ox, Xk) [Dy] (X‘(( )) Xiega = PoXrego+WNieg3+Ha+Ws. (48)
T (0) It is interesting that the derivation of the control is ideat
+(DX (D] (%) W1 with that done previously at this stage. However, since the
01\ (2) cost-to-go for stage two does not match, the control frogesta
o+ O [0-1] (1.9 )) Vi (40) one to stage two will be in error.

; _ (0) _ i}
SinceZi1(X-1) = Z(X"), Z1(%-1) = 0 by the purely de 3.2.1. Recursion for Caution Term: The cost-to-go

e o . (0) (0) .
terministic final condrtroan( ) Dn(Xy), as assumed in i5 found by PULtinGX.eg2 aNdVieg iNto (41). The cost-to-go
[6]. The deterministic term (38) which corresponds to Ki- (1)

tanidis [6] result |ka(Xk )) is replaced byDy(®y_ ﬂk N becomes a functron ofy, fixed as an initial conditiony,
andX (note thaix2 is by definition a function okz).

Y 1U pk) However, the second order control terms pro-

portional tov in (40) aremissingin [6] entirely, due to error, The vectors/, andX; were found previously. Recalling the

not mvolvrng any extra assumptions here.. definition (37), expanding

32, StageOne fa(%0) = min[Bu,[f2(%2) + Ca(%1, %)]] (49)

A similar series of calculations occurs for this stage. Hasve

X1, which is fixed as an initial condition, is now involved. Thi

causes some terms present in the calculations of an naalkini

stage to disappear.

y using appropriate Taylor approximations and substitigi
rom the state transition equation, and then matching tefims
fike order yields

ord(a?) :
The cost-to-go for this stage is Dy(%)) = Dz(igo))Jrcl(Yl,V(ZO)), (50)
f1(%2) = min[Bw, [f2(%2) + C1 (X1, V2)] (41)  ord(oh):
The goal is to find the critical control vector satisfying Z() = Z(%))+ (DL[DZ](X(ZO) Y1
O = O, [Bwy|fo(%) €1 (%0, %2)]] (42) + O fea] (R0, ) ) 97, (51)
= B, [ W] O[] (7)) + O ea] (47, 57 ord(?)
where the commutativity of the gradient and the expectation Si(%1) = Sz(?(zo))Jr} (Qi Oy, DIZ) D2)(%”) (52)

has been used again. Substituting the asymptotic expansion

T (0) (0) (2)
for V> andX, up to ordeio? into (42), recalling thag; is fixed, +<DX2[D2](X Wity [ed (21’% )) v

gives small o 1 = )
In simplifying (52), the fact tha#,” = 0 was used, leading to
0 = Ew, [WI O, [ f2] (R + 0%57 + 0% (43) Z1(%) = 0. Therefore, an of@?) caution term again appears
0) A 22 5 as the correction to the deterministic tery,((Xy), but with
+ Oy, [C1] (%2, V7 +0V, 7 +0V; ") +O(0 )} an extra correction proportional to the second order contro
0 Vecto rv§2> .

Using Taylor approximations aboﬁ%0> for f; and about,
for ci1, then substituting state transition expansiﬁﬁ% and 4. Conclusions

2(22>, and finally collecting terms of like order leads to o - _
Finding the DDP approximation for the stochastic regular

ord(@®):0 = WOk [f2) () +D0y,[ca) (%Y, %), (44) control, and hence the stochastic optimal control, regtare
ordia) 9 = W 0T 1,19 (Wl accurate expansion of both c_o_nt@ astdte vecters. The or-
(@) 1Dl M2l (%2 )( 12 ) der of the expectation and minimum operators in general can-

+0v, 00, [c1 }(X(f),v(zo))v(zl). (45) not be exchanged during the calculations. While general re-
cursive forms exist for the deterministic and caution teohs
Here (45) is equivalent to Hre , =0, whereH, is the Hes- the cost-to-go as they are defined by Kitanidis [6], the con-
sian. The Hessian needs to be positive definite since the C@gi| and state of the system are not the same as the stochas-
to-go is being minimized, henoéeng =0. The order ¢?) tically perturbed DDP approximation found here and missing
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terms are corrected. The systematic treatment given hare nating that this control is noise dependent, which greatime
be used to achieve accurate numerical approximations uppticates the calculation of an optimal control subject taco
ord(a?) in various applications that require a number of stastraints. Taking the minimum df(x, u; w):

and control variables. Future work will include numericad r

sults for c_:oncretéN andcy costs, as well as filtering for partial min[f(x,uw)] = ao— az(ag + byw)
observations. u a

1 (a3 +bw)? ap +biw
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he extra term|—b2w?2/(2a,)], above, withy # 0 andaz > 0,
means that

Appendix: Interchange of Minimization and Expectation: mJn[EW[f(X’U;W)H#E mu|n[f(x, U;W)]} ’

Scalar Counter-Example . L L .
in general, so that the minimization operation is not inter-

In thi dix. th liditv of the interch f minieni changeable with the expectation operation. However, decor
N this appendix, the validity of the Interchange ot miniamz {'n to aresult of Clark reported in [5] (pp. 194-195), theard

t|_on and expec_tatmn aperations is examined, by _Iookmg abf differentiation and expectation can be interchangeceund
simple quadratic cost model where the two operations are pgr.

fdlirly general conditions. Here, for example
formed in opposite order, with minimization first, then pest ya ' pie.

bation expansion, and lastly expectation. Howetlres, order d
does not give the same ansveerthe original order. gy Ewlf(x ww)]] = Ew [% [F(x, UJW)]} ;
The simple scalar quadratic cost counter-example is so that in the correct form the contnois a variable indepen-

1 dent of noise variable.
f (X, u; W) = ap+aru+=apu?+ (bo+byu)w-+cow?
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