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Abstract

The discrete-time stochastic optimal control problem is ap-
proximated by a variation of differential dynamic program-
ming with systematic calculations of the perturbations dueto
small stochastic noise. This problem is related to the dual con-
trol aspects of stochastic optimal control problems. The mo-
tivation is to correct prior calculations for missing termsand
to examine the foundations of the method. The state vector is
properly expanded asymptotically, in addition to the control
vector, in contrast to previous solutions. Corrections aregiven
for the small noise expansions of the solution.

1. Introduction

Conventional discrete dynamic programming [5] is still com-
monly used, but aside from a few specific problem forms,
Bellman’s curse of dimensionality in the state space limits
its use in numerical methods to those with a relatively small
number of state and control variables, though the use of high
performance computing permits the treatment of larger state
spaces [3]. The need to search the entire state space in dy-
namic programming, both for deterministic and stochastic
problems, can lead to large scale computational demands.
Thus the method has limited usefulness to applications such
as reservoir management [6, 7], groundwater quality remedi-
ation [2, 4], and others.

An alternate method, used by Kitanidis et al. [6, 7], for ap-
proximate solutions to the optimal control and cost-to-go per-
formance index utilizes a stochastic perturbation of differen-
tial dynamic programming (DDP) [5, 3] to find an analytic
solution of both the deterministic and caution (i.e., hedging or
stochastic correction) terms. These terms are related to the
interaction of estimation and control as found in dual con-
trol concepts [1]. This stochastically perturbed DDP method
gives a formally closed form expansion of the solution and has
the added advantage in dimensional computational complex-
ity over stochastic dynamic programming. The decrease in
the computational complexity is because for small noise only
a small neighborhood of the deterministic trajectory needsto
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searched rather than the whole state space. The caution term
represents the error between the deterministic feedback con-
trol and the stochastic optimal control [6]. Care must be used
in finding the caution term, and here the relative size of the
caution term is not assumed before calculations.

The stochastic optimal control problem in discrete time is for-
mulated and the reduced equations for expansions of the reg-
ular control up to quadratic order in the stochastic parameter
are found in Section 2. Unlike the previous derivation in [6],
both the control and the state vectors are expanded asymptot-
ically for consistency. In addition, the expectation operator is
applied to the entire cost-to-go for that stage, instead of only
the cost-to-go found from the previous stage of the backwards
sweep.

In order to find a caution term of the same type as Kitanidis
[6], the state vector in Section 3 is not expanded until after
calculations for each stage in the DDP backwards sweep. This
means that the control is not the same as the consistent form
found in Section 2, but second order control terms missing
from [6] are included.

An Appendix gives a scalar counter-example to show that
switching the order of the expectation and minimum opera-
tors is generally incorrect.

2. Control Problem and Stochastic Perturbation

The general discrete-time stochastic optimal control problem
has the cost objective

[J] = Ew

[
fN(~xN)+

N−1

∑
k=1

ck(~xk,~uk+1)

]
, (1)

where fN is the specified final cost andck is the kth stage
cost for k = 1, . . . ,N − 1. The expectation operator,Ew =
E{wk,k=2 to N} = ΠN

k=2Ewk, denotes the expectation over inde-
pendent component, discrete noise~wk, and thus ensuring sep-
arability of Ew over each stagek. The goal is to minimize the
cost objective subject to the linear state transition equation

~xk+1 = Φk~xk + Ψk~uk+1 +~µk+1+~wk+1, (2)
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from [6], wherek = 1, . . . ,N−1. TheΦk andΨk are known
state and control coefficient matrices, respectively; the state of
the system~xk is an×1 dimension vector, the control~uk is a
m×1 dimension vector,~µk is a known input vector of dimen-
sion n× 1, and~wk is a stochastic noise vector of dimension
n×1, such that

Ew[~wk]=~0, Ew
[
~wk~w

T
l

]
=Qkδk,l . (3)

for k = 1, . . . ,N. The control constraint for thekth stage is as-
sumed to be given component-wise asumin,k,i ≤ uk,i ≤ umax,k,i

for i = 1 ton andk = 2 to N.

The optimal, expected total cost is

min[J] = min
u

[
Ew

[
fN(~xN)+

N−1

∑
k=1

ck(~xk,~uk+1)

]]
, (4)

where minu = ΠN
i=2minui , satisfying the separability prop-

erty of the minimization operator needed to apply the deter-
ministic dynamic programming method, while separability of
the expectation operator over the stages permits extensionto
stochastic dynamic programming. The final cost condition is
denoted by

JN = fN(~xN) = J⋆
N(~xN),

where the “⋆” denotes the optimal value.

Since dynamic programming proceeds backward through the
stages from the known final condition, stage(N−1) is exam-
ined first. Using the Principle of Optimality and substituting
for~xN from the state transition equation gives the decomposi-
tion recursion

JN−1 = J⋆
N(~xN)+cN−1(~xN−1,~uN)

= J⋆
N(ΦN−1~xN−1 + ΨN−1~uN +~µN +~wN)

+cN−1(~xN−1,~uN). (5)

The cost-to-go function for stageN−1 is

fN−1(~xN−1) = J⋆
N−1(~xN−1) (6)

= min
uN

[EwN [ fN(~xN)+cN−1(~xN−1,~uN)]].

By induction the cost-to-go function for stage(k−1) is

fk−1(~xk−1) = min
uk

[
Ewk [ fk(~xk)+ck−1(~xk−1,~uk)]

]
.

= min
uk

[
Ewk[ fk(Φk−1~xk−1+Ψk−1~uk

+~µk +~wk)+ck−1(~xk−1,~uk)]] . (7)

Therefore, the cost-to-go at stage(k−1) has to be minimized
given that the cost-to-go at thekth stage is already computed.

Since the control affects the state at thekth stage according
to the dynamics (2),both~uk and~xk are expanded to orderσ2,
whereσ is the stochastic covariance scaling factor, such that
σ2 = Trace[Qk] with 0 < σ ≪ 1 for small stochastic noise,

~wk = σ~w(1)
k , and

~uk = ~u(0)
k + σ~u(1)

k + σ2~u(2)
k +O(σ3), (8)

~xk = ~x(0)
k + σ~x(1)

k + σ2~x(2)
k +O(σ3). (9)

Substituting the above expansions into the transition equation
(2) implies the coefficient relations

~x(0)
k = Φk−1~x

(0)
k−1 + Ψk−1~u

(0)
k +~µk, (10)

~x(1)
k = Φk−1~x

(1)
k−1 + Ψk−1~u

(1)
k +~w(1)

k , (11)

~x(2)
k = Φk−1~x

(2)
k−1 + Ψk−1~u

(2)
k , (12)

upon matching terms of ord(σ0), ord(σ1), and ord(σ2), re-
spectively. Here,F(σ) = ord(G(σ)) means thatF(σ) is the
same orderas G(σ) or that F(σ) = O((G(σ)), but F(σ) 6=
o((G(σ)), asσ → 0.

In order to properly find the minimum specified in (7), a spe-
cial commutativity of the expectation and gradient, a result
with proof attributed to J.M.C.Clark in [5], is needed:

∇uk[Ewk[V(~x,~uk,~wk)]]=Ewk[∇uk[V(~x,~uk,~wk)]],

cast in the vector-gradient notation here, under the fairlygen-
eral conditions with state as a parameter:

Ewk[V(~x,~uk,~wk)] < ∞ at~uk =~a,

Ewk

[
Z ~b

~a
|V(~x,~uk,~wk)|d~uk

]
< ∞,

excluding zero or infinite singular conditions. This
is not the same as minuk[Ewk[V(~xk−1,~uk,~wk)]] =
Ewk[minuk[V(~xk−1,~uk,~wk)]], which is generally not true
and a scalar counter-example is given in the Appendix.

Using the commutativity of gradient and expectation opera-
tors to compute the regular or unconstrained control vector,
~ureg,k from (7),

~0 = ∇uk[Ewk[ fk(~xk)+ck−1(~xk−1,~uk)]] (13)

= Ewk[∇uk[ fk](~xk)+∇uk[ck−1](~xk−1,~uk)]

= Ewk

[
ΨT

k−1∇xk [ fk](~xk)+∇uk[ck−1](~xk−1,~uk)
]
,

to focus on the systematic perturbation without the complica-
tions due to the corresponding constrained optimal control. In
the above, the first of the following chain rules were used to
convert control to state derivatives:

∇uk[ fk](~xk) = ΨT
k−1∇xk [ fk](~xk), (14)

∇uk∇T
uk

[ fk](~xk) =
(
Ψk−1ΨT

k−1 : ∇xk∇T
xk

)
[ fk](~xk),

where “A : B” represents the trace of the matrix productABT .
Upon substituting expansions (8) for control and (9) for state,
gives

~0 = Ewk

[
ΨT

k−1∇xk [ fk](~x
(0)
k + σ~x(1)

k + σ2~x(2)
k )

+∇uk[ck−1](~x
(0)
k−1 + σ~x(1)

k−1+ σ2~x(2)
k−1,

~u(0)
k + σ~u(1)

k + σ2~u(2)
k )+O(σ3)

]
. (15)

Next, using Taylor approximations, assuming sufficient dif-

ferentiability of fk andck−1, for perturbations about~x(0)
k for

p. 2



fk and about(~x(0)
k−1,~u

(0)
k ) for ck−1. Grouping together terms of

orderσ3 and higher intoO(σ3) perturbation error results in

~0 = Ewk

[
ΨT

k−1∇xk [ fk](~x
(0)
k )+∇uk [ck−1](~x

(0)
k−1,~u

(0)
k )

+ΨT
k−1∇xk∇T

xk
[ fk](~x

(0)
k )

(
σ~x(1)

k +σ2~x(2)
k

)

+
1
2

ΨT
k−1

(
σ~x(1)

k (σ~x(1)
k )T : ∇xk∇T

xk

)
∇xk [ fk](~x

(0)
k )

+∇uk∇T
xk−1

[ck−1](~x
(0)
k−1,~u

(0)
k )(σ~x(1)

k−1+σ2~x(2)
k−1)

+∇uk∇T
uk

[ck−1](~x
(0)
k−1,~u

(0)
k )(σ~u(1)

k +σ2~u(2)
k )

+
σ2

2

(
~u(1)

k (~u(1)
k )T :∇uk∇T

uk

)
∇uk [ck−1](~x

(0)
k−1,~u

(0)
k )

+σ2
(
~x(1)

k−1(~u
(1)
k )T :∇xk−1∇T

uk

)
∇uk [ck−1](~x

(0)
k−1,~u

(0)
k )

+
σ2

2

(
~x(1)

k−1(~x
(1)
k−1)

T :∇xk−1∇T
xk−1

)

∇uk [ck−1](~x
(0)
k−1,~u

(0)
k )+ O(σ3)

]
. (16)

Next, replacing~x(1)
k and~x(2)

k with their recursive expansion
formulas in (11,12), applying the expectation operator using

~wk = σ~w(1)
k , and collecting terms of the same order, so that,

after much algebra, the largest order equations are

ord(σ0) :~0 = ΨT
k−1∇xk [ fk](~x

(0)
k )+

∇uk[ck−1](~x
(0)
k−1,~u

(0)
reg,k), (17)

ord(σ1) :~0 = Go~x
(1)
k−1 +Ho~u

(1)
reg,k, (18)

where

Go ≡ Go(~x
(0)
k−1,~u

(0)
reg,k)

= ΨT
k−1∇xk∇T

xk
[ fk](~x

(0)
k )Φk−1

+∇uk∇T
xk−1

[ck−1](~x
(0)
k−1,~u

(0)
reg,k),

Ho ≡ Ho(~x
(0)
k−1,~u

(0)
reg,k)

= ΨT
k−1∇xk∇T

xk
[ fk](~x

(0)
k )Ψk−1

+∇uk∇T
uk

[ck−1](~x
(0)
k−1,~u

(0)
reg,k)

is the Hessian matrix. This notation helps to simplify the
ord(σ2) equation to

~0 = Go~x
(2)
k−1 +Ho~u

(2)
reg,k

+
1
2

ΨT
k−1

(
(Φk−1~x

(1)
k−1)(Φk−1~x

(1)
k−1)

T :

∇xk∇T
xk

)
∇xk [ fk](~x

(0)
k )

+
1
2

ΨT
k−1

(
(Ψk−1~u

(1)
reg,k)(Ψk−1~u

(1)
reg,k)

T :

∇xk∇T
xk

)
∇xk [ fk](~x

(0)
k )

+
1
2

ΨT
k−1

(
Q̂k : ∇xk∇T

xk

)
∇xk [ fk](~x

(0)
k )

+ΨT
k−1

(
(Φk−1~x

(1)
k−1)(Ψk−1~u

(1)
reg,k)

T :

∇xk∇T
xk

)
∇xk [ fk](~x

(0)
k )

+
1
2

(
~u(1)

reg,k(~u
(1)
reg,k)

T : ∇uk∇T
uk

)

∇uk [ck−1](~x
(0)
k−1,~u

(0)
reg,k)

+
(
~x(1)

k−1(~u
(1)
reg,k)

T : ∇xk−1∇T
uk

)

∇uk [ck−1](~x
(0)
k−1,~u

(0)
reg,k)

+
1
2

(
~x(1)

k−1(~x
(1)
k−1)

T : ∇xk−1∇T
xk−1

)

∇uk [ck−1](~x
(0)
k−1,~u

(0)
reg,k), (19)

whereQ̂k = Qk/σ2. Since the state depends on the control

from (2), ~x( j)
k → ~x( j)

reg,k, but the state “reg” subscript is sup-
pressed here to focus on getting the regular control. We can
clearly solve for the critical (regular) control~ureg,k through

ord(σ2) provided (17) is solvable for~u(0)
reg,k and Ho is invert-

ible.

3. General Caution Term for Cost-To-Go

Kitanidis does not expand the state vector asymptotically in
[6] consistently as above, so when the deterministic and cau-
tion terms of the cost-to-go are found, different solution for
the controls are found. However, the expansion of the control
vector induces an expansion of the state vector according to
the transition equation (2) for each stagek, so that for con-
sistency the state vector should be expanded with the control
vector for each(k−1)st stage as well as thekth stage.

This section will follow the dual expansion of state and control
of only thekth stage in examining the asymptotics of the cost-
to-go performance index. The section initially looks at the
case for a general cost-to-go. Note that~vk will be used to
denote the control vector in this section to distinguish it from
the control~uk used above.

3.1. Stage (k−1)
As above, there is a backward sweep through the stages. The
objective to be minimized and the state transition equationare
the same as before:

[J] = E

[
fN(~xN)+

N−1

∑
k=1

ck(~xk,~vk+1)

]
, (20)

~xk = Φk−1~xk−1 + Ψk−1~vk +~µk +~wk, (21)

for k = 2, . . . ,N− 1, except~vk is now used for the control.
Since the first stage (k = 1) involves an initial condition, it
will be treated separately. The cost-to-go for stage(k−1) is

fk−1(~xk−1) = min
vk

[Ewk[ fk(~xk)+ck−1(~xk−1,~vk)]]. (22)

The critical control vector satisfies

~0 = ∇vk

[
Ewk[ fk(~xk)+ck−1(~xk−1,~vk)]

]
(23)

= Ewk[Ψ
T
k−1∇xk [ fk](~xk)+∇vk [ck−1](~xk−1,~vk)].

Expanding~vk and~xk asymptotically up to orderσ2,

~vk = ~v(0)
k + σ~v(1)

k + σ2~v(2)
k +O(σ3) (24)

~xk = ~x(0)
k + σ~x(1)

k + σ2~x(2)
k +O(σ3), (25)
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holding~xk−1 temporarily unexpanded. Substituting this into
the previous equation yields

~0 = Ewk

[
ΨT

k−1∇xk [ fk](~x
(0)
k + σ~x(1)

k + σ2~x(2))
k )

+∇vk[ck−1](~xk−1,~v
(0)
k + σ~v(1)

k + σ2~v(2)
k )

+O(σ3)
]
. (26)

Using a Taylor approximation about~x(0)
k for fk, and about~v(0)

k
for ck−1, assuming sufficient differentiability offk andck−1,

~0 = Ewk

[
ΨT

k−1∇xk [ fk](~x
(0)
k )

+ΨT
k−1∇xk∇T

xk
[ fk](~x

(0)
k )

(
σ~x(1)

k !+σ2~x(2)
k

)

+
σ2

2
ΨT

k−1

(
~x(1)

k (~x(1)
k )T :∇xk∇T

xk

)

∇xk[ fk](~x
(0)
k )+∇vk [ck−1](~x

(0)
k−1,~v

(0)
k )

+∇vk∇T
vk

[ck−1](~x
(0)
k−1,~v

(0)
k )

(
σ~v(1)

k +σ2~v(2)
k

)

+
σ2

2

(
~v(1)

k (~v(1)
k )T :∇vk∇T

vk

)

∇vk[ck−1](~xk−1,~v
(0)
k )+O(σ3)

]
. (27)

From (24) and (21),

~x(0)
k = Φk−1~xk−1 + Ψk−1~v

(0)
k +~µk, (28)

~x(1)
k = Ψk−1~v

(1)
k +~wk, (29)

~x(2)
k = Ψk−1~v

(2)
k . (30)

Replacing~x(1)
k and~x(2)

k with their recursive expansion formu-
las above, and applying the expectation operator as in Sec-
tion 2 yields

~0 = ΨT
k−1∇xk [ fk](~x

(0)
k )+ ∇vk[ck−1](~x

(0)
k−1,~v

(0)
k )

+σΨT
k−1∇xk∇T

xk
[ fk](~x

(0)
k )Ψk−1~v

(1)
k

+σ2ΨT
k−1∇xk∇T

xk
[ fk](~x

(0)
k )Ψk−1~v

(2)
k

+
σ2

2
ΨT

k−1

(
(Ψk−1~vk

(1))(Ψk−1~vk
(1)) :

∇xk∇T
xk

)
∇xk [ fk](~x

0)
k )

+
σ2

2
ΨT

k−1

(
Q̂k :∇xk∇T

xk

)
∇xk[ fk](~x

0)
k )

+∇vk∇T
vk

[ck−1](~x
(0)
k−1,~v

(0)
k )

(
σ~v(1)

k + σ2~v(2)
k

)

+
σ2

2

(
~v(1)

k (~v(1)
k )T :∇vk∇T

vk

)

∇vk [ck−1](~xk−1,~v
(0)
k )+O(σ3), (31)

whereQ̂k = Qk/σ2 andQk = Evk [~vk~vT
k ], here.

Collecting terms of like order, results in

ord(σ0) :~0 = ΨT
k−1∇xk[ fk](~xk) (32)

+∇vk[ck−1](~x
(0)
k−1,~v

(0)
k ),

ord(σ1) :~0 = Ho~v
(1)
reg,k, (33)

where here

Ho ≡ Ho,reg(~xk−1,~v
(0)
reg,k)

= ΨT
k−1∇xk∇T

xk
[ fk](~x

(0)
reg,k)Ψk−1

+∇vk∇T
xk−1

[ck−1](~xk−1,~v
(0)
reg,k),

~x(0)
reg,k = Φk−1~xk−1+Ψk−1~v

(0)
reg,k+~µk.

The ord(σ0) equation implicitly defines a solution for~v(0)
reg,k.

Since the Hessian Ho must be positive definite,~v(1)
reg,k =~0. This

simplifies the ord(σ2) equation to the form:

~0 = Ho~v
(2)
reg,k+

1
2

ΨT
k−1

(
Q̂k :∇xk∇T

xk

)

∇xk [ fk](~x
(0)
reg,k), (34)

so that

~v(2)
reg,k = −H−1

o

(
1
2

ΨT
k−1

(
Q̂k :∇xk∇T

xk

)

∇xk[ fk](~x
(0)
reg,k)

)
, (35)

provided Ho is invertible.

3.1.1. Caution Term: In this subsection, the “reg” no-
tation is dropped for the sake of simplicity. Taking Tay-

lor approximations about~x(0)
k for f (~xk) and about~v(0)

k for
ck−1(~xk−1,~vk), then substituting into (22),

fk−1(~xk−1) = fk(~x
(0)
k )+σ∇xk [ fk](~x

(0)
k )Ψk−1~v

(1)
k

+σ2∇xk [ fk](~x
(0)
k )Ψk−1~v

(2)
k

+
σ2

2

(
(Ψk−1~v

(1)
k )(Φk−1~v

(1)
k )T :

∇xk∇T
xk

)
∇xk[ fk](~x

(0)
k )

+
σ2

2

(
Q̂k :∇xk∇T

xk

)
[ fk](~x

(0)
k )

+ck−1(~xk−1,~v
(0)
k )

+∇vk[ck−1](~xk−1,~v
(0)
k )

(
σ~v(1)

k +σ2~v(2)
k

)

+
σ2

2

(
~v(1)

k (~v(1)
k )T :∇vk∇T

vk

)

[ck−1](~xk−1,~v
(0)
k )+O(σ3), (36)

where use has been made of the recursive expansion state for-
mulas (29,30) for fixed~xk−1.

Let

fk−1(~xk−1) =
(
Dk−1 + σZk−1 + σ2Sk−1

)
(~xk−1), (37)

which is the Kitanidis [6] decomposition of the(k−1)st stage
cost into deterministicDk−1 and caution termSk−1, but here
with an extraZk−1 term linear in the scaling parameterσ for
generality. Matching terms of the same order with those of
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(36) and using the fact that~v(1)
k =~0,

ord(σ0) :

Dk−1(~xk−1) = Dk(~x
(0)
k )+ck−1(~xk−1,~v

(0)
k ), (38)

ord(σ1) :

Zk−1(~xk−1) = Zk(~x
(0)
k ), (39)

ord(σ2) :

Sk−1(~xk−1) = Sk(~x
(0)
k )+

1
2

(
Q̂k :∇xk∇T

xk

)
[Dk](~x

(0)
k )

+
(

∇T
xk

[Dk](~x
(0)
k )Ψk−1

+∇T
vk

[ck−1](~xk−1,~v
(0)
k )

)
~v(2)

k . (40)

SinceZk−1(~xk−1) = Zk(~x
(0)
k ), Zk−1(~xk−1) = 0 by the purely de-

terministic final conditionfN(~x(0)
N ) = DN(~x(0)

N ), as assumed in
[6]. The deterministic term (38) which corresponds to Ki-

tanidis [6] result ifDk(~x
(0)
k ) is replaced byDk(Φk−1~x

(0)
k−1 +

Ψk−1~u
(0)
k +~µk). However, the second order control terms pro-

portional to~v(2)
k in (40) aremissingin [6] entirely, due to error,

not involving any extra assumptions here..

3.2. Stage One
A similar series of calculations occurs for this stage. However,
~x1, which is fixed as an initial condition, is now involved. This
causes some terms present in the calculations of an non-initial
stage to disappear.

The cost-to-go for this stage is

f1(~x1) = min
v2

[Ew2[ f2(~x2)+c1(~x1,~v2)] . (41)

The goal is to find the critical control vector satisfying

~0 = ∇v2 [Ew2[ f2(~x2)+c1(~x1,~v2)]] (42)

= Ew2

[
ΨT

1 ∇x2[ f2](~x
(0)
2 )+∇v2[c1](~x

(0)
1 ,~v(0)

2 )
]
,

where the commutativity of the gradient and the expectation
has been used again. Substituting the asymptotic expansions
for~v2 and~x2 up to orderσ2 into (42), recalling that~x1 is fixed,
gives small

~0 = Ew2

[
ΨT

1 ∇x2[ f2](~x
(0)
2 +σ~x(1)

2 +σ2~x(2)
2 ) (43)

+∇v2[c1](~x1,~v
(0)
2 +σ~v(1)

2 +σ2~v(2)
2 )+O(σ3)

]

Using Taylor approximations about~x(0)
2 for f2 and about~v(0)

2

for c1, then substituting state transition expansions~x(1)
2 and

~x(2)
2 , and finally collecting terms of like order leads to

ord(σ0) :~0 = ΨT
1 ∇x2[ f2](~x

(0)
2 )+∇v2[c1](~x

(0)
1 ,~v(0)

2 ), (44)

ord(σ1) :~0 = ΨT
1 ∇x2∇T

x2
[ f2](~x

(0)
2 )

(
Ψ1~v

(1)
2

)

+∇v2∇T
v2

[c1](~x
(0)
1 ,~v(0)

2 )~v(1)
2 . (45)

Here (45) is equivalent to Ho~v
(1)
reg,2 =~0, whereHo is the Hes-

sian. The Hessian needs to be positive definite since the cost-

to-go is being minimized, hence~v(1)
reg,2 =~0. The order (σ2)

equation then simplifies to,

~0 = Ho~v
(2)
reg,2+ΨT

1

(
Q̂2 :∇x2∇T

x2

)
∇x2[ f2](~x

(0)
2 ),

~v(2)
reg,2 = −H−1

o ΨT
1

(
Q̂2 :∇x2∇T

x2

)
∇x2[ f2](~x

(0)
2 ), (46)

completing the solution for~vreg,2. We can now find

~xreg,2 = Φ1~x1+Ψ1~vreg,2+~µ2+~w2, and (47)

~xreg,3 = Φ2~xreg,2+Ψ2~vreg,3+~µ3+~w3. (48)

It is interesting that the derivation of the control is identical
with that done previously at this stage. However, since the
cost-to-go for stage two does not match, the control from stage
one to stage two will be in error.

3.2.1. Recursion for Caution Term: The cost-to-go
is found by putting~xreg,2 and~vreg,2 into (41). The cost-to-go

becomes a function of~x1, fixed as an initial condition,~w(1)
2

and~x(0)
2 (note that~x(0)

2 is by definition a function of~x1).

The vectors~v2 and~x2 were found previously. Recalling the
definition (37), expanding

f1(~x1) = min
v2

[Ew2[ f2(~x2)+c1(~x1,~v2)]] , (49)

by using appropriate Taylor approximations and substitutions
from the state transition equation, and then matching termsof
like order yields

ord(σ0) :

D1(~x1) = D2(~x
(0)
2 )+c1(~x1,~v

(0)
2 ), (50)

ord(σ1) :

Z1(~x1) = Z2(~x
(0)
2 )+

(
∇T

x2
[D2](~x

(0)
2 Ψ1

+∇T
v2

[c1](~x1,~v
(0)
2 )

)
~v(1)

2 , (51)

ord(σ2) :

S1(~x1) = S2(~x
(0)
2 )+

1
2

(
Q̂:∇x2∇T

x2

)
[D2](~x

(0)
2 ) (52)

+
(

∇T
x2

[D2](~x
(0)
2 )Ψ1+∇T

v2
[c1]

(
~x1,~v

(0)
2

))
~v(2)

2 .

In simplifying (52), the fact that~v(1)
2 =~0 was used, leading to

Z1(~x1) =~0. Therefore, an ord(σ2) caution term again appears
as the correction to the deterministic term,D1((~x1), but with
an extra correction proportional to the second order control

vector~v(2)
2 .

4. Conclusions

Finding the DDP approximation for the stochastic regular
control, and hence the stochastic optimal control, requires an
accurate expansion of both control andstate vectors. The or-
der of the expectation and minimum operators in general can-
not be exchanged during the calculations. While general re-
cursive forms exist for the deterministic and caution termsof
the cost-to-go as they are defined by Kitanidis [6], the con-
trol and state of the system are not the same as the stochas-
tically perturbed DDP approximation found here and missing
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terms are corrected. The systematic treatment given here can
be used to achieve accurate numerical approximations up to
ord(σ2) in various applications that require a number of state
and control variables. Future work will include numerical re-
sults for concretefN andck costs, as well as filtering for partial
observations.
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Appendix: Interchange of Minimization and Expectation:
Scalar Counter-Example

In this appendix, the validity of the interchange of minimiza-
tion and expectation operations is examined, by looking at a
simple quadratic cost model where the two operations are per-
formed in opposite order, with minimization first, then pertur-
bation expansion, and lastly expectation. However,this order
does not give the same answeras the original order.

The simple scalar quadratic cost counter-example is

f (x,u;w) = a0+a1u+
1
2

a2u2+(b0+b1u)w+c0w2

with b1 6= 0 anda2 > 0, ensuring a unique minimum. For
simplicity, scalar variables and unconstrained control are as-
sumed. The example could be made simpler, but at the sacri-
fice of realism.

When the expectation is properly performed first as specified
in the problem formulation,

min
u

[Ew[ f (x,u;w)]]=min
u

[a0+a1u+
1
2

a2u2+c0w2],

whereEw[w] = 0 andEw[w2] ≡ w2 has been used. To find the
local minimum, the derivative is set equal to zero, giving

∂
∂u

[Ew[ f (x,u;w)]]=a1+a2u=0,

so thatureg = −a1/a2, assuming unconstrained control. Sub-
stituting the unconstrained control,ureg, back into the original
equation and taking the minimum results in

min
u

[Ew[ f (x,u;w)]] = a0−
1
2

(a1)
2

a2
+c0w2.

However, if the minimization is done first, setting the deriva-
tive of f (x,u;w) equal to zero gives

∂
∂u

[ f (x,u;w)] = a1+a2u+b1w=0

⇒ ûreg = ûreg(w)=−
a1 +b1w

a2
,

noting that this control is noise dependent, which greatly com-
plicates the calculation of an optimal control subject to con-
straints. Taking the minimum off (x,u;w):

min
u

[ f (x,u;w)] = a0−
a1(a1 +b1w)

a2

+
1
2

a2
(a1 +b1w)2

(a2)2 + c0w2+

(
b0−b1

a1 +b1w
a2

)
w.

Now taking the expectation of this gives us

Ew[min
u

[ f (x,u;w)]]=a0−
1
2
(a1)

2

a2
+c0w2−

1
2

b2
1w2

a2
.

The extra term,[−b2
1w2/(2a2)], above, withb1 6= 0 anda2 > 0,

means that

min
u

[Ew[ f (x,u;w)]] 6=E
[
min

u
[ f (x,u;w)]

]
,

in general, so that the minimization operation is not inter-
changeable with the expectation operation. However, accord-
ing to a result of Clark reported in [5] (pp. 194-195), the order
of differentiation and expectation can be interchanged under
fairly general conditions. Here, for example,

∂
∂u

[Ew[ f (x,u;w)]] = Ew

[
∂

∂u
[ f (x,u;w)]

]
,

so that in the correct form the controlu is a variable indepen-
dent of noise variablew.
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