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ABSTRACT. Stochastic control theory can be applied to the problem of ground-
water remediation in order to determine optimal pumping and treatment rates
in an uncertain environment. The approach utilizes stochastic dynamic pro-
gramming that optimizes a cost functional for treatment subject to the con-
straints of the contaminant transport equations via a search over the state-
control space. However, this approach for even small problems requires huge
amounts of memory to solve numerically and is exceptionally prohibitive even
using finite elements for the state-control space and time large jumps present.
The approach here is to reduce the computational complexity by casting the
contaminant flow equations to be linear locally while allowing for jumps and
small background fluctuations in the dynamical system. The quasi-LQGP
problem can then be used to determine the local optimal rates for pumping
and treating, which does not require prohibitive amounts of memory. This
linearized model can then be used as the starting iterate to hopefully accel-
erate the solution to the true nonlinear system for the contaminant transport
equations.

1. Introduction

Groundwater remediation via well pumping has long been modelled as a con-
trol problem. Shortly after the development of stochastic (It6) calculus, random
processes were added to model unknown sources and sinks, and random events.
This has produced a large amount of work, as has been documented by Yakowitz
[24] and Gorelick [9], among others. Many models included background noise in
the form of a Wiener or Gaussian process. The addition of random jumps and later
Poisson processes became possible through the original work of theorists such as
Florentin [7], It6 [13], Kushner [16], and Gihman and Skorohod [8], and continued
by people such as Karlin and Taylor [14], Ryan and Hanson [19], Mariton [18],
and Westman and Hanson[20, 22].

One general approach is to use stochastic dynamic programming, but this re-
quires a large amount of memory. Large random jumps can be especially trouble-
some, even when finite elements are used, in part due to the Curse of Dimensionality
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[11]. The analytical and numerical concerns have been approached in a number
of different ways. Kushner and Dupuis include a numerical treatment of jump dif-
fusion processes in [17]. A discrete-time problem including random shocks of a
Poisson type is found in a work of Das [6]. Hanson and Westman [12] presented
a computational treatment of jump-diffusions for optimal portfolio and consump-
tion policies where the jumps can either be purely random or quasi-deterministic
(scheduled jump times, but random jump amplitudes). Zhang, Yin and Boukas
[25] elaborate on the hedging point policies for the scheduling of a continuous
time marketing-production system. Westman and Hanson [20] solved the LQGP
problem (linear dynamics, quadratic costs, and subject to Gaussian and Poisson
random disturbances) in continuous time, using a manufacturing application as an
example. A nonlinear dynamical state version of the LQGP problem is presented
in [22] where a canonical formulation and numerical method is given. The LQGP
problem was extended by allowing for more complicated jumps described as state
dependent Poisson processes [21] and varying local behavior of the system, known
as the quasi-LQGP problem [23], which is demonstrated using a manufacturing
system. The last method is extended here to discrete-time analysis while looking
at an application involving groundwater remediation.

The groundwater remediation problem itself has been examined as either a
continuous-time or discrete-time problem; both have been examined analytically
and numerically from the control standpoint such as in [10] and [4]. This formu-
lation utilizes a Gaussian noise process to represent uncertainties in the level of
contamination and allows for new discrete random sources for contamination to
occur modelled as a compound Poisson process. The focus in this paper is in the
remediation of the aquifer subject to a hybrid form of random disturbances for the
contamination.

Discretization of the system of stochastic partial differential equations as a
quasi-linear stochastic difference system should give insight into results for the
continuous time system. One hope is that the result from the discrete-time control
problem could be used as an initial iterate to speed the continuous time numerics.

We will start by introducing the physical model and the governing equations.
Section 3 introduces the control problem, including the discretization procedure.
Stochastic dynamic programming is done, and the formal solution for the ground-
water remediation problem are given. The final section summarizes the results
and includes comments about numerical treatment for groundwater remediation
application.

2. Groundwater Model

The aquifer in our model is homogeneous and isotropic, and contains a single
contaminant. The horizontal directions of the aquifer are much bigger than the
vertical direction, which allows us to use Bear’s (see [3]) essentially horizontal
aquifer assumption; thus all state variables are vertically averaged. There is an
unknown source that is relatively small compared to the aquifer as a whole. The
entering water from this source has a known contaminant concentration, but the
leakage rate into the aquifer is a stochastic process. In addition, and independently
of the previous process, random jumps occur in the contaminant concentration.

The groundwater is to be remediated via well pumping without injection or
re-injection. The main goal of this formulation is to clean-up the groundwater to
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an acceptable concentration level while minimizing the costs for treatment and an-
ticipating the effects of random events or influences. A set of observation wells is
arranged above the aquifer where measurements for the hydraulic head and contam-
ination level are taken. A set pumping wells are used to extract the contaminated
groundwater, as illustrated in Figure 1. Our control variables, therefore, are the
extraction or pumping rates at all of the pumping wells.

In this presentation, there are m wells that are pumping wells. An example of
the type of model being used is that of Ahlfeld, et al. [1], variants of which have
been used by Culver and Shoemaker [5], and Kern and Hanson [15].

The derivation of the transport equations for a contaminated aquifer from first
principles is done in Bear and Verruijt [3]. The flow transport equation can be
written as

oH UCA—
Bsgdt = (V'(TVH)—Zqz'5(§—€p(i)ﬂ]—77p(i))) dt

=1
(2.1) +BSH] diii(t),

where H(&,n,t) is the state variable representing the hydraulic (or piezometric)
head, B is the averaged aquifer thickness, S is the storativity of the aquifer, T’
is the transmissivity, ﬁc is a constant background noise vector coefficient for the
Gaussian process dw(t) and g; is the control variable for the extracting pump rate
of the ith pumping well located at (§p(i) , np(i)). The pumping wells represent finite
point sinks but equation 2.1 is continuous spatially; this is rectified by using

5(& = &pays 1 — Mp(i)) = H(E~ \/(5 — &)+ (0 —mp))?)/ (7€),

with € < 1.

The transmissivity, T, is defined in terms of the hydraulic conductivity, K, and
the averaged aquifer thickness, i.e., T'= BK. The isotropy assumption means that
the hydraulic conductivity can be replaced with the constant K = x and taken
outside of the divergence, not changing the dimensions of any other quantities.

The contaminant discharge is modelled in part as an ambient differential Gauss-
ian process representing low level fluctuations in the hydraulic head and contam-
inant concentration due to random recharge from unknown sources, dw(t), with
moments given by

(2.2) E[dw(t)) =0 and  Cov[dd(t)] = Iydt,

i.e., zero mean and independent components. The maximum concentration from
this source is the vector coefficient C..
The contaminant transport equation is written as

0BRd%—fdt = (V- (BDVC) — B#-VC)dt + 0BRC.dii(t)

(2.3) +A] (t)dP(&,n, ),

where C' is the state variable representing the contaminant concentration, 6 is the
effective porosity, Ry is the retardation coefficient, dﬁ(f,'f),)ﬁ) models rare large
jumps in contaminant concentration with components selected by the vector coef-
ficient A, @ is Darcy’s velocity for porous media fluid flow, and D = D(7) is the
hydrodynamic dispersion tensor (includes convective dispersion and molecular dif-
fusion). The hydrodynamic dispersion matrix D is dependent on Darcy’s velocity,
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U

(2.4) D(@) = { gi g;; ] ().

Darcy’s Law defines Darcy’s velocity (the porous media flow rate), ¥, in terms of
the hydraulic head:

(2.5) 7= [ U1 ] — —KVH.
U2

This means that the governing transport equations are uni-directionally coupled.

The contaminant discharge is modelled in part as an scaled, ambient differential
Gaussian process dif(t) with moments given by (2.2). The contaminant concentra-
tion also has rare jumps that are modelled as a differential of a compound Poisson
process, dﬁ(f , 1, 1), which models a rather complex physical reality. This compound
Poisson process is used to determine the location of the jump in the contaminant
concentration, (&;,,7;.), the random state dependent size of the jump or mark,
0(& — &.,n— njC)Z(t), and the arrival time or rate for the jump, which can be
thought of as

(2.6) dP(&,n,t) = 8(6 — &y — 1. )dP(t) Z(t)

where d]g(t) is diagonal matrix representation of the simple Poisson counting pro-
cesses with moments

E[dP(t)] = [N\dtd; jlnpxnp, CoVIAP(t)] = [Nidtd; jlnpsenp
and the moments for the random jump or mark amplitude are given by
E[Z(t)] = Z(t), Cov[Z(t)] = Diag [¢5T] (1),

assuming that the components of Z (t) are pairwise independent, similarly the sto-
chastic processes dw(t) and dP(t) are assumed independent of one another. The

diagonalizing function is Diag[A] = [a,i0; jlnxn. The compound Poisson process
has the mean and covariance
E[dP(t)Z(t)] = AZdt
Cov[dP(t)Z(t)] = A(Inp + Adt)Diag [76" +Z(2Z)"] (t)dt,

where A = [X;8; jlnpxnp, the diagonal Poisson rate matrix.

The state variables, H(&,n,t) and C(&,n,t), in the governing equations (2.1)
and (2.3), respectively, related by Darcy’s velocity, 9(¢) (2.5), are vertically averaged
due to the essentially two dimensional aquifer assumption, see [3]. The control
variables are the m extraction pumping rates, ¢;(t).

The boundary conditions assumed can vary based on the model; here we use
the same ones as Ahlfeld, et al. [1]. The aquifer in this case is between two rivers
at £ = 0,&,, and idealized as being rectangular in shape. There is no flow through
the boundaries in the n direction, so the boundary conditions there are

on
at both n = 0 and n = 7,, where n is the outward pointing normal. Due to a
slight gradient in the aquifer, flow generally goes in the direction of increasing &,
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indicated by setting

H(0,m) = Ho, C(0,m) =0,
H(&r,m) = Ho, C(&,m) =0.

The contaminant concentration is assumed to be zero since it is assumed that the
rivers are not contaminated.

3. Discretization of Transport Equation

In order to examine the equations in terms of discrete time, we will utilize the
Crank-Nicolson Implicit method. In the resulting difference equation, the spatial
location will be represented by the i subscript for £ with step A€ and the j transcript
for n with step An. The time ¢ will be represented by the k subscript with time
step At.

Flow Transport Equation. Making the appropriate substitution for duw(t),
the Crank-Nicolson Implicit discretization of (2.1) yields

Hije = Highn - _ (HHLJ' — 28, + Hil,j)
2 (Ag)? ket 1
Hij1 —2H,; + Hij—l)
(ATI)Q k+%

At &
TS Z%‘(S (& =& 0)sm — Miyi))
i—1

+ﬁ;A7ﬁk,

where 71 = kAt/(S(A€)?) and ro = kAt/(S(An)?). The (k + 1)/2 subscript
indicates that the average of the k and k + 1 time steps is used. Using Uj as
the control variable (pumping rates) and separating out the different time steps

[(1+2r)Hij — 11 (Hivay + Hiovg) r2 (Hijea + Hij1)],0

(31) = [(1 —QT)HZ'J' +’I"1 (Hi+1j +Hi71j)
At - L
+ry (Hijp1 + Hz‘jfl)]k — B_SFUijk’ —i—HcTAw,c

where r = r; + r5. The term F is used to guarantee that the control Uy is added
only at valid spatial locations, i.e., where a pumping well exists.
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Contaminant Transport Equation. After substituting for dw(t), D from
(2.4), and dP(&,n,t) from (2.6), equation (2.3) becomes

oC 1

St = W(v-(DVC)+VH-VC)dH@wa(t)+A’jd}3(§,n,t)
d
dt T T T
= ((D:V(VTC) ~ V(YT H)V, D))" - VC + (HeCpe + H,,C))

+CTdu7() AldP(¢,n,t)
= (D11C ¢ + 2D12C ¢y + D22C ) dt

0R
9R (D110, Hyee + (Di1,w, + Da1,v,) H gy + Da1,0, H ) Cedt
9R (D120, H ¢e + (D12,0y + D22,v,) H ¢y + Doz o, H ) Cydt
g (HsCle + HyC )
(3.2) +CJ di(t) + Al dP(€,n, t)

We can now find the discretized version of each term. Applying the Crank-Nicolson
Implicit Method to the above equation, equation,

(14 2rc11 D11 + 2722 Da2) Ci

—rc12D12 (—Ciy1j1 + Cigr,j—1 + Cic1j41 — Ciz1,j-1)

1
— (re1n D11 +reim) Cigrj — B (rciiDin —reiyn) Cioaj
— (reae D2z +1eay2) Ci i1 — (reazDaz — 1e2y2) Cij—1l; 44
= [(1 — 2T611D11 — 2T022D22) Ciyj
+rc12 D12 (Ci+1,j+1 —Ciy1,j-1 — Ci1 41 + Ci—l,j—l)

(3.3) + (re11 D +reimi) Ciga,yj + (reniDiy —ream) Cioa
+ (rcaaDag + yaree) Ci j41 + (reaaDag — reay2) Cs i1
+CT A + A’ZAﬁ] ,
k
where
At
a T 2 Ae - 1725
rc IRJAC. o
At At At
rc = ————— Pl = ————————, TC3y = ——————,
“ OR4(AE)2" 2 T AORAEAY TP T R4 (An)?
v = K[Hi1—(Diw - Hi1+ (D11,ws + Di2,) - H12
+ D1271;2 . H,22)L"j7k;+% ’
v2 = k[Hg— (D12, - H11 + (D12,v, + D22y, ) - Hi2

+ Doy, - H722)Hi,j,k+%'

Combined Vector Equation. Let the vector representing the combined head
and contaminant concentration state variables, arranged linearly in a vector rather
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than in grid matrix notation, at time t; or stage k be

Note that this nz-vector includes the values of the state variables at each point at
every interior grid point (&;, n;) in the domain, where nz = 2-ng and ng is the total
number of interior grid points in the domain. Rewriting the discretized equations
3.2 and 3.4 in vector form

THy1 = OpHg + U0, + O,AG,
T (H)Crpr = ®(H)C + O}, + T, AD,
Therefore, the combined vector equation is
(3.4) T Xpo = Xk + VU + Opdiy, + 115y
or assuming Iy is invertible,
(35)Xpt1 = Gr(Xp, U, Atly, AP = 0, X + VUg 4+ Op Atily, 4+ T Ay,

fork=1,..., N —1. The coefficient matrices ®, ¥ and O are time dependent only.

4. Control Problem

It is at this point that we restate the main goal of our application: to minimize
the costs of groundwater remediation to an acceptable level. Thus an appropriate
cost functional is needed before performing stochastic dynamic programming to
optimize the control.

The general form of the cost functional is

N—-1
INIX, UL = fn(Xn) + > en(Xe, Ur),
k=1

with fx (X ) representing the final costs, (X, Ux) the running costs for times k =
1to N—1,where X = [X;Jixn = [Xi jlnaxny and U = [Uil1x(v—1) = [Uijlmx(v-1)
are the global state and control history matrices.

One possible form for the groundwater remediation model is the quadratic cost

functional:

1= .
INIX, U] = §XJESNXN
N—-1 1
+ ; (52 — BXy) U, + §eU,jUk) ,

where Sy is the symmetric, positive-definite, state final cost coefficient matrix
and e is the control quadratic cost coefficient per stage. The stage costs come
from water extraction and treatment, with constant (N — 1)-vector & and constant
((N — 1) x nz)-matrix . The small quadratic term, known as the cheap control
model, helps to make the problem more robust, i.e., a quasi-LQGP problem (quasi-
linear dynamics, quadratic costs with Gaussian and Poisson processes) and ensures
that a unique unconstrained interior minimum exists. The final costs may come
from the maximum allowable contaminant concentration in combination with any
fixed costs. The next step is to apply discrete-time stochastic dynamic programming
and find the control values.
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The required optimal, expected total costs are
(4.1) Ji (@) = min [E{W} [JN X,U]|X, = %.U = u]] ,

subject to discrete dynamical constraints in (3.2,3.4). Bellman’s Principle of Opti-
mality states that an optimal policy has the property that whatever the initial state
and initial decisions for the control are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first decision [2]. The
control values are found via a backwards sweep through time.

Formal Solution. Applying a discrete version of the Principle of Optimality
(see [11] or [15] for instance), decomposing the optimization of the global, initial
objective J;(Z1) into the optimization of local objectives Ji(Z)) local objectives to
the optimal expected costs gives the corresponding backward recurrence, discrete
Hamilton-Jacobi-Bellman equation:

1
Ji () = min {<(o‘2 — Biy) Vg + —e'ﬁgﬁk)
Uk 2
(4.2) + By ar, |Jir (6 + it + Onii + Toi )] |

for k = N — 1 to 1 in backward steps of 1, starting from the final condition
" 1, o
Jyn(Zn) = 51‘%51\/1'1\7.

Consequently, the kth backward iterate minimum argument inherits the quadratic
properties of the final costs f,,(Z,) and the running costs cx(Zp, Un ),

1 = 1
Ji(#) = min||zi@' Ai+a@ (BZ+C)+ =2 Di+E i+ F| |,
b 2 2 &
where A, - - - F are constant entities. For instance when k = N — 1,
> 1 1
Jy_1(Fx-1) = min H(a —pX) i+ ieﬁTﬂ'—l- (@7 + i)' Sy (P74 i)
UN—1

~ 1
+(®F + ®i) SNAZAL + 5@TsNe
+%Trace [A(I; + AAt) + Z(Z) "] Diag [55"

Diag [TTSxT]]] |-

Solving the minimization problem results in an affine form of the kth regular
(unconstrained) optimal control:

—x — >
Upeg = LTk + K.

The resulting costs for the quasi-LQGP problem then has the quadratic form in
the state only

S R - =T
Ji (%)) = min §x[$m + ’];Txk + R,
Uy,

for k = N to 1 in unit backward steps, with Sy = Sy, 'fN =(0and Ry = 0. If
there are constraints on the optimal control, the final answer for both the optimized
control and costs take on a more complicated form. For example, the pumping rates
must be non-negative if no water is reinjected into the aquifer, and the combined
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pumping rates should have a maximum, resulting in the constraints u; ; > 0, [ =
l1togand ), u,’;l < Up, respectively.

The state variables can be found by performing a forward sweep through time of
the system dynamics, given the optimal control and initial conditions for the state,
e.g. the initial contaminant plume and hydraulic head observations. Since our
original pair of difference equations is uni-directionally coupled, it is necessary to
solve for the hydraulic head at stage k before finding the contaminant concentration
at the same stage.

5. Conclusions and Remarks

Improvements in well-pumping problem solution The clean-up or remediation
of contaminated environments is a relevant issue for a wide spectrum of people and
professionals. The results for the general model of a contaminated aquifer discussed
here has a form that is useful for giving a relatively quick result numerically, despite
the inclusion of multiple types of random processes in the model. The addition of
a Poisson term in the discrete-time formulation makes certain types of models pos-
sible; for example, a slightly different formulation could take into account random
rainfall, or additional contaminant seepage from an unknown source or sink. From
a more theoretical viewpoint, the solution of a quasi-LQGP problem is extended to
a discrete time dynamical system. The advantage of the explicit canonical state-
space form of the quasi-LQGP solution is that it significantly reduces the large
state-space dimensional computational complexity. The resulting formal solutions
for the state and control variables can be used to examine the numerics for a variety
of problems.

Since we are left with recursive difference equations for the state variables, and
the control variables are linear in terms of the state, the number of operations for a
specific groundwater remediation problem should not be excessive. It is necessary
for there to be a reasonable initial guess as to the control values so that the forward
sweeps for the state and backward sweeps for the control converges in a small
number of iterations.

While discretizing the system before further analysis does create a lesser mem-
ory demand, the nonlinear aspects of the initial stochastic differential equations are
absent, in part because of the choice of discretization procedure. While the Crank-
Nicholson method is fairly robust numerically, it blurs some of the quantitative
aspects of the initial system, especially with regards to the contaminant transport
equation. Thus the formal solution found here should be a good solution choice, in
lieu of an exact final answer for the well pumping rates.

However, if we think of this as a locally linearized solution to the problem,
it could be useful as an initial choice for the numerics of the nonlinear problem.
Greater accuracy to start with should lead to faster convergence to the optimized
numerical answer, something useful both mathematically and practically.
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Well Locationsin Aquifer
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FIGURE 1. Locations of pumping and observation wells in the model aquifer.
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