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Multinomial maximum likelihood estimation of
market parameters for stock jump-diffusion models

Floyd B. Hanson, John J. Westman, and Zongwu Zhu

ABSTRACT. The estimated parameters of the log-return density for log-normal-
diffusion, log-uniform jump process are found for an observed financial market
distribution. When the observed data is collected into bins, it is shown that
the appropriate parameter estimation method is the multinomial maximum
likelihood estimation. This result is independent of the theoretical distribu-
tion, since it is only assumed that the observed distribution is the simulation
of independent, identically distributed random variables. For the application
to the theoretical jump-diffusion distribution, the estimation procedure is con-
strained by forcing the first two moments of the theoretical distribution to be
the same as that for observed market distribution. The Standard and Poor’s
500 stock index for the 1992-2001 decade is used as the observed market data.
Numerically, the classical Nelder-Mead and our own direct search method are
used to find the maximum likelihood estimation of the parameters. The re-
sults and performance of these numerical methods are compared along with
the our older weighted least squares estimation method. The results of the
two numerical approximations for the multinomial estimation methods were
similar, but the weighted least squares results are not as good. In the severe
test on the third and fourth moment measures, the multinomial based methods
differed significantly from the same measures on the observed data, but did
much better than the normal distribution based weighted least squares.

1. Introduction

While the log-normal diffusion or geometric Brownian motion stock-return
model has been studied extensively and provides the basis for the Black-Scholes-
Merton options model [2, 10], less is known about jump-diffusion stock-return
models. Jump-diffusions provide added realism to the the stock return model since
the jumps can include rare, large fluctuation to simulate stock market crashes or
rallies. In addition, jumps allow higher moment features such as skewness and lep-
tokurtic (peakedness) behavior in the stock log-return distribution, whereas for the
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normal distribution, as in the case of pure diffusion, the log-return is skewless and
the coefficient of kurtosis has the normal neutral value of three.

Merton, in his pioneering discontinuous, jump-diffusion stock-return model [10,
Chapter 9], used a Poisson process for the jump times and log-normally distributed
jump-amplitudes for the jump process, i.e., a compound or space-time Poisson
model. Kou [9] has developed a double exponential (gamma) distributed jump
amplitude jump-diffusion model to include the negative skew, leptokurtic, and other
properties in option pricing. Extensive probability properties are developed along
with many special functions. Andersen, Benzoni and Lund [1] have made elaborate
estimations to fit jump-diffusion models with stochastic volatility to the market.
Their basic jump-amplitude part of the model is log-normal in various forms. Their
estimation seems to be very robust, but the number of model parameters they
estimate is unusually large so that the goodness of fit is not surprising. However,
their justification of the need for including stochastic volatility in addition to jump
processes is convincing.

There are several problems with these jump-diffusion models. One is that the
jump-amplitude models are selected to produce exact analytic solutions rather than
motivated by the market distributions. Crashes and rallies are relatively rare events
so Poisson is a good model for the timing of jumps, but there is no good reason that
the jump-amplitude should be log-normal or double exponential. The exponentially
small tails of these distributions are not reasonable for modeling the thick tails that
characterize the leptokurtic property of long time financial market distributions.
Also, the log-normal and double exponential distributions typically peak in the
center of the market distribution where the diffusion is the dominant part of the
model, but at sufficiently small jump amplitudes a diffusion approximation of the
space-time Poisson process should be valid. Another problem is that the doubly
infinite range of the jump-amplitude distributions leads to severe restrictions on the
optimal instantaneous stock fraction for optimal portfolios in terms of borrowing
from and saving short-sales into a riskless asset [6, 7].

In our papers, most recently [6, 7], we have investigated the log-uniform dis-
tributed jump-amplitudes in the jump-diffusion model for fitting financial market
distributions such as the Standard and Poor’s 500 stock index. Since the uniform
distribution has finite range, it lacks the severe restrictions of the infinite range
models. Also, since the crashes and large rallies are rare, they are more like iso-
lated outliers that are very difficult, if not impossible, to characterize. Hence, a
uniform distribution is suitable by the principle of simplicity, at least until more
information can be gleaned about these large deviations.

2. Log-Return for Log-Normal-Diffusion, Log-Uniform Jump Processes

2.1. Stock Return Process, S(t). Let S(t) be the price of a stock or stock
mutual fund at time ¢. Its dynamics evolve according to the following stochastic
differential equation (SDE), with It6’s forward integration rule for complete speci-
fication,

(2.1) dS(t) = S(t)[uadt + 0adW (t) + J(Q)dP(1)],

starting at S(0) = Sp, S(0) > 0, pg is the drift coefficient associated with the
diffusion, oy is the diffusive volatility, W (t) is the stochastic diffusion process, J(Q)
is the Poisson jump amplitude, @ is its underlying Poisson amplitude mark process
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whose relation to J(Q) will be developed later, P(t) is the standard Poisson jump
process with joint mean and variance E[P(t)] = At = Var[P(t)].

2.2. Stock Log-Return Process, In(S(t)). The stock log-return In(S(¢))
can be transformed to a simpler jump-diffusion stochastic differential equation
(SDE) upon use of the stochastic chain rule [8],

(2:2) dlin(S ()] = padt + oadW (£) +In(J(Q) + 1)dP(?),
where wq = pg — 0.505 can be called the log-diffusive (1d) drift.

2.3. Log-Uniform Jump Distribution for Q =1In(J(Q) + 1). For sim-
plicity, the mark to jump-amplitude relation is defined as Q = In(J(Q) + 1) for
J(Q) > —1. Then, let the density of the jump amplitude mark @) be uniform

(2.3) 9@(q) = [H(Qv — ) — H(Qa — 9)]/[Qb — Qal,
where Q, < 0 < Qp and H(z) is the Heaviside unit step function. The mark @
has moments, u; = EQ[Q] = 0.5(Qs + Qa), 0; = Varg[Q] = (Q» — Qa)*/12. The
original jump-amplitude J has mean E[J(Q)] = (exp(Qs) —exp(Q.))/(Qp —Q.) —1
and log-uniform distribution

®;(z) =In((z +1)/(Ja + 1))/ In((Jp +1)/(Ja + 1))

on [J,, Jp], where J, = J(Q,) and Jp = J(Qp).

The finiteness of the density domain is important since infinite jump domains
lead to unrealistic transaction restrictions. Jumps should be bounded if the market
is bounded. Also, uniformness of the density is sufficient, since jumps are rare,
outlier events, so that it is difficult to extract information to suggest any more
complexity in the density. In addition, the tails are thick but not exponentially
small like those of exponential or normal densities, so those densities are not ap-
propriate for the jump component. As for the rest of the distribution between the
tails, the diffusion dominates in the interior of the distribution and the diffusion
approximation is valid for small jumps anyway, so the diffusion process should be
adequate there.

2.3.1. Basic Moments for Log-Return Increments A[ln(S(t))] in Trading Time
Increments At. The mean log-return is given by

(24) M = E[AIn(S@)]] = [ + M)At

and the log-return variance is

25) MY = Var[An(S(1)]] = [02 + A(02(1 + AAL) + p2)]At,

but if AAt is sufficiently small At then the O*(AAt) term can be omitted (for
roughly 250 trading days per year, At ~ 4.0e-3 years).

THEOREM 2.1. : Probability density for Log-Normal-Diffusion, Log-Uniform-
Jump-Amplitude Log-Return Increment A[ln(S(t))] is given asymptotically by

9D ()~ po(AAE)G™ (m; gAt, 02 AL)
(2.6) +p1(AA)[®(Qy — o + paAt; 0, 05A¢)
_(I)(") (Qa —x + llfldAt; 0, UﬁAt)]/[Qb - Qa] )

for sufficiently small At (At < 1) and —o0 < & < +00, where p(A) = e AA* k! is
the Poisson distribution with parameter A and k jumps. The superscript (n) simply
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denotes normally distributed, so that ¢™ (x; u, 0?) is the normal density with mean
p and variance o2, while ™ (x5 p, 02) is the corresponding normal distribution.

SKETCH OF PROOF. The proof follows from the probability density of a triad
[6], £ + n¢, of independent log-return random variables: the normally distributed
& = padt + oW (t), the uniformly distributed 7 = @ and the Poisson distributed
¢ = dP(t). The density of the sum & + (7¢) is derived from the usual sum convo-
lution theorem, but the density of product, 7 - ¢, is not well known (but treated
by Hanson and Westman, [5]) and obeys the law of total probability [14, 8] for
Poisson processes, or asymptotically

Pnc () ~ po(AAL)I(z) + p1(AAL)Pg ()

for At < 1, where X is the jump rate, 6(z) is the Dirac delta function and ¢g(z)
is the jump amplitude mark density. O

3. Jump-Diffusion Parameter Estimation

The basic point of view, here, is that the financial markets are considered to be
a moderate size simulation of a jump-diffusion process. However, other factors such
as stochastic volatility may be needed to refine the jump-diffusion approximation.

3.1. Empirical Data. Standard and Poor’s 500 (S&P500) stock index in the
decade 1992-2001 [15] is viewed as one big mutual fund so that it is less dependent
on the peculiar behavior of any one stock. Let n(5?) = 2522 be the number of daily
closings S§Sp) for s =1 :n®P) such that there are ns = 2521 log-returns,

(3.1) A [ln (sgsr’))] =In (sgffl)) —In (S§SP>) ,
for s =1 : ns log-returns, with

e Mean:
MEP) = % é A [ln (S§SP>)] ~ 4.015e-4 .

e Variance:

M) = ﬁ n; (A [m (sgsr’))} - MfSF’))2 ~90.874e 5 .

15
o Skewness coefficient: AP = M{P)/ (MQ(SP)) ~ —0.2913 < 0, where

(") = 0 is the normal distribution value and M.*® is the 3rd central log-

return moment of the data. )
o Kurtosis coefficient: ™ = MP)/ (MQ(SP)) ~ 7.804 > 3, where 8{") =3

is the normal distribution value and pr) is the 4th central log-return

moment of the data.

3.2. Multinomial Distribution of Simulation Frequencies. Data is fur-
ther sorted into nb bins and in each centered bth bin By = [{—0.5a¢, Ept0.5a¢) for
b=1:nb:

e Experimental S&P500 frequency for bin By: f,fSp),
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e Theoretical jump-diffusion frequency with parameter vector a:
500 @) =ns [ 99 ()
By
and the corresponding theoretical bin probability:
po = (@) = f59 (@) /ns = ; ¢ (m; )dn
b

e Simulated jump-diffusion frequency:

(im):"S (sim) )] .
G _S;U(A[ln(s; )]iB)

for each bth bin for all b = 1 : nb bins, where ns is the simulation sample size and
U (n; Bp) is the unit step or index function for 7 on set B.

The view here is that the underlying market distribution is a log-normal, log-
uniform jump-diffusion distribution, so the bth simulation frequency

(3:2) £ = g

representation will be assumed in theory, but approximate in practice. The jump-
diffusion distribution will serve as the theoretical distribution, so

(3.3) W) = 0D ()

However, the following theorem is quite general and only depends on the theo-
retical general bin frequencies f,fth) and a corresponding independent identically

distributed (IID) simulation with frequencies f,ESim)

THEOREM 3.1. Let fb(Sim) be the independent identically distributed bin fre-
quency for b = 1 : nb bins, nb > 2, and sample size ns simulations based upon
the theoretical stochastic process (th) with probability density ¢™ (&) with theoreti-

cal bin frequency fb(th), then the simulation distribution is multinomial:

] nb (flfth) /TLS) ke
(3.4) @™ (k) = Prob[f™ = k] = ns! [[ ~————,
L k!

where k = [kp]npx1, Zgil ky =ns, f = [folnox1 and Zgil f» = ns are constraints,
with bin mean

ul()sim) =K I:flgszm)] _ fb(th) — ns _p[(;th) =ns-pp,
and bin variance

(™) = var [£5m] = £ (1= £ ns) |

where py = fb(th)/ns is the theoretical bin probability for b =1 : nb bins.

The single bin frequency is binomially distributed
) Ky ns—kyp
(sim) = g [ptsim) (f(sim) ‘ (sim) _ ] — patPo (L= pp)"™ "
(35) ®U(k) = B[lim ()| pf ko) = ns! T

for b=1:nb bins.
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SKETCH OF PROOF. An indirect, hand-waving argument is that there are nb

bins into which to sort sample data of ns simulation events, such that any given
event will end up in bin B, with the probability, p, = ,fth) /ms, and the observed
frequency count for that bin, fb(Sim), will be a multinomial variate [3, 8].

The direct argument follows from the basic probability principles, multiple
induction and the multinomial expansion. The IID property of the theoretical joint

distribution yields a separable density for the simulation events,

36) 3" m =[[6"™m)], where [ 9 )dn, = o
s=1 b

for any s, where = [n;]nsx1, the realized 7, variable corresponding to the simu-
lated random log-return A[ln(S$™™)] variable. The multinomial expansion can be

written in the form:

nb ns nb—1 | ns—ryp yfb ynS*Tnb
3.7 b = ns! . Imb y
( ) (bzzly ) H Z fb‘ (TLS - fnsfrnb)'

=1 szl :

where 1, = 23;11 faif b > 1, but r, = 0 if b = 1. The counting constraints are also
operative: Z;‘il ky =ns = Z;ﬁl o = Tnpa1-

Also, let uy(n) = 302, Us(ns), where Uy (n,s) = U(ns, By) is the indicator of by.
Let the domain R = (—o0, +00) = By + (R — Bp) be the real line with its partition
for bin By, and its complement (R — By), whose segments have probabilities p, and
(1 — pp), respectively, with respect to the theoretical distribution. Since Uy(n,) =1
on bin By and Uy(ns) = 0 on the bin complement (R — By), a simpler, generalized
form of #(*®)(n,) can be found, assuming F is a proper test function,

[anomirwmn = ([ +[ ) anem)rwion)
R B, JR-B

= pFQ1)+ Q1 —-p)F(0),
So in the generalized sense,

¢ (1,) B ppd(Us () — 1) + (1 — pp)3(Us(ms))

where §(x) is the Dirac delta function, which will facilitate the application of a
variation binomial theorem.
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For nb > 2 bins, the derivation of the distribution of a single multinomial
variate is the same,

®6i™) (k) = Prob [ ,,(Sim) = kb] =E [6 <kb N b(Sim))]

1:I [ 16| 6~ (o).

- 1:I [ it ud(Us(0) = 1)+ (1= (1) 8 s s
523 ( ") s 1:I [ dnowitan) - 1]

I I dnqa(meq))H (ks — 5)

q=s+1
- ns S ns—s
= 3 (" )ma—ma—
s=1
T D
kb!(ns—kb)! ’

using the idea of the binomial expansion theorem in generalized form. Note that in
the above equation, the discrete Kronecker delta d;,, has been interchanged with
the continuous Dirac delta function d(k — s). The derivation for the distribution for
more than one free multinomial variate is similar, except in dimensional complexity.

Tt is more straight forward to derive the bin mean u{*™ and variance (o{"™)2,
but they are standard multinomial moments [3, 8]. O

REMARK 3.2. The results are independent, of the underlying distribution, ex-

cept for general properties, but in the sequel it is assumed that ,)(Sim) = fb(Sp) and

(th) _ r(jd)
b =Ty -

3.3. Multinomial Maximum Likelihood Estimation. Let ®®™) (k) =
®6P)(k), ) (k) = 09 (k) and f,fth) = fb(jd) (x), where z is the unknown param-
eter vector. The multinomial log-likelihood function used for the estimation has
the form

nb
(3.8) In (<1>(SP) (k)) -y [kb In ( £ (a:)) —In(ky!) — Ky In(ns)| + In(ns!),
b=1
subject to constraints Y 5", ,Ejd)(w) =ns = Y7 k. However, given S&P500

input data, taking ky = fb(SP) as given, and ns is fixed, the only unknown is the
parameter vector . The form of fb(Jd) (z) is known through the jump-diffusion
density.

3.3.1. Estimation Objective. The essential part of the multinomial log-likeli-
hood function, written as a minimization objective, is then

nb

(3.9) y@ ==Y [APm (9@)]

b=1
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with the change of sign to be suitable for minimization algorithms, neglecting con-
stant parts, where x is the unknown jump-diffusion parameter vector and f(Sp) is

the observed data vector.
Since E[f,fSp)] = lfjd) (z), then

nb

Ely@)]=- [#@m (£5@)] .

So the mean objective is the entropy of jump-diffusion bin information.

3.4. Jump-Diffusion Moment Estimation Constraints. There are five
(5) free jump-diffusion parameters:

{/J’lda 035 128 U‘?a /\} )
for given At, as the reciprocal of the number of trading days per year. So, to reduce
this set to a reasonable number, the multinomial maximum likelihood estimation
is subjected to the mean and variance constraints:
3.4.1. Mean and Variance Constraints.

(3.10) MR = pr{id
and
(3.11) MEP =y

where the theoretical jump-diffusion (jd) moments forms are given in (2.4-2.5) and
the observed moments are given along with the definition of the S&P500 log-returns

(3'1)1*:‘01“ the reduction to three (3) free parameters, the constraint eliminants are
(3.12) fia = (Ml(sl’) - )\Atu]-) /At

and

(3.13) o2 = (M§sp> — MAt (02(1 + AAE) + ,zj.)) /At

the latter is subject to positivity constraints, for fixed and small At < 1.

3.5. Numerical Optimization: Golden Super Finder (GSF)
and Nelder-Mead (NM). The numerical optimization procedures that will be
tested here are the classical standard Nelder-Mead (MN) down-hill simplex method
[12] and our own golden super finder (GSF) method [4, 5, 6]. The following is a
point-by-point comparison of both methods:

GSF is a multidimensional generalization of golden section search.

GSF and NM are general methods: no derivatives are needed.

GSF makes hypercube and other constraints implementable.

GSF searches beyond initial domain subject to constraints since it uses

boundary points too, unlike golden section search.

GSF searches for uni-modal minimum within domain.

e GSF is more computational costly than Nelder-Mead’s down-hill simplex
direct search method.

e GSF is less likely to get caught in a local minimum so is more likely to

find a global minimum than does NM, which is more sensitive to “lumpy”

objectives like y(z) with frequency data.
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e The NM down-hill simplex method is available through popular program-
ming systems such as MATLAB™ [11] under the fminsearch implementa-
tion and Numerical Recipes [13] under the amoeba implementation in For-
tran, C and C*+.

4. Estimation Results and Discussion

Figure 1 is the histogram of empirical S&P500 closing log-returns A[ln(SgsI’))]
during the decade 1992-2001, using 100 bins. Note that most negative log-returns
(crashes) have a larger magnitude than the positive ones (rallies), which typically
leads to negative skew. Also, the tails starting from the shoulders of the most
probable part of the distribution are much thicker than would be expected from a
log-normal distribution, while the rare and large deviation lingering tails underscore
the inadequacy of the log-normal distribution to model this aspect of the log-returns
Afln(SEP)).

Closing Log-Returns, f P

Frequency, {P)
= =
o a
S Q

ul
o

0.06 -0.04 -0.02 0 0.02 (5[9.64
S&P500 Log Returns, dInS

FIGURE 1. Histogram of Empirical S&P500 log-returns for the
decade 1992-2001, using 100 bins.

In Figure 2, the fitted, predicted histograms are compared using our GSF
method in the Subfig. 2(a) and the FMS method (MATLAB’s fminsearch im-
plementation of the Nelder-Mead algorithm) in Subfig. 2(b). This pair of figures
should be viewed as a model of the underlying distribution for a moderate to large
size simulation producing Fig. 1. More refined estimation methods would be needed
to capture the extremes or outliers of the tails.
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MML GSF Jump-Diffusion Fit, f 9 MML FMS Jump-Diffusion Fit, f 0%

2 =2
< <
= <2 100]
(8] (8]
5 S 80
= >
5 T 60
T iy
40
” ||\
aill I o |II|||||||||
-006 -004 —0.02 0 002,004 -0.06 -0.04 -002 0 002 004
Log—-Returns, dinS Loa-Returns. dins (%)
(a) Multinomial maximum likelihood (b) Multinomial maximum likelihood
estimation using GSF approximation. estimation using FMS approximation.

F1GURE 2. Comparison the histograms of predicted Log-Returns
for the theoretical multinomial maximum likelihood (MML) esti-
mation using (a) GSF optimization approximation and (b) Nelder-
Mead (MATLAB fminsearch (FMS)) approximation. The param-
eter fittings for both are from the data of the empirical S&P500
histogram in Fig. 1 for the decade 1992-2001, using 100 bins.

In Figure 3, the theoretical to observed differences between the fitted, pre-
dicted histograms are compared using our GSF method Subfig. 3(a) and the FMS
method (MATLAB’s fminsearch implementation of the Nelder-Mead algorithm)
Subfig. 3(b). These deviations of the theoretical distributions from the observed
distribution in the pair of figures demonstrates that the GSF and FMS approxima-
tions to the multinomial maximum likelihood are very comparable.

In Figure 4, another comparison is given, this time comparing the multino-
mial maximum likelihood (MML) fit in Subfig. 4(a) and the weighted least squares
(WLS) (Hanson and Westman [7]) method that corresponds to the usual maximum
likelihood based on the normal distribution model in Subfig. 4(b). Both parame-
ter fittings were computed using the same FMS method (MATLAB’s fminsearch
implementation of the Nelder-Mead algorithm). The WLS method places heavier
emphasis on the tails. Note that there is a difference in scale between the left and
right pair of figures.

In Figure 5, the theoretical to observed differences for the FMS-MML in Sub-
fig. 5(a) and the FMS-WLS in Subfig. 5(b) approximate distribution estimates with
respect to the S&P500 distribution. This pair of figures corresponds to the previous
pair of figures in Fig. 4. Noting that the scales Subfig. 5(a) and Subfig. 5(b) pair
of figures differ, but the FMS-WLS results in the (b) figure indicate that the WLS
method significantly overestimates the near peak S&P500 values, especially on the
positive side.

In these calculations for the histograms, although the theoretical log-uniform
jump, log-normal diffusion distribution is on the fully infinite log-return domain
(=00, +00), the bins are necessarily of finite extent. However, in the display, the bin
range includes all significant simulated probabilities in the main part and the tails
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F1GURE 3. Comparison of the histogram differences for the theo-
retical multinomial maximum likelihood (MML) fit using (a) our
GSF method and (b) FMS (fminsearch, the MATLAB implemen-
tation of the Nelder-Mead algorithm). Both differences are relative
to the empirical S&P500 histogram in Fig. 1 for the decade 1992-
2001, using 100 bins.

MML FMS Jump-Diffusion Fit, f (% WLS FMS Jump-Diffusion Fit, f
200
0 g 150
0 =
2
0 2100
0 5
L
0 50
0
0 0
-0.06 -0.04 -0.02 0 0.02. 0.04 -0.06 -0.04 -0.02 0 O'O%jd) 0.04
L oa-Returns. ding (9 Log-Returns, dinS

estimation using FMS approximation. using FMS approximation.

FIGURE 4. Comparison of the histograms of predicted Log-
Returns for the theoretical multinomial maximum likelihood
(MML) fit using (a) Nelder-Mead (MATLAB fminsearch
(FMS))and (b) the weighted least squares (WLS) [7] fit also us-
ing FMS. Both differences are relative to the empirical S&P500
histogram in Fig. 1 for the decade 1992-2001, using 100 bins.

(b) Weighted Least Squares estimation

11
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F1GURE 5. Comparison of the histogram differences for the multi-
nomial maximum likelihood (MML) fit using (a) Nelder-Mead
(MATLAB fminsearch (FMS)) and (b) the weighted least squares
(WLS) [7] fit also using FMS. Both differences are relative to the
empirical S&P500 histogram for the decade 1992-2001, using 100
bins.

of the distribution within double precision accuracy. In fact, the normal component
of the distribution is already exponentially small where the uniformly distributed
contributions from the secant-normal part of the distribution are still significant.
The secant-normal part smooths and spreads out the log-uniform part of the distri-
bution while fattening the tails where the pure normal part should be exponentially
small. The negligibility of the tails was tested in the usual process of testing the
code. In terms of exact representation the distribution may be thought to trun-
cated, but in practical computational terms the distribution is fully represented
within computer precision.

In Table 1, there is a comparison summary of derived distribution parameters
for the log-normal-diffusion, log-uniform-jump distribution by the maximum likeli-
hood method. The jump mean u; and standard deviation o; parameters are much
smaller than the corresponding diffusion values, pg and o4, but the jump values,
1, 05 and A do not scale with the trading day time scale. The jump rates X are
quite large for a yearly rate, but that includes the whole range of the uniform dis-
tribution, the tails plus the central part of the distribution where the smaller jumps
would be hidden by the normal part of the distribution. The WLS values of the
mean diffusive drift pg are about double the MML values and are about half the
diffusive standard deviation o4, while WLS is closer on the jump values. The MML
estimations serve as the better estimate of the observed values, since these first and
second moment parameters can not be directly separated from the observed data,
although the theoretical and observed overall first and second moments have been
constrained to match each other.

In Table 2, the skew and kurtosis coefficients are compared to S&P500 val-
ues for the same parameter fitting methods, the multinomial maximum likelihood
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TABLE 1. Comparison summary of derived distribution param-
eters for the log-normal-diffusion, log-uniform-jump distribution
by the maximum likelihood (MML) method using both GSF and
FMS optimal search procedures and by the weighted least squares
(WLS) using just the FMS search procedure.

| Method || Ha | o4 | 12} | oj | A |
MML GSF || +0.142 | 0.0861 | -7.32e-4 | 0.0159 | 56.1
MML FMS || +0.143 | 0.0862 | -7.40e-4 | 0.0160 | 56.0
WLS FMS || +0.364 | 0.0435 | -4.76e-3 | 0.0179 | 55.3

(MML) method using both GSF and FMS optimal search methods and the weighted
least squares (WLS) method using the FMS procedure only. These are the same
parameter fitting methods and optimal search procedure combinations used for the
jump-diffusion first and second moment parameters in Table 1. Since these are
coefficients of overall moments, not their diffusion and jump components, they can
be compared to the observed S&P500 data. The MML estimates of the coefficients
of skewness (normalized third moment) differ from the observed by about -47%,
while the WLS estimates differ by about -58%. The MML estimates of the kurtosis
coefficient (normalized fourth moment) differ by about +0.78% from the observed
values, which is excellent and the difference is insignificant, while the WLS kurtosis
coefficient estimates differ by +49%. Theoretical estimates of the third and fourth
moments are an extreme numerical test for comparison to the observed data, but
the results, though not great for the skewness coefficient, demonstrate that the
proper maximum likelihood method for binned data gives better results than the
more general purpose method of weighted least squares, presumed to be better than
the standard, unweighted least squares. Our weighted least squares method is a
maximum likelihood method based upon the exponent of a normal distribution, as
least square methods can be interpreted, but the weights used here were those from
the multinomial distribution [7].

TABLE 2. Skew and kurtosis coefficients compared to S&P500 val-

ues for the same fitting methods and optimal search procedures of
Table 1.

Method H ﬂ?()jd) ‘ ﬂésp) \ﬁﬁjd’ ‘ ﬁisp) ‘
MML GSF || -0.153 | -0.291 | 7.86 | 7.80
MML FMS || -0.155 | -0.291 | 7.86 | 7.80
WLS FMS || -0.121 | -0.291 | 11.6 | 7.80

In Table 3 is a comparison summary of computational performance measures
in terms of the number of iterations, the number of objective function evaluations
and timings on two different computer processors. The parameter fitting methods
with corresponding computational numerical optimal search method combinations
are the same ones used in Tables 1-2. Clearly, the classical FMS direct search
method is superior in performance over our GSF method for computing the MML
estimates, based upon the number of iterations, the number of function evaluations
and the timings. Note that the number of function evaluations correspond better
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to computational costs as indicated by the timing values, so they are better com-
putational measures than the number of iterations. However, not shown here, our
experience shows that our GSF can be more robust where the observed binned data
is not too smooth, i.e., lumpy, so that FMS would get stuck on extraneous local
extrema due to data irregularities.

TABLE 3. Comparison summary of computational performance measures:

Method Number of | Function Timings Timings
Used Iterations | Evaluations | (slow, secs.) | (fast,secs.)
MML GSF 13 832 1.3%+4 | 3.70e+3
MMTL FMS 43 101 1.68e+3 | 3.74e+2
WLS FMS 75 146 2.73e+3 6.86e+2
Legend:

MML GSF = Multinomial maximum likelihood (MML) using golden super finder.
MML FMS = Multinomial maximum likelihood (MML) using Nelder-Mead (FMS).
WLS FMS = Weighted least squares (WLS) using Nelder-Mead (FMS).
Using same tolerances: tolx = 0.5e-4 and toly = 0.5e-3, using the same initial x.
Slow means P2@Q400MHz and fast means P4Q2GHz CPUs or processors.

5. Conclusions

It has been shown that the distribution of simulation bin frequencies is
multinomial and hence leads to proper maximum likelihood estimation of the
theoretical simulation distribution. The multinomial maximum likelihood is
the proper one for binned data in general, and not just for the jump-diffusion
model used here.

Multinomial maximum likelihood estimates of jump-diffusion parameters are
similar using either Nelder-Mead down-hill simplex or golden super finder,
although Nelder-Mead is much faster.

Multinomial maximum likelihood estimates of the skewness coefficient differ
by -47% from the observed values, while the estimate of the kurtosis coeffi-
cient differ by a very small amount, +0.78%, giving strong support for the
uniform distribution and the multinomial estimation procedure.

Weighted least squares estimates for jump-diffusion parameters have greater
sensitivity to jump rare events (outliers), but it does much worse on skew
and kurtosis coefficients, exhibiting much greater differences.

Future Considerations:

— Study other jump amplitude distributions, with multinomial maxi-
mum likelihood estimation, that are more sensitive to the rare jump,
outlier tails in real market distributions.

— Introduce stochastic volatility into model (See Andersen, et al. [1]
who found jumps alone were insufficient and substantiated the need for
stochastic volatility, but they used an extraordinarily large parameter
space and a not so appropriate jump-amplitude distribution).
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