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Abstract— The numerical treatment for the American put
option pricing is discussed for a stochastic-volatility, jump-
diffusion (SVJD) model with log-uniform jump amplitudes.
Heston’s (1993) mean reverting, square-root stochastic volatility
model is used along with our uniform jump-amplitude model.
However, computation is needed for nonlinear and multidi-
mensional terms with dependence on the combined stock and
volatility state space. A systematic finite difference formulation
of the American put partial integro-differential complementary
problem (PIDCP) is implemented using a successive over-
relaxtion method projected on the maximum payoff function.
Interpolation is used to construct the smooth transition to
the payoff of the corresponding free boundary problem. Also,
a fast, but less accurate, heuristic quadratic approximation,
originally due to MacMillan (1986), is corrected and extended
from pure diffusion models. The fast and simple quadratic
approximation is compared with a more accurate PIDCP
formulation. The simple quadratic approximation is briefly
compared with market data.

Key words: stochastic volatility, jump diffusion, uniform
jump-amplitudes, American option put pricing,
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I. INTRODUCTION

The objective of this paper is to derive a quadratic
approximation for computing the valuation for American
options when the price of the underlying asset evolves as
a stochastic volatility and jump diffusion (SVJD) model
with log-uniform jump amplitudes [21], [22]. It has been
clear that the classical Black-Scholes-Merton model [7],
[15] fails to reflect the empirical facts: market return data
display excess kurtosis (peaked and fat tailed distributions),
skewness, volatility clustering and large, sudden movements
in prices. These observations reveal that a simple geometric
Brownian motion process misses some important features of
the data. As discussed in Andersen, Benzoni and Lund [1],
Bates [6] and Bakshi, Cao and Chen [3], the most reasonable
model of stock prices would include both stochastic-volatility
and jump-diffusion.

Most options traded on market are American-style [5],
so being able to price these contingent claims is clearly
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of practical importance. American-style options have the
additional feature that exercise is permitted at any time
during the life of the option. This feature makes it more
difficult to analyze than the corresponding European-style
options. Unlike the European-style option pricing problem,
formal-closed form solutions for the American option pric-
ing problem have not been found even for pure diffusion
models [12], [22]. The pricing of American options has
usually resorted to finite-difference, binomial, or compound-
option approximation methods. These numerical methods
are usually cumbersome and computationally costly to use.
Since the price of an American call option on a non-
dividend paying security coincides with the corresponding
European call option price for the jump-diffusion model, we
will concentrate on the case of American put options here.
However, see the forthcoming paper of Chiarella and Ziogas
[8] for stochastic volatility models.

II. STOCHASTIC-VOLATILITY JUMP-DIFFUSION MODEL

In contrast to the complete market setting of Black-Scholes
as established by Harrison and Pliska [11] in the continuous-
time case, the additional sources of uncertainty: the random
jump sizes and stochastic volatility, introduced in our un-
derlying price dynamics make the market incomplete with
respect to the risk-free bank account, the underlying asset,
and the finite number of options contracts. Consequently, the
risk neutral probability measure alternative is not unique.

In this incomplete market setting, the underlying security
price S(t), the risky asset, is assumed under a candidate
“risk-neutral” measure for risk-free interest rate r:

dS(t) = S(t)
(
(r − λJ̄)dt +

√
V (t)dWs(t)

+
∑dN(t)

j=1 J(Qj)
)

,
(1)

with Heston’s [12], [6] mean-reverting stochastic volatility
with parameter set (κv, θ, σv):

dV (t) = κv (θ − V (t)) dt + σv

√
V (t)dWv(t), (2)

where Ws(t) and Wv(t) are standard (i.e., zero-mean and
unit-variance) Brownian motions for S(t) and V (t), respec-
tively, such that the correlation is

Corr[dWs(t), dWv(t)] = ρ.

The N(t) is a Poisson process with common mean and
variance,

E[dN(t)] = λdt = Var[dN(t)],

intensity λ, jump-amplitude J(Q) and, given the jth Poisson
jump, Q = Qj is the jth underlying mark random variable



Qj which is taken from a set of independent, identically
distributed (IID) random variables. The form

Q = ln(J(Q) + 1)

is the underlying mark chosen to simplify the log-return
ln(S(t)) representation. For an accessible general formula-
tion of applied stochastic processes with jump-diffusions see
Hanson [10].

It is only necessary to know that the risk-neutral measure
exists [13]. Since Scott [17] finds that interest rate volatility
has little impact on short-term option prices, the interest rate
r will be assumed constant in this paper.

Let the density of the jump-amplitude be log-uniformly
distributed in the mark variable Q on [a, b]:

φQ(q) =
1

b− a

{
1, a ≤ q ≤ b
0, else

}
, (3)

where a < 0 < b. The mark Q has moments, such that the
mean is

µQ ≡ EQ[Q] = 0.5(b + a)

and variance is

σ2
Q ≡ VarQ[Q] = (b− a)2/12.

Thus, the original jump-amplitude J has mean

J̄ ≡ E[J(Q)] = (exp(b)− exp(a))/(b− a)− 1,

which is used in the risk-neutral analysis later.
There are several reasons for choosing the log-uniform

distribution: 1) since the exponentially small tails of the log-
normal or log-double-exponential distribution are contrary to
the flat and thick tails of the long time financial market log-
return data; 2) around the near-zero peak of the log-double-
exponential and the log-normal, the jumps are small, so are
not qualitatively different or separately detectable from the
continuous diffusion fluctuations; 3) an infinite jump domain
is unrealistic, since the jumps should be bounded in real
world financial markets and, in fact, trading circuit breakers
have been in place at the New York Stock Exchange [2] since
1988 the shut down trading in several stages during extreme
events to avoid crashes like that in 1987 [5]; 4) an infinite
jump domain leads to unrealistic restrictions in portfolio
optimization and, in particular, Zhu and Hanson [23] show
that for an infinite domain jump-amplitude distribution the
instantaneous stock fraction is constrained on [0, 1] while
borrowing and short-selling restriction can vary widely in
the case of sufficiently small crash |a| and rally b limits.

The square-root stochastic-volatility process, Eq. (2), has
two major advantages. First, the model can allow for system-
atic volatility risk. The second is that the process generates
an analytically tractable method of pricing options without
sacrificing accuracy of requiring undesirable restrictions on
parameter values according to Bates [6].

By the Itô’s chain rule and under a risk-neutral probability
measure M, the log-return process ln(S(t)) satisfies the SDE

d ln(S(t)) = (r − λJ̄ − V (t)/2)dt +
√

V (t)dWs(t)

+
∑dN(t)

j=1 Qj .
(4)

III. AMERICAN PUT OPTION PRICE

Compared with European-style options, American-style
options have the additional feature that exercise is permitted
at any time during the life of the option, [0, T ], with strike
price K. Since the price of an American call option on a
non-dividend paying security in the case of a jump-diffusion
model coincides with the corresponding European call op-
tion’s price, which has a closed analytic form solution in
terms of a characteristic function or Fourier transform [22],
we will concentrate on the case of American put options
here. The determination of the early exercise of American
put options is gives rise to a free boundary problem.

The price of the American put option will have the same
description as a European put option in the regular region and
it will be equal to the intrinsic value in the optimal exercise
region. The American put option price can be specified as

P (A)(S(t), V (t), t;K, T ) = supτ∈T (t,T )

[
E
[
e−r(τ−t)

·max[K − S(τ), 0] | Ft]]

on the domain D = {(s, t)|[0,∞) × [0, T ]}, where K is
the strike price, T is the maturity date, T (t, T ) are a set of
stopping times τ satisfying t < τ ≤ T .

Typically at fixed time t there is a value of S which
marks the boundary between two regions: regular region and
optimal exercise region. We denote this free boundary by
the critical curve S∗ = S∗(t) for t ∈ [0, T ]. Hence, the free
boundary s = S∗(t) in the (s, t)-plane separates the domain
D into two regions: the continuation region C, where it is
optimal to hold the option, i.e.,

if s > S∗(t), then P (A)(s, v, t;K, T ) > max[K− s, 0],

so P (A) will have the same discription as the European price
P (E) at least in the jump-diffusion case and the exercise
region E , where it is optimal to exercise the option, i.e.,

if s ≤ S∗(t), then P (A)(s, v, t;K, T ) = max[K− s, 0].

The partial integro-differential equation (PIDE) that Amer-
ican put option satisfies is similar to that of the European
option (Yan and Hanson [22]), letting s = S(t) and v =
V (t), in regular region (prior to optimal, early exercise) is:

0 = ∂P (A)

∂t
(s, v, t;K, T ) +A

[
P (A)

]
(s, v, t;K, T )

≡ ∂P (A)

∂t
+
(
r−λJ̄

)
s∂P (A)

∂s
+ kv(θv−v)∂P (A)

∂v

+ 1
2vs2 ∂2P (A)

∂s2 +ρσvvs∂2P (A)

∂s∂v
+ 1

2σ2
vv ∂2P (A)

∂v2

−rP (A)+ λ

∫ ∞

−∞

(
P (A)(seq, v, t;K, T )

−P (A)(s, v, t;K, T )
)
φQ(q)dq,

(5)

for (s, t) ∈ C and defining the backward operator A.
The American put option pricing problem as a free bound-

ary problem is given by

0 =
∂P (A)

∂t
(s, v, t;K, T ) +A

[
P (A)

]
(s, v, t;K, T ) (6)
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for (s, t) ∈ C ≡ [S∗(t),∞)× [0, T ];

0 >
∂P (A)

∂t
(s, v, t;K, T ) +A

[
P (A)

]
(s, v, t;K, T ) (7)

for (s, t) ∈ E ≡ [0, S∗(t)]× [0, T ]. where critical stock price
S∗(t) is not known a priori as a function of time.

The fixed and smooth free boundary conditions are

limt→T P (A)(s, v, t;K, T ) = max(K − s, 0),

lims→0 P (A)(s, v, t;K, T ) = K,

lims→∞ P (A)(s, v, t;K, T ) = 0,

lims→S∗(t) P (A)(s, v, t;K, T ) = K−S∗(t),

lims→S∗(t) ∂P (A)(s, v, t;K, T )/∂s = −1.

(8)

IV. FINITE DIFFERENCES FOR AMERICAN PUT OPTION
LINEAR COMPLEMENTARITY PROBLEM

Other methods for the American option are based on
the linear complementarity problem (LCP) formulation [9],
[18], [19], [20] and will be used to check the accuracy of
the quadratic approximation formula. The finite difference
version of the LCP formulation finds the maximum of the
successive overrelaxation (SOR) approximation, and hence is
called the projected successive overrelaxation (PSOR is SOR
projected on to the maximum) approximation. The payoff at
each discrete point (Si, Vj , tk) using

max
(

SOR
[
P (A)

]
i,j,k

,K−Si

)
,

with corresponding constraints. The optimal exercise bound-
ary S∗ is automatically captured by this information and can
be determined afterward. Solutions by the PSOR version of
LCP can be obtained for the full SVJD problem without
using the quadratic or quasi-deterministic volatility approxi-
mations.

When the free boundary problem is transferred to partial
integro-differential complementarity problem (PIDCP) it is
formulated as follows

P (A)(s, v, t;K, T )− F (s) ≥ 0,

∂P (A)

∂τ
−AP (A) ≥ 0,(

∂P (A)

∂τ
−AP (A)

)(
P (A) − F

)
= 0,

(9)

where F (s) = max[K − s, 0] is the put objective and τ =
T − t is the time-to-go. In addition there are the contact and
tangent free boundary conditions in the last two equations
of (8).

For the discretization, the Crank-Nicolson implicit method
is used with

P (A)(Si, Vj , T − τk;K, T ) = U(Si, Vj , τk) ' U
(k)
i,j ,

U (k) =
[
U

(k)
i,j

]
,

time-step ∆τ , the discretization of the operator A ' L,

∂P (A)

∂τ
'

(
U (k+1) − U (k)

)
i,j

∆τ

and
AP (A) ' 1

2
L(U (k+1) + U (k)).

Using standard linear algebraic definitions, letting

Û(k) =
[
Û

(k)
i

]
,

the single subscripted version of U (k) =
[
U

(k)
i,j

]
, with

corresponding F̂, L̂, M̂ and b̂(k), so

M̂ ≡ I − ∆τ

2
L̂

and
b̂(k) ≡

(
I +

∆τ

2
L̂

)
Û(k),

leads to a discretized, linear algebraic complementarity prob-
lem (see Wilmott et al. [18], [19], Wilmott [20] or Cottle et
al. [9] for more general LCPs):

Û(k+1) − F̂ ≥ 0, M̂Û(k+1) − b̂(k) ≥ 0,(
Û(k+1) − F̂

)>(
M̂Û(k+1) − b̂(k)

)
= 0,

(10)

The projective successive overrelaxation (PSOR) algorithm
with acceleration parameter ω for LCP (10) t by iterating
Ũ

(n+1)
i for Û

(k+1)
i until changes are sufficiently small:

Ũ
(n+1)
i = max

(
F̂i , Ũ

(n)
i + ωM̂−1

i,i

(
b̂
(k)
i

−
∑

j<i M̂i,jŨ
(n+1)
j −

∑
j≥i M̂i,jŨ

(n)
j

))
.

(11)

For the discretization of the PIDE, the first-order and second-
order spatial derivatives and the cross-derivative term are
all approximated with the standard second-order accurate
finite differences, using a nine-point computational molecule.
Linear interpolation is applied to the jump integral term.

Quadratic extrapolation of the solution is used for the
smooth contact condition in critical stock price S∗(t) calcu-
lation. Suppressing the dependence on (v, τ) in the solution,
let ui = U(Si, Vj , τk) and then selecting the index i such
that ui = Fi = F (Si), the exercise payoff, and ui+` > Fi+`

for ` = 1 : 2, so are two nearby values in the continuation
region. Choosing the quadratic extrapolation function to be

Uq(S) = c0 + c1(S − Si+1) + 0.5c2(S − Si+1)2

satisfying the interpolation conditions Uq(Si+`) = ui+` for
` = 1 : 2 and the smooth contact conditions

Uq(S∗) = F (S∗)

with
U ′q(S

∗) = −1,

then the critical stock price satisfies,

S∗ ' Si+1 −
d2

d1

(
1 +

√
1 +

d2

d1
dS

)
, (12)
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where d1 = (Ui+2 − Ui+1)/dS and d2 = Ui+1 − Fi+1.
Note that the extrapolation problem has four unknowns,
{c0, c1, c2, S

∗}, to match the four given conditions, assuming
that the contact is within (Si, Si+1).

Sample output for the American put option price approx-
imated by the LCP method is given in Figure 1 versus
moneyness, S/K, for τ = T − t = 0.5, 0.25, 0.10 and 0
years before maturity. Note the smooth-appearing transition
to the payoff function when τ > 0. The corresponding results
for the critical stock price at early exercise is given in Fig. 2
versus the time before maturity in years, parameterized by
various value of the stochastic variance, V = 0.04, 0.1, 0.2,
0.4 and 0.8.
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Fig. 2. PSOR finite difference critical stock prices S∗(τ ; V ), (using
quadratic extrapolation approximations wth smooth contact to the payoff
function).

V. Heuristic Quadratic APPROXIMATION FOR AMERICAN
PUT OPTION

A simple and fast heuristic quadratic approximation is
used to derive an implicit analytic solution, which was

originally proposed by MacMillan [14], and then corrected
and extended by Barone-Adesi and Whaley [4] and Bates [5].
Here, we extend it to the stochastic-volatility, jump-diffusion
model with log-uniformly distributed jump-amplitudes. The
key insight into the quadratic approximation approach is that,
if the PIDE applies to American options as well as European
options P (E), it also applies to the optimal exercise premium
of the American option over the European option. For an
American put option and the quadratic approximation, the
early exercise premium ε(P ) is defined using a common
current space-time (s, t) and common strike price K as

ε(P )(s, v, t;K, T ) ≡ P (A)(s, v, t;K, T )

−P (E)(s, v, t;K, T ),
(13)

where P (E) is given by Fourier inverse in Yan and Hanson
[22]. Without losing much generality, the early premium can
be written in MacMillan’s [14] ad hoc time-dependent form
with function G(t) as

ε(P )(s, v, t;K, T ) ' G(t)Y (s, v,G(t)).

Choosing the transformed time

G(t) ≡ 1− exp(−r(T − t))

so it is zero when t = T , also making the premium value
of ε(P )(s, v, t;K, T ) zero. The approximation of the early
exercise premium PIDE is, after dropping the G-derivative
term, since the quadratic coefficient is bounded,

0 ≤ −G′G/r = (1−G)G ≤ 0.25,

making G(t) a parameter rather than a variable,

0 = +
(
r − λJ̄

)
s∂Y

∂s
− r

GY + κv(θ−v)∂Y
∂v

+ 1
2vs2 ∂2Y

∂s2 +ρσvvs ∂2Y
∂s∂v

+ 1
2σ2

vv ∂2Y
∂v2

+λ

∫ ∞

−∞
(Y (seq, v,G)− Y (s, v,G))φQ(q)dq,

(14)

with the corresponding large asset and free boundary condi-
tions for Y (s, v,G) for fixed t or G:

lim
s→∞

Y (s, v,G(t)) = 0, (15)

lim
s→S∗

Y (s, v,G) = 1
G

(
K − S∗ − P (E)(S∗, v, t)

)
,

lim
s→S∗

∂Y (s, v,G)
∂s

= 1
G

(
−1− ∂P (E)

∂s
(S∗, v, t)

)
.

(16)

Reformulating Bates’ [6] constant-volatility jump-
diffusion (CVJD) ad hoc approach, the dependence on
the volatility variable v is assumed to be weak and is
replaced by the quasi-deterministic-volatility jump-diffusion
(QDVJD) approximation of V (t), such that

dV (t) = E[dV (t)|V (t) = V (t)] = κv(θ − V (t))dt

and

V (t) ≡ θ + (V (0)− θ)e−κvt, (17)
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so that the v-derivatives disappear letting

v = V =
∫ T

0

V (t)dt/T

and
Y (s, V , G) ' Ŷ (s)

satisfies the linear equi-dimensional OIDE (G and V are
suppressed parameters),

0 =
(
r−λJ̄

)
sŶ ′(s)−rŶ (s)/G+V s2Ŷ ′′(s)/2

+λ

∫ ∞

−∞

(
Ŷ (seq)− Ŷ (s)

)
φQ(q)dq.

(18)

The solution has the power form

Ŷ (s) = c1s
A1 + c2s

A2 ,

where A1 and A2 are solutions to

0 = V A2/2 +
(
r − λJ̄ − V /2

)
A− r/G

+λ
((

ebA − eaA
)
/((b− a)A)− 1

)
,

(19)

assuming the log-uniform jump-distribution (3). Then com-
bining with boundary conditions, taking only negative root
A2, say, so that S∗ is the solution to the implicit equations
for each fixed t ≤ Te:

K − S∗ − P (E)
(
S∗, V , t

)
=

S∗

A2

(
−1−

(
∂P (E)

∂s

)(
S∗, V , t

))
.

(20)

Also, c2 is given by

c2 =
(
K − S∗ − P (E)

(
S∗, V , t

))/(
G · (S∗)A2

)
.

This completes the crucial steps of the approximate quadratic
approximation with QDVJD volatility approximation.

Sample results for the quadratic approximation (QA) of
both American and European put option prices are given
in Fig. 3 for T = 0.5 years with respect to the moneyness,
S/K. The difference between the two curves is the quadratic
approximation to the early exercise premium ε(P ).

VI. COMPARISONS AND CALIBRATIONS

The heuristic quadratic approximation (QA) for the Amer-
ican put option price in an SVJD environment is briefly
compared to that of the more accurate linear complementary
(LCP) finite difference approximation (FD) in Fig. 4 with
respect to the strike price K when the time horizon is
T = 0.1, 0.25 and 0.5 years. The maximum price difference
P

(A)
QA − P

(A)
LCP is $0.08, $0.14, $0.21 for T = 0.1, 0.25 and

0.5 years, respectively, so QA is probably good for practical
purposes when a quick estimate is needed.

The quadratic approximation is compared against the
options market in Fig. 5 using concurrent CBOE quotes on
XEO for European put options and OEX for American put
options from April 10, 2006. They are both based upon the
same S&P 100 index (SPX). The quadratic approximation
is used to compute the approximation to the American
put options prices corresponding to the OEX, while the
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Fig. 4. Comparison of American put option prices evaluated by quadratic
approximation (QA) and LCP finite difference (FD) methods when S =
$100 and V = 0.01 for T = 0.1, 0.25 and 0.5 years, respectively.

XEO data is used for the parameter calibration with the
European option price analytical formula and hence in the
early exercise premium. Then, the estimated parameters are
used for calculating the American put option pricing [21].
A mean square error MSE = 0.137 was obtained using
the calibrated parameters, so demonstrating a good fit. The
maximum absolute price difference P

(A)
QA − P

(A)
OEX is $0.41,

$0.46, $0.73, $1.15, $0.68 for T = 11, 39, 67, 102, 168 days,
respectively. Sample SVJD and log-uniform jump parameters
estimated from the XEO quotes [21] from April 10, 2006 are
kv = 10.62, θv = 0.0136, σv = 0.175, ρ = -0.547, a = -
0.140, b = +0.011, λ = 0.549 and v = 0.0083.

Since the parameters, including model structural parame-
ters and option parameters like underlying price, strike price
and maturity are very diversified, they are not suitable for
calibration the LCP finite differences method against the
CBOE market American option pricing data OEX [21]. The
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Fig. 5. Comparison of American put option prices evaluated by quadratic
approximation (QA) method and OEX quotes when S = $100 and V =
0.01 for T = 11, 39, 67, 102, 168 days, respectively. The OEX quotes are
taken from the CBOE from April 10, 2006, the underlying S&P 100 index
(SPX) is 587.84.

difficulty is the numerical mismatch between the arbitrary
parameter values and the finite difference lattice.

VII. SUMMARY AND CONCLUSION

An alternative stochastic-volatility jump-diffusion (SVJD)
model is proposed with square root mean reverting for
stochastic-volatility combined with log-uniform jump ampli-
tudes.

The heuristic quadratic approximation (QA) and the LCP
finite difference scheme for American put option pricing are
compared, with QA being good for practical purposes.

The QA results are calibrated against real market Ameri-
can option pricing data OEX (with XEO for European price
base) and yield reasonable results considering the simplicity
of QA.

REFERENCES

[1] T.G. Andersen, L. Benzoni and J. Lund, “An Empirical Investigation of
Continuous-Time Equity Return Models,” Journal of Finance, vol. 57,
2002, pp. 1239-1284.

[2] Aourir, C. A., D. Okuyama, C. Lott and C. Eglinton. (2002).
Exchanges - Circuit Breakers, Curbs, and Other Trading
Restrictions, http://invest-faq.com/articles/
exch-circuit-brkr.html .

[3] G. Bakshi, C. Cao and Z. Chen, “Empirical Performance of Alternative
Option Pricing Models,” Journal of Finance,vol. 52, 1997, pp. 2003-
2049.

[4] G. Barone-Adesi and R. E. Whaley, “Efficient analytic approximation
of American Option Values,” Journal of Finance, vol. 42, 1987,
pp. 301-320.

[5] D. Bates,“The Crash of ’87: Was It Expected? The Evidence from
Option Markets,” Journal of Finance, vol. 46, 1991, pp. 1009-1044.

[6] D. Bates, “Jump and Stochastic Volatility :Exchange Rate Processes
Implict in Deutsche Mark in Options,” Review of Financial Studies,
vol. 9, 1996, pp. 69-107.

[7] F. Black and M. Scholes, “The Pricing of Options and Corporate
Liabilities,” J. Political Economy, vol. 81, 1973, pp. 637-659.

[8] C. Chiarella and A. Ziogas, “Pricing American Options under Stochas-
tic Volatility,” School of Finance and Economics, University of Tech-
nology, Sydney, AUS, forthcoming, 2006.

[9] R.W. Cottle, J.S. Pang, R.E. Stone, The Linear Complementarity
Problem, Academic Press, New York, NY, 1992

[10] F. B. Hanson, Applied Stochastic Processes and Control for Jump-
Diffusions: Modeling, Analysis and Computation, SIAM Books,
Philadelphia, PA, to appear 2007.

[11] Harrison, J. M., Pliska, S. R., “Martingales and stochastic integrals
in the theory of continuous trading,” Stochastic Processes and Their
Applications, vol.11, 1981, pp. 215-260.

[12] S. L. Heston, A Closed-form Solution for Options with Stochastic
Volatility with Applications to Bond and Currency Options, Review of
Financial Studies, vol. 6, 1993, pp. 327-343.

[13] J. C. Hull, Options, Futures, & Other Derivatives, 4th Edition,
Prentice-Hall, Englewood Cliffs, NJ, 2000.

[14] L.W.MacMillan,“Analytic Approximation for the American Put Op-
tion,” Advances in Futures and Options Research, vol. 1A, 1986,
pp. 119-139.

[15] R. C. Merton, “Theory of Rational Option Pricing,” Bell J. Econ.
Mgmt. Sci., vol. 4, 1973, pp. 141-183.

[16] C. W. Oosterlee, On Multigrid for Linear Complementarity Problems
with Application to American-Style Options, Electronic Transactions
on Numerical Analysis, vol. 15, 2003, pp. 165-185.

[17] L. Scott,“Pricing Stock Options in a Jump-Diffusion Model with
Stochastic Volatility and Interest Rates: Applications of Fourier Inver-
sion Methods,” Mathematical Finance, vol. 7 (4), 1997, pp. 413-424.

[18] P. Wilmott, J. Dewynne and S. Howison, Option Pricing: Mathemat-
ical Models and Computation, Oxford Financial Press, Oxford, UK,
1993.

[19] P. Wilmott, J. Dewynne and S. Howison, The Mathematics of Financial
Derivatives: A Student Introduction, Cambridge University Press,
Cambridge, UK, 1995.

[20] P. Wilmott, Derivatives: The Theory and Practice of Financial Engi-
neering, John Wiley, New York, 1998.

[21] G. Yan, “Option Pricing for a Stochastic-Volatility Jump-Diffusion
Model,” Ph.D. Thesis, Dept. Math., Stat., and Comp. Sci., Univ.
Illinois at Chicago, 126 pages, 22 June 2006

[22] G. Yan and F. B. Hanson,“Option Pricing for a Stochastic-Volatility
Jump-Diffusion Model with Log-Uniform Jump-Amplitudes,”Proc.
American Control Conference, pp. 2989-2994, 14 June 2006

[23] Z. Zhu and F. B. Hanson, “Optimal Portfolio Application with
Double-Uniform Jump Model,” Stochastic Processes, Optimization,
and Control Theory: Applications in Financial Engineering, Queueing
Networks and Manufacturing Systems/A Volume in Honor of Suresh
Sethi, International Series in Operations Research and Management
Science, Vol. 94, H. Yan, G. Yin, Q. Zhang (Eds.), Springer Verlag,
New York, NY, Invited chapter, 28 pages, June 2006.

6


