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Abstract— An alternative option pricing model is proposed,
in which the stock prices follow a diffusion model with squae
root stochastic volatility and a jump model with log-uniformly
distributed jump amplitudes in the stock price process. The
stochastic-volatility follows a square-root and mean-reerting
diffusion process. Fourier transforms are applied to solvethe
problem for risk-neutral European option pricing under thi s
compound stochastic-volatility jump-diffusion (SVJD) process.
Characteristic formulas and their inverses simplified by irtegra-
tion along better equivalent contours are given. The numegal
implementation of pricing formulas is accomplished by bothfast
Fourier transforms (FFTs) and more highly accurate discree
Fourier transforms (DFTSs) for verifying results and for dif ferent
output.

are critical ingredients of the data-generating mechanism
Stochastic volatility is needed to calibrate the longer ma-
turities and jumps to reflect shorter maturity option prigin

As discussed in Andersen, Benzoni and Lund [2], Bates [5]
and Bakshi, Cao and Chen [3], the most reasonable model
of stock prices would include both stochastic-volatilityda
jump-diffusion.

In this paper, an alternative stochastic-volatility jump-
diffusion model is proposed, which has square-root
and mean-reverting stochastic-volatility process and- log
uniformly distributed jump amplitudes in Section II. In
Sect. Ill, a formal tlosed form solution” (according to

Key words: stochastic-volatility, jump-diffusion, risk neutral Heston [14]) for risk-neutral pricing of European options

option pricing, uniform jump-amplitudes.

I. INTRODUCTION

is given by first converting the problem into characteris-
tic functions (Fourier transforms) , then using the Fourier
inversion formula for probability distribution function®

Despite the great success of the Black-Scholes model [6jpd a more numerically robust form (but, not everyone

[22], this log-normal pure diffusion model fails to reflebiet

would call it closed). In Sections IV and V, the solution

three empirical phenomena: (1) the asymmetric leptokurtk® the problem is computed from the Fourier inverse using

features, that is, the return distribution is skewed to &g | both fast Fourier transforms (FFTs) for speed and more

and has a higher peak and two heavier tails than those @¢neral discrete Fourier transforms (DFTs) for accuracy an

the normal distribution; (2) the volatility smile, that ije  validation. In Sect. VI, the conclusions are given.

implied volatility is not a constant as assumed in the Black-

Scholes model; and (3) the large random fluctuations sucH: STOCHASTIC-VOLATILITY JUMP-DIFFUSION MODEL

as crashes and rallies. It is assumed that a risk-neutral probability measivie
Therefore, many financial engineering studies have beiists, the asset pric8(t), under this measure, follows a

undertaken to modify and improve the Black-Scholes mod@imp-diffusion process, with zero-mean at the risk neutral

to explain some or all of the above three empirical pherate and conditional varianc& (t) ,

nomena. Popular models include, for example, (i) the jump- B
diffusion models of Merton [23] and Kou [21]; (ii) the S(t) ((r—/\J)dt+ VV () dWi(t)
+J(Q)AN(t)), (1)

constant-elasticity-of-variance model of Cox and Ross [8]
(iii) the stochastic-volatility models of Hull and White T3,

Stein and Stein [25] and Heston [14]; (iv) the stochastick is only necessary to know that the risk-neutral measure
volatility and stochastic-interest-rates models of Amida exists [16]. Since Scott [24] finds that interest rate vétgti

Ng [1], Bakshi and Chen [4], and Scott [24]; (v) thehas little impact on short-term option prices, the interag
stochastic-volatility jump-diffusion models of Bates [8hd r will be assumed constant in this paper.

Scott [24]. The instantaneous volatility follows a pure mean-revertin
Jarrow and Rosenfeld [18] and Jorion [19] demonstratgnd square-root diffusion process, given as

that jumps are empirically important for several financial
dV(t) =k (0 —V(t))dt + o/ V(t)dW,(¢t). 2

markets. Recently, some empirical research result inglicat
that both stochastic-volatility and discrete jump compuae The variablesiV,(¢) and W,(t) are standard Brownian
motions forS(t) andV (¢), respectively, witfE[dW;(¢)] = 0,

Var[dW;(t)] = dt, for ¢ = s or v, and correlation

ds(t) =
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Corr[dWs(t), dW, (t)] = p. 3)

In (1), J(Q) is the Poisson jump-amplitud&) is an
underlying Poisson amplitude mark process selected [10],



[13], [12], [26], [9] so that I1l. EUROPEANCALL OPTION PRICE

We let C denote the price at time of a European style
Q=In(J(Q) +1), (4 call option onS(t) with strike priceK and expiration time
T. Using the fact that the terminal payoff of a European

for conveniencelV () is the standard Poisson jump counting.o option on the underlying stock with strike price K

process with jump intensity, and is max(S(T) — K,0) and assuming the short-term interest
rate r is constant over the lifetime of the option, the price
E[dN(t)] = Adt = Var[dN ()]. of the European call at timeequals discounted, conditional

expected payoff
C(S(t)7 V(t)7 t; K, T)
= e "T"YE\[max[Sr — K, 0]|S(t), V(1)]

Also, the symbolic jump ternd(Q)dN(t) in (1) denotes the
Poisson sum,

AN (%)
_ —r(T—t) oo
JQUAN (1) = Y- T(@Q), (5) = o USrpaSrISO. Viyse g
i=1 —K [Zpam(ST]S(t), V(t))dST)
where Q; is the ith jump-amplitude random variable taken = SPSE), V(). K,T)
from a set of independent, identically distributed (lIDp+a —Ke "TTOPy(S(t), V(t),t; K, T),

dom variables. _ _ ~ whereE,, is the expectation with respect to the risk-neutral
Let the density of the jump-amplitude mart® be uni- probability measure,

formly distributed:
pm(ST|S(t), V(1))

<q<
1, asgss } , (6) s the corresponding conditional density giveh(t), V (t)),

1
Pq(q) = a4 { 0, else

Pi(S(t),V(t),t; K, T) (10)
wherea < 0 < b. The mark@ has moments, such that the
mean is =700 [ Srpm(ST[S(), V(1)dSr/S(t)
1o = Eql[Q] =0.5(b+ a) — [ Sepam(ST|S(1), V(£)dSt /Em[S(T)|S (1), V (1),
and variance is by the risk-neutral property, is the risk-neutral probiapil
that S(T') > K (since the integrand is nonnegative and the
gg? = Varg[Q] = (b — a)?/12. integral over[0,c0) is one) and risk-neutral in-the-money

(ITM) probability is
Pa(S(1), V(¢), t: K, T) = Prob[S(T) > K|S(t),V(t)]  (11)
J =E[J(Q)] = (exp(b) — exp(a))/(b —a) — 1. (") is the complementary risk neutral distribution functiomeT

Choosing the log-uniform distribution has several reason%umpzan Oﬁt'og. e\{?)lugtlon p“’b'e”.‘ IS to e\l;alggg%ar)d h
first, since the exponentially small tails of the log-norraal 12 Under the distribution assumptions embedded in the

log-double-exponential distribution are contrary to the fl risk neutral probability measure. The difficulty is that the
umulative distribution function for most distributions i

and thick tails of the long time financial market Iog-returncf ible 15
data. Next, around the near-zero peak of the Iog-doubl@- easible [5]. - .
We follow the similar treatments in Bates [5], Hes-

exponential and the log-normal, the jumps are small, so are . .
not qualitatively different or separately detectable frime ton [14] and Bakshi et al. [3]. We apply the Dynkin theorem

continuous diffusion fluctuations. Moreover, an infinitenjo (see [9, Chapter 8] for instance) to derive the partial irdeg

domain is unrealistic , since the jumps should be boundéjcifferential equation (PIDE) satisfied by the value of an

in real world financial markets and infinite domain leads t(%)ptlon. ;rhi Di/_nlg_r;ftheotr_elm estzta_bllshesda retl_atllonshlﬁ be-
unrealistic restrictions in portfolio optimization [11]. ween stochastic differential equations and partial défitia

Wtaquations. For the jump-diffusion in the time-inhomogareo

The square-root stochastic-volatility process (2) has t di di : : the stochastic diffaknt
major advantages. First, the model can allow for systemat @ieat%nn fl)nr)??t?- imension, given the stochastic diftexent

volatility risk. The second is that the process generateesq
an analytically tractable method of pricing options withou dX(t) = f(X(@),t)dt + g(X(t),t)dW (t)
sacrificing accuracy of requiring undesirable restrictiam FR(X(t),t,Q)dP(t; X (1), 1)
parameter values [5]. . i ]

By the Itd’s chain rule and under a risk-neutral probaypilit the Dynkin theorem states that the expectation, wherie
measureM, the log-return proceda(S(t)) satisfies the SDE the terminal time,

dn(S(t) = (r—AT = V(6)/2)dt + VD) dW,(t) u(z, t) = B[U(X(T))|X(t) = ]

The jump-amplitude/ itself has mean

+QAN() @) is the solution to the following PIDE:
ou ou 1 ,0%u
where r is the risk-free interest rate, such that 0= 5 +f5+ 592@
Em[S(T)|S(to)] = S(to)exp(r(T — tp)) for some
initial time ¢, with risk-neutral driftug = r — AJ. +A /Q(“(f” +h(z,t,q), 1) —u(w, 1)) de(q)da,



subject to the final conditiom(z,T) = U(x), given the
terminal distributionU (z) (see [9, Chapter 8]for instance).
We make a change of variable froff{(t) to

L(t) = In(S(t))

with SDE given in (8) and inversg(t) = exp(L(t)). Eq. (9)
is rewritten as

C(S(1), V(t),t; K, T)e T
Em[max(Sr — K, 0)|S(t),

V()]

now C(S(t), V(t),t; K, T)e" ™) is the conditional expec-
tation of the composite process, whekd is an appropri-
ate theoretical risk-neutralizing measure. Applying tve-t

A. Characteristic Function Formulation for Solution

_The  corresponding  characteristic ~ functions  for
P;(¢,v,t;k,T), with respect to thex variable, for
j =1:2, defined by

fltotpT)=- [ emibonnT), @)

with a minus sign to account for the negativity of the measure
dP;, will also satisfy similar PIDEs:

af;
ot
for j = 1:2, again suppressing PIDE parameteyrsT’), with

+ A;lf1l, vt 1, T) =0, (18)

dimensional Dynkin theorem for the price dynamics (1) anée respective boundary conditions:

(2), we obtain that the value of a European-style option, as

a function of the stock log-returfi(¢) denoted by

C(L(t),V(t),t;5,T) = C(S(t),V (1), t; K, T),

ie.,
C,v,t;k,T) =L,V (t)=v]

— Ep[max(exp(L(T)) ~ K, 0)| L(t)

andx = In(K), satisfies the following PIDE:

oC
ol

aC+A[C](£ . T)—%—C—F( aJ-1 )

0 =

202

a0 1 9*C 20 1
HRO=v) 5+ 5V TPV ame T2 Y

—r@+A[ (C(e +q,0,t)—C(4,v, t)) ¢Q(q)dq,

+pov (12)

From (9), in the current state variables,

CA'(Z, v, t; K, T) :elﬁl(é, v, t; K, T)—e'wr(Tit)]sg(é, v, t;k,T),

where . = In(K), inserting this into (12) and separating
assumed independent terf?s and P, produces two PIDEs

for the risk neutralized probabilitieB; (¢, v, ¢; k,T) for i =

- Tar +A1[P1](é,'l},t;l{,T)

ot
_ op P oP

L (r—A) 131+A/°° (¢" = DRt + q,0,t)90(q)da;

where the(x,T) dependence has been suppressed, subject

to the boundary condition at the expiration tirhe- T
ﬁl(é,v,T;n,T) = ly>k, (14)

wherel,- . is the indicator function for the sét> x, and

0 = 22 4+ A[P)(4,v, 5, T) 15)

% + A[P)(4, 0, t; 5, T) + 1 Po;

subject to the boundary condition at the expiration time
T:

ﬁQ(évva;K’aT) = 1l>l»€- (16)

£, Ty, T) = +e'*, (19)
since from (17) and (14-16)
dﬁ](£7 v, Ta R, T) = dll>i€ - dH(é - /‘/i) = —6(//{ — Z)dl‘i

To solve for the characteristic function explicitly, leti~ =
T — t be the time-to-go we conjecture that the function is
respectively given by:

fitl v, ty,t + 1) =exp(g; (7) +h; (T)v+iyl+ 55 (7)),

for j = 1:2, where with3;(7) = r7d;. and the boundary
conditions:

(20)

9;(0) = 0= h;(0).

This conjecture exploits the linearity of the coefficientfie

PIDEs (18).
By substituting (20) into (18) and cancelling the common
factor of f;, where

0= —gﬁ(T)—vh}(T)—réj,er(r—AJ_i %v)iy

1 1
+(k(0 — v)+povdji)h; —§vy2+paviyhj + §U2Uh§
—AJbjq +>\/ (e —1) g0 (q)dg, 1)

where &1 = +§;1 — 0,2, and by separating the order
and order one terms to reduce to two ordinary differential
equations(ODEsSs),

1 .
hi(r) = 502h§(7) + (po (65,1 + iy) — k)h;(T)
1. 1,
i§2y —5Y (22)
and
g;(T) = k@h (T‘ — )\j)ly — /\jéj,l — Téj,g

+)\/ zy+5j,1)q _ 1)¢Q (q)dq (23)

To solve (22), we factor the RHS (right-hand-side) using
ni = po(iy+d;1) —k & Aj=/n} —o?iy(iy £1),

so we have




By separating of variables using partial fractions, C. Put Option by Put-Call Parity

The price of a European put on the same stock can
x 1 _ 1 he — dr be determined from theut-call parity. As both Hull [16]
A h; + R hj + nitA; ] ’ and Higham [15] that the put-call parity is based primarily

on the properties of the maximum function, in absence of
and integrating both sides, we obtain separation, friction terms like dividends, and hence is independent of
any particular process, so that

h+ ﬁj_zAj
In| =2 | = A7+ C. C(S(0), V(0),t: K, T) + Ke=™ = P(S(0),V(0),t; K, T)
b +5(0),

Solving for h; satisfying the boundary conditions yields thegy in other words, European put option price is
solutions

_ P(5(0),V(0),t K,T) = C(5(0),V(0),t; K,T)
(7 — A% (M7 —1)

hy(r) = _— (24) +Ke T~ 5(0), (7)
! o2(nj +Aj — (n; — Aj)e®T)
and easily calculated once the call option price is known.
g (1) = ((r = M\)iy — A\Jo;1 — r0;2)7 IV. COMPUTING INVERSEFOURIERINTEGRALS
+)\T/°° (907 _ 1)60(q)dg (25) The inverse Fourier integral (26) can be. compqted py
—oo means of standard procedures of numerical integration with
_ kb <21n<1 _ (A +m)(A - 67AJ'T)> some precautions. Two methods are compared: the discrete
o? 24; Fourier transform (DFT) with Gaussian Quadrature sub-
N +n')7) integral refinement for accuracy and the other is the fast
T Fourier transform (FFT) for speed of computation.

Applying the uniform distribution of jump-amplitude mark

@ in our general formulas, leads to the following integra
in (25): Since the integrand of (26) has a bounded limiyas 0+,

. is otherwise smooth and decays very fast, it is rewritten in
/ (e(iy+5j,1)q_1)¢Q(q)dq 1 /(e(iy+5j,1)q_1)dq the general approximate form for DFT,

[A. Discrete Fourier Transform (DFT) Approximations

50 b—a o
eliy+3;,1)b _ o (iy+55,1)a ) I[F|(k) = / F(y; k)dy
= N - ) 0
(b—a)(iy + ;1) N N jn
demonstrating the simplicity and utility of the log-unifor =~ ZIj(“):Z/_ X hF(y%H)dya (28)
jump amplitude distribution. = j=17U-D

for sufficiently largeN and such integrals are the basis of the
discrete Fourier transform, wheheis a fixed gross step size
B. Inverse Fourier Transform Solution for Tail Probabilities depending on some integral cutdif, = max[y] ~ N x h.

The tail probabilities?, and P, can be calculated by The sub-integrals of(j — 1)h, jh) in (28) forj = 1. N are
finding the inverse Fourier transforms of the characte:risticompmed by means of ten-ponjltGaus.s-Legendre formula for
functions and are given (see Kendall et al. ([20]) by refined accuracy need for oscillatory integrands and. for the

fact that it is an open quadrature formula that avoids any
1 1 [T non-smooth behavior ag — 0+. The number of stepsv
Bi(S@), V), K, T) = 2 + _/ (26) is not static, but ultimately determined by a local stopping

T Jo+ o . . . . .
criterion: the integration loop is stopped if the ratio okth

—iyIn(K) ¢ . oo . . .
Re |2 fi (1n($(t)), V(t),t,y,T)} dy, contribution of the last strip to the total integration bes
Y smaller than0.5e-7. By using formula (28) we also have
for j = 1 : 2, where the leading term of /2 is one O Specify a suitable step size By trials, h = 5 is a good

half the residue at they = 0 pole, Re| ] denotes the choice that we can get sufficiently fast convergence and good

real component of a complex number which arises frorRrecision. We use the principal square root to evaluate the
the principal value limits of the combined real parts of théquare root of complex in our pricing formula. Also, we
simplifying equivalent contour. This is what Heston [14]use pnnupal branch for the value of the complex natural
calls a tlosed form solution”. The singularity aty = 0 is 0garithm.

only an apparent singularity in that the integrand of should . , ,

be bounded ag — 0F in most cases. Nevertheless, the> Discrete and Fast Fourier Transform Comparisons

infinite integrals involved by the Fourier transforms need t In addition to the general discrete Fourier transform
be evaluated by some numerical integration method. (DFT), there is an extremely efficient way of computing the



DFT by the fast Fourier transform (FFT), corresponding tantegral into discrete Fourier transform:
the inverse transform,

N
-~ —Qakg .
= CN(Z,U,t; Iik,T) = € Ze—mkyj
o —
In(sk) = Z e—z%akFN(yj)Ay, (29) =
§=0 Fnlv,tyy;, T )Ay,  (33)

where s, = k * Ak is the discrete stock price fdr = 0: for k =0=(N — 1), so FFT returnsV values ofx; where

N —1,y; = j*Ay is the discrete Fourier variable fgr= 0: now x; = —L + ¢+ kAL and L = NAL/2, to keep the

N — 1. typically N is a power of 2Zy(sy) is thekth value at-the-money (ATM) strike price in the middle of the range.
of the inversel [F](sy,) from (28), Fi (y;) is thejth value of In order to apply the FFT, we need to I&tLAy = 27/N.

its integrand andA(y) is integral step size. The algorithm Hence there will be conflict that if we choosky small
reduces the number of matrix multiplication from(N2) to obtain a fine grid for the integration, then strike price
to O(N log, N). Unfortunately, the FFT cannot be directly spacings will be large. Following [7], Simpson’s rule is
applied to evaluate the integral, since the integrand udam  incorporated into the summation to improve the accuracy,
at the required evaluation point= 0 and precision is limited SO

to fixed step sized\y. Our FFT approach to this problem is

similar to that of Carr and Madan [7]. They developed some GN(Z,U,L‘; ki, T) =

—Qak
e k

N-1
Z e~ 15 ik piy; (L—0)
j=0

techniques around the problem to acquire a better evatuatio T

for the inverse Fourier transform to get the option price. Fn(l,v,t;y;, T; o)Ay (34)
In our model,f>(¢, v, t; k,T) is the characteristic function G ‘

of the tail probability with respect ta. In order to remove 13— (=1) —d;0l/3,

the non-smooth behavior at the pgle= 0, the pole is shifted : :
to the imaginary axis by multiplying option price at time Whered; is the Krone?ker delta and the factor in the
by an exponential, following an idea of Carr and Madan@st line is the Simpson’s term, preserving the fixed step

(CarrMadan99). Sincéﬁg = —pmdK can be shown to be size needed for FFT. The summation in (34) is an exact
- application of the FFT. Appropriate. and the Simpson
6((7U7t;,€7T):_6*"<T*t)/ (e*—e*)dPy(l,v,t;5,T), (30) Mmodified Ay need to be chosen. We use = 2.0 and
x Ay = 0.25.

so that exponentially modified call price is V. NUMERICAL RESULTS AND DISCUSSION

Cll,v,t;k,T;a) = e""‘@(é,v,t; k,T), (31) Both methods are implemented and validated against with
each other. The two methods give the similar results within
where the exponential coefficient needs to be real double precision accuracy. The FFT method can compute
and positive. The corresponding Fourier transform othe different levels strike price near at-the-money (ATM)
C,V(t),t;k,T;«) is defined by in about 5 seconds, which has advantage when one want
o a full view about the option price. However, because the
F(l,v,t;y,T; a):/ eiyné(g’ut; k,T;a)dk.  (32) regular spacings on log strike price are required, the nuktho
—o0 is not convenient to give out the results for one specific
Hence, the call price can be expressed as the inverse Foufid{k€ Price as can be implemented with the DFT. Using
transform multiplied by the reciprocal of the exponentiaft@ndard integration methods with the DFT has the advantage
of producing results for a given strike price in about 0.5

factor,
seconds.
~ . e [Tk ) ) The option prices from the stochastic-volatility jump-
Cllv, s, T) = o /_OO € Fb vy, T; a)dy diffusion (SVJD) model are compared with those of Black-
oK OO Scholes (BS) model. As expected, call and put option prices
= — /O e VR (v, ty, T a)dy. of SVJD model are higher than those of Black-Scholes

model with respect to the strike price. The reason is the
The expression fotF (¢, v, t;y,T;«) is determined as fol- stochastic-volatility and jump increase the risk premium.

lows: For longer the maturity time, the difference found to be

0o 0o are bigger. However, for same maturity time, the near-ATM

Fll,v,tyy, T;a) = —e‘T(T‘t)/ eiy"/ e option prices from two models have largest difference for
o " strike price.

(e = e")dPy (¢, v, t; 5, T)dsdk See Figures 1-3 comparing the DFT results call option

eI fo (0,0, t:y — (a + 1)i, T) prices for the SVJD moc_jel c_ompared With the c_orresponding
Zta—P+i2at )y Black-Scholes (pure diffusion) call option prices for the
maturity times7 =0.1, 0.25 and 1.0 years, i.e., 36 days,

In order to make (33) fit the application of the FFT, armone quarter and one year, respectively. For the correspgndi
approximation forC(¢,v,t;k,T) to transfer the Fourier DFT put option price results, see Figure 4-6 comparing




the results put option prices for the SVJD model compare( Call Option Price for T =1

with the corresponding Black-Scholes option prices for the
. . . --BS
maturity timesT' =0.1, 0.25 and 1.0 years, i.e., 36days, one 25 ]
quarter and one year, respectively.
20F 1
Call Option Price for T=0.1 § K
T T T T T T o
--SVJD c
g
20k ] 10 1
8
& 5 1
- 185 1
]
= N T
o . L e s
5F p! 1 Fig. 3. DFT call option prices for the SVJD model compared he t
k corresponding pure diffusion Black-Scholes values foapeater values =
3%, So = $100 and T = 1 year for the options; while for the stochastic
. . e - volatility they arec = 7%, V = 0.012, p = —0.622, 6 = 0.53 andk =

100 110 120 130 . 4
Strike Price 0.012; and for the uniform jump model they are= —0.028, b = 0.026

and \ = 64.

80 90

Fig. 1. DFT call option prices for the SVJD model compared he t
corresponding pure diffusion Black-Scholes values foapeater values =
3%, So = $100 andT" = 0.1 years for the options; while for the stochastic
volatility they arec = 7%, V = 0.012, p = —0.622, 0 = 0.53 andk = -BS
0.012; and for the uniform jump model they are= —0.028, b = 0.026
and \ = 64.
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--SVJD
251 --BS 1

Put Option Price

N
=}

T
s

=
a

T
s

-"‘n 1 1 1
80 90 100, . 110 120 130
Strike Price

Call Option Price

=
1)

T
s

Fig. 4. DFT put option prices for the SVJD model compared te th
s+ E corresponding pure diffusion Black-Scholes values forapeeter values
) r = 3%, So = $100 and T = 0.1 years for the options; while for the
stochastic volatility they are = 7%, V = 0.012, p = —0.622, = 0.53

e L and k = 0.012; and for the uniform jump model they are = —0.028,

1Sot(r)ike Pricém 120 10 b =0.026 and A = 64.

80 90

Fig. 2. DFT call option prices for the SVJD model compared he t . . . .
corresponding pure diffusion Black-Scholes values foaputer values —  characteristic functions in a formally closed form in terafs

?%,t hso =t $too ts_del :ﬂ%/4 years (i.e., one quarter) for the options; while @ Fourier inverse transform on a reduced equivalent contour
e e Tt e uniom amp ol ey e, TWO nuMmerical computing algorithms are implementecL. The
—0.028, b = 0.026 and A = 64. first is a general integral for the DFT accurately approxi-
mated by 10-point Gauss-Legendre quadrature formula and
second applies the FFT algorithm using an evenly-spaced
VI. SUMMARY AND CONCLUSION Simpson’s rule enhancement technique due to Carr and
An alternative stochastic-volatility jump-diffusion meld Madan [7]. Also an exponential modification technique of
is proposed with square root mean reverting for stochastitheirs was used to move a pole at the origin in the inverse
volatility combined with log-uniform jump amplitudes. Qha Fourier transform to a less numerically sensitive position
acteristic functions of the log of the terminal stock pricehe imaginary axis. Two methods give the similar results and
and the conditional risk neutral option prices are deriveave different advantages depending on the desired output.
analytically. The option prices can be expressed in terms dhe option prices from this alternative model are compared
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corresponding pure diffusion Black-Scholes values forapwmter values
r = 3%, So = $100 andT = 1/4 years for the options; while for the
stochastic volatility they are = 7%, V = 0.012, p = —0.622, 6 = 0.53
and k£ = 0.012; and for the uniform jump model they are = —0.028,

b=0.026 and A = 64. [12]

Put Option Pricefor T=1

~-SVJD &
--BS g

251 E

30r

[13]

[14]

N

=}
T
s

[15]

Put Option Price
=
{41

[16]

=

o
T
s

[17]

(18]

110 120 130

80 100
Strike Price

[19]

. . . 20
Fig. 6. DFT put option prices for the SVJD model compared te th[ I

corresponding pure diffusion Black-Scholes values forapwmter values
r = 3%, So = $100 and T" = 1 year for the options; while for the
stochastic volatility they are = 7%, V = 0.012, p = —0.622, 0 = 0.53
and k£ = 0.012; and for the uniform jump model they are = —0.028,
b=0.026 and A\ = 64.

[21]

[22]
[23]

[24]
with those from Black-Scholes model. The SVJD uniform
jump model has higher option prices, especially for Ionge[55]

maturity and near at-the-money strike price.
[26]
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