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Abstract— An alternative option pricing model is proposed,
in which the stock prices follow a diffusion model with square
root stochastic volatility and a jump model with log-uniformly
distributed jump amplitudes in the stock price process. The
stochastic-volatility follows a square-root and mean-reverting
diffusion process. Fourier transforms are applied to solvethe
problem for risk-neutral European option pricing under thi s
compound stochastic-volatility jump-diffusion (SVJD) process.
Characteristic formulas and their inverses simplified by integra-
tion along better equivalent contours are given. The numerical
implementation of pricing formulas is accomplished by bothfast
Fourier transforms (FFTs) and more highly accurate discrete
Fourier transforms (DFTs) for verifying results and for dif ferent
output.

Key words:stochastic-volatility, jump-diffusion, risk neutral
option pricing, uniform jump-amplitudes.

I. I NTRODUCTION

Despite the great success of the Black-Scholes model [6],
[22], this log-normal pure diffusion model fails to reflect the
three empirical phenomena: (1) the asymmetric leptokurtic
features, that is, the return distribution is skewed to the left,
and has a higher peak and two heavier tails than those of
the normal distribution; (2) the volatility smile, that is,the
implied volatility is not a constant as assumed in the Black-
Scholes model; and (3) the large random fluctuations such
as crashes and rallies.

Therefore, many financial engineering studies have been
undertaken to modify and improve the Black-Scholes model
to explain some or all of the above three empirical phe-
nomena. Popular models include, for example, (i) the jump-
diffusion models of Merton [23] and Kou [21]; (ii) the
constant-elasticity-of-variance model of Cox and Ross [8];
(iii) the stochastic-volatility models of Hull and White [17],
Stein and Stein [25] and Heston [14]; (iv) the stochastic-
volatility and stochastic-interest-rates models of Amin and
Ng [1], Bakshi and Chen [4], and Scott [24]; (v) the
stochastic-volatility jump-diffusion models of Bates [5], and
Scott [24].

Jarrow and Rosenfeld [18] and Jorion [19] demonstrate
that jumps are empirically important for several financial
markets. Recently, some empirical research result indicate
that both stochastic-volatility and discrete jump components
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are critical ingredients of the data-generating mechanism.
Stochastic volatility is needed to calibrate the longer ma-
turities and jumps to reflect shorter maturity option pricing.
As discussed in Andersen, Benzoni and Lund [2], Bates [5]
and Bakshi, Cao and Chen [3], the most reasonable model
of stock prices would include both stochastic-volatility and
jump-diffusion.

In this paper, an alternative stochastic-volatility jump-
diffusion model is proposed, which has square-root
and mean-reverting stochastic-volatility process and log-
uniformly distributed jump amplitudes in Section II. In
Sect. III, a formal “closed form solution” (according to
Heston [14]) for risk-neutral pricing of European options
is given by first converting the problem into characteris-
tic functions (Fourier transforms) , then using the Fourier
inversion formula for probability distribution functionsto
find a more numerically robust form (but, not everyone
would call it closed). In Sections IV and V, the solution
to the problem is computed from the Fourier inverse using
both fast Fourier transforms (FFTs) for speed and more
general discrete Fourier transforms (DFTs) for accuracy and
validation. In Sect. VI, the conclusions are given.

II. STOCHASTIC-VOLATILITY JUMP-DIFFUSION MODEL

It is assumed that a risk-neutral probability measureM
exists, the asset priceS(t), under this measure, follows a
jump-diffusion process, with zero-mean at the risk neutral
rater and conditional varianceV (t) ,

dS(t) = S(t)
(
(r − λJ̄)dt +

√
V (t)dWs(t)

+J(Q)dN(t)) , (1)

It is only necessary to know that the risk-neutral measure
exists [16]. Since Scott [24] finds that interest rate volatility
has little impact on short-term option prices, the interestrate
r will be assumed constant in this paper.

The instantaneous volatility follows a pure mean-reverting
and square-root diffusion process, given as

dV (t) = k (θ − V (t)) dt + σ
√

V (t)dWv(t). (2)

The variablesWs(t) and Wv(t) are standard Brownian
motions forS(t) andV (t), respectively, withE[dWi(t)] = 0,
Var[dWi(t)] = dt, for i = s or v, and correlation

Corr[dWs(t), dWv(t)] = ρ. (3)

In (1), J(Q) is the Poisson jump-amplitude,Q is an
underlying Poisson amplitude mark process selected [10],



[13], [12], [26], [9] so that

Q = ln(J(Q) + 1), (4)

for convenience,N(t) is the standard Poisson jump counting
process with jump intensityλ, and

E[dN(t)] = λdt = Var[dN(t)].

Also, the symbolic jump termJ(Q)dN(t) in (1) denotes the
Poisson sum,

J(Q)dN(t) =

dN(t)∑

i=1

J(Qi), (5)

whereQi is the ith jump-amplitude random variable taken
from a set of independent, identically distributed (IID) ran-
dom variables.

Let the density of the jump-amplitude markQ be uni-
formly distributed:

φQ(q) =
1

b − a

{
1, a ≤ q ≤ b
0, else

}
, (6)

wherea < 0 < b. The markQ has moments, such that the
mean is

µQ ≡ EQ[Q] = 0.5(b + a)

and variance is

σ2
Q ≡ VarQ[Q] = (b − a)2/12.

The jump-amplitudeJ itself has mean

J̄ ≡ E[J(Q)] = (exp(b) − exp(a))/(b − a) − 1. (7)

Choosing the log-uniform distribution has several reasons:
first, since the exponentially small tails of the log-normalor
log-double-exponential distribution are contrary to the flat
and thick tails of the long time financial market log-return
data. Next, around the near-zero peak of the log-double-
exponential and the log-normal, the jumps are small, so are
not qualitatively different or separately detectable fromthe
continuous diffusion fluctuations. Moreover, an infinite jump
domain is unrealistic , since the jumps should be bounded
in real world financial markets and infinite domain leads to
unrealistic restrictions in portfolio optimization [11].

The square-root stochastic-volatility process (2) has two
major advantages. First, the model can allow for systematic
volatility risk. The second is that the process generates
an analytically tractable method of pricing options without
sacrificing accuracy of requiring undesirable restrictions on
parameter values [5].

By the Itô’s chain rule and under a risk-neutral probability
measureM, the log-return processln(S(t)) satisfies the SDE

d ln(S(t)) = (r − λJ̄ − V (t)/2)dt +
√

V (t)dWs(t)

+QdN(t) , (8)

where r is the risk-free interest rate, such that
EM[S(T )|S(t0)] = S(t0) exp(r(T − t0)) for some
initial time t0 with risk-neutral driftµM = r − λJ̄ .

III. E UROPEANCALL OPTION PRICE

We let C denote the price at timet of a European style
call option onS(t) with strike priceK and expiration time
T . Using the fact that the terminal payoff of a European
call option on the underlying stockS with strike priceK
is max(S(T ) − K, 0) and assuming the short-term interest
rate r is constant over the lifetime of the option, the price
of the European call at timet equals discounted, conditional
expected payoff

C(S(t), V (t), t; K, T )

= e−r(T−t)EM[max[ST − K, 0]|S(t), V (t)]

= e−r(T−t)
`R ∞

K
ST pM(ST |S(t), V (t))dST

−K
R ∞

K
pM(ST |S(t), V (t))dST

´

= S(t)P1(S(t), V (t), t; K, T )

−Ke−r(T−t)P2(S(t), V (t), t; K, T ),

(9)

whereEM is the expectation with respect to the risk-neutral
probability measure,

pM(ST |S(t), V (t))

is the corresponding conditional density given(S(t), V (t)),

P1(S(t), V (t), t; K, T ) (10)

= e−r(T−t)
R ∞

K
ST pM(ST |S(t), V (t))dST /S(t)

=
R ∞

K
ST pM(ST |S(t), V (t))dST /EM[S(T )|S(t), V (t)],

by the risk-neutral property, is the risk-neutral probability
that S(T ) > K (since the integrand is nonnegative and the
integral over[0,∞) is one) and risk-neutral in-the-money
(ITM) probability is

P2(S(t), V (t), t; K, T ) = Prob[S(T ) > K|S(t), V (t)] (11)

is the complementary risk neutral distribution function. The
European option evaluation problem is to evaluateP1 and
P2 under the distribution assumptions embedded in the
risk neutral probability measure. The difficulty is that the
cumulative distribution function for most distributions is
infeasible [5].

We follow the similar treatments in Bates [5], Hes-
ton [14] and Bakshi et al. [3]. We apply the Dynkin theorem
(see [9, Chapter 8] for instance) to derive the partial integro-
differential equation (PIDE) satisfied by the value of an
option. The Dynkin theorem establishes a relationship be-
tween stochastic differential equations and partial differential
equations. For the jump-diffusion in the time-inhomogeneous
case and in one-dimension, given the stochastic differential
equation forX(t),

dX(t) = f(X(t), t)dt + g(X(t), t)dW (t)

+h(X(t), t, Q)dP (t; X(t), t)

the Dynkin theorem states that the expectation, whereT is
the terminal time,

u(x, t) = E[U(X(T ))|X(t) = x]

is the solution to the following PIDE:

0 =
∂u

∂t
+ f

∂u

∂x
+

1

2
g2 ∂2u

∂x2

+λ

Z

Q

(u(x + h(x, t, q), t) − u(x, t))φQ(q)dq,
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subject to the final conditionu(x, T ) = U(x), given the
terminal distributionU(x) (see [9, Chapter 8]for instance).

We make a change of variable fromS(t) to

L(t) = ln(S(t))

with SDE given in (8) and inverseS(t) = exp(L(t)). Eq. (9)
is rewritten as

C(S(t), V (t), t;K, T )er(T−t)

= EM[max(ST − K, 0)|S(t), V (t)],

now C(S(t), V (t), t; K, T )er(T−t) is the conditional expec-
tation of the composite process, whereM is an appropri-
ate theoretical risk-neutralizing measure. Applying the two-
dimensional Dynkin theorem for the price dynamics (1) and
(2), we obtain that the value of a European-style option, as
a function of the stock log-returnL(t) denoted by

Ĉ(L(t), V (t), t; κ, T ) ≡ C(S(t), V (t), t; K, T ),

i.e.,

bC(ℓ, v, t; κ, T )=EM[max(exp(L(T ))−K, 0)|L(t)=ℓ, V (t)=v]

andκ ≡ ln(K), satisfies the following PIDE:

0 =
∂ bC
∂t

+A[ bC](ℓ, v, t; κ, T )≡
∂ bC
∂t

+

„
r−λJ̄−

1

2
v

«
∂ bC
∂ℓ

+k(θ−v)
∂ bC
∂v

+
1

2
v

∂2 bC
∂ℓ2

+ρσv
∂2 bC
∂ℓ∂v

+
1

2
σ2v

∂2 bC
∂v2

(12)

−r bC+λ

Z ∞

−∞

“
bC(ℓ + q, v, t)− bC(ℓ, v, t)

”
φQ(q)dq,

From (9), in the current state variables,

bC(ℓ, v, t; κ, T )=eℓ bP1(ℓ, v, t;κ, T )−eκ−r(T−t) bP2(ℓ, v, t; κ, T ),

where κ = ln(K), inserting this into (12) and separating
assumed independent termsP̂1 andP̂2, produces two PIDEs
for the risk neutralized probabilitiesPi(ℓ, v, t; κ, T ) for i =
1, 2:

0 =
∂ bP1

∂t
+ A1[ bP1](ℓ, v, t;κ, T )

≡
∂ bP1

∂t
+A[ bP1](ℓ, v, t; κ, T )+v

∂ bP1

∂ℓ
+ρσv

∂ bP1

∂v
(13)

+
`
r − λJ̄

´ bP1+λ

Z ∞

−∞

(eq − 1) bP1(ℓ + q, v, t)φQ(q)dq;

where the(κ, T ) dependence has been suppressed, subject
to the boundary condition at the expiration timet = T :

P̂1(ℓ, v, T ; κ, T ) = 1ℓ>κ, (14)

where1ℓ>κ is the indicator function for the setℓ > κ, and

0 =
∂ bP2

∂t
+ A2[ bP2](ℓ, v, t;κ, T ) (15)

≡
∂ bP2

∂t
+ A[ bP2](ℓ, v, t;κ, T ) + r bP2;

subject to the boundary condition at the expiration timet =
T :

P̂2(ℓ, v, T ; κ, T ) = 1ℓ>κ. (16)

A. Characteristic Function Formulation for Solution

The corresponding characteristic functions for
P̂j(ℓ, v, t; κ, T ), with respect to the κ variable, for
j = 1 : 2, defined by

fj(ℓ, v, t; y, T ) ≡ −

∫ ∞

−∞

eiyκdP̂j(ℓ, v, t; κ, T ), (17)

with a minus sign to account for the negativity of the measure
dP̂j , will also satisfy similar PIDEs:

∂fj

∂t
+ Aj [fj ](ℓ, v, t; κ, T ) = 0, (18)

for j = 1:2, again suppressing PIDE parameters(y, T ), with
the respective boundary conditions:

fj(ℓ, v, T ; y, T ) = +eiyℓ, (19)

since from (17) and (14-16)

d bPj(ℓ, v, T ; κ, T ) = d1ℓ>κ = dH(ℓ − κ) = −δ(κ − ℓ)dκ.

To solve for the characteristic function explicitly, letting τ =
T − t be the time-to-go we conjecture that the function is
respectively given by:

fj(ℓ, v, t; y, t + τ )=exp(gj(τ )+hj(τ )v+iyℓ+βj(τ )) , (20)

for j = 1 : 2, where withβj(τ) = rτδj,2 and the boundary
conditions:

gj(0) = 0 = hj(0).

This conjecture exploits the linearity of the coefficient inthe
PIDEs (18).

By substituting (20) into (18) and cancelling the common
factor of fj , where

0 = −g′
j(τ )−vh′

j(τ )−rδj,2+

„
r−λJ̄ ±

1

2
v

«
iy

+(k(θ − v)+ρσvδj,1)hj−
1

2
vy2+ρσviyhj +

1

2
σ2vh2

j

−λJ̄δj,1+λ

Z ∞

−∞

(e(iy+δj,1)q−1)φQ(q)dq, (21)

where ±1 = +δj,1 − δj,2, and by separating the orderv
and order one terms to reduce to two ordinary differential
equations(ODEs),

h′

j(τ) =
1

2
σ2h2

j (τ) + (ρσ(δj,1 + iy) − k)hj(τ)

±
1

2
iy −

1

2
y2 (22)

and

g′j(τ) = kθhj(τ) + (r − λJ̄)iy − λJ̄δj,1 − rδj,2

+λ

∫ ∞

−∞

(e(iy+δj,1)q − 1)φQ(q)dq. (23)

To solve (22), we factor the RHS (right-hand-side) using

ηj = ρσ(iy + δj,1) − k & ∆j =
q

η2
j − σ2iy(iy ± 1),

so we have

h′

j(τ) =
1

2
σ2

(
hj +

ηj + ∆j

σ2

)(
hj +

ηj − ∆j

σ2

)
.
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By separating of variables using partial fractions,

1

∆j

(
1

hj +
ηj−∆j

σ2

−
1

hj +
ηj+∆j

σ2

)
dhj = dτ,

and integrating both sides, we obtain separation,

ln

(
hj +

ηj−∆j

σ2

hj +
ηj+∆j

σ2

)
= ∆jτ + C.

Solving forhj satisfying the boundary conditions yields the
solutions

hj(τ) =
(η2

j − ∆2
j)(e

∆jτ − 1)

σ2(ηj + ∆j − (ηj − ∆j)e∆jτ )
; (24)

and

gj(τ ) = ((r − λJ̄)iy − λJ̄δj,1 − rδj,2)τ

+λτ

Z ∞

−∞

(e(iy+δj,1)q − 1)φQ(q)dq (25)

−
kθ

σ2

„
2 ln

„
1 −

(∆j + ηj)(1 − e−∆jτ )

2∆j

«

+(∆j + ηj)τ

«
,

Applying the uniform distribution of jump-amplitude mark
Q in our general formulas, leads to the following integral
in (25):
∫ ∞

−∞

(e(iy+δj,1)q−1)φQ(q)dq =
1

b − a

∫ b

a

(e(iy+δj,1)q−1)dq

=
e(iy+δj,1)b−e(iy+δj,1)a

(b − a)(iy + δj,1)
−1,

demonstrating the simplicity and utility of the log-uniform
jump amplitude distribution.

B. Inverse Fourier Transform Solution for Tail Probabilities

The tail probabilitiesP1 and P2 can be calculated by
finding the inverse Fourier transforms of the characteristic
functions and are given (see Kendall et al. ([20]) by

Pj(S(t), V (t), t; K, T ) =
1

2
+

1

π

∫ +∞

0+

(26)

·Re

[
e−iy ln(K)fj(ln(S(t)), V (t), t; y, T )

iy

]
dy,

for j = 1 : 2, where the leading term of1/2 is one
half the residue at they = 0 pole, Re[ ] denotes the
real component of a complex number which arises from
the principal value limits of the combined real parts of the
simplifying equivalent contour. This is what Heston [14]
calls a ‘closed form solution”. The singularity aty = 0 is
only an apparent singularity in that the integrand of should
be bounded asy → 0+ in most cases. Nevertheless, the
infinite integrals involved by the Fourier transforms need to
be evaluated by some numerical integration method.

C. Put Option by Put-Call Parity

The price of a European put on the same stock can
be determined from theput-call parity. As both Hull [16]
and Higham [15] that the put-call parity is based primarily
on the properties of the maximum function, in absence of
friction terms like dividends, and hence is independent of
any particular process, so that

C(S(0), V (0), t; K, T ) + Ke−rT = P (S(0), V (0), t; K, T )

+S(0),

or in other words, European put option price is

P (S(0), V (0), t; K, T ) = C(S(0), V (0), t; K, T )

+Ke−rT − S(0), (27)

easily calculated once the call option price is known.

IV. COMPUTING INVERSEFOURIER INTEGRALS

The inverse Fourier integral (26) can be computed by
means of standard procedures of numerical integration with
some precautions. Two methods are compared: the discrete
Fourier transform (DFT) with Gaussian Quadrature sub-
integral refinement for accuracy and the other is the fast
Fourier transform (FFT) for speed of computation.

A. Discrete Fourier Transform (DFT) Approximations

Since the integrand of (26) has a bounded limit asy → 0+,
is otherwise smooth and decays very fast, it is rewritten in
the general approximate form for DFT,

I[F ](κ) ≡

∫ ∞

0

F (y; κ)dy

≃

N∑

j=1

Ij(κ)=

N∑

j=1

∫ jh

(j−1)h

F (y; κ)dy, (28)

for sufficiently largeN and such integrals are the basis of the
discrete Fourier transform, whereh is a fixed gross step size
depending on some integral cutoffRy = max[y] ≃ N ∗ h.
The sub-integrals on((j − 1)h, jh) in (28) for j = 1:N are
computed by means of ten-point Gauss-Legendre formula for
refined accuracy need for oscillatory integrands and for the
fact that it is an open quadrature formula that avoids any
non-smooth behavior asy → 0+. The number of stepsN
is not static, but ultimately determined by a local stopping
criterion: the integration loop is stopped if the ratio of the
contribution of the last strip to the total integration becomes
smaller than0.5e-7. By using formula (28) we also have
to specify a suitable step sizeh. By trials, h = 5 is a good
choice that we can get sufficiently fast convergence and good
precision. We use the principal square root to evaluate the
square root of complex in our pricing formula. Also, we
use principal branch for the value of the complex natural
logarithm.

B. Discrete and Fast Fourier Transform Comparisons

In addition to the general discrete Fourier transform
(DFT), there is an extremely efficient way of computing the
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DFT by the fast Fourier transform (FFT), corresponding to
the inverse transform,

IN (sk) =

N−1∑

j=0

e−i 2π
N

jkFN (yj)∆y, (29)

wheresk = k ∗ ∆κ is the discrete stock price fork = 0 :
N−1, yj = j∗∆y is the discrete Fourier variable forj = 0:
N − 1. typically N is a power of 2,IN (sk) is thekth value
of the inverseI[F ](sk) from (28),FN (yj) is thejth value of
its integrand and∆(y) is integral step size. The algorithm
reduces the number of matrix multiplication fromO(N2)
to O(N log2 N). Unfortunately, the FFT cannot be directly
applied to evaluate the integral, since the integrand is singular
at the required evaluation pointy = 0 and precision is limited
to fixed step sizes∆y. Our FFT approach to this problem is
similar to that of Carr and Madan [7]. They developed some
techniques around the problem to acquire a better evaluation
for the inverse Fourier transform to get the option price.

In our model,f2(ℓ, v, t; κ, T ) is the characteristic function
of the tail probability with respect toκ. In order to remove
the non-smooth behavior at the poley = 0, the pole is shifted
to the imaginary axis by multiplying option price at timet
by an exponential, following an idea of Carr and Madan
(CarrMadan99). SincedP̂2 = −pMdK can be shown to be

bC(ℓ, v, t; κ, T )=−e−r(T−t)

Z ∞

κ

(eℓ−es)d bP2(ℓ, v, t; s, T ), (30)

so that exponentially modified call price is

C̃(ℓ, v, t; κ, T ; α) = eακĈ(ℓ, v, t; κ, T ), (31)

where the exponential coefficientα needs to be real
and positive. The corresponding Fourier transform of
C̃(ℓ, V (t), t; κ, T ; α) is defined by

F(ℓ, v, t; y, T ; α)=

∫ ∞

−∞

eiyκC̃(ℓ, v, t; κ, T ; α)dκ. (32)

Hence, the call price can be expressed as the inverse Fourier
transform multiplied by the reciprocal of the exponential
factor,

Ĉ(ℓ, v, t; κ, T ) =
e−ακ

2π

∫ ∞

−∞

e−iyκF(ℓ, v, t; y, T ; α)dy

=
e−ακ

π

∫ ∞

0

e−iyκF(ℓ, v, t; y, T ; α)dy.

The expression forF(ℓ, v, t; y, T ; α) is determined as fol-
lows:

F(ℓ, v, t; y, T ; α) = −e−r(T−t)

∫ ∞

−∞

eiyκ

∫ ∞

κ

eακ

·(es − eκ)dP̂2(ℓ, v, t; s, T )dsdκ

=
e−r(T−t)f2(ℓ, v, t; y − (α + 1)i, T )

α2 + α − y2 + i(2α + 1)y
.

In order to make (33) fit the application of the FFT, an
approximation for Ĉ(ℓ, v, t; κ, T ) to transfer the Fourier

integral into discrete Fourier transform:

ĈN (ℓ, v, t; κk, T ) =
e−ακk

π

N∑

j=1

e−iκkyj

FN(ℓ, v, t; yj , T ; α)∆y, (33)

for k = 0=(N − 1), so FFT returnsN values ofκk where
now κk = −L + ℓ + k∆L and L = N∆L/2, to keep the
at-the-money (ATM) strike price in the middle of the range.
In order to apply the FFT, we need to let∆L∆y = 2π/N .
Hence there will be conflict that if we choose∆y small
to obtain a fine grid for the integration, then strike price
spacings will be large. Following [7], Simpson’s rule is
incorporated into the summation to improve the accuracy,
so

ĈN (ℓ, v, t; κk, T ) =
e−ακk

π

N−1∑

j=0

e−i 2π
N

jkeiyj(L−ℓ)

FN(ℓ, v, t; yj , T ; α)∆̂y (34)

·[3 − (−1)j − δj,0]/3,

where δj,k is the Kronecker delta and the factor in the
last line is the Simpson’s term, preserving the fixed step
size needed for FFT. The summation in (34) is an exact
application of the FFT. Appropriateα and the Simpson
modified ∆̂y need to be chosen. We useα = 2.0 and
∆̂y = 0.25.

V. NUMERICAL RESULTS AND DISCUSSION

Both methods are implemented and validated against with
each other. The two methods give the similar results within
double precision accuracy. The FFT method can compute
the different levels strike price near at-the-money (ATM)
in about 5 seconds, which has advantage when one want
a full view about the option price. However, because the
regular spacings on log strike price are required, the method
is not convenient to give out the results for one specific
strike price as can be implemented with the DFT. Using
standard integration methods with the DFT has the advantage
of producing results for a given strike price in about 0.5
seconds.

The option prices from the stochastic-volatility jump-
diffusion (SVJD) model are compared with those of Black-
Scholes (BS) model. As expected, call and put option prices
of SVJD model are higher than those of Black-Scholes
model with respect to the strike price. The reason is the
stochastic-volatility and jump increase the risk premium.
For longer the maturity time, the difference found to be
are bigger. However, for same maturity time, the near-ATM
option prices from two models have largest difference for
strike price.

See Figures 1-3 comparing the DFT results call option
prices for the SVJD model compared with the corresponding
Black-Scholes (pure diffusion) call option prices for the
maturity timesT =0.1, 0.25 and 1.0 years, i.e., 36 days,
one quarter and one year, respectively. For the corresponding
DFT put option price results, see Figure 4-6 comparing
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the results put option prices for the SVJD model compared
with the corresponding Black-Scholes option prices for the
maturity timesT =0.1, 0.25 and 1.0 years, i.e., 36days, one
quarter and one year, respectively.
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Fig. 1. DFT call option prices for the SVJD model compared to the
corresponding pure diffusion Black-Scholes values for parameter valuesr =

3%, S0 = $100 andT = 0.1 years for the options; while for the stochastic
volatility they areσ = 7%, V = 0.012, ρ = −0.622, θ = 0.53 andk =

0.012; and for the uniform jump model they area = −0.028, b = 0.026
andλ = 64.
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Fig. 2. DFT call option prices for the SVJD model compared to the
corresponding pure diffusion Black-Scholes values for parameter valuesr =

3%, S0 = $100 andT = 1/4 years (i.e., one quarter) for the options; while
for the stochastic volatility they areσ = 7%, V = 0.012, ρ = −0.622,
θ = 0.53 and k = 0.012; and for the uniform jump model they area =

−0.028, b = 0.026 andλ = 64.

VI. SUMMARY AND CONCLUSION

An alternative stochastic-volatility jump-diffusion model
is proposed with square root mean reverting for stochastic-
volatility combined with log-uniform jump amplitudes. Char-
acteristic functions of the log of the terminal stock price
and the conditional risk neutral option prices are derived
analytically. The option prices can be expressed in terms of
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Fig. 3. DFT call option prices for the SVJD model compared to the
corresponding pure diffusion Black-Scholes values for parameter valuesr =

3%, S0 = $100 and T = 1 year for the options; while for the stochastic
volatility they areσ = 7%, V = 0.012, ρ = −0.622, θ = 0.53 andk =

0.012; and for the uniform jump model they area = −0.028, b = 0.026
andλ = 64.
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Fig. 4. DFT put option prices for the SVJD model compared to the
corresponding pure diffusion Black-Scholes values for parameter values
r = 3%, S0 = $100 and T = 0.1 years for the options; while for the
stochastic volatility they areσ = 7%, V = 0.012, ρ = −0.622, θ = 0.53
and k = 0.012; and for the uniform jump model they area = −0.028,
b = 0.026 andλ = 64.

characteristic functions in a formally closed form in termsof
a Fourier inverse transform on a reduced equivalent contour.
Two numerical computing algorithms are implemented. The
first is a general integral for the DFT accurately approxi-
mated by 10-point Gauss-Legendre quadrature formula and
second applies the FFT algorithm using an evenly-spaced
Simpson’s rule enhancement technique due to Carr and
Madan [7]. Also an exponential modification technique of
theirs was used to move a pole at the origin in the inverse
Fourier transform to a less numerically sensitive positionon
the imaginary axis. Two methods give the similar results and
have different advantages depending on the desired output.
The option prices from this alternative model are compared
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Fig. 5. DFT put option prices for the SVJD model compared to the
corresponding pure diffusion Black-Scholes values for parameter values
r = 3%, S0 = $100 and T = 1/4 years for the options; while for the
stochastic volatility they areσ = 7%, V = 0.012, ρ = −0.622, θ = 0.53
and k = 0.012; and for the uniform jump model they area = −0.028,
b = 0.026 andλ = 64.
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Fig. 6. DFT put option prices for the SVJD model compared to the
corresponding pure diffusion Black-Scholes values for parameter values
r = 3%, S0 = $100 and T = 1 year for the options; while for the
stochastic volatility they areσ = 7%, V = 0.012, ρ = −0.622, θ = 0.53
and k = 0.012; and for the uniform jump model they area = −0.028,
b = 0.026 andλ = 64.

with those from Black-Scholes model. The SVJD uniform
jump model has higher option prices, especially for longer
maturity and near at-the-money strike price.
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