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1. Introduction
• Classical Black-Scholes (1973) model fails to reflect the three

empirical phenomena:
◦ Asymmetric leptokurtic features: return distribution skewed left,

has a higher peak and heavier tails than normal distribution;
◦ Volatility smile: implied volatility not constant as in B-Smodel;
◦ Large, sudden movements in prices: crashes and rallies.

• Recently empirical research (Andersen et al.(2002), Bates(1996) and
Bakshi et al.(1997)) imply that most reasonable model of stock prices
includes both stochastic volatility and jump diffusions. Stochastic
volatility is needed to calibrate the longer maturities andjumps are
needed to reflect shorter maturity option pricing.

• log-uniform jump amplitude distribution is more realisticand
accurate to describe high-frequency data; square-root stochastic
volatility process allow for systematic volatility risk and generates an
analytically tractable method of pricing options.

G. Yan and F. B. Hanson — 3 — UIC



2. Stochastic-Volatility Jump-Diffusion Model
• Assume asset priceS(t), under a risk-neutral probability measure
M, follows a jump-diffusion process and conditional varianceV (t)

follows a square-root mean-reverting diffusion process:

dS(t) = S(t)
(
(r − λJ̄)dt +

√
V (t)dWs(t) + J(Q)dN(t)

)
, (1)

dV (t) = k (θ − V (t)) dt + σ
√

V (t)dWv(t). (2)

where

◦ r = constant risk-free interest rate;
◦ Ws(t) andWv(t) are standard Brownian motions with

correlation:Corr[dWs(t), dWv(t)] = ρ;
◦ J(Q) = Poisson jump-amplitude,Q = underlying Poisson

amplitude mark process selected so thatQ = ln(J(Q) + 1);
◦ N(t) = compound Poisson jump counting process with jump

intensityλ.
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• Density of jump-amplitude markQ is uniformly distributed:

φQ(q) =
1

b − a





1, a ≤ q ≤ b

0, else




 ,

◦ Mark Mean:µj ≡ EQ[Q] = 0.5(b + a);
◦ Mark Variance:σ2

j ≡ VarQ[Q] = (b − a)2/12;
◦ Jump-Amplitude Mean:

J̄≡E[J(Q)]≡E[exp(Q)−1]=(exp(b)−exp(a))/(b−a)−1.

• By Itô’s chain rule, log-return processln(S(t)) satisfies SDE:

d ln(S(t)) = (r − λJ̄ − V (t)/2)dt +
√

V (t)dWs(t) + QdN(t) . (3)
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3. European Option Prices
3.1 Probability Distribution Function:

• Price of European call option under risk-neutral probability measure:

C(S(t), V (t), t;K, T ) = e
−r(T−t)EM[max[ST − K, 0]|S(t), V (t)]

= S(t)P1(S(t), V (t), t;K, T )

−Ke
−r(T−t)

P2(S(t), V (t), t;K, T ); (4)

• C(S(t), V (t), t; K, T )er(T−t) = EM[max(ST −K, 0)|S(t), V (t)] =

conditional expectation of the composite process;
• Change of variables:L(t) = ln(S(t)) andκ = ln(K), so

Ĉ(L(t), V (t), t; κ, T ) ≡ C(S(t), V (t), t; K, T ) in terms of processes

or for PDEsĈ(ℓ, v, t; κ, T ) ≡ C(exp(ℓ), v, t; exp(κ), T );
• Applying the two-dimensional Dynkin theorem, usingA as
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backward operator:

0 =
∂ bC
∂t

+ A[ bC](ℓ, v, t;κ, T ) ≡
∂ bC
∂t

+

„
r − λJ̄ −

1

2
v

«
∂ bC
∂ℓ

+k(θ − v)
∂ bC
∂v

+
1

2
v

∂2 bC
∂ℓ2

+ ρσv
∂2 bC
∂ℓ∂v

+
1

2
σ

2
v
∂2 bC
∂v2

− r bC

+λ

Z
∞

−∞

“
bC(ℓ + q, v, t) − bC(ℓ, v, t)

”
φQ(q)dq, (5)

and by substituting and separating variables, produce:
• PIDE forP1, with boundary condition̂P1(ℓ, v, T ; κ, T ) = 1ℓ>κ:

0 =
∂ bP1

∂t
+ A1[ bP1](ℓ, v, t;κ, T ) ≡

∂ bP1

∂t
+ A[ bP1](ℓ, v, t;κ, T ) + v

∂ bP1

∂ℓ

+ρσv
∂ bP1

∂v
+

`
r − λJ̄

´ bP1 + λ

Z
∞

−∞

(eq − 1) bP1(ℓ + q, v, t)φQ(q)dq; (6)

• PIDE forP2, with boundary condition̂P2(ℓ, v, T ; κ, T ) = 1ℓ>κ:

0 =
∂ bP2

∂t
+ A2[ bP2](ℓ, v, t;κ, T ) ≡

∂ bP2

∂t
+ A[ bP2](ℓ, v, t;κ, T ) + r bP2; (7)
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3.2 Characteristic Function:

• Corresponding characteristic functions defined by

fj(ℓ, v, t; y, T ) ≡ −

∫ ∞

−∞

eiyκdP̂j(ℓ, v, t; κ, T ), (8)

• Satisfying the same PIDEs as thêPj(ℓ, v, t; κ, T ):

∂fj

∂t
+ Aj [fj ](ℓ, v, t; κ, T ) = 0, (9)

whereAj represents the corresponding full backward operators in (6)
and (7) with boundary conditions,fj(ℓ, v, T ; y, T ) = +eiyℓ,
respectively forj = 1 : 2.

• Solution conjecture:

fj(ℓ, v, t; y, t + τ) = exp (gj(τ) + hj(τ)v + iyℓ + βj(τ)) , (10)

with βj(τ) = rτδj,2 and boundary conditionsgj(0) = 0 = hj(0) for
j = 1 : 2.
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3.3 Solution:

• For the Fourier transformsfj for j = 1 : 2,

hj(τ) =
(η2

j − ∆2
j )(e

∆jτ − 1)

σ2(ηj + ∆j − (ηj − ∆j)e∆jτ )
; (11)

gj(τ) = ((r − λJ̄)iy − λJ̄δj,1 − rδj,2)τ

+λτ

Z
∞

−∞

(e(iy+δj,1)q − 1)φQ(q)dq (12)

−
kθ

σ2
(2 ln

„
1 −

(∆j + ηj)(1 − e−∆jτ )

2∆j

«
+ (∆j + ηj)τ),

where

ηj = ρσ(iy + δj,1) − k & ∆j =
q

η2
j − σ2iy(iy ± 1);

Z
∞

−∞

(e(iy+1)q − 1)φQ(q)dq =
e(iy+1)b − e(iy+1)a

(b − a)(iy + 1)
− 1.
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• The tail probabilitiesPj for j = 1 : 2 are

Pj(S(t), V (t), t; K, T ) =
1

2
(13)

+
1

π

∫ +∞

0+

Re

[
e−iy ln(K)fj(ln(S(t)), V (t), t; y, T )

iy

]
dy,

by complex integration on equivalent contours yielding a residue of

1/2 and a principal value integral in the limit to the left of the

apparent singularity aty = 0+, since the integrand is bounded in the

singular limit.
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4. Computing Fourier Integrals
4.1 Using 10-point Gauss-Legendre formula for DFTs:
Re-write the Fourier integral as

I(x) =

Z
∞

0

F (x)dx = lim
N−>∞

NX

j=1

Z jh

(j−1)h

F (x)dx. (14)

• Because of singularity aty = 0 and oscillatory behavior, discrete

Fourier tranform (DFT) sub-integrals in (14) are computed by means

of a highly accurate, ten-point Gauss-Legendre formula, which is

also an open formula, not evaluating the function at the endpoints.
• N is not fixed but determined by a local stopping criterion: the

integration loop is stopped if the ratio of the contributionof the last

strip to the total integration becomes smaller than0.5e-7.
• Step sizeh = 5: Good choice for fast convergence and good

precision.
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4.2 Using Fast Fourier Transform (FFT):
(After Carr and Madan (1999))

• Initial call option price:

C(S(t), V (t), t; K,T )=−

Z
∞

K

e
−r(T−t)(S(t)−K)dP2(S(t),V (t), t;K, T ); (15)

• Modified call option price to remove the singularity:

C(mod)(S(t), V (t), t; κ, T ) = eακC(S(t), V (t), t; K, T ); (16)

• Corresponding Fourier transform ofC(mod)(S(t), V (t), t; κ, T ):

Ψ(S(t), V (t), t; y, T ) =

Z
∞

−∞

e
iyκ

C
(mod)(S(t), V (t), t;κ, T )dκ; (17)

• Thus,

C(S(t), V (t), t;K, T )=
e−ακ

π

Z
∞

0

e
−iyκΨ(S(t), V (t), t; y, T )dy; (18)
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Ψ(S(t), V (t), t; y, T ) = −

Z
∞

−∞

e
iyκ

Z
∞

κ

e
ακ

e
−r(T−t)(S(t) − K)

·dP2(S(t), V (t), t;κ, T )dκ

=
e−r(T−t)f2(y − (α + 1)i)

α2 + α − y2 + i(2α + 1)y
; (19)

• Transfer the Fourier integral into discrete Fourier transform (DFT)
and incorporate Simpson’s rule (Carr and Madan (1999)) to increase
accuracy of the FFT application:

C(S(t), V (t), t;κ, T ) =
e−ακ

π

NX

j=1

e
−i 2π

N
jk

e
iyj(L−ln(S))Ψ(yj)

·
dy

3
[3 + (−1)(j+1) − δj ], (20)

whereα = 2.0 anddy = 0.25 are used.
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5. Numerical Results
• Two numerical algorithms give the same results within accuracy

standard. The FFT method can compute different levels strike price

near at-the-money (ATM) in 5 seconds. The standard integration

method can give out the results for one specific strike price in about

0.5 seconds. The implementations are using MATLAB 6.5 and onthe

PC with 2.4GHz CPU.
• The option prices from the stochastic volatility jump diffusion model

are compared with those of Black-Scholes model:

Parameters:r = 3%, S0 = $100; σ = 7%, V = 0.012, ρ = −0.622,

θ = 0.53, k = 0.012; a = −0.028, b = 0.026, λ = 64.
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5.1 Call Prices:
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(a) Call option prices for

T = 0.1.
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(b) Call option prices for

T = 0.25.
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(c) Call option prices for

T = 1.0.

Figure 1: Call option prices for the SVJD model compared to the corre-

sponding pure diffusion Black-Scholes values forT = 0.1, 0.25, 1.0.
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5.2 Put Prices:
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(a) Put option prices for

T = 0.1.
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(b) Put option prices for

T = 0.25.
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(c) Put option prices for

T = 1.0.

Figure 2: Put option prices for the SVJD model compared to thecorre-

sponding pure diffusion Black-Scholes values forT = 0.1, 0.25, 1.0.
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6. Conclusions
• Proposed an alternative stochastic-volatility, jump-diffusion (SVJD)

model, stochastic volatility follows a square-root mean-reverting

stochastic process and jump-amplitude has log-uniform distribution.
• Characteristic functions of the log-terminal stock price and the

conditional risk neutral probability are analytically derived. The

option prices are expressed in terms of characteristic functions in

closed form.
• Two numerical computing algorithms using an accurate 10-point

Gauss-Legendre Fourier integral (DFT) formula and a fast FFT are

implemented. Same option prices are given by two methods forthe

SVJD model. Compared with those from Black-Scholes model, the

SVJD model have higher option prices, especially for longermaturity

and near at-the-money (ATM) strike price.
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