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Abstract. The growth of populations with continuous deterministic and random jump com-
ponents is treated. Three special models in which random jumps occur at the time of events
of a Poisson process and admit formal explicit solutions are considered: A) Logistic growth
with random disasters having exponentially distributed amplitudes; B) Logistic growth with
random disasters causing the removal of a uniformly distributed fraction of the population
size; and C) Exponential decay with sudden increases (bonanzas) in the population and with
each increase being an exponentially distributed fraction of the current population. Asymp-
totic and numerical methods are employed to determine the mean extinction time for the
population, qualitatively and quantitatively. For Model A, this time becomes exponentially
large as the carrying capacity becomes much larger than the mean disaster size. Implications
for colonizing species for Model A are discussed. For Model B and C, the practical notion
of a small, but positive, effective extinction level is chosen, and in these cases the expected
extinction time rises rapidly with population size, yet at less than an exponentially large
order.
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1 Introduction

We are interested in determining the time to extinction of a population which is subjected
to randomly occurring disasters when these disasters have a continuous distribution of sizes.
In the time intervals between disasters the population evolves deterministically.

Previously we have analyzed population growth which is logistic and suffers disasters
at the times of occurrence of events in a simple Poisson process. In the first case [12], the
disasters were of constant size. In a subsequent investigation [13], the disasters were density
independent in the sense that they were a constant multiple of the current population size. In
both cases the expected time to extinction satisfied a singular differential-difference equation.
These equations were solved by the method of steps modified by a singular decomposition
for the equations associated with biological extinction. This singular decomposition was

*This paper is to appear in J. Math. Biol., vol. 36 (2), pp. 169-187, December 1997.



2 F. B. Hanson, H. C. Tuckwell

rigorously analyzed in [8] within the framework of a general discrete jump model. It was
shown that the singular decomposition makes the singularities removable by transforming
the original singular boundary value problem to two nonsingular problems, so that numerical
procedures were well conditioned. The extinction time grew exponentially with the carrying
capacity of the environment.

Hanson and co-workers [22, 23, 9, 10] have applied this Poisson disaster model to the
optimal harvesting in an uncertain environment with a focus on fisheries applications. In
[22], Ryan and Hanson treated the problem of exponential growth in the presence of random
disasters and bonanzas. In [23], they considered a logistically growing population with
density independent (i.e., linear in population size) random disasters. Optimal harvesting
in the presence of density dependent (i.e., nonlinear in amplitude) disasters is studied in
[10]. A multispecies model of a Lake Michigan predator-prey system was presented and
computationally analyzed in [9] using fishery catch data for alewives undergoing occasional
massive mortalities to estimate disaster parameters.

In most previously studied stochastic population models it was assumed that popula-
tions change size continuously, as for example in diffusion processes. Tuckwell and Koziol [27]
have reviewed the logistic model with diffusion type noise, and have also modeled a stochas-
tic logistic process with dispersal according to either Bose-Einstein or Maxwell-Boltzmann
statistics.

However, all real populations experience catastrophic disasters or bountiful bonanzas
of various magnitudes, ranging in size from very small to large. Adverse phenomena can
have many causes: floods, tsunami, sea level changes, earthquakes, volcanoes, impacts of ex-
traterrestrial objects, plate tectonics, climate changes, famines, predation, competition, war,
fires, accidents, infectious diseases and storms or other adverse weather effects. Examples of
favorable effects are bumper harvests, destruction of predators, destruction of competitors,
sudden abundance of prey or other food, sudden availability of colonizable patches, favorable
ocean currents and beneficial weather.

Flessa [6] lists several contrasting interpretations of the fossil record for the cause or
causes of mass extinctions that occurred at the Cretaceous-Tertiary boundary. Jablonski
[15] discusses the plausibility of many potential causes of mass extinctions.

Ludwig et al.[16] strongly emphasize the importance of uncertainty and how it can mask
overexploitation effects, leading to unwise exploitation policies, especially those based upon
sustainable yield theory.

Previously, Tsurui and Osaki [25] have treated the first passage time to exceed a cer-
tain threshold in the case of exponentially distributed, but positive Poisson amplitudes (i.e.,
bonanzas exponentially distributed in both time and amplitude) in a background of deter-
ministic exponential decay. Mangel and Tier [17, 18] derive a birth and death model with
catastrophes, presenting solution by both asymptotic and numerical methods. In [17], they
emphasize a simple direct method to compute persistence times for birth and death models
with catastrophes. Pakes et al. [20] modeled the problem of mass emigration of an expo-
nentially growing population with randomly distributed emigration occurring according to a
population size dependent jump process. In a related paper, Trajstman [24] formulated the
problem of growth with emigration more succinctly as a nonstationary compound Poisson
process superimposed upon a linear bounded deterministic component. Brockwell el al. [4]
treat the births, immigration and catastrophes as discrete state-space Markov models using
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distributions that result in explicit solutions, with comparisons to simple semi-stochastic
continuous state-space linear models. In a subsequent paper [5], they treat catastrophes
in continuous state-space in the present of upward growth according to a compound Pois-
son process with an arbitrary distribution of the upward jumps using the methods of their
discrete state-space paper [4]. Brockwell [3| presents another variation on the emigration
(catastrophe or disaster) model using a birth, death and catastrophe process, while also
treating a corresponding jump diffusion (stochastic diffusion with Poisson distributed disas-
ters) model. Bartoszynski et al. [1] analyze disaster and bonanza models based upon Markov
branching processes that include the birth, death and population size independent Poisson
disaster or bonanza processes.

An element of realism is introduced if multiple disasters or bonanzas are incorporated
in deterministic models of population growth. Models will be examined for a population
which grows logistically except when it undergoes sudden changes at times of events of a
Poisson process and whose sizes are random with continuous distributions. Three special
cases are presented in Sect. 3 in which formal explicit solutions for the extinction time are
obtained. In the first case disasters occur whose magnitude is exponentially distributed, but
is independent of the population size. Also, the asymptotic behavior is given for large values
of the limiting population size. In the second case the disaster size is density independent
(i.e. proportional to the population size) and uniformly distributed. Asymptotic solutions
are given for large initial population size. In the third case the exponentially distributed,
density-independent bonanza is treated.

2 The general models
A population that starts out at size N(0) = x and grows logistically to N(¢) at time ¢ satisfies
the deterministic process, dN(t)/dt = F(N(t)), in the absence of stochastic effects.

If the population, instead, grows deterministically only between jumps in population
size which arrive at the times of events of a Poisson process and with a magnitude that is
continuously distributed, then the growth of the population satisfies the following stochastic
differential equation,

AN(t) = F(N(t))dt + /_ T (N, w)Pldu, ], N(O)=z € (a,bl. (2.1)

Here P is a Poisson random measure (Gihman and Skorohod [7]). The symbol P|du, dt|
counts the number of jumps of a compound Poisson process with amplitudes J(z, u) gener-
ated in the mark interval (u,u + du) during the time interval (¢,¢ + dt), while [°0 P[du, dt]
is the number of jumps in (¢, + dt). The mean rate of arrival of jumps with amplitudes in
(u,u + du) is E[P[du, dt]] = ¢(u)du dt. Thus, the total jump rate is A = [ o(u)du > 0,
¢(u)/X is the probability density function for the marks u. The expected jump size condi-
tioned on the population size at t is E[J(N(t),u)|N(t) = z| = [0, o(u)J (x, u)du/A.

In our first paper [12], the special case of a downward jump with fixed magnitude &,
o(u) =Mo(u—c¢), J(N,u) =—u, F(N)=rN(1— N/K) was treated, and

AN(t) = rN(t) (1 — N(t)/K) dt — dII(t; \), (2.2)

where II(¢; \) is a simple Poisson process with rate parameter A, r is the intrinsic per capita
rate of increase, K is the carrying capacity of the environment, N(0) € (0, K] and € > 0.
The Poisson random integral in (2.1) is replaced by —edII(t; \).
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In [13] we considered the particular choices ¢(u) = No(u —€), J(N,u) = —Nu and
F(N)=rN(1 - N/K) so that

AN(t) = rN(t) (1 — N(t)/K) dt — eN(t)dIL(L; \), (2.3)

where N(0) € (A, K] for some 0 < A < K and 0 < € < 1. The case ¢ > 1 is trivial, since
the first jump leads to certain extinction. Note that in this case the single mark u = € is the
proportion lost in this density independent disaster, whereas in the previous case the mark
represents the absolute amount lost in a population size independent disaster. The choice of
a positive effective extinction level A permits the population to go extinct in finite time in
analogy with the discrete population case where extinction occurs when the population gets
below reproducing pair, rather then zero or below.

In the above models, the quantity of immediate interest is the extinction or persistence
time of the population size on some interval (a,b). Let

Toa() = mf{N(t) ¢ (a,b) | N(0) =z € (a,b)} (2.4)

be the random variable denoting this persistence time and its expectation be T(z) =
E[Toxs(z)].

For the model of equation (2.1) with F'(IV) appropriate for logistic growth, this quantity
satisfies the integro-differential equation [26]

F(a)T'(2) + [ °:O T(z + J(z,u))b(u)du — NT(z) = —1, (2.5)

when z is in (a,b). The choice of the minimum population a depends on the choice of the
drift F'(x) and the jump size J(z,u). In those cases where the value zero is attainable, a = 0
is chosen to identify extinction with the passage of the population size to zero or below. If
zero is not attainable in a finite time, then for practical considerations an effective extinction
should be defined as the first passage to some small positive population size a = A.
2.1 Boundary conditions
The general boundary condition for the integro-differential equation (2.5) is that T'(z) =
0 for z < a or x > b. This is a simple consequence of the fact that the first exit time from
(a,b) is zero if the process starts outside that interval.

In addition to the above boundary condition, the integro-differential equation is solved
subject to the constraints that T'(x) be bounded and continuous in its domain, deriving
natural boundary conditions in each special case where appropriate.

3 Special examples

The integro-differential equation (2.5) can be reduced to quadratures in special cases.

3.1 Model A: logistic growth with exponentially distributed, N-independent disasters

For a population that has a limited environment, a logistic model with fixed carrying capacity
serves as a simple deterministic, continuous model. However, it is unrealistic to expect a
population to increase continuously without being interrupted by occasional disasters of
various magnitudes. We will assume, in accordance with intuition, that large disasters
occur less frequently than small ones. Hence we choose an exponential distribution for the
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magnitude of the downward jumps. Thus we choose

)\/me’“/m, u>0
0, otherwise ’
(3.1)

F(z) = re(l-2/K), J(z,u)=—u, and ¢(u):{

where » > 0 and K > 0, so that the drift is logistic and the amplitude of the disasters is in-
dependent of population size. The conditional mean jump amplitude is E[J(N(t), u)|N(t) =
z] = m and the conditional variance is Var[J(N(t),u)|N(t) = ] = m?. Choosing a = 0 and
b = +o00, (2.5) becomes

re(1—z/K)T'(z) + % /OOO e (x — u)du — AT (z) = —1. (3.2)

Applying the general boundary condition and changing variables in the integrand,
by T
rz (1 — 2/ K)T'(x) — ANT(2) + 1] /™ + 2~ / /™ T (v)dv = 0. (3.3)
m Jo

A natural boundary condition at extinction follows from taking the limit + — 0% in (3.3)
which yields 7'(0%) = 1/A. This condition means that sufficiently small populations would
go extinct at the first disaster. Note that 7'(07) bounded implies that T'/(x) is less than
order 1/x as x — 0.

A single differentiation in x converts the integro-differential equation (3.3) to a first
order ordinary differential equation in 7"'(z),

mrz (1 —z/K)T"(z) + [re(1 —2/K) +mr (1 —2z/K) —m\T'(x) = —1. (3.4)
The first integral of (3.4) yields

K

K
AT (z) = 29 YK —z) @ e ®/m lC’l + qa/ /My UK — 2)%dz| (3.5)

where ¢ = \/r is the bio-disaster growth ratio defined in our previous papers [12, 13|. The
parameter ¢ is the ratio of the deterministic return (e-folding) time, 1/r, to the expected
waiting time, 1/A, between disasters.

The constant, C, of integration in (3.5) must be zero when ¢ > 0 (A > 0 and r > 0),
because T'(x) must be less than order 1/(K — z) for T(x) to be bounded as ©z — K.
Thus, AT'(K ™) = q/((¢+ 1)m) is a second natural condition. Another integration with this
natural condition converts (3.5) into closed form:

T K
AT (z) =1+ %/0 e v/myt—Y(K — y)_q_l/ /MUK — 2)%dzdy. (3.6)
y
It is important to note that this formal solution has been obtained from the singular func-
tional differential equation (3.3) using natural boundary conditions that are deduced from
(3.3) and boundedness. No externally imposed Dirichlet conditions have been or can be
imposed, assuming g > 0.



6 F. B. Hanson, H. C. Tuckwell

The second order differential equation (3.4) for mean first exit time 7'(z) has an inter-
esting interpretation as arising from a stochastic diffusion. This equation would govern the
first passage time for a diffusion process governed by the Ito stochastic differential equation

dN(t) = [rN(t) (1= N(t)/K) +mr (1—2N(t)/K) —m)| dt

+\/2mr7\7(t) (1 - N@)/K)aw(t), (3.7)

where W (t) is the Wiener or Gaussian process. The diffusion coefficient, 2mrN (1 — N /K),
is proportional to the logistic growth function. The drift in the square bracket of (3.7) is
basically the logistic growth perturbed by the mean jump rate, —mA, and by the derivative
of the diffusion coefficient. The boundary conditions as a set are natural for the original
expected extinction time of the exponentially distributed disaster model.

There appears to be no simpler form for (3.6) in terms of elementary functions. When K
is very large compared to the mean jump size m, the double integral in (3.6) can be simplified
asymptotically by a 2-dimensional extension of Laplace’s method [11]. The method relies on
the fact that the dominant contribution of the exponentials in the double integral occurs at
the maximum of the exponent of the integrand at (y,z) = (0, K). Expanding the integrals
about this maximum and extending the limits of integration of the inner integral to infinity
and retaining the outer integral limits to preserve the uniform validity at = = 0,

(q+1) (q+1)(q+2))
R 2R

o[- S ) o 2) s

(g+1) <1+ (q+2>(q+1+x/m>> (ﬁ)qe_x/m(g(i)]

M(z) ~ 1+ql(q+ 1)R " l1 +4 (1+

R 2R R3

as R = K/m — oo, where I'(¢q) is the gamma function and (g, z) is the incomplete gamma
function. The approximation (3.8) is uniformly valid when z = 0% because v(¢,0) = 0. In
(3.8), only the first three exponentially large terms with exponent R have been retained.
When z = K~ and 7(q, R) ~ T'(¢q), the approximation (3.8) simplifies to

NC(K™) ~ 14 T2(q + 1)R-20e" [1 L 20(a+1) <1 Ll 1)2> +o( ! )] (3.9)

R R R3

as R = K/m — oo. The simplified asymptotic approximation (3.9) indicates that AT (K ™)
will be exponentially large when R is large, i.e., its behavior is exponentially dominated by
the factor, exp(R), when the carrying capacity K is a large multiple of the mean disaster
amplitude m. There is also a weaker, algebraic dependence on the bio-disaster growth
parameter ¢ due to the factor R72¢. The approximation, (3.8) or (3.9), should be useful for
very large R.

Extinction according to this model is certain, but the population will persist for ex-
tremely long times, provided /m and R are sufficiently large. It is well known that almost
all species that have ever existed have become extinct. Raup [21] gives a summary of mean
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species duration times for many fossil groups, the range being between one and eleven million
years.

In contrast, small values of x are of interest in studying the relative dangers in going
extinct from a small number of colonizers. Very close to the extinction level, as x/m — 0
and using (3.6), the composite dependence is found

¢ =z
(g —1)m ¢!

AT(x) ~ 14+ =5 (7)., g=1 : (3.10)
R(% Tl a1 = 2)%eRadz, 0<g<1

due to the singularities in the z-integral. Approximation (3.10) implies that when the bio-
disaster growth ratio ¢ is less than one, \T'(z) will increase most rapidly; in fact, with a
vertical asymptote as /m — 0% and also with exponential dependence on R when R is
large. When ¢ is greater than one the increase in x is only linear in x. Hence ¢ < 1 or
r > A is advantageous to the colonizing population, because very long persistence time will
be most probable for a relatively small initial population size.

The same singular features of the solution (3.6) that limit the usefulness of the asymp-
totic approximation (3.8) also hinder the numerical approximation of (3.6) for general val-
ues of ¢ and moderate values of R. We here first isolate the singular powers containing ¢
and approximate only the nonsingular terms. Let u(z) = z/(K — z) when z < K/2 and
v(z) = (K —x)/x = 1/u when = > K/2, so that (3.6) is transformed to a more manageable
form:

AT ()
L+ qRe™ [§7 U AU) r< K
= X Ul VIB(V)AV + e B2 [l W-aC(W } =2 )
AT( >+qReR/2f V- lD(V) fo WqB(W deV > %

where A(u) = exp(—Ru/(1 + u)), B(u) = A(u)/(1 + u)?, D(u) = exp(—R/2)/A(u), and
C(u) = D(u)/(1 + u)?>. The relatively nice functions A, B, C, and D are approximated
by linear interpolation with sufficient accuracy using parabolically spaced nodes and the
remaining integrals can be done exactly, because their integrals contain only powers, some
singular.

Some numerical results using (3.11) for Model A with AT (z) are given in the semilog
plot of Fig. 1. Here, K has the value 10, while ¢ = 0.5, 1.0 and 2.0. These values of
g are just representative of the three distinct asymptotic cases, which are 0 < ¢ < 1,
g = 1 and ¢ > 1. Taking into account the logarithmic scale, it can be seen that the
differences between the values of AT'(z) are large at small and moderate values of z, for
various values of g. The curves for ¢ = 0.5 (the smallest bio-disaster growth ratio considered)
rise very sharply away from x = 0% in comparison with the curve for ¢ = 2.0. Note the
tremendous advantage that populations with large per capita growth rates r have because
their mean persistence times are the longest and are achieved with a small colonization
effort. Another qualitative biological implication of the results is that the population can
reach nearly maximal persistence outside of a sufficiently small neighborhood of extinction,
but strong colonization properties are critical within this neighborhood.
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Figure 1: Logarithm of the scaled, expected extinction time, log{\T'(z)}, for Model A with
exponentially distributed, size independent disasters as a function of the initial population
size, x, for several values of the bio-disaster growth ratio, ¢ = 0.5,1.0,2.0

In Fig. 2, the asymptotic (3.10) and numeric (3.11) approximations to the exact solution
for the expected extinction time are compared in terms of the percent relative difference.
The difference is quite small for values of the bio-disaster ratio of ¢ = 0.5 and 1.0, but quite
large for ¢ = 2.0, reaching about 30% for small, colonization level, population sizes. Thus,
for small population sizes and higher bio-disaster growth ratios, the asymptotic approxi-
mation significantly underestimates the extinction time, and so overestimates the danger of
extinction.

3.2 Model B: density independent disasters with uniformly distributed jump size

When the effect of a disaster is proportional to population size the disaster is said to be
density independent, because the relative disaster size is independent of N. The density
independent disaster is usually due to abiotic causes which affect the population as a whole,
whereas biological causes due to species interactions, such as epizootics, may lead to nonlin-
ear or other density independent disasters [9]. For convenience, the size of the disaster per
unit population size is assumed to be uniformly distributed on (0, 1). Note that any disaster
greater than the population size has the same effect as a disaster wiping out the whole pop-
ulation. An example of possible density independent disasters with uniform distribution is
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Figure 2: The percent relative difference between the asymptotic and numerical approxima-
tions to expected extinction time, (Tys(z)/T(x) — 1) % 100, for Model A with exponentially
distributed, N-independent disasters as a function of the initial population size, x, for several
values of the bio-disaster growth ratio, ¢ = 0.5, 1.0, 2.0

the occasional massive die-offs of alewives in Lake Michigan, but in [9] only a simple Poisson
disaster in a multi-species bioeconomic model is used due to limited field data.

Hence,
A O<uxl
J(z,u) = —zu, F(z)=rz(l—z/K) and ¢(u) = { 0. otherwise (3.12)
The conditional mean jump size is E[J(N(t), u)|N(t) = 2] = —z/2 with conditional variance

Var[J(N(t),u)|N(t) = z] = 2?/12. Since the disaster gets small with the population size,
ideal extinction at = 0" will take an infinite amount of time. Therefore, let a = A > 0
be the effective extinction size, the lowest viable population size, in analogy with a discrete
population being extinct when there is less than one mating pair. The expected extinction
time equation (2.5) with general boundary condition reduces to

re(l—a/K)T'(x) + )\/OIA/m T(z —ux)du — \T'(x) = —1 (3.13)
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on (A, K). The effective extinction boundary condition for (3.13) does not have the simple
form as the extinction natural boundary condition of Model A, but instead has a mixed
condition, rA(1 — A/K)T'(A") = AT(A") — 1, which arises because (3.13) is not singular
at v = AT > 0.

As in the prior case, the integro-differential equation can be converted to a first order
differential equation in 7"/(x) similar to the stochastic diffusion-like expected extinction time
equation (3.4) for Model A. Transforming x out of the integrand, multiplying by z and
differentiating,

ra? (1 — o/ K) T"(z) + [(rm2 (1—2/K)) - )\x} T'(z) = —1. (3.14)
Otherwise, the two integrations with 7(K~) bounded work the same as before and
K
MT(2) =1 + AN K — A)—q/ UK — 2)0dz
A
T K
+ gk / Y2 (K — y)0 / UK — 2)idzdy (3.15)
A Yy

is the formal result. For numerical purposes, (3.15) can be transformed to isolate potential
troublesome arbitrary powers related to the disaster growth ratio ¢ as in Model A to the
more manageable form:

L+ ut™ (A) A(A) [[hay UTIBU)AU + J3 VIB(V)dV],

NT(A*) + q [o& U2 AU) [J§ W= + [ W] BOW)dWdU,
A<z <K/2

NT(K/2) + q [y VZOTA(V)AV ) WIB(W)AW AV,
K/2<z<K

(3.16)

but with new definitions, A(u) =1+ u and B(u) = 1/(1 + u)>.
For large carrying capacity K relative to the effective extinction level A, the formal
solution (3.15) has the asymptotic simplification as follows,

g [(5) - (8) - am(F)] +ow),
O<g<l,z>A
AT (z) ~ {%m@%)—l} I (5) + (%) , (3.17)
g=1, > A
4 _1n (%)+(9(1),

qg—1
g>1, > A

as K/A — oo. This result has been obtained by a somewhat different method through
simply factoring out the most dominant parts of the integrals in (3.15). The nonexponential
integrands lack the sharp maxima needed to apply Laplace’s method. The approximation
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(3.17) indicates that expected persistence time grows algebraically or logarithmically as
K/A — oo, while in Model A the asymptotic growth is exponential in R = K/m.

The numerical results for Model B, using similar techniques to those employed in
Model A, are exhibited in Fig. 3 for ¢ = 0.5,1.0 and 2.0. Again, the advantage for a
population described by Model B occurs when ¢ is less than unity, but it is less pronounced
than in Model A. Figure 4 shows the relative difference between the asymptotic approxima-

Scaled Expected Extinction Time

Model B:

0.6 Uniformly
— Distributed
X Disaster
04
=
o
9 o2

0 | | | |

0 2 4 6 8 10

X, Initial Population Size

Figure 3: Logarithm of the scaled, expected extinction time, log{\T(z)}, for Model B of
uniformly distributed, density independent disasters as a function of the initial population
size, x, for several values of the bio-disaster growth ratio, ¢ = 0.5, 1.0,2.0

tion and the numerical computation for Model B for the same set of bio-disaster values. The
asymptotic approximation is reasonable for the case ¢ = 1.0, as long as the initial population
size is not near extinction, somewhat less reasonable for ¢ = 2.0, and very bad for ¢ = 0.5.
The qualitative biological implications of the results are similar to those of Model A, because
sufficiently far away from extinction, nearly maximal persistence is achieved. Due to a com-
bination of the uniformity of the disaster amplitude distribution (the larger disasters are just
as likely as the smaller ones) and the density independent property of the disaster amplitudes
(the larger disasters can be comparable in size to the population size V), the nearly maximal
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Figure 4: The percent relative difference between the asymptotic and numerical approxima-
tions to expected extinction time, (Tys(z)/T(z) — 1) % 100, for Model B with exponentially
distributed, N-independent disasters as a function of the initial population size, z, for several
values of the bio-disaster growth ratio, ¢ = 0.5, 1.0, 2.0

persistence times are not exponentially large, but are only algebraic-logarithmically large.
3.3 Model C: exponentially distributed, N-independent bonanza

Some populations such as scrub oaks, sea palms, according to Paine [19], benefit from disas-
ters to other species because such disasters provide open patches which are bonanzas for them
as colonizing species. In the absence of the availability of these patches these populations
decline in numbers. Hence, let the decline be a linear decaying function, F(z) = —rz.

Model C'is also motivated by the simple model of certain fish stocks that remain at low
levels most of the time, but have occasional bonanzas in recruitment. Hennemuth et al. [14]
offer examples from the North Atlantic fisheries. The term, —rx, corresponds to the usual
assumption that adult fish populations decay exponentially between recruitments (Beverton
and Holt [2]). A model of optimal harvesting in the presence of discrete bonanzas is given
by Ryan and Hanson [22].

In this model, a bonanza causes a rapid upsurge in the population size. However, it
is assumed that the benefits of the upsurge are limited by an amount K — x so that the
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upsurged population size will not exceed some limit K. Hence, the jump size is

(. u) — { ; Z; ngKf:g , (3.18)

and the distribution is exponential as in Model A. The conditional mean jump size is
E[J(N(t),u)|N(t) = x| = m[l — (1 + &) exp(=¢)] € [0,m), where £ = (K — x)/m, and the
conditional variance is Var[J(N(t),u)|N(t) = x] = m?[1 — 2 exp(—€) — (14 &)* exp(—2¢)] €
[0, m?).

In this case, zero cannot be reached in a finite time, since zero can only approached like
O(exp(—rt)), so a minimum population size a = A is selected.

The equation governing the mean persistence time reduces to

T i K-e —u/m
—rzT'(x) + el R T(x +u)du

A 00
+ 27 () / e UM dy — AT (z) = —1, (3.19)
m K—x
provided z is in (A, K].

As with Models A and B, Equation (3.19) may be converted by differentiation to a first
order ODE for T"'(x) in the form like that for a stochastic diffusion,

mraT"(z) + [—T(x —m) + Am (1 — exp (- (= m))ﬂ T'(z) = —1. (3.20)

m

The general boundary condition and the fact that at x = AT the population will drift below
the effective extinction level A with rate —r before the first upsurge with probability one
imply the initial condition, T(A*) = 0. In addition, allowing x — K~ in (3.19) yields the
nonsingular, final condition, 7"'(K~) = 1/(rK). The solution of (3.20) from quadratures is

AT (z) = qR%™" /x/m ey l

R
1+ R_qeR/
A/m h(y)

e_zzqh(z)dzdy] : (3.21)
Yy
where the variables of integration have been scaled by the mean jump amplitude m, R =
K/m, ¢ = \/r is now the bio-bonanza ratio, and h(x) = exp[ge™® [F(e!/t)dl] is the integrat-
ing factor for (3.20).

For the numerical evaluation of multiple integral form of the solution (3.21), a multiple
integral modification of the standard Simpson’s rule is used to achieve sufficient accuracy.
The principal multiple integration modification arises in the double integral,

/wj
.

Gly) [ H()dzdy = ((Gj_1+4cj_o.5+ej> [ H )z
1 y o

Tj Tj—0.5
+ ijl H(Z)dZ + 4Gj70.5/

Tj—1 Tj—1
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where G; = G(z;) for j = 0 to n. For the last inner integral, modification of the stan-
dard Simpson’s rule by using the same parabolic approximation over the half-subinterval
(j_1,2j_05) with compatible accuracy of standard Simpson’s, i.e.,

Tj-0.5 T;— T q

/ H(z)dz ~ L0 (5H, o+ 8H;-05 — Hj). (3.23)
Tj 1

although the extra accuracy of Simpson’s rule for cubics must be sacrificed. Hence, using

the combined full and half-interval Simpson’s rule yields a numerical method for the double

integrals with quadratic accuracy. Similarly, the full solution (3.21) can be approximated as

triple and double integrals similar to the double integral case.

As R — oo, a simple asymptotic approximation does not appear to work, in spite of the
appearance of the exponentially small factor e™# and exponentially large factor e in (3.21),
which are cancelled out nonuniformly by exponentials in the integrands.

Some examples of the numerical results obtained for Model C' are shown in Fig. 5, just
scaled by the disaster rate A and not in logarithm form, in contrast to figures for the previous
models. Here, K =10, m = 1 and A = 1, so that R = 10 and A/m = 1. The bio-bonanza
growth ratio, ¢ = \/r, has the values ¢ = 0.5,1.0 and 2.0 for the curves starting from the
bottom to top, respectively. Apparently, ¢ should be greater than one for a population to
attain reasonable extinction time levels, i.e., so that the bonanzas more than compensate for
the deterministic exponential decay. The qualitative biological implications of the results are
somewhat similar to those of Models A and B, considering that the results of Model C are not
presented in logarithmic form, in that, away from effective extinction, extinction times take
on larger values, though less dramatically than the former models. Model C'is quite different
from the other models in terms of the roles played by deterministic and stochastic processes,
because extinction is caused by exponential deterministic decay to an effective extinction
(true extinction to zero population is not attainable), while persistence is strengthened by
random bonanzas.

Note that the expected extinction time is an increasing function of the bio-bonanza ratio
in Fig. 5 for Model C, but it is a decreasing function of the bio-disaster ratio in the disaster
examples of Fig. 1 for Model A and Fig. 3 for Model B, since the bonanza is beneficial while
the disaster is adverse to the population.

Even though the relative carrying capacity R = 10, the curves do not exhibit near
horizontal asymptotes as the relative population size x/m approaches R, confirming the
difficulty in finding an asymptotic behavior for large R.

4 Conclusions
Two models of growth with randomly occurring disasters and one model of decay with
randomly occurring bonanzas have been presented for which the equations reduce to first
order ordinary differential equations as in Eqs. (3.4), (3.14), and (3.20). These equations
would correspond to the expected extinction time for a stochastic diffusion with drift, except
that the boundary conditions, natural or otherwise, as a set do not correspond to the usual
diffusion.

Due to the nature of the reduced equation, the expected extinction time can be further
reduced to quadratures, i. e., to a formal solution in terms of explicit integrals. The reduction
to quadratures still leaves nontrivial explicit integrals, so special numerical techniques have
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Figure 5: Scaled, expected extinction time, AT'(z), for Model C' with exponentially dis-
tributed, N-independent bonanzas as a function of the initial population size, z, for several
values of the bio-disaster growth ratio, ¢ = 0.5, 1.0, 2.0

been used in each case, adapted to some critical form of the integrals for better conditioning.

For Models A and B, which included disasters, the expected extinction time T'(z)
quickly levels off outside of a neighborhood of extinction or effective extinction, but the fast
growth near extinction is exponential for the exponential distributed disaster of Model A,
but algebraic-logarithmic for the uniformly distributed disaster of Model B. For the expo-
nentially distributed bonanza case of Model C, the growth with respect to scaled, initial
population size x is much more varied in dependence. Also, the expected extinction time
is an decreasing function of the bio-disaster ratio ¢ = A/r in the disaster models, but an
increasing function of the bio-bonanza ratio ¢ = A/r in the bonanza model.

In all the models, the common qualitative biological implication of the results is that
sufficiently far away from the colonizing important neighborhood of extinction or effective
extinction, the larger persistence times are achieved. However, the quantitative levels of the
persistence times varies considerably for the three models. The size and distribution of the
random disasters undoubtedly provides the difference between Models B and A, with more
dangerous and larger disasters being more likely for Model B. Model C'is quite different from
the other two models, in that the deterministic process makes the population tend toward
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extinction, while the stochastic process make it tend away from extinction, the opposite
tendencies in contrast to the other two models.

In the case of the models with disasters, A and B, asymptotic simplifications have
been found useful for particular ranges of the bio-disaster ratio, away from extinction. The
asymptotic results are useful in determining the qualitative behavior of the expected extinc-
tion time. Asymptotic simplification was not fruitful for the third, bonanza model, Model C.
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