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Abstract

Diffusion approximations to a discontinuous Markov process representing
the subthreshold depolarization of a model neuron are considered. The model
includes exponential decay, random excitation and inhibition, synaptic
reversal potentials and fixed threshold for firing. The first two moments of the
depolarization in the absence of threshold are obtained for the discontinuous
model and the diffusions, and, for the latter, expressions are obtained for the
stationary densities. From the stationary densities it is possible to ascertain
whether the firing rate will be in the physiological range. The mean and
coefficient of variation of the interspike interval are calculated for the diffusion
models by numerical and asymptotic methods. A comparison of these results is
made with those from previous computer simulations for the discontinuous
processes.

1. Introduction

A diffusion process that has often been used to model the subthreshold depolariz-
ation of a nerve cell is the Ornstein-Uhlenbeck process (Gluss, 1967; Johannesma,
1968; Roy and Smith, 1969; Capocelli and Ricciardi, 1971; Ricciardi and Sacerdote,
1979; Tuckwell and Cope, 1980; Wan and Tuckwell, 1982). This process is derived
from Stein’s (1965, 1967) model in which a cell receives random excitatory and
inhibitory postsynaptic potentials of fixed amplitudes (which may be random).
Between synaptic inputs the depolarization decays exponentially to zero. When the
depolarization reaches a fixed threshold an action potential is emitted, whereupon
the process starts anew.

It is well established that the change in the depolarization of a nerve cell when it
receives synaptic input depends on the difference between the prior voltage and the
synaptic reversal potential characteristic of the activated synapses. (For examples see
Eccles, 1964, 1969.) For excitatory synapses the reversal potential is often roughly
midway between the sodium and potassium potentials, whereas the inhibitory
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reversal potential is governed mainly by the values of the potassium and/or chloride
Nernst potentials, depending on the transmitter and postsynaptic membrane.

The Discontinuous Model

The model we consider first has excitatory and inhibitory synaptic inputs occurring
at the times of jumps in independent Poisson processes, Pe(fe;t) and Pi(f;;t), where f,
and f; are the corresponding intensities. If the depolarization is V(t) at time t, then, for
subthreshold values,

(D dv=-Vvdt+ )j:aj(vj—V)de.

where £ means sum over excitatory and inhibitory terms. Here V, and V; are the
excitatory and inhibitory reversal potentials and the constants a, and a; are the post-
synaptic potential amplitude coefficients. The threshold for firing is assumed a
constant 6 and time is in units of the membrane time constant.

In the above model, V(1) is discontinuous at the jump times of P, and P;. If t; is the
time of a jump in P;, then the magnitude of the jump in V is

@ VT)—VET)=a(V;— V(T)).

Thus the amplitude of the psp’s diminishes as the potential approaches the reversal
potentials. A more complete theory would include discretization to the spatial
sumation of psp’s as done in Poggio and Torre (1978) or include more general
nonlinear effects due to ionic conductance changes as in the well known Hodgkin-
Huxley theory.

For V(t) defined by Eq. (1), the first and second infinitesimal moments are

3 M;(v)= A{—IPO E[AV(H)[V(®)=V]

At
=—v+ X afi(V;—v).
i

Var[AV(@)|V(©)=v]
At

@ My(v)= lim,

= ? a,zt}(Vj —V)z.

To find the moments of the interspike interval for this model one has to solve
differential-difference equations with variable coeficients. For such equations
solutions are very difficult by either numerical or asymptotic methods. It is therefore
useful to turn to diffusion approximations for V(t) for which moments of the first
passage time can be found more easily.

2. Diffusion Approximation

One method of obtaining a diffusion approximation, V*(t), to the process V(t)
defined by Eq. (1) is to let V*(t) have the same first two infinitesimal moments as V(t),
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as given in Eqgs. (3) and (4). Such an approximation, called the usual approximation
by Walsh (1981) will be defined through the (Ito) stochastic differential

&) dV* =M, (V¥)dt+ME(V*)dW,

where W={W(t),t=0}, is a standard Wiener process. The transition probability
density function of V*, which for s <t we denote by p(v,t|u,s), satisfies the forward
Kolmogorov equation

(©) pi=— (M (V)p)y + 2(M2(V)D)vv,

where subscripts t and v denote partial derivatives. Note that V*(t) has continuous
sample paths in contrast with those of the original process V(t).

Boundary Classification and Conditions

In the absence of a threshold, the depolarization V(t) in the original model is
constrained to the finite interval (V;,Ve) between the reversal potentials if there is
excitation and inhibition, provided V(0) is between V; and V.. Similarly, V(t) is
constrained to (0,V,) when there is excitation only and V(0) is between 0 and V.. In
contrast, the approximation V*(t) defined by (5) takes values on the whole real line,
providing no barriers are imposed (see below).

Before we can impose boundary conditions for (6) and related moment equations
we need to classify certain boundaries for V*. The classification is important because
M (v) and M(v) can be either zero or infinite at various values of v in (— co,00). In
particular, the classification depends on the integrability of four functionals of M, and
M; (see for example, Karlin and Taylor, 1981). The first of these is the
Wronskian

%) W()=exp [ -2 f vduM,(u)/Mz(u)].

The integral of W is related to the probability that a boundary point v can be reached
from the interior of some open interval. The other three functionals are 1/M;W,
W[dv/M,;W and (1/M,; W) [dvW, which are related to the stationary distribution, the
mean time to exit from an interval and the mean time to enter an interval from a
neighbourhood of one of its boundaries, respectively.
We give the classification of the boundaries in Table 1.
Table 1
Classification of the boundaries for the diffusion approximation

Boundary  Parameter Classification Boundary Condition Employed

Point Values

Vi f,a,>0 regular reflecting

Ve fi2>0 regular reflecting

Ve f,a;=0 entrance asymptotically reflecting
0 ' any regular reflecting

+o £,2;>0 natural asymptotically reflecting
—oo f,2,>0 natural asymptotically reflecting
—oo f,a;=0 entrance asymptotically reflecting

0 0<0<V, regular absorbing
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Also listed are the conditions that we impose if a boundary is regular (nonsingular) or
that must necessarily be imposed otherwise.

The term asymptotically reflecting means that the probability flux approaches zero
in the limit as the boundary is approached. For the case of excitation and inhibition
(f;,a;>0), other boundary conditions could be imposed at V; and V,, but reflecting is
chosen as the most appropriate to mimic the nonregular behaviour of the original
process. Similarly, when there is excitation only, we impose a reflecting condition at
v=0 in place of the natural boundary condition of the original process. Finally, the
threshold 0, which is between 0 and V,, is a regular point which must be an absorbing

boundary.
3. Mean, Variance and Stationary Distributions

Although they do not relate to the firing time problem per se, there are certain
quantities related to the random processes described above which are calculable,
usually in closed form. These are the mean, variance and stationary distribution of
the processes in the absence of threshold. The mean and variance can relate directly to
experiment and the stationary densities are expected to be a guide to the magnitude of
the moments of the time to firing.

The jump process with excitation only

When there is excitation only so that a;f; =0, the process V(t) cannot go below the
resting level V=0. Thus V(t) is restricted between 0 and V. as long as u=V(0) is
similarly restricted. The forward Kolmogorov equation for this case is, with p(v,t ju,0)
abbreviated to p(v,t|u),
® o= —(—vo)+ [ ROV ),

(1—ay)

This partial differential-difference equation is very difficult to solve and we have not
found a solution, even in the stationary limit as t becomes infinite, making p,=0. We
can nevertheless find the mean and variance,

® my () =E[V([®)[V(0)=u]

(10) Var(t)=Var[V(1)| V(0)=u].

From the Kolmogorov equation, the mean satisfies
11 mj(t)= —r(m;(t) —m(c0)) , m;(0)=u,
where

(12 my(oo) =fea.Ve/r,

(13) r=1+fa..

The solution of (11) is

(14 m(t) = (u—m(co))e "+ m(co).
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The second moment can be shown to satisfy

15) mj(t) = —smy(t) + 2r(1 — ag)m;(co)m (t) + r’mf(co)/f,, my(0) = u?,
where

(16) s=2+f.a,2—a,).

The solution of (15) is

W) my(t) = [u? —2(1 — ag)rm(co)((u — m(00))/(s — ) + m,(co)/s)

—rfmi(eo)/(sf)le ™
+2(1 —ae)rm (co)[(u — my(eo))e ™+ m;(co)(s — n)/s}/(s—r)
+ r2m(co)/(sf,).

The variance of V(t), Var(t)=my(t)—m(t), can be found from (14) and (17). Its
steady state limit is simply

a8) Var(co) =m%(co)/(sf,).
The diffusion approximation on (—cc,Ve) with excitation only

Here there is no inhibition and we do not impose a reflecting barrier con-
dition at zero. The infinitesimal moments are M(v)= —v+fa(V.—v) and
M,(v)=f,a2(V,— v). The mean and variance of the diffusion turn out to be equal for
those for the jump process considered above. Here we can find an explicit expression
for the stationary density, which is the solution of the ordinary differential equation
obtained by setting p;=0 in Eq. (6). Integrating this equation gives a stationary
density

RIR+1 V., \R+2
19 = e —RV/(V,—
(19) e ( Vs )" exp[ —RVe/(Ve— V)],
for v<V, and where I'(-) is the gamma function and
(20) R=2/(fad).

The diffusion approximation on [0,V,) with excitation only

The diffusion approximation with excitation only has the same phase space as the
original jump process if we put a reflecting barrier at zero depolarization. The
equation for m; does not lead to a closed form solution in this case, but we may find
the stationary density as

Ta@R+1)

I'tR+ L;R)
where py(v) is given by (19), and I'(-;y) is the incomplete gamma function based on
the domain (y,c0). The steady state mean for this case is

22) m’(c0)= V[l —RTGR;R/T(R + L;R)].

@n Ps(V)= Psi(v), 0<v<Ve,
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The steady state variance in this case is given by

_RW T'tR;R)
IR+ 1;R) TGR+1; R)]

As for f,a2—>00, p%(v)—ps(V), hence m}(co)—m;(co) and Var*(co)—Var(co), so
that in this limit the mean and variance, for the case with the barrier, approach the
common values of the jump and the unrestricted diffusion with excitation only.

However, as f.a2—0, the restricted process leads to an over estimate of the
moments compared to the unrestricted diffusion process as illustrated by the limit of
the ratio of the two densities,

(24) P(v)/ps(v)~1 +0.5erfo( V2F, )> as f,a2—>0,

upon using asymptotic approximations of I'(x) and I'(x;y) analogous to Stirling’s
approximation; and where erfc(-) is the complementary error function. Hence, the
relative difference between the two densities can be great, particularly in the case of
small amplitude coefficients, a. (e.g., as in miniature end plate potentials, see Fatt and
Katz, 1952).

In conclusion, we can say that the unrestricted diffusion approximation better
approximates the jump process, when the criterion for comparison is that approxi-
mation which best approximates the moments of the original process.

23 Var¥(co)= [F(rR— L,R)—

The jump process with both excitation and inhibition

In the presence of both excitation and inhibition, the jump process V(t) will remain
in (V,, V) provided the process starts here. The infinitesimal parameters M; and M,
are again given by (3) and (4), and with these the Kolmogorov Eq. (5) yields the same
equation of the mean m,(t), Eq. (11) with solution (14), except that now

(25 r=1+ )J:.f,-aj
and the steady state limit is
(26) m;(co)= ?t}ajvj/r.

However, the second moment can not quite be written in the previous form
because it satisfies

27 mj(t)= — s[ma(t) — my(co0)] + 2[rm (c0) -~ D- A] - [m;(t) — m; (o)},
my(0)=u?,

where now

(28) s=2r—D, D= ?fja} and A= §:fja,zvj/D.
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The solution of (27) is found to be
(29) m;(t) = m(co) + [u? —~ ma(co) +
+—S-f—r(nn1(oo)— DA)u— my (o)~ — 1)]e ™%,

with steady state value

(30) mz(oo)=é[D-(A2+B2)+2m1(oo)(nn1(oo)—D-A)1,
where
31 B?= %:fjaf(vj —AYY/D.

The steady state variance can be simplified after some algebra to

(32) Var(oo)=%[D-(B2+A2)+D-m1(oo)(m1(oo)—2-A)].

The diffusion approximation on (— oo,00) with both excitation and inhibition

In the presence of both excitation and inhibition the diffusion coefficient %2My(v)
does not vanish at either reversal potential, V; or V;; and thus V, and V; do not form
natural barriers for the diffusion process. The diffusion process of (— co,c0) has the
same mean and variance as the jump process with both excitation and inhibition.
However, the diffusion process has the following stationary density,

(33) . pi(v)=C exp[Roatan(@)}[1 +x3"!

where atan(.) is the inverse tangent and

34 x=(v—A)/B

is a normalized, natural variable which arises upon completing the square in Mx(v).
The other new parameters introduced in (33) are

(35) R;=1+41/D,

(36) Rz=2r(m(co) — A)/(B-D)=2[ V£ (a;—a.)— A/BY/D,

and C, a normalization constant chosen so that

00
[7 avmo-t,
- 00

which if needed can be written in terms of a beta function of a complex
argument,

2(Ry—1) _
=—2—'—1%B'——1)— Beta(R; —iRy/2, R, +iRy/2).
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Note that A and B can be considered as combined discrete-type mean and variance of
the reversal potentials V; with weights fjaf.The parameter R is primarily the mean of
1/aj and R; is related to the mean of Vj/a;. In our study it turns out that both
cocfficients R; and R, will be relatively large and we will use this fact later for an
asymptotic approximation of the mean interspike intervals.

The diffusion approximation on (V;,V,) with both excitation and inhibition

In this case we impose reflecting barriers at the reversal potentials V; and V, so that
the diffusion process will be restricted to (V;, V). The governing differential equations
for the mean and the variance are not useful because they do not form a closed system
in that we would need to know the probability densities at the reflecting barriers. The
steady state density has the same form (33) as in the prior case,

37 pi(v) =C*exp[R; atan(x)}/[1 + x*|*1,

differing only in the normalization constant C*, which is determined from the
relation,

Ve
[ avpim=1,
\A

at least in principle. Assuming that C* is known we can formally compute the steady
state value of the mean,

38 *(0)=A+BRi _ CtexplRy atan(VR)] ) _ nR;REs
G mia=ATTR, (I+RRS (=51

where R3=(r— 1)/D and Ry=fa¥/(f.a2). This mean appears to be quite different
from the_ corresponding mean that arises in the unrestricted diffusion approximation
and the jump process for both excitation and inhibition.

4. The Mean Interspike Interval for the Diffusion Approximation

If we ignore the refractory period, the mean interval between neuronal spikes will
be tpe expected time to reach the threshold 0 from a given initial depolarization u in
the interval (V;,0) where 0<0<V,. The time for the process V*(t) to reach 0 is defined
by

(39 to(w) =inft|V¥(t) not in (V;,0), V*(0)=u]

and the n'® moment of the interspike interval (ISI) is denoted by
40) Ta(w)=E[t8w)], n=0,1, ..

Th(u) satisfies a backward equation (see Darling and Siegert (1953))
(41) VaM(w)Tr(w) + M () Th(u) = — 0T 1 (w), u<,

where M; and Mz will be in general given by Eq. (3) and Eq. (4), respectively. Recall
that thg decay time constant is normalized to unity so that T (u) is measured in units
of the time constant, just as the frequencies f; are measured in units of the reciprocal
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time constant. The threshold 0 in all cases will be an absorbing barrier, so that the
threshold will be always attained with probability one, i.e., To(u)= 1. The boundary
condition for instant absorption at 0 is then T(6)=0 for n>0. The condition at the
lower boundary, Vi, will depend on its location and on whether or not there is
inhibition. The possible values that the lower boundary will assume in this paper are
V;, 0and — co. In all cases, either reflecting or asymptotically reflecting conditions are
used so that T;(VL)=0 for all right-handed limits u—VL. The asymptotically
reflecting condition is gnaranteed by the boundedness of Tp,(u). With this notation, we
can write the solution to Eq. (41) after two quadratures in the single form:

0 z
42) Ty(u)=2 f dzW () J; dy/MyW(y), Vi<u=<8

where W{u) is the Wronskian defined in Eq. (7). Similarly, the second moment
integrates to

[}] Z
43) Ty(u)=4 f dZW(@) fv dyT,(y)/M;W(y), VL.<u=6.

u

The mean ISI for the diffusion approximation with both excitation and inhibition

The integrals representing the solutions to T(u) in (42) and T,(u) in (43) cannot be
found exactly. Numerical or asymptotic approximations are necessary to extract
quantitative information from them. Both types of approximations have their
advantages and disadvantages. In this section we summarize the numerical and
asymptotic methods. Some more details of the asymptotic methods are given in an
appendix.

The finite differencing of a single integral is quite straightforward, but multi-
dimensional integrals can add other complications (Stroud, 1971). The integral in (43)
for T, is a double integral. The integral in (43) for T, is nominally double, but is
effectively a four dimensional integral. This is because the T in integrand of (43)
must be known to a higher degree of accuracy than we would desire for T itself in
order that T, be known to a comparable degree of accuracy as desirable for T itself.
When the domain is infinite as on (— c0,0), extra care must be taken to account for the
singular behaviour. When the domain is finite as on (V,8), multiple use of Gauss-
Legendre quadrature (Stroud and Secrest, 1966) with its maximal polynomial
precision is used to minimize the number of approximation points for desired
accuracy. When the domain is infinite, it is convenient for the purpose of comparison
to the finite domain results to only find the additional contribution from the tail on
(—o0,Vy) that is needed to add to the finite domain result on (V;,6) In terms of the
natural variable x=(v— A)/B, where A is given by (28) and B by (31), Eq. (42) takes
the form,

(44) TyA+ Bx)=%(Sl +S1),

with
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Xq 2z

@5) S1= f 42G1(2) f dyGa(y),
X X

@6 so=["aGi@ [" ey

G (x)=C(1 +x3)/p(A + Bx), Go(x)=pi(A + Bx), x;=(0— A)/B and x;=(V;— A)/B.
All integrals in the finite domain part, Sy, and the tail part, ST, are approximated by a
16-node Gauss-Legendre quadrature, except for the second integral in (46). The
second integral in (46) is singular and the form of the integral motivates the following
transformation,

47 y =tan((atan(x;) + n/2)exp(—y’) —n/2,

which takes (— o0o,x;) in y into (0,00) in y” and introduces the standard Gauss-Laguerre
weight factor, exp(—y’) into the integrand. Upon making this transformation, an
8-node Gauss-Laguerre quadrature (Stroud and Secrest, 1966) is used to properly
approximate the singular integral. The four dimensional integral for T, can be treated
in a similar way except that the tail contribution has many more parts. The numerical
results are discussed in Section 5.

The numerical results can be produced with sufficient accuracy except when an
integrand becomes concentrated at isolated points or lines. When such concentration
occurs, asymptotic methods may become just as suitable as, or even more suitable
than, the nonadaptive numerical methods. We will study the asymptotic behaviour of
the integrands in (42) and (43) using a two-dimensional extension of Laplace’s
method (Hanson and Tier, 1982). In this method we examine the integrand in
exponential form,

@  Tia+By=L [“aenpRme@) [ “dy eplRiba(y)

where x| is either x;, —A/B or —oo and where the exponents are given by
49 Rihy(x)=(R; — 1)In(1 +x%)—R; atan(x) A

and

(50) R;hy(x)=R; atan(x)—R; In(1 +x%)= —R;h;(x) — In(1 +x3).

Johannesma (1968) gives an unnormalized version of (48) with (49) and (50). For the
typical data that we will use in Section 5, R, ranges from about 9 to 50 and R, ranges
from about 9 to 30, provided that the IPSP’s occur with sufficient frequency. While
these values are not extremely large, they are fairly large for exponents. We will
assume for the asymptotic methods that both parameters are asymptotically large,
i.e., Ri>1 and Ry> 1. Our technique is to examine the total exponent,

(51) h(y,z)="hy(y) +ha(2),
for critical points and maxima. The only interior critical point occurs at
(52) (YorZe) = (Ry/2R |, Ry/2(Ry —1)).
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In the range of parameters considered, R is approximately the same order as R, so
that y. and z. range between 0.1 and 1.0 as long as f; is between 0.2 and 2.0. The critical
point (yc,z.) is a saddle or mini-max associated with the stochastic nature of the
problem. Because a saddle cannot be the location of a global maximum or minimum,
the direction of the gradient of h implies that the maximal contribution must be
found at the boundary. The main contributing boundary points are those where the
gradient of h is perpendicular to the boundary and its nearby projection on the
boundary pointing toward the point in question. In the typical case, when vy, is
sufficiently less than x,, the principal maximum contribution occurs at the isolated
boundary critical point (y,z)=(y,X,). A subsidiary set of critical points occurs along
the line y=z when z=<z_ and we call this the critical manifold (CM). The critical
manifeld is associated with the deterministic component of T;. The location of the
critical points is given for a typical case in Figure 1. For asymptotic purposes the
domain is split with three regions. The region PC with x;,<z<x, is the domain of
influence of the principal contributing critical point, CM with x;<z<xy, is the region
of influence of the critical manifold and IM with x, <z<x;n is an intermediate region
containing the saddle (y.zy). The cutoff points Xiy, and x., are determined by
matching solutions by way of matching their errors.

The critical parameters y. and z. given in (52) have physical meanings. The
stationary distribution written in terms of the x variable is

(52A)  p5(x)=C" exp[R hy(x)].

y. is the maximum of p§; because it is the maximum of hy(x). Thus y, is the mode or
maximum point of the stationary distribution. On the other hand, z. appears as the
turning point of the backward differential equation (41); or more simply put, it
appears as the attracting equilibrium point of a quasi-deterministic approxi-
mation,

(52B) X(t)=D-(R; — )z —X(),
that omits the diffusion term in (5) (the actual deterministic model is V(t)= — V(t)).

The parameters are typically very close together for large R; because

2e=Ye/(1— I/Ry), _
The leading order distribution is obtained by expanding about the principal critical
point, (v,Xy) to first order for h; and second order for h; in the exponent of the

integrand of (48),

(53) Ty(A+Bx)~Tipeo®=Cipoo-[l —exp(—Rygeo],
where

| _ 2 explRiy(x) +ha)] [ 2x
9 Cixo DRZhjx)  V —B309
and
655 gx=hi(x)-(u—x)
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X

I

Fig. 1. Asymptotic regions for Ty in the typical case. The arrows indicate the direction of the
gradient of h(y,z). The asterisk (*) indicates the location of the principal contribution.

Equation (53)is valid as long as y<Xjm<x. The approximation of the inner integral in
(48) is independent of the limits of integration, so that (53) is valud for both domains,
(—0,0) and (x;,0). The limits of the outer integral of (48) have been retained in order
to have dependence on x and to satisfy the boundary condition at the threshold. A
similar approximation of

66 TAA+BO== f “dz f * dy exp[Ry(hy(z)+ hay)IT1(A+By),

picks out the value of T in the integrand at y, so that
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(57) Ty(A+Bx) ~T2pco(x) =2 Tlpco(Yc) : Tlpco(x)-

The coefficient of variation has the corresponding approximation:

(58) CV(A+Bx)=VTyT{—1 ~V2(1 —exp(—Rigy))/(1 —exp(— Rgp))— 1.

The approximations for T} in (53), T in (57) and CV in (58) require extremely little
computational effort. Both (53) and (57) can be exponentially large if R is very large,
butin typical neuronal cases R is not very large so that the main problems with these
formulae are that they may not be accurate enough or that PC is too small. Higher
order corrections may be needed and we have placed some of the technical details of _
higher order approximations in an appendix. We compare these asymptotic results to
the numerical results in Section 5.

The mean ISI for the diffusion approximation with excitation only

When there are only excitatory psp’s, f; =0 and the forward Kolmogorov equation
is singular at v=V, because M(v) vanishes there. Hence the limit f—~07 is singular.
The numerical and asymptotic methods previously discussed carry over to this case
anyway, provided we reinterpret the parameters.

(59) A=V, B=V,—0, D=f,-a2, R;=1+(1 +f.a.)/D and
Ry= —2V,/(D-B),

and exponents,

(60) thl(x)=2~(R1— 1)-ln|x|+R2/x,
and
61 R;hy(x)="—Ry/x—2-Ryin|x|.

The asymptotic formulae (53), (57) and (58) now hold for excitation with and without
inhibition, provided exponents (49) and (50) are used for the former and (60) and (61)
are used for the latter. Note that the latter pair of formulae are not simple limits of the
former pair. The parameter choice (59) for the excitation only case is crucial in
generalizing our methods to both cases.

5. Results and Discussion

In this section numerical and asymptotic results are presented for the expected
interspike interval as well as the second moments and coefficient of variation.
“Physiologically reasonable” values of the neural parameters are taken from an
example of Tuckwell (1979), who reported the results of numerical simulations for the
Poisson model (1) of a point neuron with reversals. Hence the parameter values used
here are Vi=—-9mV, 0=9mV, V,=90mV, a.=1/30 and a;=1/3. The psp
amplitudes are each 3mV starting from the rest potential V(0)=0. Three excitation
frequencies, f, = 1/1, 2/t and 3/1, are used where 1 is the unnormalized time constant
(5.8 ms. is used in Tuckwell, 1979); while the frequency of inhibition ranges from 0./%
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[ T-F IPSP  FREQUENCY

I b4

.

50.
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MOMENT OF

0 0.2 1.0 1.8

Fig. 2. A comparison of approximations for the expected interspike interval as a function of f; with f,
as a parameter. The diffusion approximation on.(V;,0) is indicated by a solid line for the numerical
results, a long dashed line for the higher order asymptotic results and a short dashed line for the
leading order asymptotic results. The circles, squares and diamonds are from the numerical
simulations of the Poisson model (1) from Tuckwell (1979) for 1f,=1, 2 and 3 respectively.

181

~
2

-

Diffusion approximations for neuronal activity 141

to 1.8/7. Our results are exhibited with general time units of T and frequency in units
of 1./1.

In Figure 2 the value of T{(0)/7 is plotted versus tf. When 1f. =2 or 3, the mean ISI
has very close to linear dependence on f; and there is good agreement among the
numerical results, the higher order asymptotic results and the results of Tuckwell
(1979). The leading order asymptotic approximation (53) compares quite well for
1-f,=2, but the result for t-f, = 3 deviates somewhat from the others as {07 due to
the fact that x;,>x, for f;=<1.0; and as a result the domain of influence of the principal

T - Fy » IPSP  FREQUENCY
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Fig. 3. A comparison of approximations for the second moment of the interspike interval as a
function of f; with f, as a parameter. The legend is the same as that for Fig. 2.
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critical point, (y.,x,), ceases to be important or becomes nonexistent. When Tf=1
the numerical and asymptotic results for the diffusion approximation are in good
agreement; they are first decreasing from t-f;= 0 and then increasing from ©-£;= 0.6,
In contrast the result of Tuckwell (1979) is strictly monotonically increasing. A
plausible reason for this discrepancy might be the fact that the impact of the singular
limit ;—0" for the diffusion approximation is more pronounced for smaller
excitation frequencies, while the original Poisson model does not have a similar
singular limit as ;—07. The percentage difference of the higher order asymptotic
approximation from the numerical approximation ranges from =+ 0.3% to +11%
with a mean of about 3%; while the leading order differs by 5 to 10% from the
numerical if we exclude those values for which x;, <x,. The numerical results are very
good except near f;=0 where R, is largest and the integrands are very likely to have
concentrated maxima adverse to the numerical methods. The estimated numerical
error in T ranges from 2% at 1-f;=0.2 to less than 0.01% at ©-f;=1.8. '

In Figure 3 similar results for the second moment are presented. When 1-f,=2 or 3
the dependence of log (T2(0)/2) on f; is nearly linear except for a slight dip near the
singular limit; while there is a unimodel minimum near 1-f; = 0.6 when 1f, = 1.0. The
agreement of the asymptotic results and the numerical results appears good in this
semilog plot. However, the percentage difference of the higher order approximation
for T»(0)/1? from the numerical with inhibition is less than 8.2% for t-f, = 1., 6.4% for
1-fe=2. and 30% for t-f,=2.; while the leading order approximation (57) differs less
than 24.% at tf,=1, 6.% at tf.=2. and 39% at tf, = 3. from the numerical. Although
the accuracy of the asymptotic results is worse here when compared to the numerical
computation, the asymptotic results for T»(0) at a single pair of frequencies (f,,f;) can
be computed in a few seconds on an IBM 4341 while the numerical calculation takes
about 3 minutes for T»(0).

In Figure 4, the coefficient of variation is plotted verses 1-f; for the values of 7-f,. In
general, the behaviour of the asymptotic results is poor compared to the numerical,
much poorer than one would expect from the accuracy of T and T, from which CV is
calculated as in (58). In fact, the leading order approximation (58) does better on a
greater percentage of frequencies than does the higher order approximation when the
numerical results are used as a standard of comparison. The reason for this peculiar
result is the way relative errors AT,/T; in T; and AT»/T; in T, propagate to the
relative error ACV/CV in CV and this behaviour is approximately,

(62) ACV/CV=0.5(1+1/CV2(ATy/T,— 2-AT/T)).

The relative errors of the leading order moments in (53) and (57) consistently
approximately cancel each other. Those of the more complicated higher order
approximation given in the Appendix can differ in sign, sometimes causing the
tripling of the error from T, to CV and cancelling out at others. The comparison of the
present numerical values of the CV to the simulation results of Tuckwell (1979) is
only good for t-f=2 and 3 when t-f; is near 0. A similar problem with the
propagation of error may be in operation here. The numerical results in the CV should

COEFFICIENT OF VARIATION FOR 1ISI

cv(o) ,

0.5
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Fig.4. A comparison of the approxirhations for the coefficient of variation for the int.erspike
interval as a function of f; with f, as a parameter. The legend is the same as that for Fig. 2.

be good éxcept near f; =0 judging by the estimated accuracy of the numerical values of
T;(0) and Tx(0).

In Figure 5 the dependence of the expected first passage time for the threshold and
its CV are illustrated as functions of the initial depolarization, V(0)=u, when
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Fig. 5. The expected interspike interval and coefficient of variation versus the initial depolarization

with tf,=1, ;=1 and the other parameters as stated in the text. The solid line indicates the

numerical results for the diffusion approximation on (V;,0) and the dashed line the higher order
asymptotic results.
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Fig. 6. The percentage contribution of the tail on (—oo,V}) that must be added to the diffusion

approximation of T(0)/t on (VL,0) to obtain the result for (— oc0,0). The solid line indicates the

numerical approximation and the dashed line the higher order asymptotic approximation in the
inset when ;<0 and by the arrows when tf;=0.

1-f;= 1 =1-f.. The asymptotic and numerical results compare favorably. Although we
are usually interested in the time of first passage from the rest state, V(0)=0, the
development of T(u) with u can provide useful information about the time to
threshold from any current value. For instance, suppose the depolarization has
moved from V=0 to V=u at the current reset time t =0, then T(u) is the expected
elapsed time to get from u to the spike threshold 8. For negative u, the logarithmic tail
such as in T|¢m; of Equation (A20) is apparent; while the approach to the threshold is
exponentially steep as in T e, of Equation (53) or T pep 0f (A2). The CV varies slowly
for negative u, but rises rapidly as the threshold is approached. This latter behaviour
is caused by the first order zero of T; and T, when u—8~ resulting in
CV=0(8 —u)~%%) as u—>9 ™. This behaviour is a consequence of the neglect of the
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absolute refractory period, p,, which follows each firing of a neuron and prevents
another firing until the refractory period is over. A simple device for including this
phenomenon is to use T + p, for the mean ISI instead of T; and T+ 2p, T, + p? for
the second moment instead of T, so that the corrected coefficient of variation,

(63) CV =[(T;—TH/(p;+ T1)1*> =0(6 —w)* **/py),
is bounded as well as vanishing as u—0" instead of unbounded when there is no
refractory period.

In Figure 6, the percentage contribution of the infinite tail, (—oo,V)) to T(0) is
demonstrated. For excitation with inhibition, the contribution of this tail is
negligible: less than 0.01% in the numerical approximation and less than 0.04% in the
asymptotic approximation. The contribution of the tails to T, (not exhibited) are less
than 0.08%. When there is no inhibition, then the numerical tail of T contributes less
than 2.1% while the asymptotic tail less than 10%. The values for T are less than 4%
in the numerical case and 13% in the asymptotic case. Hence the tail contribution can
usually be neglected if there is sufficient inhibition, but the neglect of the tail
contribution for Ty and T can still be considered with excitation only because the
errors are in the range of those for the diffusion approximation itself. See Tuckwell
and Cope’s (1980) cautionary remarks about the accuracy of the diffusion approxi-
mation for excitation and inhibition without reversal potentials. The effect of
inhibition on the tails is consistent with Stein’s (1965) remark that the reversals are
more important for inhibition.

However, for the purpose of making a simple qualitative appraisal of the effect of
reversals on the full diffusion approximation, the leading order contribution (53) for
the expected ISI with reversals (denoted by the dashed line) is compared in Figure 7 to
the analogous leading order contribution of the expected ISI without reversals
(denoted by X’s connected by full lines). The analogous diffusion approximation
without reversals is defined here by the first two moments, :

(64 M;c=My(0) and M =M;(0),

i.e. by taking the infinitesimal moments to be the constant (subscript c) values of (3)
and (4) at the rest potential level. The leading order contribution analogous to (53)
using the same asymptotic method is

_2explH;(0)+ Halye)] [ 27 — expl—H.’ '
(65) Tiepeo(0) D (B2+AD H.(6) “Hiy) [1 —exp[—H(6)6]]

where the simpler exponent functions are given by
(66) H}o(V) = V(v — 2yc)/[D(B? + A%)] = — Hao(v)

and with y. = m;(co). An examination of Figure 7 shows that for t-f, =2 or 3 there is
very little absolute difference between the reversal and nonreversal cases, although
the relative difference for 1-f,=3 can be big. In contrast, the qualitative difference
when 1-f;=1 is very large, especially for the larger inhibitory frequency values.
Therefore, we may qualify Stein’s comment just mentioned to say that for the
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Fig. 7. A comparison of the diffusion approximation with and without reversals f01_' t'he faxpected
interspike interval as a function of f; with £, as a parameter. The reversal case, Eq. (53), 1s_md1cated by
the dashed line and the nonreversal case, Eq. (65), by X’s connected by full lines.
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diffusion approximation the reversals are more important for inhibition in the lower
range of excitatory frequencies.

The numerical and asymptotic results for the diffusion approximation of the mean
interspike interval are quite good for sufficiently large excitation frequencies, 1-f,=2,
in comparison to the results of the underlying Poisson mode! (1). However, caution
must be used when considering the smaller values of ©-f, and also the coefficient of
variation as an approximation to the original process. If the diffusion approximation
is the process of interest, then the asymptotic approximations are quite suitable
except for the CV and the computation takes much less time than the numerical
methods. The simple leading order approximations in (53), (57)and (58) can be useful
for qualitative behaviour provided care is taken to check that x,=(0—A)/B is
sufficiently bigger than x;, given by (A23).
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APPENDIX =

In this appendix we will give a few of the technical details for the higher order
asymptotic approximation in a form general enough to apply to the cases of excitation
with and without inhibition. Concerning T this higher order approximation consists
of finding the leading order approximation in each region along with the next order
correction for each term.

Approximation in the region PC

When x;,<x<x,, the entire integration is in the principal contribution region PC.
The main contribution Tipcp in this region is from the critical point at (yc,x,), but there
are two other terms due to the finiteness of the limits of integration aty=z and y =x;
or xi in (48), '

(AD  TA+BO~Tipd®) = Tipeg®)+ Tipest®)+ TipeiX),
where
AD  Tya=2 [TdzewRin@ [ dy ewRib)I~Cer G
with

(A3) Gix)= - exp(— Rige) + Cil1 —exp(— RigoX! + Rygex(1 +.5R 1gud)] +
+...,

_ b 15000l
“o - G C"’°°'[ BRUMEOT | T2R(FAGP +]

(AS) Ci=h{(x0/[R[hi (x0Fk

the terms Cpeo and gy are defined in (54) and (55) respectively. Approximation (A2)
is the direct higher order correction to our zero order result in (53) and is found by
expanding the exponents, hy +hj, out to several more terms in the spirit of a higher
order Laplace approximation. The exponential term, exp(— Rgyy), is exponentially
small except near the threshold boundary where it serves to guarantee that the
boundary condition is satisfied there. Upon using integration by parts on the
correction due to the y=z boundary, we obtain

A6  Tipe®= —% f "z f " dy exp[Ry(hy (@) +hyy)]

— 1 [0 X" Ye_ 1 1 _ 1 b ]
®,—.5)D l_l"( v ORI OR) G v )

The approximation (A6) is not of exponential order for R;>» 1, but is singular as

x—y.". This term may be interpreted as the contribution of the deterministic time

from the threshold such as we would find from Equation (52B) with z, approximated

by y.. On the other hand (A2) represents the time it takes to escape from the attracting

point near x =z.~y,. The third term on the right hand side of (A1) appears only when
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there is a finite lower boundary xp=x; or —A/B and this term may also be
approximated by a Laplace type expansion of the exponent of the integrand,

AN Tipt= 2 ["d [ ay expRus+hats)I~—Car o)

where

2 explRy(hy(x) Hh) [y, 3a)
B9 ST DRy | RibsOP +]

and Gy(x) is given in (A3). The approximation (A7) may be exponentially small or
large, but exponentially less than the principal contribution in (A2).

Approximation in the region IM

When x is in the intermediate region IM(X¢p <X <X;n,), the logarithmic correction
from the boundary y =z in (A6) becomes large and even unbounded because y, is in
the Region IM. Hence another approximation must be used in this region:

(A9) TiA+Bx)~T1im(®) = Tipe(Xim) + T1imz(x) + T1imi(X),

where Tp(Xim) is the contribution accumulated from Typep, Tipe; and Ty in (A2),
(A6) and (A7) respectively at the point x=x;, provided X;>Xjn. The main
contribution from this region is obtained by stretching the variable z aocordmg to the
change of variable

(AY)  x"=(2c—%)/5, with 8, = V2/Rhi(zd)
and the variable y according to

(A10)  x"=(y.—x)/8, with 8,= V= 2/Rh3(y))
so that ‘

A Tin) =3 [z " ay exolRiu(a) +haty)]

~Cec' [Fimz(x") — Fimz(*{m)},
where
A12)  C, =518z explRi((Z) + ho(ye))]
D 3

(A13) Fimz(x) =K (x) — x[(8,/8y — 1)x — 2(zc — y.)/8y]
— R, 830y x (1 +x¥/3)/6 — R, 830z 5V
—(1—x?) exp(x?) erfe(x)) —x(1 —x%/3)}.
The integral
(Ald) K (x)=2 J; dz exp(@) fz dy exp(—y?)
= Vr Dg(x)—x2-(1 +x¥/3-(1 +...+2:0x%/ @+ 1)2n+ 1)-(1 +.. ),
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with the Dawson’s integrat
(A15) Do(x)=ftiz exp(z)=x-(1+x3(1/3.+. . . +x¥n-(1/2n+ 1.)+.. ),
0

given here in Newton fast polynomial multiplication form, was also used by Wan and
Tuckwell (1982) for the Ornstein and Uhlenbeck approximation to a neural model.
Only for the case of finite lower boundary at xp=x; or —A/B is there also the
additional term analogous to Ty in (A7),

&16)  Timt)= =3 [z [ dy explRiu(2)+haty))

~ — Cyi* [Fimi(x") — Fimi(x{m)),

(A16) Com 2 exp[Ry(h(z) + hy(x)]3, ( h3(xL) )
of DR hj(x;) Ry[bs(xp))?

and
(A18) Fimi(x)=Dg(x) + 83R h{P(z)(1 — x2) exp(x2)/12.
When x; is in IM or x, is sufficiently close to xj, then Tyin,(x) becomes the global
principal approximation with x;m, =x; and this case does occur in some instances.
Approximation in.the Region CM

When x is in the region (X <Xx<Xcp), the solution can be decomposed into
(A19) TIA +BX)~Tcm(X) = Tiim(Xem) + T1emz(X) + T1emi(x)

with the first term on the right being the cumulative contribution from the
approximations Tipep, Tipez, Tipci> T1imz @and Tiimi- The main contribution in CM
comes from the line y=z like T, in (A6) and is approximated by integration by
parts on the inner integral yielding,

(420)  Timt) =5 [ Tde [ dy explRbi)+ o)

+1 r Ye—X . _
(R;—.5D I_ln Ye ™ Xcm ) (2R + Dh3(yc) ( ¥Ye— xcm)2

1

which is also not exponentially large for R;> 1 and x<x¢p<Ye. For the finite domain,
xL=X; or —A/B the tail correction is again approximated by a Laplace type
expansion.

@) Tieni0= =3 [y [ ay explR (o) + haty)]

_2expRi(@)+hpG))] [, b T
DR{h{(x)h3(x1) R [h3xDP

— exp(— DY) 1y exp(—
[1exp(—Rigm)+ g s expl RigmaX(1 + Rigms(1 +.5R1gma)1|



152 FLOYD B. HANSON AND HENRY C. TUCKWELL

where
(A22) 8mx = —h1(X)-(Xem — X).
When x; is in CM then T (%), (A20) becomes the global principal contribution with
Xem = Xt

The form of the asymptotic solution given above for the first passage to threshold in
the case of excitatory with and without inhibitory reversal potentials is qualitatively
very similar to the form in Wan and Tuckwell (1982). However, their problem
concerned the Ornstein-Uhlenbeck diffusion approximation for constant size
excitatory psp’s with inhibition (no reversal potentials). Their method was also
different. Their method was also different. They used local type asymptotic methods
on the differential equations, while our method is a global type because we worked
with the integrated formal solutions. !

Determination of the parameters Xim and Xcr,.

The formulae for T pep, Tipcz, Tipcis T1imzs T1imis T 1cmz and Tiemi should be suitable
for approximating most cases asymptotically. However, the boundaries, xjy, and x¢p
of IM still need to be specified. These are determined by matching the approxi-
mations at x;,, and x.,, by matching the worst errors between neighbouring regions. In
particular, x;, is determined so that the worst error in region PC is the same order of
magnitude as the worst error in IM. The worst error in PC is estimated by the first
term neglected in the expansion of T, in (A6) because this expansion diverges in
IM. The worst error in IM is estimated by the first term neglected in the expansion of
T1imz and these are the exponentially growing terms. Matching these errors gives

(A23) Xim~Yc— 0 — In(8,(— In(3,) ! '5)]0'5-
Similarly, matching the worst errors from Tyjm, With those of Ticm, yields,

(A24) Xem™~Ye ™ (Xim — Yo)-

Higher order approximations for T,.

The asymptotic approximation of T is similar to that of Ty except that T appears
in the integrand of T, and that T, is piecewise approximated in different asymptotic
regions. We will just give our formulae for T, in the region PC as an example.

When x is in. (Xijm,Xy),

(A25) T(A +Bx)~Tpc(X) = T2pep(X) + Tpea(x) + T2pei(X),
where

(A26)  Topep(¥)~2-T1im(¥c) T1pep(x),
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(A27) T2pc(X)~2Cic TipezlX)

+ 1 [ 1 _ exp(—Rigw) 1+
DR, +.5hi(x) - x—ye X—Yc

1 Xt~ Yc\12
-+ In +...,
[ D(R;+.5) (( X—Yc )]
and the optional tail correction is

(A28) Tapci®) = 2-(T1pci(¥e) + T1imi(¥e))- T1pep(x)
1 1 exp(—Rgw)
—-—D. . + —_— 3
2 G0+ Tl o gipmrey Gimye e )
We have just given the major terms for each in order to keep the simplicity of the
asymptotic approximation.




