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Abstract. A four-compartment model for the evolution of cancer based on the
characteristics of the cells is presented. The model is expanded to account for in-
trinsic and acquired drug resistance. This model can be explored to see the evolution
of drug resistance starting from a single cell. Numerical studies are performed illus-
trating the palliative nature of chemotherapeutic treatments. Computational results
are given for traditional treatment schedules. An alternate schedule for treatments
is developed increasing the life expectancy and quality of life for the patient. A
framework for the alternate scheduling is presented that addresses life expectancy,
quality of life, and risk of metastasis. A key feature of the alternate schedule is
that information for a particular patient can be used resulting in a personalized
schedule of treatments. Alternate scheduling is compared to traditional treatment
scheduling.

1 Introduction

Various treatment options may be open to the cancer patient such as surgery,
chemotherapy, radiotherapy, and immunotherapy. These treatment modali-
ties may be used in any combination and depend on the type and extent of
the cancer in the patient. One of the most common modalities is chemother-
apy which may be a primary treatment or a subsequent treatment following
surgery as a suppressive therapy, see for example [10]. Chemotherapy is pal-
liative in nature and most often cannot lead to a cure for the cancer due
to drug resistance which may be either intrinsic, i.e. naturally occurring, or
acquired in the presence of a cytotoxic or chemotherapeutic agent .!

! This is a preprint of a paper submited to: Proceedings of the Workshop on
Stochastic Theory and Control, University of Kansas, Springer-Verlag, New York,
2002.
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The four-compartment model used in this paper, described in detail in
[29], allows for the exploration of treatment schedules so that a schedule may
be determined that provides for the patient a greater life expectancy and
higher quality of life such as the one proposed in [25]. A stochastic optimal
scheduling or control problem can be used to determine such alternate sched-
ules for treatments. In formulating a stochastic optimal control problem, the
form for the dynamics of the system or for the cost functional can be struc-
tured in such a way as to obtain diverse results. The objectives that would be
used for the cost functionals for traditional and alternate treatment schedul-
ing are radically different. In traditional methods, as soon as the cancer is
detected, the goal is to drive the cancer into remission as soon as possible.
The goal of the alternate method is to increase the life expectancy of the
patient and to maintain a minimum specified level for health and quality of
life while ensuring that the risk of metastasis is kept to acceptable levels. Due
to the nature of chemotherapeutic drugs and the development of resistance
to them, both treatment strategies are subject to constraints based on the
toxicity of the cytotoxic agent and the total number of treatments that can be
administered. Additionally, traditional scheduling considers the time when a
collection of treatments should be given whereas the alternate schedule uses
individual treatments. The authors will do a more complete investigation of
the optimal scheduling control problem in a future paper.

Two of the most crucial concerns with the use of chemotherapy are toxicity
and drug resistance. The development of drug resistance occurs at the cellular
level via several mechanisms [19,20]. Toxicity limits the dose and frequency
by which treatments may be administered. Drug resistance, whether intrinsic
or acquired, limits the effectiveness of the treatments. Therefore, if the roles
of toxicity and resistance can be understood, leading to a model which would
relate their effects to the evolution of the cancer, then this information can be
used to select appropriate treatments so as to minimize the spread of cancer
and resistance while adhering to toxicity limits for a given patient with a
given cancer. One way to reduce the development of drug resistance of a
cancer to a cytotoxic agent is to supplement the treatment with additional
treatment modes, such as radiotherapy or another cytotoxic agent which is
not cross resistant with the first agent. An extension of the model used in
this paper can be found in [28] which considers multiple cytotoxic agents to
reduce the effects of drug resistance.

Typically, a reduction in cancer is seen with the initial administration
of cytotoxic agents, but eventually the tumor begins to grow and expand in
the presence of the agent. This implies that the available effectiveness of the
agent is limited to a finite number of applications after which it can no longer
control the growth of the cancer. The application of cytotoxic agents also
destroys normal or good cells which negatively impacts the patient’s health.
Therefore the determination whether or not to administer the cytotoxic agent
needs to consider effects on the cancer as well as that of normal tissue, see
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for example [1,2]. Traditional treatment schedules for chemotherapy consist
of several applications of the cytotoxic agent relatively close together. After
a treatment is administered, both the cancer cells and normal cells begin
to grow again. The normal or good tissue used to measure the toxicity of
the treatment is typically the white blood cell count, and indirectly the bone
marrow cells responsible for it’s production, see [11,3] for example. Clinically,
it is easy to measure the white blood cell count before treatment, if the level
of white blood cells is too small, the treatment may be delayed or given at a
reduced dose.

Alternate optimal scheduling for cytotoxic agents has been the subject of
many papers. However the dynamics employed for the evolution and treat-
ment of the cancer have been lacking in the sense that, to the best of our
knowledge, no source considers the heterogeneous nature of the cancer, the
development of drug resistance, with appropriate Gompertzian growth dy-
namics. See [5,9,16-18,21-24,27] for various examples of optimal treatment
scheduling for cytotoxic agents.

In Section 2 a summary of the compartment model for cancer subject
to chemotherapy [29] is presented that accounts for the heterogenous nature
of cancer and the evolution of drug resistance. A discussion of the alternate
treatment scheduling is presented in Section 3 and a numerical example is
given in Section 4 which is meant to provide a proof of concept for the optimal
alternate scheduling.

2 Four-Compartment Model for Cancer Treatment

The following material is a summary of the four-compartment model pre-
sented in [29]. The compartments represent the heterogeneous nature of can-
cer subject to the development of drug resistance to a single cytotoxic agent.
A key feature of this model is that the heterogeneous nature of the cancer
as well as drug resistance are taken into account. To the best of the authors’
knowledge, the only other treatment model to incorporate these factors is by
Birkhead et al. [4] which is a deterministic system governed by exponential
dynamics with limited interactions between the various compartments. In the
model used here, more realistic Gompertzian dynamics (see [6,7,15]) are em-
ployed with all possible transitions between compartments allowed and the
transition rates between compartments are both probabilistic in nature and
dependent on the subpopulation sizes and time.

Cancer consists of three primary types of cells: the proliferating fraction,
clonogenic fraction, and end cells (see for example [8]). End cells, denoted
by FE, primarily consist of somatic tissue, vascular and endothelial support
cells, and necrotic tissue. These cells can not further propagate the cancer
directly, but may play a fundamental support role in the development of the
cancer. The proliferating or growth fraction cells, denoted by P, are actively
dividing. After the completion of mitosis by the parent cell, the daughter cells
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have a specified probability of becoming any of the primary types of cells
which depends on the relative number of cells for each of the groups. The
clonogenic cells, denoted by C, are quiescent or dormant cancer stem cells in
the G phase of the cell life cycle. With the proper stimulus, clonogenic cells
can begin actively dividing, becoming proliferating cells, or can differentiate
into support tissue.

The goal of chemotherapy is to move all of the cells from the proliferat-
ing and clonogenic fractions into the end cell compartment. Since end cells
cannot directly propagate cancer, they are not considered in the model. The
proliferating and clonogenic cells are further subdivided into susceptible and
resistant subpopulations, denoted by the subscripts S and R, respectively.
Define the indicator sets as

R={R, S}, 7T={P,C}, and ZI={PR,CR, PS, CS}.

This results in a four-compartment model for the number of cells in the differ-
ent subpopulations, {Pr(t), Cr(t), Ps(t), Cs(t)}, representing the bulk or
macroscopic dynamics subject to treatment by a single cytotoxic agent. The
effects of a given treatment is related to the quantity or dose of the cytotoxic
agent given and is limited by potential toxic effects. In this formulation, the
cytotoxic agent acts on the appropriate subpopulations and not on all cells.
In this investigation, the maximum dose allowed for the cytotoxic agent will
be given in order to kill as many cells as possible with effects assumed to be
instantaneous. If the assumption of instantaneous effects is not realistic, for
example intravenous infusion of the cytotoxic agent for 24 hours, then the
mean time at which the majority of the agents act is used as the effective
treatment time. The time at which treatment ¢ = 1,..., N is given is denoted
by 6(t — t;). The resulting treatment model is illustrated in Figure 1 and is
given by the following system of equations:

dj;s _ [(1 — s — Ppscr — ps,pr)Ps + uPR,psPR} F 4 BoCo — GpaPs
+ XN: 0(t — ti)(—pips,pr,iPs + Bs,iCs — kp,iPs) ,
i=1
% = [(1 — Qr — flprcs — fprps)Pr + /’LPS,PRP3:| f 4 BuCr — OpnPa
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dC, al
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i=1
where all coefficients are probabilistic rates and are functions related to
the sizes of the subpopulations and time (P, Ps, Cr, Cs,t). The summation
terms in (1) represent the effects of treatment. All daughter cells maintain
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Fig.1. Schematic representation of the four-compartment model subject to
chemotherapy. The dashed lines refer to population migration due to chemotherapy.
Compartments aligned in rows are either susceptible or resistant to the adminis-

tered cytotoxic agent, and compartments aligned in columns are either proliferating
or clonogenic sub-populations

their quality of drug resistance from the parent cell unless a mutation occurs
in the parent cell which is inherited by the daughter cells after mitosis. The
growth rate for the cancer is given by the Gompertzian form

K
F(Pr, Ps, Cn, Cs, 1) = Mlog (PR(t) () + Cn(D) +Cs(t)) ! (2)

where X is the growth rate and K is the carrying capacity for the prolifer-
ating and clonogenic cells. The allowed probabilities for the mutation rates
are given by pu;x where j,k € Z are shown in Figure 1, if not shown then
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;% = 0. The probabilistic rate a. represents the fraction of cells that become
quiescent, that is clonogenic, after mitosis which implies that the 1 — a, rep-
resents the fraction of cells that remain proliferating where * € R. Under the
appropriate stimulus, clonogenic cells begin to proliferate with a probability
given by (. for * € R. The loss rates from a given compartment are denoted
by 67 where J € Z and account for apoptosis, natural death of cells, and cells
recruited to the end cell compartment to become vascular and endothelial
cells.

The probabilistic death or kill rate of cells due to the i*" treatment of the
cytotoxic agent are given by k,; > 0 for x € 7. If either of kc; = 0 then
the cytotoxic agent is said to be cycle-specific otherwise the agent is cycle-
nonspecific. A stimulus is created due to the death of a large number of cells
by the cytotoxic agent which causes recruitment from the clonogenic to the
proliferating fractions with a probabilistic rate for the i** treatment given by
By, for x € R. In the presence of a cytotoxic agent, proliferating cells may
acquire resistance at the completion of mitosis with probability jipg pg,i for
the i*" treatment. In the treatment presented here, assuming the maximum
dose for the cytotoxic agent, drug resistance is seen as semipermanent in
the sense that once drug resistance is acquired a mutation must occur for
the subsequent generation to lose or gain drug resistance. The concept of a
drug resistance spectrum which depends on the dose of the cytotoxic agent
is presented in Goldie and Coldman [14]. This implies that probabilities for
both the kill rates and for acquiring resistance are dependent on the concen-
tration of the drug at the site of the cancer. Note that all of the effects of
treatment are indexed by the treatment number and therefore can change
with the number of treatments given which allows for greater flexibility in
modeling chemotherapy and can be used to generate the effects of the agents
as presented in [14].

3 Alternate Treatment Scheduling

The ability for a cytotoxic agent to effectively treat cancer is limited by
drug resistance, which can either be intrinsic or acquired. Drug resistance
is inherited by daughter cells after mitosis and will be passed on to their
progeny. This rapidly leads to a large subpopulation of the cancer cells that
are immune to treatment. Cytotoxic agents destroy both cancerous and nor-
mal cells. Therefore, the benefit of a given treatment needs to consider the
impact on the cancer as well as the overall health of the patient. This leads
to a situation in which only a small number of treatments can be adminis-
tered with overall positive impact such that additional treatments will have
a nominal effect on the cancer and a negative impact on the patient.
Traditional treatment scheduling of cytotoxic agents is based on adminis-
tering a treatment cycle. A treatment cycle consists of administering a fixed
number of doses, denoted by n, of the cytotoxic agent at fixed time intervals
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of At; = t;y1 — ti, see for example [10]. If ¢; denotes the time for the i'"
treatment, then the next treatment would be given at time t;11 = t; + At;.
Only a few treatment cycles can be used with positive impact to the patient,
the number of which is denoted by m. Thus, a total of N = n X m treat-
ments may be given with positive impact to the patient. Once the decision is
made to utilize chemotherapy, for example after initial detection or surgery,
a treatment cycle is administered. If the treatment cycle does not lead to
remission another treatment cycle is administered, provided one is available,
until remission is achieved. Upon recurrence, clinical detection, of the cancer
the process for administration of treatment cycles repeats. Treatment con-
cludes when all of the m available treatments have been administered. The
goal of traditional treatment schedules is to drive the cancer into remission.
The use of a treatment cycle may have serious side effects in patients, leading
to diminished quality of life due to cumulative toxic effects of the cytotoxic
agents being administered relatively close together.

Traditional chemotherapy scheduling can waste the effectiveness of treat-
ments by over-treating. That is, the benefit for the reduction of the cancer
may be nominal or minimal relative to the detrimental side effects to the
patient, reducing the patient’s quality of life. Motivated by concepts of man-
aging the cancer relative to the impact of treatment on the patient presented
by Schipper et al. [25], an alternate treatment scheduling is considered. The
goal is to determine the time at which the next treatment should be given.
To do this, a treatment level, total number of cancer cells present, needs to
be established. By doing this the time between treatments is expected to
increase and should lead to an increased life expectancy and quality of life.
The treatment level is then used to define a next treatment time problem.
Additionally, a stopping time problem needs to be established to determine
when treatments should be stopped because they are no longer beneficial in
the overall sense to the patient.

A major concern for maintaining a large number of cancer cells is the risk
of metastasis, the spread of the cancer to remote places in the body from the
original site. This is a stochastic process that depends the size of the cancer,
the level of angiogenesis (amount of vascularization and endothelial cells), as
well as other factors. Metastasis is a process in which cancer cells detach,
enter the blood stream, and are transported to remote locations where they
attach and form new colonies of cancer. To counter the effects of metasta-
sis, various investigators [12,13,26] suggest that angiogenesis inhibitors and
antimetastatic drugs be given to the patient.

To determine when a treatment should be given, a stochastic optimal
control problem needs to be solved for the maximum number of cancer cells
present for treatment. This optimal control problem needs to based on the
system (1) with extensions for stochastic effects such as metastasis which
should be represented as a jump process as well as a background Gaussian
random process to model small uncertainties and for a new state variables
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that represent the time of expected death, quality of life, and measure of
health. The cost functional should be designed to determine the maximum
level of cancer cells necessary for a treatment to be given to maximize the time
of expected death while minimizing the risk of metastasis and while main-
taining a specified minimum level for quality of life and health. Additionally,
constraints for toxicity need to be imposed.

The practical implementation of the alternate treatment scheduling must
initially drive the the number of cancer cells below the treatment level using
aggressive chemotherapy. Once this is achieved, the control problem should
be implemented as a receding time horizon problem based on the discrete
events of when treatments are given. In doing this, valuable information can
be included about the patient in the decision making process for treatment
scheduling. If the times between treatments is large enough, additional mon-
itoring of the patient may be necessary to ensure the goals of treatment are
met. This alternate scheduling should improve the life expectancy and qual-
ity of life for the patient by removing the cumulative negative side effects of
chemotherapy. Hopefully, this new scheduling will lead to fewer patients who
discontinue treatment.

The concepts presented here can be extended to consider the pharma-
cokinetic effects and properties of the treatments and allow for a new control
variable in terms of the dose size. Another extension to this decision pro-
cess would be the inclusion of multiple treatment modalities including for
example, multiple cytotoxic agents, surgery, radiotherapy, and immunother-
apy. The ultimate goal of cancer treatment should be to give the patient a
near normal life expectancy and quality of life.

4 Numerical Example

From a macroscopic perspective, the movement of cells between the clono-
genic and growth fractions can be simplified by considering the probabilistic
bulk or net effects of the growth of cancer. In the case considered here, the
proliferating compartments constitute 80% of the cancer. The values used
in the numerical example are taken to be the constant limiting probabilities.
Furthermore, the probabilistic rates of the system (1) are taken to be uniform
since there is no conclusive evidence to suggest that the properties of resistant
and susceptible cells behave differently in the way that they propagate.

The numerical example presented here considers the treatment cancer
which began growing at time ¢ = 0 with a single growth cell, so that the
initial conditions for the system (1) are given by

Ps(0) =1 and Pp(0) = Cx(0) = C(0) = 0.

Clinical detection requires a cancer burden of 10° cells, death is anticipated
at a cancer burden of 10'2 cells. The patient is diagnosed with the cancer and
treatment begins at time ¢ = 625 days with a cancer burden of 2.58 x 109
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Parameter values used in the example
ar = as = 0.20 Probabilistic rate of migration from proliferating to
clonogenic compartments
UPR,Ps = llPS,PR = 10~ 'Y [Probabilistic rate of intrinsic resistance
lprcs = Jlps,cr = 1071 |Probabilistic rate of cross compartment intrinsic re-
sistance
Bs =PBr =107 Probabilistic rate of natural back migration from
clonogenic to proliferating compartments
X = 0.00396, K =5 x 10'* |Growth rate and overall carrying capacity used in f
dps = 0pr = 0.01925 Loss rates for proliferating compartments
dcs = dcr = 0.017325 Loss rates for clonogenic compartments
Ps(0) =1, Initial conditions
Pr(0) = Cr(0) =Cs(0) =0
102 cells Expected number of cancer cells to cause death
10° cells Population size at which cancer can be clinically de-
tected
1.5 x 100 cells Number of cancer cells at which treatment is given
for alternate scheduling
Kkp,i = 98% Cytotoxic agent’s kill fraction for the proliferating
compartment
Ke,i =0 Cytotoxic agent’s kill fraction for the clonogenic
compartment, i.e. cycle specific agent was used
Br,i = Bs,i = 90% Probabilistic rate of cellular back migration from
clonogenic to proliferating compartments due to
chemotherapy
Ups,pri =5 x 107° Probabilistic rate of acquired drug resistance

Table 1. Summary of parameter values used in the numerical example

cells. In the absence of treatment, the probabilistic limiting distributions for
the cancer cells are 20% for clonogenic cells and 80% for proliferating cells
which represents an very aggressive cancer. These values are used as the uni-
form probabilistic rates of migration after mitosis from the proliferating to the
clonogenic fractions so that az = as = 0.20. The uniform probabilistic rate
of natural back migration from the clonogenic to the proliferating fraction is
Bs = Br = 1072, The probabilistic loss terms, accounting for natural death
and recruitment to develop stromal tissues, for the proliferating and clono-
genic cells are dps = dpp = 0.01925 and .5 = dox = 0.017325, respectively.
The growth rate and the carrying capacity for the Gompertzian dynamics
(2) are A = 0.00396 and K = 5 x 10**. Mutations that lead to viable cells
may either acquire or lose intrinsic resistance to all cytotoxic agents. The
effects of the mutations occur after mitosis and are inherited by the daughter
cells which may either remain in the proliferating compartment or go into
the quiescent, phase. The probabilistic rate for the development of intrinsic
resistance after mitosis is fipr ps = fps.pr = 10719 and the probabilistic rate
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for mutations or repair mechanisms to occur so that drug resistance is lost
after mitosis is ppr.cs = fhps.cr = 1071,

Treatment of the cancer uses a single cytotoxic agent with kill rates for
each treatment ¢ given by kp; = 98%, and k¢ ; = 0%, i.e., the chemothera-
peutic agent is proliferating cycle specific, so the treatment does not kill any
of the clonogenic cells. Treatments cause a stimulus from the large number
of proliferating susceptible cells that are killed, which recruits quiescent cells
from the clonogenic fraction to become proliferating cells with rates given
by Br,i = Bs,; = 90%. The probability that a surviving susceptible cell after
treatment ¢ acquires drug resistance is pps pr,; = 5 X 1079, In the absence of
treatment, the model predicts that death will occur at time t = 1666 days.
The parameter values are summarized in Table 1.

4.1 Traditional Treatment Schedule

Treatment of the cancer uses a single cycle specific cytotoxic agent such that
a maximum of m = 2 clinically valuable treatment cycles of n = 6 treat-
ments of the agent are given at intervals of 21 days for a total of N = 12
treatments. This two treatment cycle regimen is depicted in Figure 2. The

Cancer Cells (LOG 10) vs. Time (Days)
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Fig. 2. Logarithm of the total population size of cancer subjected to chemother-
apeutic regimen of two treatment cycles of a single cycle specific cytotoxic agent.
The horizontal lines represent, from bottom to top, the number of cells for clinical
detection, beginning of treatment, and anticipated death, respectively

first treatment begins at time ¢ = 625 days and concludes at t = 730 days
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with a cancer burden of approximately 1.90 x 107 cells, which is considered
remission since the cancer burden is not clinically detectable. Recurrence of
the cancer occurs at time ¢ = 900 days and another treatment cycle is admin-
istered. The cancer burden at the conclusion of the second treatment cycle
is approximately 3.27 x 107 cells and the patient is once again in remission.
After the 2 treatment cycles have been administered death is anticipated at
time ¢ = 2359.

4.2 Alternate Treatment Schedule

In the alternate treatment scheduling, 12 treatments are used with a treat-
ment level of 1.5 x 1019 cells. Initially, treatments are given spaced at the
traditional schedule, At; = 21 days, until the number of cancer cells is below
the treatment level, that is aggressive treatment is used. Subsequent treat-
ments are given when the number of cancer cells reaches treatment level, and
a toxicity constraint for scheduling treatments is imposed. Let the treatment
i be given at time t;, and the next time that the number of cancer cells reaches
the treatment level be 7;41. Then, the time for treatment ¢ 4+ 1 is determined
by the toxicity constraint:

tit1 =t + Max[Ati, Tit1 — ti] . (3)

The alternate scheduling corresponding to the two treatment cycle tradi-
tional schedule is depicted in Figure 3. After treatment ends death is antici-
pated at t = 2661 days.

4.3 Traditional vs. Alternate Treatment Scheduling

The goal of traditional treatment scheduling is to drive the cancer into re-
mission as quickly as possible. In doing this, some treatments may be given
without major benefit to the patient, that is the number of cancer cells killed
is small relative to the remaining cancer cells. Alternate treatment scheduling
seeks to have each treatment be as valuable as possible, however in doing this
the patient is at risk for metastasis of the cancer. To minimize the risk of
metastasis, angiogenic inhibitors and antimetastatic drugs should be used and
the level of treatment should be selected so that the risk profile is acceptable
to the patient.

A summary of the results for traditional and alternate is presented in Ta-
ble 2. Note that 3 treatment cycles traditionally scheduled actually reduces
the life expectancy of the patient which is attributed to drug resistance. In
the alternate scheduling, even though 18 treatments leads to a longer life
expectancy than 12 treatments the last 5 of the 18 treatments are scheduled
at the toxicity threshold and above the treatment level which means that
the quality of life for the patient would be diminished. Using 3 traditional
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Cancer Cells (LOG 10) vs. Time (Days)
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Fig. 3. Logarithm of the total population size of cancer subjected to 12 alternate
scheduled chemotherapeutic treatments of a single cycle specific cytotoxic agent.
The horizontal lines represent, from bottom to top, the number of cells for clinical
detection, level for alternate treatment, beginning of treatment, and anticipated
death, respectively

Traditional Scheduling Alternate Scheduling
Number of|Anticipated Equivalent | Anticipated
Treatment Death Percent || Number of | Death Percent

Cycles (days) |Increasel||Ireatments| (days) |Increase

1 2103 26.23% 6 2200 32.05%

2 2359 41.60% 12 2661 59.72%

3 2308 38.54% 18 2686 61.22%

Table 2. Summary of traditional vs. alternate treatment scheduling, where ‘percent
increase’ is relative to the anticipated death in the untreated case

treatment cycles or the equivalent of 18 alternate scheduled treatments is
shown in Figure 4. In regions of traditional scheduling, the cumulative ef-
fects of the cytotoxic agents reduces the health of the patient since good
or normal cells are killed as well weakening the patient, which may leave
the patient susceptible to opportunistic infections. It is clear from Figure 4
that the third traditional treatment cycle and the last 5 alternate scheduled
treatments provide no benefit to the patient and should have a significant
negative impact on the patient’s health, therefore they should not be admin-
istered. Table 3 lists the times for treatments for traditional and alternate
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Cancer Cells (LOG 10) vs. Time (Days)

0 500 1000 1500 2000 2500

Fig. 4. Logarithm of the total population size of cancer subjected to (left figure)
3 traditional treatment cycles and (right figure) 18 alternate scheduled chemother-
apeutic treatments of a single cycle specific cytotoxic agent. The horizontal lines
correspond to those in Figures 2 and 3. Note that the last traditional treatment
cycle is of nominal value and that the last 5 alternate treatments are above the
level of treatment

schedules. The thirteenth alternate treatment is administered on day 1581,
which accounts for the additional 25 extra days for anticipated death between
the 12 and 18 treatments as listed in Table 2. Clearly, the alternate treat-
ment schedule utilizing 13 treatments would be preferred mode of treatment
scheduling. Note that the alternate treatment method not only increases the
life expectancy and quality of life, but also allows for more treatments to be
given with positive benefit to the patient.

Treatment|Traditional| Alternate
Number | Schedule |Schedule
1 625 625
2 646 680
3 667 770
4 688 857
5 709 944
6 730 1031
7 900 1118
8 921 1205
9 942 1292
10 963 1378
11 984 1462
12 1005 1535

Table 3. Times of treatments for traditional and alternate scheduling
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5 Conclusions

A compartment model for the evolution of cancer subject to chemotherapy
should include aspects for the heterogeneous nature of cancer and for the
development drug resistance. In using such a model, alternate treatment
schedules can be tested against traditional schedules. Alternate treatment
schedules allow for a better control of cancer management and can be tai-
lored to the patient. The numerical example presented illustrates the benefit
in terms of life expectancy as well as an increase in the quality of life since
the times of treatments are spread over greater periods of time than that of
traditional schedules.
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