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Abstract

Multistage manufacturing systems (MMS) are models for
the assembly of consumable goods. In the simple case, a
linecar assembly line of workstations, components, or value,
are added to the product. Some examples assembly line
products are automobiles or printed circuit boards. Pro-
duction scheduling typically takes in to account workstation
repair, failure, and defective pieces as stochastic events, ef-
fecting the workstation production rates. The supply routing
problem of raw materials is not usually taken into account.
However, in this treatment, the effects of strikes and natural
disasters, which may affect the routing of raw materials,
are considered for the MMS. Numerical results illustrate
the optimal control of MMS undergoing strikes, as well as
workstation repair and failure.

1. Introduction

In this paper, multistage manufacturing systems (MMS) are
considered for the assembly of a single consumable good.
The sequence of stages necessary to complete the finished
good is represented as a linear chain of stages at which a
subcomponent or value is added. Each stage consists of a
number of workstations which are assumed to be identical
in all respects and operate at the same level. The worksta-
tions are subject to repair and failure. The control model
for the production scheduling problem needs to account for
these stochastic events in order to insure that the production
goal is met. The discipline assumed for the MMS is that
of Just in Time or Stock less Production which does not
require that large inventories of raw materials be kept on
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hand (see Hall [6]). Bielecki and Kumar [2] show that a
zero inventory policy is optimal for a manufacturing system
that is subject to uncertainties, this further justifies the Just
in Time manufacturing discipline.

The goal of the control problem is to account for all
stochastic events, such as workstation repair and failure,
strikes, and natural disasters, so that the production goal is
achieved in a specified way. The cost functional is used
to impose penalties for shortfall or surpluses in production
while maintaining a minimum control effort discipline. In
this model, strikes and natural disasters can affect the MMS
directly or the way in which raw materials enter the MMS,
and therefore can limit the throughput of the MMS if there
is not sufficient raw materials which is the routing problem.
This consideration is of great importance since strikes and
natural disasters can have very significant impact on the
financial well being of a company. These concepts which
are features of the model presented here are illustrated by the
United Auto Workers strikes against General Motors [1, 8],
the strike of the United Parcel Service [10, 11], and natural
disasters such as earthquakes and floods, for example.

The model considered here is an extension of the pro-
duction scheduling model by Westman and Hanson [18]
which utilizes state dependent Poisson processes [16] to
model the rare events of workstation repair and failure as
well as strikes and natural disasters. In [18], all catastrophic
events, strikes and natural disasters, that effect the MMS are
lumped together in one term. This allows the model to be a
lower dimension, but presents a problem with tracking the
catastrophic events and there resolution. In this treatment,
each of the catastrophic events is represented by its own
state variable so that complete tracking of the event history
can be accurately represented. Additionally, this model in-
cludes temporal consideration for the effects of the strikes
and natural disasters on the demand rate, which is viewed
as a constant in [18]. This feature of the model is necessary
in order to redefine the way in which the production goal is
to be met dependent on whether a strike occurs or not. The
production scheduling in this model anficipates catastrophic



events and compensates for them, however this may not be
enough (dependent on the length of the strike) or too much
if a strike does not occur. Therefore the demand rate may
need to be dynamically adjusted.

For completeness the LOGP problem (see [13]) using
extensions for state dependent Poisson noises (see [16, 18])
is presented in Section 2.. The model for the production
scheduling of a MMS presented here forms a LOGP prob-
lem utilizing state dependent Poisson noises and a rebalanc-
ing of the demand rate is given in Section 3. In Section 4.
two examples of state path realizations are presented that
show the effects of a strike in conjunction with demand rate
rebalancing.

2. LQGP Problem Formulation

For completeness we present the canonical form for the
LQGP problem that originally appears in Westman and Han-
son [13], for the case with state independent Poisson noise,
and [16] for state dependent Poisson noise. Additionally,
considerations for modeling a physical system are presented
as well, as well as formal solution to the LQGP problem.

The linear dynamical system for the LQGP problem
is governed by the stochastic differential equation (SDE)
subject to Gaussian and state dependent Poisson noise dis-
turbances is given by

dX(t) = [AMX()+ BA)U(E) + C(t)]ldt
+ GOAW () + [Ha(t) - X(8)]dP1(X(2), 1)
+  [Ha(1) - U(Q)]dP2(X(t), 1)
+  Hy(t)dPs(X(?), 1), ey

for general Markov processes in continuous time, with m x 1
state vector X(t), n X 1 control vector U(t), » x 1 Gaussian
noise vector dW(t), and ¢, x 1 space-time¢ Poisson noise
vectors dPy(X(¢),t), for £ = 1 to 3. The dimensions of the
respective coefficient matrices are: A(t) is m x m, B(¢) is
m xn, C(t)is m x 1, G(t) is m x r, while the H,(t) are
dimensioned, so that

[H1(t) - x]= Z Huggr () ) @
L % dmxqr
[Ha(t) - u)= | > Hajr(t)us , ©)
L & Jmxqs
and
Hs(t) = [Hsi;j (t)]mxgs- Y

Note that the space-time Poisson terms are formulated to
maintain the linear nature of the dynamics, but the first two
are actually bilinear in either X or U and dPy for £ =1 or
2, respectively.

The state dependent Poisson noise can be viewed as a
sequence of events that is represented by its ith couple

{T(X(T3)), Mi(X(T3))}, (5)

for i = 1 to &, where T;(X(T3)) is the time for the oc-
currence of the sth jump with state dependent mark ampli-
tude M;(X(T;). This representation of the Poisson process
provides more realism and flexibility for a wider range of
stochastic control applications since the arrival times and
amplitudes may depend of the state of the system. Addition-
ally, this formulation allows for simpler dynamical system
modeling of complex random phenomena.

The state dependent vector valued marked Poisson
noises are related to the Poisson random measure (see Gih-
man and Skorohod [5] or Hanson [7]) and are defined as

[dP,s(X(2), )] g, x1

= l / 2P i(dz, X(t), dt)] (6)
Zes

ge X1

dPy(X(t),t) =

for £ = 1 to 3 which consists of ¢, independent differentials
of space-time Poisson processes that are functions of the
state, X (¢), where z is the Poisson jump amplitude random
variable or the mark of the dF,;(X(t),t) Poisson process
where £ =1 to 3 and ¢ = 1 to ¢,. The mean or expectation
is given by

Mean[dP¢(X(¢), t)]
= AX(0) 0t [ zon(zX(0). 0002
Ze
Ag(X(t), 1) Ze(X (1), t)dt, @

where A,(X(¢),1) is the diagonal matrix representation of
the state dependent Poisson rates Ay ;(X(¢), t) for £ = 1 to
3and i = 11to qs, Z¢(X(t),) is the mean of the jump am-
plitude mark vector and ¢y ;(z, X(t), t) is the density of the
(¢,7)th amplitude mark component. Assuming component-
wise independence, dP,(X(¢), ¢) has covariance given by

Covar[dP,(X(t),t),dP, (X(t),1)]
Ag(*)dt/ (2 — Zie(%))(z — Ze(%) " de(z, %)dz
= Au(x)oe(x)dt, &)

with, for instance, oy(x) = 0¢(X(¢t),t) = [044,0: j]qexqe
denoting the diagonalized covariance of the amplitude mark
distribution for dP,(X(¢),¢). Again, the mark vector is
not assumed to have a zero mean, ie., Zy # 0, permit-
ting additional modeling complexity. Note, that for discrete
distributions the above integrals need to be replaced by the
appropriate sums.

The Gaussian white noise term, dW (¢), consists of r
independent, standard Wiener processes dW;(¢), for ¢ = 1
to r. These Gaussian components have zero infinitesimal
mean,

Mean[dW (1)]=0,x1 9)



and diagonal covariance,
Covar[dW (t), dW™ (t)] = I,.dt. (10)

It is further assumed that all of the individual component
terms of the Gaussian noise are independent of all of the
Poisson processes,

Covar[dW (t), dP} (£)] = Orxq,, (11)

for all /4.

The jth jump of the {¢, i }th space-time Poisson process
at time t,; ; with amplitude My ;; causes the following
jump from ¢, , . to , ; in the state:

[Hl(t£7i7j)x( 4,0 ])} Mg K52 é = 1
X)(tess)=9 [Halteis)Ulty, NiMeiy, ¢=2 & (12)
[H3(t£,z ])} M@ 8,9 =3

From the above statistical propertiecs of the stochastic
processes, dW and dP,, it follows that the first two con-
ditional infinitesimal moments of the state, fundamental for
modeling applications, are
Mean[dX (t) | X(t) =x,U(t) =
= [A®)x+ B(tyu+C(t) + [H1(t)x
+  [H2()u](A2Za)(x,t) + Hs(t)(A

u]
[(MZ1) (%, 1)
3Z3)(x,t)] dt (13)

and the conditional infinitesimal covariance,

Covar[dX(t) | X(t) =x,U(t) = u]
[(GGT)(®) + [Ha(t)x](Aror) (x, 6) [y (t)x] "
[Ha(t)u](A202)(x, t)[Ha(t)u] |
Hs(t)(Asos)(x,t) H3 (t)] dt. (14)

+ +

The quadratic performance index or cost functional that is
employed is quadratic with respect to the state and control
costs, is given by the time-to-go or cost-fo-go functional
form:

1ot ‘s
VX, U,t] = §(X SX)(tf)—|—/ C(X(1),U(r), m)dr (15)
with

1

C(x,u,t) = 3 [XTQ(t)X, —|—uTR(t)u] (16)
where the time horizon is (t,t7). with S(ty) = Sy is
the quadratic final cost coefficient matrix and C'(x, u, ) is
quadratic instantaneous cost function. The final cost, known
as the salvage cost, is given by the quadratic form,

x' Spx =Sy :xx' = Trace[Syxx']. 17
In order to minimize (15) requires that the quadratic control
cost coefficient R(¢) is assumed to be a positive definite
n x n array, while the quadratic state control coefficient
Q(1) is assumed to be a positive semi-definite 7 x m array.
The coefficients R(¢) and Q(¢) are assumed to be symmetric
for simplicity. The LQGP problem is defined by (1, 15).

The stochastic dynamic programming approach is used
to solve the control problem. So a functional, the opfimal,
expected cost, is defined as:

v(x,t) = Min Mean [V |X(t) =x,U(t)=u]|, (18
ult,t;) | PwWitts)

where the restrictions on the state and control are that they
belong to the admissible classes for the state, Dy, and con-
trol, Dy, respectively. A final condition on the optimal,
expected value, is determined from the final or sa/vage cost
using (18) with V[X, U, t¢] in (15) and is given by

v(x, ;) = %szfx, for x € Dy. (19)

Upon applying the principle of optimality to the op-
timal, expected performance index, (18, 15) and the chain
rule for Markov stochastic processes in continuous time for
the LQGP problem yields

O

=5 —(x,t) + Mm [(A(t)x + B(t)u

+  =x Qt)x+ %UTR(t)u
# Y ate) [ B0 K )
- v(x,t)] ¢1,6(z,x,t)dz

+ ng,k(x,t)/ [v(x + Hs 1 (t)z, 1)
— vEx

where the notation below defines the column arrays used in
the Poisson terms,

)] d3,u(2,%,t

Nt
Ry
X

(20)

[Hi(t) - xle = | Huiipi(t); ;
- - - mx1
[Ho(t)-ul, = | D Hoarg(Ou;|
_j:1 dmx1
H3i(t) = [Hzirp(t)]mx1, @2n

and where the double dot product is defined by

= Z Z Ai,jB'L',j = Trace[ABT]. (22)

J

A:B

The backward partial differential equation (PDE) (20) is
known as the Hamilton-Jacobi-Bellman (HIB) equation and
is subject to the final condition. The argument of the mini-
mum is the optimal control, u*(x, ¢); if there are no control



constraints the optimal control is known as the regular con-
trol, Wes(x, t).

To solve (20) subject to the final condition, for the
LQGP problem a modification of the formal state decom-
position of the solution for the usual LQG problem (for the
usual LQG see Bryson and Ho [3], Dorato et al. [4], or
Lewis [9]) is assumed:

v(x,t) = %XTS(t)X + DY (t)x + E(t)

1

+ 3 /t f(GGT) (7): S(rydr.  (23)

The final condition is satisfied, provided that

S(tf) = Sf, D(tf) =0, and E(tf) =0. (24

The ansatz (23) would not, in general, be true for the
state dependent case, but would be applicable if the Pois-
son noise is locally state independent, while globally state
dependent. That is, the state domain is decomposed into
subdomains, Dy = | J; D,, where the arrival rates and mo-
ments for all the Poisson processes are constant in the region

D,, and can be expressed as

A(X(t), 1) = As(t)

Z(X(t),t) = Zi(t)

o(X(1), 1) = 0,(1)
for all subdomains :. If there are any explicit dependence on
X (t) then the resulting system would then form a LQGP/U
problem (for more details sce Westman and Hanson [14, 15,
16, 17)).

Assuming the ansatz (23) holds the regular, uncon-

strained optimal control, u* = g, is given by

, for X(t) € Dy,, (25)

Weg (1) = —R(6) BT (t) [S(t)x + D(t)] . (26)

Assuming regular control, the coefficients for the optimal
expected performance (23) are given by

Omxm = S(t) + [ATS + 5S4+ Q] (¥)
+  Ti(t) - [Sgﬁ’lB\TS} (1), @7

Omx1 = D(1)+ [(A +(MZ)"HT)" D} )

T [s (C + H3AsZs) —Sﬁﬁ’lﬁTD} t), (28)

o
Il

B(t) + [(c + HyAsZs)" D} (1)
T % [(Hg,TSHg) cAsZ 73 — DT§§*1§TD} (t),(29)
where

Fl(t)

I
v o=
X
2!
X
g
N
N
=

[(Alz)T HT s} (1), (30)

Uo(t) = [([H3 LiS[Hel; : M2Z72) (D)), 3D

and

77() = v+ (%2 ) ©
= [oe:di; +Z,,»Z,j]qéxqé (32)
for £ =1 to 3 with

Rt) = R(t)+Ts(v), (33)
B(t) = B(t)+ (A2Z)"HT)(1), (34)

and
Ip,= T, +T7). (35)

Since the matrix R is positive definite, B~1 exists and
then so does R~1. Note (27) appears to have Riccati-like
quadratic form, but in general is highly nonlinear through
the S dependence of R and if Hy = [Hy ;. j k] mxqe xm.» then
H? = [HZ,j,i,k]qumeg~

Due to uni-directional coupling of these matrix differ-
ential equations, it is assumed that the nonlinear matrix dif-
ferential equation (27) for S(¢) is solved first and the result
for S(t) is substituted into equation (28) for D(t), which
is then solved, and then both results for S(¢) and D(¢) are
substituted into equation (29) for the state-control indepen-
dent term E(¢t). Since S(t) is a symmetric matrix by be-
ing defined with a quadratic form, only a triangle part of
S(t) need be solved, or n- (n + 1)/2 component equations.
Thus, for the whole coefficient set {S(¢), D(¢), E(¢)}, only
n-(n+1)/2+n+ 1 component equations need to be solve,
so that for large n the count is O(n?/2), asymptotically.
which is the same order of effort in getting the triangular
part of S(t).

3. LQGP Problem Formulation for MMS

Consider a MMS that produces the single consumable com-
modity. The MMS consists of & stages that form a lincar
sequence that is used to assemble the finished product. The
mechanisms by which the input, loading stage, of raw mate-
rials and the delivery of finished products, unloading stage,
are not considered as stages in the MMS. However, state de-
pendent Poisson noises are used to model catastrophic events
that affect the delivery of raw materials to the MMS. At time
t in the manufacturing planning horizon for stage 4, there are
n;(t) operational workstations. For each stage i, all work-
stations are assumed to be identical and produce goods at
the same rate ¢;(¢) with a capacity of producing M; parts
per unit time. For each stage k& of the manufacturing system
the state of the MMS is given by the number of operational
workstations, the surplus aggregate level, and the 3 state in-
dicators for the effects of primary and secondary strikes and
natural disasters on the MMS, respectively. Therefore the
dimension of the state of the system is a 5k x 1 vector.



A primary strike is any strike that directly affects the
assembly of the consumable good in such a way that when
they occur the MMS is shut down and no goods are pro-
duced. A sccondary strike is any strike that reduces the
number of goods that can be produced, but does not dis-
able the MMS. The impact of strikes and natural disasters
on stage 4, s;;(t), evolves according to the purely stochastic
equation,

The term —dej(sij (), 1) is used to model the effects of
the start of an event and dPﬁf (s45(t),t) is used to model the
resolution of an event, where the events are j = 1 primary
strike, 7 = 2 secondary strike, and j = 3 natural disas-
ters. The arrival rate for strikes is usually deterministic in
the sense that normally there is a fixed date, say ., for the
termination of a labor agreement, which if not resolved can
lead to a strike. For all of these stochastic processes, the ar-
rival rate is the mean time between the occurrences of such
events and the amplitude or mark density function is mod-
eled to represent the expected value and covariance for the
event to occur. The values for state indicators are bounded
by

0 < s45(t) < 8357, (37

where s37** <1 is the maximum impact the event can have
on the MMS. The various events are considered to be addi-
tive and a functional is used to represent the net effect given

by:

If s;(¢) = 0, then there is no effect on the MMS. If s;(¢) = 1
then no production takes place.

Each workstation is subject to failure and can be re-
paired. The mean time between failures and the repair dura-
tion is exponentially distributed. The evolution of the num-
ber of active workstations is bounded by

0 <ny(t) <N, (39

for all time, process using state dependent Poisson noises
given by

dn;(t) = dPE(ns(t), t) — dPF (ns(t), 1), (40)

where dPE(n(t),t) and dP¥ (n(t),t) are used to model the
repair and failure processes, respectively, which only de-
pends on the current number of active workstations. This
process forms a birth and death process or a random walk on
the interval (39). The number of active workstations, r;(t),
determines the arrival rates and mean mark amplitudes for
failure and repair events respectively given by

F o _ 07 g =0
1/)‘1 - { 1/)\?7 1 <y < Nz’ ) (41)

_ 0,
Zi = {Z;.“lerj, ISmSNi}’ “2)

R _ I/AE 0<n; <N

and

N;—n; . ) ) :
ZR = Zj:l jPrNi*Ja 0 S ng < Nz ; (44)
0, n; = N;

with

which represents the probability of having 7 operational
workstations at time ¢.

The surplus aggregate level represents the surplus (if
positive) or shortfall (if negative) of the production of pieces
that have successfully completed ¢ stages of the manufac-
turing process is given by

da; (t) = [MZ c; (t)n, (t) + u; (t) —d; (t)} dt + g; (t)dWZ (t)

3
— ) Hi(0)dP(si5(t), ). (46)
i=1

The change in the surplus aggregate level, da;(¢), is de-
termined by the number of pieces that have successfully
completed ¢ stages of the manufacturing process (ie.,
Mn;(t)e;(t)dt), that are not defective, and are not con-
sumed by stage ¢ + 1 (i.c., d;(¢)d¢), and by the status of the
workstations. The production rate ¢;(¢) needs to be phys-
ically realizable with respect to the number of operational
workstations and to the impact of strikes and natural disas-
ters. The term w;(¢)dt is used to adjust the production rate
where the control w; (¢) is expressed as the number of pieces
per unit time. The term, g;(¢)dW; (), is used to model the
random fluctuations in the number of pieces produced, for
example defective pieces. The demand term, d;(¢)dt, is the
consumption of the pieces produced by stage ¢ by stage i+ 1.
The demand needs to be adjusted to compensate for over or
under production as a result of strikes or natural disasters to
meet the fixed production goal. The last term uses Poisson
processes to represent the effects of strikes and natural dis-
asters where the coefficients, H;;(t), are the expected value
for the shortfall in the number of pieces produced.

The surplus aggregate level, a;(¢), for stage ¢ is de-
pendent on the number of operational workstations, »;(t).
The birth and death process for the number of operational
workstations is an embedded Markov chain (see Taylor and
Karlin [12], for instance), for the surplus aggregate level.
Thus the birth and death process is used to describe the so-
journ times for the discontinuous jumps in the surplus aggre-
gate level due to the effects of workstation repair or failure.
Hence, the surplus aggregate level is a piecewise continu-
ous process whose discontinuous jumps are determined by
the stochastic process for the number of operational work-
stations. Additionally, the processes for strikes and natural



disasters also induce discrete large jumps in the surplus ag-
gregate level through the sum in the last term of (46).

The demand rate d;(¢) is the number of parts needed
per unit time to insure that the manufacturing process is
a continuous flow of work, so that the desired number of
completed pieces are produced. The demand rate must also
take into account, based on past history, a minimal buffer
level sufficient to compensate for defective pieces as well as
workstation failures, and to insure that the proper start-up
surplus aggregate levels are present for the next planning
horizon. In order for the MMS to be well posed, it is re-
quired that

0 < d;(t) < M;N; (47)

per unit time so that the production goal of the MMS is
attainable.

In this formulation of the production scheduling, a re-
balancing of the demand rate is used to compensate for the
effects of strikes and natural disasters. Let PG denote the
total production goal for the manufacturing planning hori-
zon T > (. The simple average demand rate which is used
in this paper would initially be given as:

PG
ai(0) = =, (48)
fori=1to k.

Since the problem formulation presented here antici-
pates the strikes and natural disasters additional pieces are
produced to compensate for these shortfalls in production.
Here a rebalancing of demand should be done to adjust for
these effects. For simplicity we focus only on the primary
strike. A primary strike may occur at time ¢, which coin-
cides with the termination of a labor agreement. Assume
that the resolution of the strike if one occurs is at time
tsr = ts + 85 where d, is the actual duration of the strike.
Let P P;(t) be the cumulative number of nondefective pieces
produced at stage ¢ during the production interval [0, ¢] for
t < T. Depending on whether or not a strike occurs a
rebalancing of the demand rate would be given by

PG — PP()
di(t) = — 28 49
(=" (9)
where
ts, No Strike
t= { ter, Strike } (50)

This use of rebalancing of demand can also be used to con-
sume pieces that remain in surplus due to workstation fail-
ure. Suppose a failure occurs at stage < > 1, then a surplus
of pieces may accrue at stage ¢ which would need to be
consumed by stages ¢ through % (the remaining stages of
the MMS). The plant manager would need to decide the
discipline for doing this. For example, the manager may
choose to consume the pieces over the remaining manufac-
turing horizon as demonstrated above. Note, the production
demand may be time dependent and therefore would require

modifications to meet the objectives of the planning hori-
zon, as would be the case of cyclic or seasonal demand of
commodities.

The cost function used is the standard time-to-go or
cost-to-go form (15, that is motivated by a zero inventory
or Just in Time manufacturing discipline (see Hall [6] and
Bielecki and Kumar [2]) while utilizing minimum control
effort. In this formulation, the salvage cost, S(¢), is used
to impose a penalty on surplus or shortfall of production at
the end of the planning horizon. The term Q(¢) is used to
penalize shortfall and surplus production during the planning
horizon, this term is used to maintain a strict regimen on
when the consumable goods are to be produced. The term
R(1) is used to enforce a minimum control effort penalty.

To solve this problem, assume the regular control (26)
and solve the nonlinear system of ordinary differential equa-
tions (27,28,29). This allows the calculation of the produc-
tion rates used by the plant manager of the MMS . The
production rate, ¢;(¢) is a utilization, that is the fraction
of time busy. The physically realizable production rate is
bounded by

0 < ci(t) <" (1), (31
where
max _ :S\Z(t)a 1=1
el = { min[l, MPR;], 1<i<k } (52)
with

Si—1()ei—1(t)ni—1 (t) M1

(53)

which is the unconstrained maximum physical production
rate for stage ¢. The maximum production rate, ¢***(t), is
the minimum value of the physical production rate, 1.00 or
full utilization, and production limitations that arise due to a
shortfall of production from the previous stage due to either
machine failure, strikes, or natural disasters, where §;(¢) is
the total impact of strikes and natural disasters on stage ¢
given by

5;(t) =Max |1 - > s55(t), 0f . 4

3
—t

J

The strike and natural disaster influence is used to limit the
amount of pieces that can be produced by a given stage and
is bounded by 0 < 5;(¢) < 1, such that 5;(¢) = 0 means
that no production can occur.

In this formulation the production rate is a parameter of
the dynamic system and is adjusted by the control decision.
The regular controlled production level,

reg 0, nl(t) =90
i (t):{ ei(t) + ni(t) >0 } (5%)

which anticipates for the stochastic effects of workstation re-
pair and failure, defective parts, strikes or natural disasters.

W (1)
M;n; (t) ?



Note, that with the assumption of regular control, the surplus
aggregate level will always be forced to be zero, therefore
the regular controlled production level may not be physically
realizable. In the case of a primary strike, ¢;(¢)=0 for all
1, the regular controlled production level which is the same
as the regular control would be the number of pieces that
needs to be produced to force the surplus aggregate level to
zero, which clearly is not physically realizable. The con-
strained controlled production level, ¢ (), is the restriction
of the regular controlled production level to be physically
realizable and is given by

1 (t) = minfei®8 (1), ¢ (1)) (56)

7 i ’ g
where ¢**(t) is given in (51). The constrained controlled
production rate is used as the production rate for the work-
stations in the state equation for the surplus aggregate level
(46).

4. Numerical Example of LQGP MMS

Here we present two path realizations for this model. Con-
sider a MMS with &k = 3 stages with a planning horizon
of T' = 100 days and a production goal of PG = 57, 500
pieces which means the initial demand rate for all stages is
given by d;(¢) = 575 pieces per day. Let the initial surplus
aggregate level for all stages be zero, the total number of
workstations, V;, for each stage be 3, 3, and 4, respectively,
the Gaussian random fluctuations of production is assumed
absent (g;(t) =0 for ¢ = 1 to 3), and that secondary strikes
and natural disasters are not considered, for simplicity the
strike impact state variable will be referred to as s;(¢). The
state variables the MMS are

n(t)
x(t)=| a(t) , (57)

S(t) 9x1

where each component is a 3 x 1 vector. A single primary
strike can occur at the beginning of day 63 (ic., t; = 63)
of the planning horizon with an expected time of 14 days to
resolve itself (i.c., Mean[ds] = 14), that is the arrival rates

for the strike are given by
t < 63
P } . (58)

(63 —t) days,
0 days,

1N (00) = |

and

0 days,

with an expected impact or shortfall of 575 = 14 = 8050
pieces. The effects of a primary strike and its resolution on
the MMS will disable or enable production for all stages.

The operational characteristics for the workstations are
summarized in Table 4.

si(t) =1 } (59)

Production Mean Time Mean Time
Stage || Capacity, M; | between Failure to Repair
i (pieces/day) | 1/AF (days) | 1/AE (days)
1 238 85.0 2.50
2 143 75.0 1.50
3 178 90.0 1.75

Table 1: Operational workstation parameters.

Let @, ; and &5, ; denote the discrete mark transi-
tion probabilities for the repair and failure, respectively, of
j — 1 workstations for stage & when there are ¢ operational

workstations, with transition matrices given by

[ 0.00 0.95 0.05 ]
dF =1 000 1.00 0.00 |, (60)
| 1.00 0.00 0.00 |
[1.00 0.00 0.00 ]
dF =1 0.00 1.00 0.00 |, ©1)
| 0.00 0.90 0.10 |
[ 0.00 0.90 0.07 0.02 0.01 ]
0.00 0.92 0.07 0.01 0.00
dF =1 0.00 093 0.07 000 0.00 |, (62)
0.00 1.00 0.00 0.00 0.00
| 1.00 0.00 0.00 0.00 0.00 |
[ 1.00 0.00 0.00 0.00 0.00 ]
0.00 1.00 0.00 0.00 0.00
®'=1 000 095 005 000 0.00 |, (63)
0.00 0.94 0.05 0.01 0.00
| 0.00 0.92 0.05 0.02 0.01 |
[ 0.00 0.96 0.03 0.01 ]
r_ | 0.00 0.97 0.03 0.00
=1 000 1.00 0.00 000 |’ ©4)
| 1.00 0.00 0.00 0.00 |
and
[ 1.00 0.00 0.00 0.00 ]
r | 0.00 1.00 0.00 0.00
=1 000 095 0.05 0.00 (63)
| 0.00 0.90 0.07 0.03 |

The cost functional used is (15) where the coefficient ma-
trices are given by

O3x3 0O3x3 Osxs
S(tf) = | Osxzs Sy Osxz |, (66)
O3x3 0O3x3 Osxs
1.2 0.0 0.0
Sp=1]00 1.9 00 |, 67)

0.0 00 26



O3x3 0O3x3 03x3
Q)= 03xz Q2 0O3x3 |, (68)
O3x3 0O3x3 03x3
0.9 00 0.0
Os=| 00 1.6 00 |, (69)
0.0 00 23
and
12000 0 0
RH)=| o 1200 o |. (70)
0 0 12000

By comparing the coefficients of (1) with the state equations
for the MMS (40,46,36) the deterministic coefficients are
given by

03x3 03x3 03x3
A(t) = | diag[M]diag[c(t)] 0sxs Osxz |, (1)
03x3 03x3 03x3
O3x3
B(t)=| Ixsz |, (72)
O3x3
and
03x1
ct)y=| —d@® |, (73)
03x1

where diag[M] = [M;0; ;]rxs is the diagonal matrix rep-
resentation of the vector M and with the only nonzero sto-
chastic process and corresponding coefficient matrix given
by

[ dPE(n(t),1)

dP¥ (n(t),t)
dP3(X(t),1) = ; 74)
dP3(s(t),t)

| dPE(s(t),1)

and

I
—
=
=

0
0
0
—38050
—38050
—38050
-1
-1
-1

I
—
=
—

(75)

g

—~

-

=

Il
DO O OO O OO
DO O OO OO+ O
OO O OO O OO

OO OO OO

_ =, OO0 0000

DO OO OO O OO
OO O O OO

0

Using the above numerical values and assuming the regular
control the temporal dependent coefficients S(¢), dD(t), and
E(t) can be determined from (27,28,29). With the tempo-
ral coefficients known the regular control can be determined

Sample Path Realization Controlled Production Rates
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Figure 1: State sample path realization for active worksta-
tions, production rate for stage 1, demand rate, and percent
relative error of throughput of stage 1.
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Figure 2: State sample path realization for active worksta-
tions, production rate for stage 2, demand rate, and percent
relative error of throughput of stage 2.

from (26) for any state value. Finally, the regular control and
value for the state can be used to determine the MMS oper-
ating parameters for the regular controlled production rate,
c; 8 (¢), and constrained controlled production rate, ¢} (¢).

Figures 1, 2, and 3 show the results for the case when
a strike occurs with a rebalancing of the demand rate at the
end of the strike which leads to a higher demand rate for
the remaining manufacturing horizon. The percent relative
error for this sample path for the final stage 3 which is the
output of the MMS is 0.1406%. Figures 4, 5, and 6 are
for the case when the strike does not occur and rebalancing
of the demand rate occurs at ¢{; = 63 days which leads
to a reduced demand rate for the remaining manufacturing
horizon. The percent relative error for this sample path
for the final stage 3 which is the output of the MMS is
—0.006426%. The results presented here do not reflect the
need to rebalance the demand rate for workstation repairs
and failures.



Sample Path Realization Controlled Production Rates
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Figure 3: State sample path realization for active worksta-
tions, production rate for stage 3, demand rate, and percent
relative error of throughput of stage 3.
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Figure 4: State sample path realization for active worksta-
tions, production rate for stage 1, demand rate, and percent
relative error of throughput of stage 1.
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Figure 5: State sample path realization for active worksta-
tions, production rate for stage 2, demand rate, and percent
relative error of throughput of stage 2.
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Figure 6: State sample path realization for active worksta-
tions, production rate for stage 3, demand rate, and percent
relative error of throughput of stage 3.

5. Conclusions

A sudden labor strike or natural disaster can have
catastrophic consequences that are much more serious than
portrayed by the typical continuous state model, in addi-
tion to the jumps due to the random failure and repair of
multistage manufacturing system (MMS) workstations. The
model presented in this paper can be used to account for all
of these random events, alter the demand rate to meect the
production goal, and to determine the production rates of the
workstations in order to minimize adverse financial effects.
Our computational procedures lead to systematic approxi-
mations to the MMS model formulated here for strikes and
other random catastrophic events.
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