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Abstract

Computational methods for a jump-di�usion portfolio optimization application using a log-

uniform jump distribution are considered. In contrast to the usual geometric Brownian mo-

tion problem based upon two parameters, mean appreciation and di�usive volatility, the jump-

di�usion model will have at least �ve, since jump process needs at least a rate, a mean and a

variance, depending on the jump-amplitude distribution. As the number number of parameters

increases, the computational complexity of the problem of determining the parameter set of the

underlying model becomes greater. In a companion stochastic parameter estimation paper, real

market data, here a decade of log-returns for Standard and Poor's 500 index closings, is used to �t

the jump-di�usion parameters, with constraints based on matching the data mean and variance

to keep the unconstrained parameter space to 3 dimensions. A weighted least squares method

has been used. The jump-di�usion theoretical distribution and weights has been derived. In

this computational paper, the computational features of a new multidimensional, derivative-less

global search method used in the companion paper are discussed. The main part of this paper

is to discuss the computational solution of an optimal portfolio and consumption �nance appli-

cation with these more realistic parameter results. The constant relative risk aversion (CRRA)

canonical model is used to reduce the high dimensionality of the PDE of stochastic dynamic

programming problem to something more reasonable. Many computational issues arise due to

the jump process part of the model, since several jump integrals arise which are not present in

the pure di�usion with drift model. The log-uniformly distributed jumps allow a wider range of

portfolio policies than does previous work with normally distributed jumps.

1 Introduction

In portfolio optimization, large scale computations enter in at least two ways. The �rst is the

estimation of realistic �nancial parameters from appropriate large scale �nancial market data, such

that the parameter estimation does not su�er from over-�tting problems. The parameter estimation

is facilitated by a robust, global, multi-dimensional, optimization tool, which is under development,

and does not require derivatives. This computational tool is based upon the one-dimensional golden

section search method. The stochastic theory for this way is treated in the companion paper [7].

The second way large scale computations enter is in the stochastic optimal control problem using

computational dynamic programming for general Markov processes in continuous time to com-

pute the portfolio and consumption of wealth optimization. The jump process leads to higher

computational complexity since it adds global dependence in the form of jump integrals to the

local dependence of the partial derivatives introduced by the di�usion process. The computa-
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tional complexity of PDE of dynamic programming already su�ers from the curse of dimensionality

caused by the discretization of the PDE state space. Much of the computational complexity and

large scale computations can be reduced by employing canonical models such as Constant Relative

Risk-Aversion (CRRA) power utilities, for the utilities of terminal wealth and instantaneous con-

sumption. The jump integral computations can be systematically handled by our generalization of

Gaussian quadrature for general statistical distributions.

As an application to demonstrate these computational methods, we treat a stochastic optimal

control problem, constrained by the stochastic dynamics of wealth and the investment objective

is to maximize the conditional, expected discounted utilities of terminal wealth and instantaneous

consumption.

2 Optimal Portfolio and Consumption Problem

Let S(t) be the price of a stock or mutual stock fund at time t that satis�es the jump{di�usion

stochastic di�erential equation (SDE),

dS(t) = S(t) [�ddt+ �ddZ(t) + J(Q)dP (t)] ; S(0) = S0; S(t) > 0; (2.1)

where �d is the mean appreciation return rate, �d is the di�usive volatility, dZ(t) is a one{

dimensional mean{zero di�erential di�usion process with variance dt, J(Q) is a jump amplitude

depending on a random variable Q with log{return mean �j and variance �2j , and dP (t) is a stan-

dard di�erential Poisson process with jump rate � with common mean and variance of �dt. Here,

we will assume that the jump{di�usion parameters �d, �d, �j , �j and � are constants. The stochas-

tic processes dZ(t) and dP (t) are Markov and pairwise independent. The jump amplitude process

J(Q), given a Poisson jump in time, is also independently distributed.

Equation (2.1) can be transformed to the more convenient log-return form by an application of

the stochastic calculus chain rule to �nd the logarithmic di�erential yielding,

d[ln(S(t))] = �lddt+ �ddZ(t) + ln(1 + J(Q))dP (t) ; (2.2)

where the log{di�usion drift �ld � �d��2d=2 corrects the di�usion drift by the di�usion coe�cient.

Here, the random mark variable is chosen as the log-return jump amplitude, i.e., Q = ln(1+J(Q)),

uniformly distributed with density �Q(q) = �(u)(q;Qa; Qb) = 1=(Qb �Qa) on [Qa; Qb] where Qa <

0 < Qb. In a prior paper [5], a normal mark distribution was used with a fair amount of success,

but the uniform distribution appears to be more realistic since it has �nite support. Eq. (2.2) was

used in our stochastic companion paper [7] to facilitate the parameter estimation.

In addition to a stock, the portfolio is hedged with a bond, which is assumed to satisfy a deter-

ministic exponential process

dB(t) = rB(t)dt ; B(0) = B0 : (2.3)

with the bond price continuously compounded at a �xed rate of interest, r. Let U0(t) be the fraction

of the instantaneous change in the portfolio due to changes in the bond investment and U1(t) be

the fraction due to changes in the stock investment, such that U0(t) + U1(t) = 1.
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The portfolio wealth process at time t changes due to changes in the portfolio fraction depending

on the relative change in portfolio prices less instantaneous consumption of wealth:

dW (t) = W (t) [rdt+ U1(t) f(�d � r)dt + �ddZ(t) + J(Q)dP (t)g]� C(t)dt ; (2.4)

where C(t) is the instantaneous rate of consumption, assumed to be non{negative as well as con-

strained relative to wealth, i.e., 0 � C(t) � C
(0)
maxW (t) given C

(0)
max, and U0(t) = 1� U1(t) has been

eliminated by bond-stock fraction conservation.

The investor's objective is to maximize the conditional, expected current value of the discounted

utility Uf (w) of terminal wealth at the end of the investment terminal time T and the discounted

utility of instantaneous consumption, U(C(t)), i.e.,

v�(t; w) = max
fu;cg[t;T )

"
E

"
e��(T�t)Uf (W (T )) +

Z T

t
e��(��t)U(C(�))d�

����� C(t)
##

; (2.5)

conditioned on the state{control set C(t) = fW (t) = w;U1(t) = u;C(t) = cg, where 0 � t < T , 0 �
c � C

(0)
maxw for non{negative consumption feasibility with maximal relative limits C

(0)
max, w � 0

for non{negative wealth feasibility, and � > 0 is a �xed discount rate. Thus, the instantaneous

consumption c = C(t) and stock portfolio fraction u = U1(t) serve as control variables, while

the wealth w = W (t) is the state variable. The objective (2.5) is subject to the terminal wealth

condition v�(T;w) = Uf (w) and zero wealth absorbing boundary condition to avoid the possibility

of arbitrage [9],

v�(t; 0+) = Uf (0)e��(T�t) + U(0)(1 � e��(T�t))=� (2.6)

and assuming that the consumption must be zero when the wealth is zero.

Assuming the v�(t; w) is continuously di�erentiable in t and twice continuously di�erentiable in

w (see [5] for more details), then the stochastic dynamic programming equation for Poisson jump

versions follows from an application of the principle of optimality and the stochastic calculus chain

rule to the

0 = v�t (t; w) � �v�(t; w) + U(c�) + [(r + (�d � r)u�)w � c�] v�w(t; w)

+
1

2
�2d(u

�)2w2v�ww(t; w) +
�

Qb �Qa

Z Qb

Qa

[v�(t; (1 + J(q)u�)w) � v�(t; w)] dq ; (2.7)

where u� = u�(t; w) 2 [0; 1] and c� = c�(t; w) 2 [0; C
(0)
maxw] are the optimal controls if they exist,

while v�w(t; w) and v�ww(t; w) are the partial derivatives with respect to wealth w when 0 � t < T .

Non{negativity of wealth and the �nite mark domain [Qa; Qb] imply an additional consistency

condition for the control, since (1 + J(q)u�)w is a wealth argument, w � 0 and Qa < 0 < Qb, then

1 + J(q)u � 0 and consequently

Umin � �1=(exp(Qb)� 1) � u � +1=(1 � exp(Qa)) � Umax; (2.8)

de�nes the u control domain for optimal objective (2.5). This result is in stark contrast to the

[0; 1] control domain restriction found in [5] in the case of a normally distributed marks due to the

in�nite domain of the normal distribution. Here, recalling that the instantaneous bond fraction is

u0 = 1 � u, since Umin < 0 then Umin < u < 0 and u0 > 1 mean that short-selling of stocks is
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permitted, while since Umax > 1 then 1 < u < Umax and u0 < 0 mean that borrowing from bonds

is permitted.

The utilities will be taken to be Constant Relative Risk{Aversion (CRRA) power utilities [9,

Chapter 4-6] with the same power for wealth and consumption:

U(x) = Uf (x) = x
=
 ; x � 0; 0 < 
 < 1 : (2.9)

These power utilities for this optimal consumption and portfolio problem lead to a canonical re-

duction in computational complexity for the stochastic dynamic programming PDE problem to a

simpler ODE problem. The optimal utility value function has a solution separable in the wealth

state variable and time,

v�(t; w) = Uf (w)v0(t) ; (2.10)

where the wealth dependence is given explicitly and the time function is to be determined. Since

Uf (0+) = U(0+) = 0 from (2.9), the absorbing boundary (2.6), i.e., v�(t; 0+), is automatically

satis�ed.

Further, the regular (unconstrained) consumption control is a linear function of the wealth,

creg(t; w) � w � c(0)reg(t) = w=v
1=(1�
)
0 (t) : (2.11)

The regular stock fraction reduces to an implicitly de�ned wealth and time independent (essential

for separability) control, ureg(t; w) = u
(0)
reg,

u(0)reg = G(u(0)reg) �
1

(1� 
)�2d

h
�d � r + �I1(u

(0)
reg)

i
; (2.12)

I1(u) � 1

Qb �Qa

Z Qb

Qa

J(q) (1 + J(q)u)
�1
dq;

where the uniform mark density on [Qa; Qb] has been used. Since (2.12) only de�nes u
(0)
reg implic-

itly in �xed point form, u
(0)
reg must be found by iteration and a good choice is Newton's method

[5], a fast and accurate �xed point method. The integrals are e�ciently approximated by a 3{

point Gauss{Statistics quadrature [13, 5] (a general Gaussian quadrature that, with a standard

log{uniform jump density , is the Gauss{Legendre quadrature, but on [0; 1] with di�erent nodes

f(5�
p
15)=10; 5=10; (5 +

p
15)=10g and weights f5=18; 8=18; 5=18g, having �fth degree polynomial

precision). The optimal controls, when there are constraints, are given in the form: c�(t; w)=w =

c�0(t) = max[min[c
(0)
reg(t); C

(0)
max]; 0], provided w > 0, and u� = max[min[u

(0)
reg; Umax]; Umin], indepen-

dent of w and t along with u
(0)
reg.

Substitution of the separable power solution (2.10) and the regular controls in (2.11-2.12) into

the stochastic dynamic programming equation (2.7), leads to an ODE,

0 = v00(t) + (1� 
)

�
g1(u

�)v0(t) + g2(t)v




�1

0 (t)

�
; (2.13)

g1(u) � 1

1� 


�
�� + 
 (r + u(�d � r))� 
(1� 
)

2
�2du

2 + �(I2(u)� 1)

�

g2(t) � 1

1� 


" 
c�0(t)

c
(0)
reg(t)

!


� 


 
c�0(t)

c
(0)
reg(t)

!#
; (2.14)

I2(u) � 1

Qb �Qa

Z Qb

Qa

(1 + J(q)u)
dq ;
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for 0 � t < T . The coupling of v0(t) to the time dependent part of the consumption term c
(0)
reg(t) in

g2(t) (2.14), and the relationship of c
(0)
reg(t) to v0(t) in (2.11), means that the ODE (2.13) is actually

highly nonlinear and thus (2.13) is only of Bernoulli type implicitly. The implicit Bernoulli equation

(2.13) can be formerly transformed to a linear di�erential equation by using �(t) = v
1=(1�
)
0 (t), to

obtain, 0 = �0(t) + g1(u
�)�(t) + g2(t), whose general solution can be inverse transformed to the

particular solution for the separated time function implicitly given by

v0(t) = �1�
(t) =

"
e�g1(u

�)(T�t)

 
1 +

Z T

t
g2(�)e

g1(u
�)(T��)d�

!#1�


; (2.15)

using the �nal condition v0(T ) = 1. Hence, both v0(t) and c
(0)
reg(t) must be found by computational

iteration (see [5] for more details). Assembling solution for the optimal value function is v�(t; w) =

Uf (w)v0(t), requires only multiplication by the utility of wealth.

3 Computational Finance Results

In the companion stochastic parameter estimation paper [7], the authors deduced the following

asymptotic result for the log-return in the form of a log-normal di�usion, log-uniform jump process

in the case when the return-time �t is not an in�nitesimal:

Corollary 3.1 As �t! 0+, the log-uniform jump, log-normal di�usion density can be asymptot-

ically approximated as

�� ln(S(t))(x) � �(jd)(x) (3.16)

� (1� ��t)�(n)(x;�ld�t; �
2
d�t) + ��t

�(n)(x�Qb; x�Qa;�ld�t; �
2
d�t)

Qb �Qa
;

neglecting O((�t)2).

Here �(n)(x;�ld�t; �
2
d�t) is the normal density with mean �ld�t and variance �2d�t, while

�(n)(x; y;�ld�t; �
2
d�t) is the corresponding normal distribution on [x; y]. In [7], the histogram

of the theoretical density (3.16) was �t to the histogram of empirical market data, namely the

log returns of the daily closings of the S & P 500 Index , �[ln(SPi)] � ln(SPi+1) � ln(SPi) for

i = 1 : 2521 values from 1992 to 2001. This �tting was by the weighted least squares method

in which two of �ve jump-di�usion parameters were eliminated by matching the theoretical and

empirical mean M1 = E[� ln(S(t))] and variance M2 = Var[� ln(S(t))].

The minima was determined by our general multi-dimensional search method Golden Super

Finder (GSF) [8], that is a generalization of the one-dimensional Golden Section Search (GSS)

method. GSF is obviously slow due to the computational intensity, but convenient for global opti-

mization of complicated functions on powerful workstations. The GSF method has many modi�ca-

tion over the usual Golden Section Search method: (1) it is multi-dimensional, (2) for N dimensions

or variables there are 4N nodes using four nodes per dimension (two golden interior nodes plus two

endpoints), (3) all nodes are tested for the current minimum, (4) if the current minimum occurs

at a purely golden interior point GSF proceeds with a golden contraction like GSS, but if current

minimum is at an end point of any dimension then GSF shifts the hypercube golden template by
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two nodes in that dimension in search of a better minimum, and (5) a user can specify a bounding

hypercube domain in which the GSF hypercube search cannot leave, e.g., preserving non-negativity

of a variance parameter.

The �nal results for the jump-di�usion coe�cients are

�d ' 0:06386 ; �2d ' 0:005513 ; �j ' 0:0007624 ; �2j ' 0:0003679 ; � ' 55:46 ; (3.17)

Here, the average time between trading days �t ' 0:003967 was used since it was consistent with

the assumption of small O((�t)2) assumed in (3.16). Additional economic rate parameters that

will be used are the average rate for Moody AAA bonds of r ' 7:384% for data in the period

1999-2001 [2], and a corresponding discount rate � ' 6:884%, 50 basis point smaller than the bond

rate as is typical with the Federal Market Rates. Other parameters are 
 = 0:50 common terminal

wealth and instant consumption CRRA utility powers, C
(0)
max = 0:75 upper bound on consumption

relative to wealth, and T = 1 trading year terminal time.

Fast and accurate approximations are very important in �nancial engineering computations, so

the computations were coded in MATLABTM [10] due to its facility for developing rapid prototype

solutions.

In Figure 1, the numerical approximation to the optimal, expected utility v�(t; w) is shown versus

wealth w in dollars and t in trading years. When viewed for �xed time t, v�(t; w) follows the CRRA

power utility template in wealth w, whereas for �xed wealth w, v�(t; w) exhibits the dependence

on the separated time function v0(t) in time t. In the �nite di�erence representation, the wealth

w-intervals have been transformed into constant intervals in the utility power w
 since as a function

of w the utility is not di�erentiable as w ! 0+. Typically, the investor, given the terminal value

v � (T;w) = Uf (w), is interested in the starting value v�(0; w) as as function of wealth, but since

the problem here is autonomous dynamic programming also generates answers for lesser investment

periods T0 < T for which v�(T � T0; w) would be the starting value. The numerical result for the

constant optimal stock fraction control is u�(t; w) ' 3:271, the same as the regular stock fraction

control ureg(t; w) ' 3:271 which is well within the control domain [Umin; Umax] ' [�28:93;+31:31]
given the estimated bounds on the marks, Qa � q � Qb.

In Figure 2, the computational approximation of the optimal consumption policy or control

c�(t; w) is displayed versus the time t in trading years and the wealth w in dollars using the CRRA

power utility model. Recall that c�(t; w) is linear in the wealth w, but inversely proportional to the

square of the separated optimal value time function v0(t) to the power 1=(1� 
) = 2:00 here when


 = 0:5. Hence, lines constant in time are straight lines, while the dependence in time t for �xed

wealth w in [0; 100] is proportional to the reciprocal square of v0(t), i.e., v
�2
0 (t).

4 Conclusions

The log{normal di�usion, log{uniform jump distribution has been demonstrated on the canoni-

cal optimal portfolio and consumption control problem. The log{uniform jump distribution has

signi�cant bene�ts over the log{normal jump distribution used in our prior paper [5] in that the

stock fraction is not severely constrained on [0; 1] due to the �nite domain of the uniform distri-

bution, allowing for borrowing and short-selling, thus more realism. This uniform distribution is

demonstrated on the optimal portfolio and consumption policy application, yielding optimal stock
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Figure 1: Optimal, expected utility numerical results v
�(t; w) versus time t and wealth w for the CRRA

power utility model.

fraction, consumption and expected discounted utility value.

Computational techniques are presented for handling the iterations for implicitly de�ned solutions

such as the optimal stock fraction policy u� and the coupled optimal value separated time function

v0(t) and the optimal consumption policy c
�. Also, the Gauss{Statistics quadrature for handling the

log{uniform jump amplitude integral has been used, but this technique is also useful for other jump

distribution by using the appropriate standardized distribution. The features multi-dimensional

optimizer Golden Super Finder [8] was used in a companion parameter estimation paper [7] have

also been discussed.
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