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Abstract

The stochastic analysis is presented for the parameter estimation problem for fitting a theo-
retical jump-diffusion model to the log-returns from closing data of the Standard and Poor’s 500
(S&P500) stock index during the prior decade 1992-2001. The jump-diffusion model combines a
the usual geometric Brownian motion for the diffusion and a space-time Poisson process for the
jumps such that the jump amplitudes are uniformly distributed. The uniform jump distribution
accounts for the rare large outlying log-returns, both negative and positive in magnitude. The
log-normal, log-uniform jump-diffusion density is derived, leading to a jump-diffusion simulator
approximation for the case the the log-return time is a small fraction of a year. There are five
jump-diffusion parameters that need to be determined, the means and variances for both diffu-
sion and jumps, as well as the jump rate, given the average log-return time. A weighted least
squares is used to fit the theoretical jump-diffusion model to the S&P500 data optimizing with
respect to three free parameters, with the two other parameters constrained by the mean and
variance of the S&P500 data. The weight distribution derives from stochastic methods. The
ideal fitted model determines the three free parameters, but the corresponding simulated results
resemble the original S&P500 data better. This stochastic analysis paper is a companion to a
computational methods and portfolio optimization paper at this conference.

1 Introduction

A classical model of financial market return process, such as the Black-Scholes [1, 8], is the log-
normal diffusion process, such that the log-return process has a normal distribution. However, real
markets exhibit several deviations from this ideal, although useful, model. The market distribution,
say for stocks, should have several realistic properties not found in the ideal log-normal model: (1)
the model must permit large random fluctuations such as crashes or sudden upsurges, (2) the log-
return distribution should be skew since large downward outliers are larger than upward outliers,
and (3) the distribution should be leptokurtic since the mode is usually higher and the tails thicker
than for a normal distribution. For modeling these extra properties, a jump-diffusion process with
log-uniform jump-amplitude Poisson process is used to fit the S & P 500 Index log-returns. A
reasonable estimation of the parameters of the log-return process can be made using a weighted
least squares approximation that is an improvement over earlier jump-diffusion model results of
Merton [8] and the authors [2, 4, 5]. The computational issues are principally discussed in another
paper of the authors at this conference [6].
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2 Density for Jump-Diffusions

Let S(t) be the price of a stock or stock fund satisfies a Markov, continuous-time, geometric,
jump-diffusion stochastic differential equation (SDE),

dS(t) = S(t) [µddt + σddZ(t) + J(Q)dP (t)] , S(0) = S0 , S(t) > 0 , (2.1)

where µd is the mean return rate, σd is the diffusive volatility, Z(t) is a one-dimensional stochastic
diffusion process, J(Q) is a log-return mean µj and variance σ2

j random jump-amplitude and P (t)
is a simple Poisson jump process with jump rate λ. It is assumed that the stock price parameters
µd, σ2

d, µj , σ2
j and λ are constants. The differential diffusion process with drift µddt + σddZ(t) is

has mean µddt and σddt variance. The space-time jump process J(Q)dP (t) has mean E[J(Q)]λdt,
variance E[J2(Q)]λdt and dP (t) has the discrete distribution

pk(λdt) = Prob[dP (t) = k] = exp(−λdt)(λdt)k/k!, k = 0 : ∞ . (2.2)

The processes Z(t) and P (t) are pairwise independent, while J(Q) is also independent except that
it is conditioned on the existence of a jump in dP (t).

Since the SDE (2.1) has a geometric or linear form it can can be transformed to the simplified
log-return form using the stochastic process chain rule,

d[ln(S(t))] = µlddt + σddZ(t) + ln(1 + J(Q))dP (t) , (2.3)

where µlddt = µd−σ2
d/2 is the log-diffusion drift and ln(1+J(Q)) is the log-return jump-amplitude.

For finite log-return jump-amplitude and to avoid complete investment loss, J(Q) > −1, so the
underlying random jump mark amplitude Q = ln(1+J(Q)) on (−∞,+∞) is chosen for convenience.

For this paper, we are interested in a uniformly distributed mark variable Q to account for the
exceptionally long negative and positive tails in financial market distributions, as can seen in the
histogram of the log-returns for S & P 500 Index [10] daily closings in the decade from 1992-2001
in Figure 1. Since large jumps in the log-returns seem to be rare events relative to the background
ups and downs modeled by the diffusion process, the jump-amplitude distribution will be assumed
to be uniformly distributed on [Qa, Qb], Qa < 0 < Qb, with time-independent density

φQ(q) ≡ φ(u)(q;Qa, Qb) ≡ U(q;Qa, Qb)
Qb −Qa

, (2.4)

where U(x; a, b) denotes a unit step function on [a, b], such that

µj = (Qa + Qb)/2 and σ2
j = (Qb −Qa)2/12. (2.5)

Thus, the combined log-normal diffusion, log-uniform jump density derives from a triad form of
random processes ξ+η ·ζ, with diffusion ξ = µlddt+σddZ(t), jump-amplitude η = Q and jump-time
ζ = dP (t) processes. This density is proven in our time-dependent finance paper [5] and is given
here in the modified form,

Theorem 2.1. The probability density for the log–normal diffusion log–uniform jump–amplitude
log–return differential d[ln(S(t))] specified in the SDE (2.3) is given by

φd ln(S(t))(x) = p0(λdt)φ(n)(x;µlddt, σ
2
ddt) (2.6)

+
∞∑

k=1

pk(λdt)
Φ(n)(x− kQb, x− kQa;µlddt, σ

2
ddt)

k(Qb −Qa)
,
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Figure 1: Histogram of log-return of daily closings in the S & P 500 Index for the decade 1992–2001, using
100 bins.

−∞ < x < +∞, where the Poisson distribution pk(λdt) is specified in (2.2) and the normal
distribution on [x, y] is

Φ(n)(x, y;µlddt, σ
2
ddt) ≡

∫ y

x
φ(n)(z;µlddt, σ

2
ddt)dz ≡

∫ y

x

exp(−(z − µlddt)2/(2σ2
ddt))√

2πσ2
ddt

dz , (2.7)

where the integrand is the normal density of the diffusion process ξ = µlddt + σddZ(t) in (2.3).

In the theorem there is no mention that dt is the infinitesimal of time, since it can be used for
small but non-infinitesimal time increments ∆t as needed in the financial markets. In the S & P 500
Index the average time between closings is ∆t = 0.003967 years, so (∆t)2 = 0.00001574 is negligible
in comparison to ∆t, if that would be sufficiently accurate. Hence, the two-term asymptotic form
of (2.6) will be used:

Corollary 2.1. As ∆t → 0+, (2.6) can be asymptotically approximated as

φ∆ ln(S(t))(x) ∼ φ(jd)(x) (2.8)

≡ (1 − λ∆t)φ(n)(x;µld∆t, σ2
d∆t) + λ∆t

Φ(n)(x−Qb, x−Qa;µld∆t, σ2
d∆t)

Qb −Qa
,

neglecting O((∆t)2).

Eq. (2.8) is consistent with the usual zero-or-one jump definition of the infinitesimal Poisson
distribution given in full form by (2.2), such that there are zero jumps with probability (1 − λ∆t)
and one jump with probability λ∆t. Note that in (2.8) the zero-jump density is just the diffusion
density, while the one-jump density can be called the secant-normal density since it is the ratio
of the difference in normal distributions divided by the difference in arguments. Eq. (2.8) is also
consistent with the small time form of the log-return in (2.3), such that

∆ln(S(t)) =
∫ t+∆τ

t
d ln(S(τ)) ∼ µld∆t + σd∆Z(t) + Q∆P (t) , (2.9)
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provided the parameters are constant and higher order jumps are neglected, with ∆P (t) playing the
role of an indicator function for either zero or one jump. Eq. (2.9) can also for the jump-diffusion
simulations using

√
∆t times a normal random number generator for ∆Z(t), a standard uniform

generator on [0, 1] partitioned into [0, λ∆t] for one-jump and (λ∆t, 1] for no-jump in ∆P (t), and a
uniform generator on [Qa, Qb] for simulating Q provided a one jump is selected by the simulation
of ∆P (t).

3 Jump–Diffusion Parameter Estimation

For financial market modeling purposes, it is necessary to have an estimate of the parameters of
the market distribution. For the log-normal diffusion, log-uniform jump-amplitude jump-diffusion
theoretical model, there is a set of five parameters, {µd, σ

2
d, µd, σ

2
d, λ}, assuming the time-step ∆t

is known. The object of this paper is to estimate these parameters by fitting the theoretical
model to the decade worth of log-returns of the S & P 500 Index from 1992 to 2001 portrayed in
N (bin) = 100 histogram of Figure 1, subject to some constraints to keep the parameter estimation
computationally reasonable. There are a total of 2522 daily closings S

(sp)
i , so that there are N (sp) =

2521 log-returns, ∆(ln(S(sp)
i )) ≡ ln(S(sp)

i+1 )− ln(S(sp)
i ). The constraints used are matching the decade

mean M
(sp)
1 
 4.015×10−4 and variance M

(sp)
2 
 9.874×10−5. Relative to the normal distribution,

the higher order moment coefficients are η
(sp)
3 ≡ M

(sp)
3 /(M (sp)

2 )1.5 
 −0.2913 for skewness and
η̂

(sp)
4 ≡ M

(sp)
4 /(M (sp)

2 )2−3 
 4.804 for kurtosis, subtracting three for the unshifted normal kurtosis
coefficient.

The distinguishing feature of real markets are the thicker tails that are longer on the negative
side compared to normal distributions, leading to negative skew and larger kurtosis coefficients.
Hence, it is important that the fitting of the distributions be sufficiently weighted so that the tails
are sufficiently detectable. In our papers [4, 5], an unweighted least squares was used which resulted
in the negative tails over-dominating the positive tails. Here, we use a weighted least squares or
χ2 fit (see for instance the summaries in [9]),

χ2 =
N(bin)∑
i=1

ωi ·
(
f

(jd)
i − f

(sp)
i

)2
, (3.10)

where ωi is the weight of the ith bin, f
(sp)
i is the ith empirical S & P 500 bin frequency data

and f
(jd)
i is the ith theoretical jump-diffusion bin frequency corresponding to the same sample size

N (sp) = 2521. An estimate of the weights corresponding to a errors in measurements is not easy to
get, but we will use the following theoretical result to be proved elsewhere:

Theorem 3.1. If f (jdsim)
i =

∑N
j=1 U(∆S

(jdsim)
j ;xi, x

−
i+1) for i = 1 : N (bin) are the frequencies of the

ith bin [xi, xi+1) and ∆S
(jdsim)
j is the jth jump-diffusion simulation, using N samples, as prescribed

for (2.9), then the bin frequency expectation and variance are

µ
f
(jdsim)
i

= E
[
f

(jdsim)
i

]
= f

(jd)
i and σ2

f
(jdsim)
i

= Var
[
f

(jdsim)
i

]
= N ·

(
1 − f

(jd)
i

/
N

)2
f

(jd)
i , (3.11)

respectively, where the ith expected bin frequency after N simulations is

f
(jd)
i = N ·

∫ xi+1

xi

φ
(jd)
i (x)dx.
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The bin weights are chosen as the theoretical values,

ωi =
(
1/σ2

f
(jd)
i

)/
N(bin)∑
j=1

(
1/σ2

f
(jd)
j

)
, (3.12)

for i = 1 : N (bin) bins, normalized to a unit sum for convenience of small minima. The problem is
reduced to a 3-dimensional global minimization for the transformed parameter set {Qa, Qb, λ∆t}
subject to constraints,

M
(jd)
1 = µld∆t + µjλ∆t = M

(sp)
1 and M

(jd)
2 = σ2

d∆t + (σ2
j + µ2

j)λ∆t = M
(sp)
2 , (3.13)

serving as eliminants of µld∆t and σ2
d∆t, with the jump-moments definition (2.5) of µj and σ2

j

relating them to Qa and Qb (in rare case, non-negativity must be enforced on the variances). The
global minimizer Golden Super Finder (GSF) [7], developed for financial problems in [4, 5], was
used to estimate the fit (3.10). This method is an extensive modification of the method of golden
section search (see [9]) and is described more in [6]. The final parameter results are

µd 
 0.06386 , σ2
d 
 0.005513 , µj 
 0.0007624 , σ2

j 
 0.0003679 , λ 
 55.46 , (3.14)

with minimum χ2
min 
 2.621 × 10−5 with a relative value-location hybrid stopping criterion of

5 × 10−3 in a total of 16 GSF-iterations.
The final successful minimum weighted least squares iteration results are illustrated in Figure 2,

with both theoretical and simulation histograms. The histogram on the right for the simulations
more closely resembles the S & P 500 data histogram, the S & P 500 being a large realistic
simulation.
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Figure 2: Histogram of log-returns from the log-normal diffusion, log-uniform jump-diffusion model fitted
to the S & P 500 Index log-returns for the decade 1992–2001 shown in Fig. 1, using 100 bins. The figure on
the left is the fitted theoretical jump-diffusion histogram, while the figure on the right is the corresponding
simulated jump-diffusion histogram using the same final parameter results and the same number of samples
as the S & P 500 .
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Conclusions

In this paper, significant progress has been made toward fitting the theoretical log-normal diffusion,
log-uniform jump-diffusion model to realistic financial market data, here the 1992-2001 log-returns
of the S & P 500 Index . The log-uniform jump distribution is a big improvement over the log-
normal jump distribution used in [4]. The crucial advance was to use a least squares method with
weights and to establishing a method for computing the least square weights from the theoretical
bin frequencies. In essence, the S & P 500 Index data is treated as a large scale jump-diffusion
simulation.

The resulting estimated jump-diffusion parameter set can add more realism to financial market
applications, such as the optimal portfolio and consumption policy problem treated in a computa-
tional companion paper [6] of the authors at this conference.
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Program Mathematics Grant DMS–99–73231.
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