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Abstract

The stochastic analysis is presented for the parameter estimation problem for �tting a theo-

retical jump-di�usion model to the log-returns from closing data of the Standard and Poor's 500

(S&P500) stock index during the prior decade 1992-2001. The jump-di�usion model combines a

the usual geometric Brownian motion for the di�usion and a space-time Poisson process for the

jumps such that the jump amplitudes are uniformly distributed. The uniform jump distribution

accounts for the rare large outlying log-returns, both negative and positive in magnitude. The

log-normal, log-uniform jump-di�usion density is derived, leading to a jump-di�usion simulator

approximation for the case the the log-return time is a small fraction of a year. There are �ve

jump-di�usion parameters that need to be determined, the means and variances for both di�u-

sion and jumps, as well as the jump rate, given the average log-return time. A weighted least

squares is used to �t the theoretical jump-di�usion model to the S&P500 data optimizing with

respect to three free parameters, with the two other parameters constrained by the mean and

variance of the S&P500 data. The weight distribution derives from stochastic methods. The

ideal �tted model determines the three free parameters, but the corresponding simulated results

resemble the original S&P500 data better. This stochastic analysis paper is a companion to a

computational methods and portfolio optimization paper at this conference.

1 Introduction

A classical model of �nancial market return process, such as the Black-Scholes [1, 8], is the log-

normal di�usion process, such that the log-return process has a normal distribution. However, real

markets exhibit several deviations from this ideal, although useful, model. The market distribution,

say for stocks, should have several realistic properties not found in the ideal log-normal model: (1)

the model must permit large random 
uctuations such as crashes or sudden upsurges, (2) the log-

return distribution should be skew since large downward outliers are larger than upward outliers,

and (3) the distribution should be leptokurtic since the mode is usually higher and the tails thicker

than for a normal distribution. For modeling these extra properties, a jump-di�usion process with

log-uniform jump-amplitude Poisson process is used to �t the S & P 500 Index log-returns. A

reasonable estimation of the parameters of the log-return process can be made using a weighted

least squares approximation that is an improvement over earlier jump-di�usion model results of

Merton [8] and the authors [2, 4, 5]. The computational issues are principally discussed in another

paper of the authors at this conference [6].
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2 Density for Jump-Di�usions

Let S(t) be the price of a stock or stock fund satis�es a Markov, continuous-time, geometric,

jump-di�usion stochastic di�erential equation (SDE),

dS(t) = S(t) [�ddt+ �ddZ(t) + J(Q)dP (t)] ; S(0) = S0 ; S(t) > 0 ; (2.1)

where �d is the mean return rate, �d is the di�usive volatility, Z(t) is a one-dimensional stochastic

di�usion process, J(Q) is a log-return mean �j and variance �2j random jump-amplitude and P (t)

is a simple Poisson jump process with jump rate �. It is assumed that the stock price parameters

�d, �
2
d, �j , �

2
j and � are constants. The di�erential di�usion process with drift �ddt + �ddZ(t) is

has mean �ddt and �ddt variance. The space-time jump process J(Q)dP (t) has mean E[J(Q)]�dt,

variance E[J2(Q)]�dt and dP (t) has the discrete distribution

pk(�dt) = Prob[dP (t) = k] = exp(��dt)(�dt)k=k!; k = 0 :1 : (2.2)

The processes Z(t) and P (t) are pairwise independent, while J(Q) is also independent except that

it is conditioned on the existence of a jump in dP (t).

Since the SDE (2.1) has a geometric or linear form it can can be transformed to the simpli�ed

log-return form using the stochastic process chain rule,

d[ln(S(t))] = �lddt+ �ddZ(t) + ln(1 + J(Q))dP (t) ; (2.3)

where �lddt = �d��2d=2 is the log-di�usion drift and ln(1+J(Q)) is the log-return jump-amplitude.

For �nite log-return jump-amplitude and to avoid complete investment loss, J(Q) > �1, so the

underlying random jump mark amplitudeQ = ln(1+J(Q)) on (�1;+1) is chosen for convenience.

For this paper, we are interested in a uniformly distributed mark variable Q to account for the

exceptionally long negative and positive tails in �nancial market distributions, as can seen in the

histogram of the log-returns for S & P 500 Index [10] daily closings in the decade from 1992-2001

in Figure 1. Since large jumps in the log-returns seem to be rare events relative to the background

ups and downs modeled by the di�usion process, the jump-amplitude distribution will be assumed

to be uniformly distributed on [Qa; Qb], Qa < 0 < Qb, with time-independent density

�Q(q) � �(u)(q;Qa; Qb) �
U(q;Qa; Qb)

Qb �Qa

; (2.4)

where U(x; a; b) denotes a unit step function on [a; b], such that

�j = (Qa +Qb)=2 and �2j = (Qb �Qa)
2=12: (2.5)

Thus, the combined log-normal di�usion, log-uniform jump density derives from a triad form of

random processes �+� ��, with di�usion � = �lddt+�ddZ(t), jump-amplitude � = Q and jump-time

� = dP (t) processes. This density is proven in our time-dependent �nance paper [5] and is given

here in the modi�ed form,

Theorem 2.1 The probability density for the log{normal di�usion log{uniform jump{amplitude

log{return di�erential d[ln(S(t))] speci�ed in the SDE (2.3) is given by

�d ln(S(t))(x) = p0(�dt)�
(n)(x;�lddt; �

2
ddt) (2.6)

+
1X
k=1

pk(�dt)
�(n)(x� kQb; x� kQa;�lddt; �

2
ddt)

k(Qb �Qa)
;
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Figure 1: Histogram of log-return of daily closings in the S & P 500 Index for the decade 1992{2001, using

100 bins.

�1 < x < +1, where the Poisson distribution pk(�dt) is speci�ed in (2.2) and the normal

distribution on [x; y] is

�(n)(x; y;�lddt; �
2
ddt) �

Z y

x
�(n)(z;�lddt; �

2
ddt)dz �

Z y

x

exp(�(z � �lddt)
2=(2�2ddt))q

2��2ddt
dz ; (2.7)

where the integrand is the normal density of the di�usion process � = �lddt+ �ddZ(t) in (2.3).

In the theorem there is no mention that dt is the in�nitesimal of time, since it can be used for

small but non-in�nitesimal time increments �t as needed in the �nancial markets. In the S & P 500

Index the average time between closings is �t = 0:003967 years, so (�t)2 = 0:00001574 is negligible

in comparison to �t, if that would be su�ciently accurate. Hence, the two-term asymptotic form

of (2.6) will be used:

Corollary 2.1 As �t! 0+, (2.6) can be asymptotically approximated as

�� ln(S(t))(x) � �(jd)(x) (2.8)

� (1� ��t)�(n)(x;�ld�t; �
2
d�t) + ��t

�(n)(x�Qb; x�Qa;�ld�t; �
2
d�t)

Qb �Qa

;

neglecting O((�t)2).

Eq. (2.8) is consistent with the usual zero-or-one jump de�nition of the in�nitesimal Poisson

distribution given in full form by (2.2), such that there are zero jumps with probability (1 � ��t)

and one jump with probability ��t. Note that in (2.8) the zero-jump density is just the di�usion

density, while the one-jump density can be called the secant-normal density since it is the ratio

of the di�erence in normal distributions divided by the di�erence in arguments. Eq. (2.8) is also

consistent with the small time form of the log-return in (2.3), such that

�ln(S(t)) =

Z t+��

t
d ln(S(�)) � �ld�t+ �d�Z(t) +Q�P (t) ; (2.9)
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provided the parameters are constant and higher order jumps are neglected, with �P (t) playing the

role of an indicator function for either zero or one jump. Eq. (2.9) can also for the jump-di�usion

simulations using
p
�t times a normal random number generator for �Z(t), a standard uniform

generator on [0; 1] partitioned into [0; ��t] for one-jump and (��t; 1] for no-jump in �P (t), and a

uniform generator on [Qa; Qb] for simulating Q provided a one jump is selected by the simulation

of �P (t).

3 Jump{Di�usion Parameter Estimation

For �nancial market modeling purposes, it is necessary to have an estimate of the parameters of

the market distribution. For the log-normal di�usion, log-uniform jump-amplitude jump-di�usion

theoretical model, there is a set of �ve parameters, f�d; �2d; �d; �
2
d; �g, assuming the time-step �t

is known. The object of this paper is to estimate these parameters by �tting the theoretical

model to the decade worth of log-returns of the S & P 500 Index from 1992 to 2001 portrayed in

N (bin) = 100 histogram of Figure 1, subject to some constraints to keep the parameter estimation

computationally reasonable. There are a total of 2522 daily closings S
(sp)
i , so that there are N (sp) =

2521 log-returns, �(ln(S
(sp)
i )) � ln(S

(sp)
i+1 )� ln(S

(sp)
i ). The constraints used are matching the decade

meanM
(sp)
1 ' 4:015�10�4 and varianceM (sp)

2 ' 9:874�10�5. Relative to the normal distribution,
the higher order moment coe�cients are �

(sp)
3 � M

(sp)
3 =(M

(sp)
2 )1:5 ' �0:2913 for skewness andb�(sp)4 �M

(sp)
4 =(M

(sp)
2 )2�3 ' 4:804 for kurtosis, subtracting three for the unshifted normal kurtosis

coe�cient.

The distinguishing feature of real markets are the thicker tails that are longer on the negative

side compared to normal distributions, leading to negative skew and larger kurtosis coe�cients.

Hence, it is important that the �tting of the distributions be su�ciently weighted so that the tails

are su�ciently detectable. In our papers [4, 5], an unweighted least squares was used which resulted

in the negative tails over-dominating the positive tails. Here, we use a weighted least squares or

�
2 �t (see for instance the summaries in [9]),

�
2 =

N(bin)X
i=1

!i �
�
f
(jd)
i � f

(sp)
i

�2
; (3.10)

where !i is the weight of the ith bin, f
(sp)
i is the ith empirical S & P 500 bin frequency data

and f
(jd)
i is the ith theoretical jump-di�usion bin frequency corresponding to the same sample size

N (sp) = 2521. An estimate of the weights corresponding to a errors in measurements is not easy to

get, but we will use the following theoretical result to be proved elsewhere:

Theorem 3.1 If f
(jdsim)
i =

PN
j=1 U(�S

(jdsim)
j ;xi; x

�

i+1) for i = 1 : N (bin) are the frequencies of the

ith bin [xi; xi+1) and �S
(jdsim)
j is the jth jump-di�usion simulation, using N samples, as prescribed

for (2.9), then the bin frequency expectation and variance are

�
f
(jdsim)
i

= E
h
f
(jdsim)
i

i
= f

(jd)
i and �2

f
(jdsim)
i

= Var
h
f
(jdsim)
i

i
= N �

�
1� f

(jd)
i

.
N
�2

f
(jd)
i ; (3.11)

respectively, where the ith expected bin frequency after N simulations is

f
(jd)
i = N �

Z xi+1

xi

�
(jd)
i (x)dx:
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The bin weights are chosen as the theoretical values,

!i =

�
1=�2

f
(jd)
i

�,N(bin)X
j=1

�
1=�2

f
(jd)
j

�
; (3.12)

for i = 1 : N (bin) bins, normalized to a unit sum for convenience of small minima. The problem is

reduced to a 3-dimensional global minimization for the transformed parameter set fQa; Qb; ��tg
subject to constraints,

M
(jd)
1 = �ld�t+ �j��t =M

(sp)
1 and M

(jd)
2 = �2d�t+ (�2j + �2j)��t =M

(sp)
2 ; (3.13)

serving as eliminants of �ld�t and �2d�t, with the jump-moments de�nition (2.5) of �j and �2j
relating them to Qa and Qb (in rare case, non-negativity must be enforced on the variances). The

global minimizer Golden Super Finder (GSF) [7], developed for �nancial problems in [4, 5], was

used to estimate the �t (3.10). This method is an extensive modi�cation of the method of golden

section search (see [9]) and is described more in [6]. The �nal parameter results are

�d ' 0:06386 ; �2d ' 0:005513 ; �j ' 0:0007624 ; �2j ' 0:0003679 ; � ' 55:46 ; (3.14)

with minimum �
2
min ' 2:621 � 10�5 with a relative value-location hybrid stopping criterion of

5� 10�3 in a total of 16 GSF-iterations.

The �nal successful minimum weighted least squares iteration results are illustrated in Figure 2,

with both theoretical and simulation histograms. The histogram on the right for the simulations

more closely resembles the S & P 500 data histogram, the S & P 500 being a large realistic

simulation.
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Figure 2: Histogram of log-returns from the log-normal di�usion, log-uniform jump-di�usion model �tted

to the S & P 500 Index log-returns for the decade 1992{2001 shown in Fig. 1, using 100 bins. The �gure on

the left is the �tted theoretical jump-di�usion histogram, while the �gure on the right is the corresponding

simulated jump-di�usion histogram using the same �nal parameter results and the same number of samples

as the S & P 500 .
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Conclusions

In this paper, signi�cant progress has been made toward �tting the theoretical log-normal di�usion,

log-uniform jump-di�usion model to realistic �nancial market data, here the 1992-2001 log-returns

of the S & P 500 Index . The log-uniform jump distribution is a big improvement over the log-

normal jump distribution used in [4]. The crucial advance was to use a least squares method with

weights and to establishing a method for computing the least square weights from the theoretical

bin frequencies. In essence, the S & P 500 Index data is treated as a large scale jump-di�usion

simulation.

The resulting estimated jump-di�usion parameter set can add more realism to �nancial market

applications, such as the optimal portfolio and consumption policy problem treated in a computa-

tional companion paper [6] of the authors at this conference.
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