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Abstract— The Heston (1993) stochastic–volatility model is
a square–root diffusion model for the stochastic–variance. It
gives rise to a singular diffusion for the distribution according
to Feller (1951). Due to the singular nature, the time-step must
be much smaller than the lower bound of the variance. Several
transformations are introduced that lead to proper diffusions
including a transformation to an additive noise model with
perfect-square solution, an exact, nonsingular solution special
case and an alternate model. Simulation solution examples are
also given.

Index Terms— Stochastic–volatility, square–root diffusions,
transformations, stochastic calculus, diffusion approximations,
nonnegative–variance, simulations.

1. INTRODUCTION
The Heston model [19] of stochastic–volatility is a square–

root diffusion model for the stochastic–variance. According
to Feller [11] the model is a singular diffusion for the
distribution. Unlike a regular diffusion, there is an order
constraint on the relationship between the limit that the vari-
ance goes to zero and the limit that time–step goes to zero,
so that any nontrivial transformation of the Heston model
leads to a transformed diffusion in the Itô calculus. Several
transformations are introduced that lead to proper diffusions
and preservation of the nonnegativity of the variance in a
perfect–square form. An exact, nonsingular solution is found
for a special combination of the Heston stochastic–volatility
parameters.

Due to the square–root term, the singular nature of the
diffusion is intrinsic. Geometric Brownian motion is also a
singular diffusion, since the diffusion vanishes when the dif-
fusion coefficient vanishes. However, the singular nature of
geometric Brownian motion is removable by the well–known
logarithmic transformation, removing the state process from
the right hand side and resulting in an additive Brownian
motion. In general, singular diffusions can be sensitive to
slight changes in the model, which may lead to significant
changes in the solution, e.g., in the singular, turning point
resonance problem discussed by Hanson and Wazwaz [17].

A computationally simple and practical simulation recipe
of solutions to the Heston model is introduced that is
consistent with the proper diffusion scaling for the time–step
and the variance when both are small.

In financial markets, the log–returns differ from the geo-
metric or linear diffusions due to several properties. Some
of these are jumps and random or time–dependent statistical
properties. One significant property difference is that vari-
ance, or its square root, the volatility, can be stochastically
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time–dependent, i.e., we have stochastic volatility. Stochastic
volatility in the market has been studied and justified, mostly
in options pricing, but also foreign exchange and optimal
portfolios, by Andersen, Benzoni and Lund [1], Ball, and
Roma [2], Ball and Torous [3], Bates [4], Duffie, Pan
and Singleton [10], Hanson [16], Hanson and Yan [18],
Hull and White [21], Scott [27], Wiggins [28], Yan and
Hanson [29], and Zariphopoulou [31]. Andersen et al. [1],
as well as others, have statistically confirmed the importance
of both stochastic–volatility and jumps in equity returns.
Bates [4] studied stochastic-volatility, jump-diffusion models
for exchange rates.

Refined Euler discretization methods have been developed
by Broadie and Kaya [5], Deelstra and Delbaen [9], Higham
and Mao [20], Jäckel [22], Kahl and Jäckel [23], Lord,
Koekkoek and Dijk [25], and others. In particular, Higham
and Mao [20] have established strong convergence and other
results for the Euler–Maruyama discretization of several
versions of the mean–reverting, square–root model. Also,
Lord et al. [25] carry out comparisons of a number of Euler
discretization models of the more general CEV (constant
elasticity of volatility) models to force nonnegativity, includ-
ing many of the above mentioned discretization papers.

Glasserman [13] gives a second–order Milstein–like simu-
lation scheme for the Heston model. Kahl and Jäckel [23] fur-
ther developed fast and strong Milstein simulation schemes
for stochastic–volatility models. Broadie and Kaya [5] de-
vised an exact simulation method (ESM) for stochastic–
volatility, affine–jump–diffusion models for option pricing in
the sense of an unbiased Monte Carlo estimator, sampling the
variance from the exact chi–squared distribution conditioned
on a prior value. Smith [26] proposed an almost exact
simulation method (AESM) for the Heston model that is
faster and applicable to more financial derivatives.

For general overviews, the monographs of Fouque, Papan-
icolaou and Sircar [12], Gatheral [14], and Lewis [24] are
of interest. Fouque et al. [12] cover many issues involving
various models with stochastic–volatility with applications to
many types of financial derivatives with techniques for esti-
mating parameters. Lewis [24], in his interesting and useful
book, presents option pricing solutions of many stochastic-
volatility diffusion models, as well as many properties of
stochastic volatility models. Gatheral [14] presents a well-
balanced treatment of theory and practice.

However, here we are interested in the properties of the
Heston model alone, in simple methods of revealing its non-
negativity and the consistency of the Itô diffusion approxi-
mation under transformation of the stochastic variance when
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the stochastic–variance can be small. As Jäckel [22] states
regarding the Heston variance process model:

In an infinitesimal neighbourhood of zero, Itô’s
lemma cannot be applied to the variance process.
The transformation of the variance process to
a volatility formulation results in a structurally
different process!

Similarly, Lord et al. [25] briefly follows up on Jäckel’s
warning. Their comments suggest that a more thorough
investigation of the problem is merited.

This Itô dilemma for the Heston model and transforma-
tions will be examined for several transformations and leads
to questions about structural consistency of the Heston model
itself and the solution consistency of related simulations. One
of these consistent transformations, to a state-independent
guarantees positivity of the variances. Otherwise, the usual
Euler simulation of the Heston model leads to a number of
negative values of the variance depending on a certain rato
of Heston model parameters.

In Section 2, the stochastic–volatility, or stochastic–
variance dynamics, is specified. In Section 3, the non-
negativity of the variance is verified using a proper singular
form of a perfect-square form of the solution found from
the variance-independent transformed form of the model. In
Section 4, a consistency condition for the Itô lemma diffusion
approximation is derived, when the variance is very small
and positive, placing constraints on the relative smallness
of the time-step; this also has implications for stochastic–
variance simulations. In Section 5, a proper singular limit
formulation is given for the perfect-square form of Section 3.
In Section 6, an exact, nonsingular solution is given for
special values of the Heston model [19] stochastic-volatility
parameters. In Section 7, an alternate implicit integral form
is given that incorporates the deterministic solution. In Sec-
tion 8, selected simulations are given as illustrations of the
theory. In Section 9, conclusions are drawn.

2. HESTON’S STOCHASTIC VOLATILITY MODEL.
The mean–reverting, square–root–diffusion, stochastic–

volatility model of Heston [19] is frequently used. Heston’s
model derives from the CIR model of Cox, Ingersoll and
Ross [7] for interest rates. The CIR paper also cites the
Feller [11] justification for proper (Feller) boundary con-
ditions, process nonnegativity and the distribution for the
general square-root diffusions.

The stochastic–variance is modeled with the Cox–
Ingersoll–Ross (CIR) [6], [7] and often used Hes-
ton [19] mean–reverting stochastic–variance V (t) and
square–root diffusion

√
V (t), with a triplet of parameters

{κv(t), θ(t), σv(t)}:

dV (t)=κv(t) (θv(t)−V (t)) dt+σv(t)
√

V (t)dWv(t), (1)

with V (0) = V0 > 0, log–rate κv(t) > 0, reversion–level
θv(t) > 0 and volatility of variance σv(t) > 0, where
Wv(t) is a standard Brownian motion for V (t). Equation (1)
comprises the underlying stochastic–volatility (SV) model,
which will be called the Heston model here, but often the

term Heston model applies to the system of underlying and
its stochastic–volatility.

It is necessary that the continuous variance is nonnegative,
i.e., V (t) ≥ 0, but in simulation practice the discretized
variance needs to be constrained to be sufficiently positive
to avoid singularities and to preserve the diffusion approx-
imation with or without transformations. The nonnegativity
for the usual range of the parameters has been shown using
the distribution by Feller in his seminal singular diffusion pa-
per [11]. However, the simple Euler simulations can generate
small negative values of the variance and this is confirmed
in this paper. The likely reason is the simulations yields
a discrete process and not the continuous process of the
theoretical model (1), which imply a reflecting boundary near
zero for positive parameters.

In the next section, there are some recent, practical results
for the positivity of the variance for the Heston [19] model,
an implicit perfect square solution in the general parameter
case and an explicit form for the case where the speed of
reversion times the level of reversion is one quarter of the
square of the volatility of the variance (often called the
volatility of volatility) coefficient.

3. VERIFICATION OF NONNEGATIVITY OF STOCHASTIC
VARIANCE BY TRANSFORMATION TO PERFECT-SQUARE

FORM.

In some financial applications such as the Merton-type
optimal portfolio problem, the optimal stock-fraction is sin-
gular as the variance goes to zero. The corresponding stock-
fraction term is sometimes called the Merton fraction and is
inversely proportional to the variance v,

µ(t)−r(t)
(1−γ)v

,

where µ(t) is the asset drift coefficient, r(t) is the spot rate
at t and γ is the power of the risk-aversion utility. For such
fractions is important to know if the model yields positive
variance in calculations, beyond the theoretical nonnegative
variance constraint. However, if there are finite bounds on
the stock-fraction in the optimal portfolio problem, then that
would provide a cutoff for these singularities. See Han-
son [16] for a stochastic-volatility, jump-diffusion Merton
optimal portfolio problem example.

On the other hand, the nonnegativity of the stochastic
variance, V (t) ≥ 0, was settled long ago for the square-
root diffusion model by Feller [11], using very elaborate
Laplace transform techniques on the corresponding Kol-
mogorov forward equation to obtain the noncentral chi-
squared distribution for the distribution. He has given the
boundary condition classification for the distribution of the
process in terms of the parameters, which helps to determine
the values that would guarantee positivity preservation in the
range of nonnegativity preserving values. So, in the time-
independent form notation here, positivity and uniqueness
of the distribution is assured if κvθv/σ2

v > 1/2 with zero
boundary conditions in value and flux at v = 0, while if
0 < κvθv/σ2

v < 1/2 then only positivity can be assured
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for the distribution is the flux vanishes at v = 0. For
other qualifications and information, see Cox et al. [7],
Glassman [13], Jäckel [22], Broadie and Kaya [5], Kahl
and Jäckel [23], Smith [26] and Lord et al. [25], in addition
to Feller [11]. This includes various distribution simulation
techniques, many associated with the corresponding asset
option problem with stochastic volatility.

Using the general transformation techniques in Han-
son [15] with Y (t) = F (V (t), t), it is possible to find a
general perfect square solution to (1). Using Itô’s lemma
for truncation to the diffusion approximation, the following
transformed SDE is obtained,

dY (t)=Ft(V (t), t)dt+Fv(V (t), t)dV (t)

+1
2Fvv(V (t), t)σ2

v(t)V (t)dt,
(2)

to dt–precision. Then a simpler form is sought with
volatility-independent noise term, i.e.,

dY (t)=
(
µ(0)

y (t)+µ(1)
y (t)

√
V (t)

+µ(2)
y (t)

/√
V (t)

)
dt+σy(t)dWv(t),

(3)

with Y (0) = F (V0, 0), where µ(0)
y (t), µ(1)

y (t), µ(2)
y (t) and

σy(t) are time-dependent coefficients to be determined.
Equating the coefficients of dWv(t) terms between (2)
and (3), given V (t)=v≥0, leads to

Fv(v, t)=
(

σy

σv

)
(t)

1√
v
, (4)

and then partially integrating (4) yields

F (v, t)=2
(

σy

σv

)
(t)
√

v+c1(t), (5)

which is the desired transformation with a function of
integration c1(t). Additional differentiations of (4) produce

Ft(v, t)=2
(

σy

σv

)′
(t)
√

v + c′1(t)

and
Fvv(v, t)=−1

2

(
σy

σv

)
(t)v−3/2.

Terms of order v0dt=dt imply that c′1(t)=µ(0)
y (t), but this

equates two unknown coefficients, so we set µ(0)
y (t)=0 and

c1(t)=0 for convenience. Equating terms of order
√

vdt,

µ(1)(t)=

(
2
(

σy

σv

)′
− κv

(
σy

σv

))
(t) (6)

and for order dt/
√

v,

µ(2)(t)=
(
κvθv−σ2

v/4
)
(t)

(
σy

σv

)
(t). (7)

However, there are more unknown functions than equations,
so µ(1)(t) = 0 is set in (6) since that leads to an exact
differential for σy/σv with solution

(
σy

σv

)
(t)=

(
σy

σv

)
(0)eκv(t)/2,

where

κv(t)≡
∫ t

0
κv(s)ds.

For convenience, we set σy(0)=σv(0). Thus (6) becomes

µ(2)
y (t)=eκv(t)/2 (

κvθv − σ2
v/4

)
(t),

completing the coefficient determination.
Assembling these results we form the solution as follows,

Y (t)=2eκv(t)/2√
V (t)

from (5), and

dY (t)= eκv(t)/2

((
κvθv−σ2

v/4√
V

)
(t)dt+ (σvdWv)(t)

)

from (3) and inverting this yields the transparent non-
negativity result:

Theorem 1A. Nonnegativity of Variance: Let V (t) be the
solution to the Heston model (1), subject to conditions on
the diffusion approximation truncation (2) to be determined
(Theorem 1B), then

V (t)=e−κv(t)
(

Y (t)
2

)2

≥0, (8)

due to the perfect square form, where

Y (t)=2
√

V0+2Ig(t) (9)

and

Ig(t)= 0.5
∫ t

0
eκv(s)/2

((
κvθv−σ2

v/4√
V

)
(s)ds

+(σvdWv)(s)
)
.

(10)

This is an implicit form that is singular unless the solution
V (t) is bounded away from zero, V (t)>0. More generally it
is desired that the solution is such that 1

/√
V (t) is integrable

in t as V (t)→ 0+, so the singularity will be ignorable in
theory.

4. MODEL CONSISTENCY FOR ITÔ LEMMA DIFFUSION
APPROXIMATION TRUNCATION UNDER

TRANSFORMATION AND LIMIT OF VANISHING
VARIANCE.

In general, we will assume v is both positive and bounded,
i.e., 0 < εv ≤ v ≤ Bv , where Bv is a realistic rather
than theoretical upper bound. It is necessary to check the
consistency of the Itô lemma diffusion approximation trunca-
tion specified in (2) because of the competing time-variance
limits. As the time-increment ∆t→ 0+ in the mean square
limit for the Itô approximation and as the variance singularity
is approached, V (t)→ 0+, i.e., εv → 0+, difficulties arise
from the limited differentiability for small values of the
square root of variance. This means that it no longer make
sense to assume that the state variable V (t) is fixed if a
uniform approximation in ∆t and V (t) is needed for model
consistency and robustness.
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The F (v, t) given in (5) has the form F (v, t)=β0(t)
√

v+
c1(t), and the partial derivatives satisfy the power law

∂kF

∂vk
(v, t)=βk(t)v−(2k−1)/2,

where the coefficient βk(t) satisfies the recursion βk+1(t)=
−(k − 0.5)βk(t) when k ≥ 0 with β1(t) = (σy/σv)(t).
Hence, the partial derivatives will be bounded as long as
v is positive. For ∆t' 1, the corresponding increment in
F will be expandable as a Taylor series depending on the
relative sizes of ∆t and v=V (t), as

∆F (V (t), t)= F (V (t)+∆V (t), t+∆t)−F (V (t), t)

= ∂F
∂v ∆V (t)+ ∂F

∂t ∆t+ 1
2!

∂2F
∂v2 (∆V )2(t)

+ ∂2F
∂v∂t∆V (t)∆t+ 1

2!
∂2F
∂t2

(∆t)2

+ 1
3!

∂3F
∂v3 (∆V )3(t)+ 1

2!
∂3F

∂v2∂t
(∆V )2(t)∆t

+ 1
2!

∂3F
∂v∂t2

∆V (t)(∆t)2+ 1
3!

∂3F
∂t3

(∆t)3

+ · · · .

If ∆t'1 with conditioning the current variance on v, letting
µv(t) = κv(t)(θv(t)− v) and ∆Wv(t) =

√
∆tZv(t) with

standard normal Zv(t)dist= N (0, 1), then

[∆V (t)|V (t)=v] ( σv(t)
√

v∆tZv(t)+µv(t)∆t.

In terms of small ∆t when k>1, the pure variance deriva-
tives, i.e., those having only v-derivatives, will dominate the
cross variance-time derivatives, the mixed v and t derivatives,
as well as the pure time derivatives, since for ∆t' 1 then
∆t'

√
∆t' 1, while considering v fixed. Thus for k > 1,

only the powers of diffusion part of [∆V (t)|V (t)=v] need
be considered. The mean estimate of the absolute value of
dominant diffusion power is

E
[
|σv(t)

√
v∆Wv|k

∣∣ V (t)=v
]
=αk(t)(v∆t)k/2,

where αk(t) = σk
v (t)E[Zk

v (t)]. The products of these terms
produce an estimate of the corresponding dominant terms in
the Taylor expansion,
∣∣∣∣
∂kF

∂vk
(v, t)

∣∣∣∣ E[(σv(t)
√

v∆Wv)k]= γk(t)
∆t√

v

(
∆t

v

)
(k−2)/2

≤ γk(t)
∆t
√

εv

(
∆t

εv

)
(k−2)/2,

for γk(t)=αk(t)|βk(t)|, separated into the order ∆t/
√

v of
the Itô diffusion approximation (k = 2) term and the factor
relative to it. Hence, to eliminate all terms of higher order
than k=2, we need ∆t/v'1, i.e.,

∆t'εv'1

to obtain a proper Itô diffusion approximation (2) for the
transformation Y (t) = F (V (t), t) in (5). Summarizing the
results we have

Theorem 1B. Conditions for a Consistent Itô Lemma
Diffusion Approximation Truncation for Transforming

the Heston Model (1) to a Variance-Independent Noise
Model: Let the variance be positive and finite such that
0 < εv ≤ V (t)≤Bv , then the variance independent model
(2) is a consistent Itô diffusion approximation to the Heston
model (1) uniform in the limits ∆t'1 and εv'1 provided

∆t'εv'1. (11)

5. SOLUTION CONSISTENCY FOR SINGULAR LIMIT
FORMULATION SUITABLE FOR THEORY AND

COMPUTATION.

However, as V (t)→0+, it is necessary to verify that the
solution (12) satisfies the Heston model (1) in the limit, due
to the questions involving the validity of the Itô lemma and
the singular integral Ig(t) in (10).1

First recall that from (8)–(10)

V (t)=e−κv(t)
(√

V0+Ig(t)
)2

. (12)

Modifying the method of ignoring the singularity [8] to
this implicit singular formulation, let

V (εv)(t)≡max(V (t), εv) (13)

where εv > 0 such that ∆t/εv ' 1 is some reference
numerical increment ∆t→ 0+. This ensures that the time–
step goes to zero faster than the cutoff singular denominator.
The result is Itô diffusion approximation (2) consistency and
the numerical consistency of the solution (12). Next (12)–
(10) is reformulated as a recursion using some algebra for
the next time increment ∆t and the method of integration is
specified for each subsequent time–step, i.e.,

V (εv)(t + ∆t)=max
(
e−∆κv(t)

(√
V (εv)(t)

+e−κv(t)/2∆I(εv)
g (t)

)2
, εv

)
,

(14)

where

∆κv(t)≡
∫ t+∆t

t
κv(s)ds→ κv(t)∆t

as ∆t → 0+. Similarly, a scaled increment of an integral is
defined by

e−κv(t)/2∆I(εv)
g (t)≡ 0.5

∫ t+∆t

t
e(κv(s)− κv(t))/2

((
κvθv − σ2

v/4√
V (εv)

)
(s)ds

+(σvdWv)(s)

)

→ 0.5

((
κvθv − σ2

v/4√
V

)
(t)∆t

+(σv∆Wv)(t)

)
,

(15)

1Recall that Zabusky and Kruskal [30] showed that the well-known
discretization of the Fermi-Pasta-Ulam problem numerically solved the
Korteweg-deVries problem instead.
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such that

∆t/εv → 0+ as ∆t→ 0+ & εv → 0+. (16)

An Itô–Taylor expansion to precision dt or small ∆t confirms
that (14)–(15) yields the Heston [19] model, proving solution
consistency.

Thus, the square in (14) formally justifies the non-
negativity of the variance and the volatility of the Heston [19]
model, for a proper computational nonnegativity–preserving
procedure.

6. NONSINGULAR, EXPLICIT, EXACT SOLUTION.

In any event, the singular term in (12)–(10) vanishes in
the special parameter case, such that

κv(t)θv(t)=σ2
v(t)/4, ∀ t. (17)

Hence, we obtain a nonnegative, nonsingular exact solution

V (t)=e−κv(t)
(√

V0 + 0.5
∫ t

0
eκv(s)/2(σvdWv)(s)

)2

, (18)

with the recursive numerical form corresponding to the εv-
truncated forms (14)–(15),

V (εv)(t+∆t)=max

(
e−∆κv(t)

(√
V (εv)(t)

+
1
2

∫ t+∆t

t
e(κv(s)− κv(t))/2

·(σvdWv)(s)

)2

, εv

)
,

(19)

which is useful for testing simulation algorithms.

7. ALTERNATE SOLUTION RELATIVE TO DETERMINISTIC
SOLUTION USING INTEGRATING FACTOR

TRANSFORMATION.

Similarly, the chain rule for the integrating factor form

X(t)=exp(κv(t))V (t) (20)

for the general stochastic–volatility (1) leads to a somewhat
simpler integrated form,

V (t)=V (det)(t)+e−κv(t)
∫ t

0
eκv(s)

(
σv

√
V dWv

)
(s), (21)

suppressing the maximum with respect to zero to remove
spurious numerical simulations of the corresponding dis-
cretized model for the time being. In (21),

V (det)(t)=e−κv(t)
(
V0+

∫ t

0
θv(s)d

(
eκv(s)

))
(22)

is the deterministic part of V (t).
Note that there is only a linear change of dependent

variable according to the stochastic chain rule (Hanson,
2007) using the transformation (20). So the deterministic part
is easily separated out from the square-root dependence and
replaces the mean-reverting drift term. The V (det)(t) will be

positive for positive parameters. For simulation purposes the
incremental recursions are useful:

V (det)(t+∆t)= e−∆κv(t)
(
V (det)(t)

+e−κv(t)
∫ t+∆t

t

(
θvd

(
eκv

))
(s)

)
(23)

and

V (t+∆t)= e−∆κv(t)
(
V (t)+e−κv(t)

∫ t+∆t

t
eκv(s)

·
(
κvθv+σv

√
V dWv

)
(s)

)
.

(24)

Note that with constant coefficients, θv(t)=θ0, κv(t)=κ0

and σv(t)=σ0, then (22–24) become

V (det)(t)=V0e
−κ0t+θ0

(
1− e−κ0t

)
, (25)

V (det)(t+∆t)=θ0+e−κ0∆t
(
V (det)(t)−θ0

)
, (26)

and

V (t+∆t)=θ0+e−κ0∆t
(
V (t)−θ0+σ0

√
V (t)∆W (t)

)
. (27)

However, as Lord et al. [25] point out, a sufficiently
accurate simulation scheme and a large number of simulation
nodes are required so that the right-hand side of (1) generates
nonnegative values. Nonnegative values using the stochastic
Euler simulation have been verified for Heston’s [19] con-
stant risk-neutralized parameter values {κv =2.00, θv =0.01,
σv = 0.10} as long as the scaled number of nodes per unit
time N/(κvtf )>100.

Hence, since the variance by definition for real processes
cannot be negative, practical considerations suggest replacing
occurrences of V (t) by max(V (t), εv), where εv is some
numerically small, positive quantity for numerical purposes
to account for the appearances of negative variance values.

8. SELECTED NUMERICAL SIMULATIONS.
In Figure 1, the simulations for the Euler–Maruyama

approximation to Heston’s stochastic–variance equation (1),
truncating any negative values to zero, compared to the
perfect square solution simulations in (14) using εv = 0
since is not needed for nonpositivity. Also, shown is the
deterministic solution V (det)(t+∆t) simulation from (23).
The negative of the difference between the the truncated
Heston Euler simulations and the perfect square form is
shown at the bottom of the figure straddling zero except for
one spike. The maximum absolute value of this difference
is 2.46e-3. Otherwise, the Heston-Euler and perfect square
simulation trajectories are barely distinguishable in Fig. 1.
The parameter values used are {κv = 2.00, θv = 0.01,
σv = 0.25}, which coincidentally have the Heston model
parameter ratio κvθv/σ2

v =0.32 from the exact solution using
(17) .

In the simulation of Fig. 1, the Heston-Euler simulation
before truncation produces Kneq =76 improper nonpositive
values over one million sample points, while the perfect
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Fig. 1. Comparison of the Heston-Euler simulation of (1) with negative
values truncated to zero and the perfect square solution(14). Also shown
are the deterministic solution (23) and the negative of the error Verr12(t)
magnified 25 times. The Heston model parameter ratio is κvθv/σ2

v =0.32.
There are 106 sample points over 10 time units.

square solution does not even produce zero values. The
most negative value of the Heston-Euler simulation is V =–
1.01e–6, so not very significant. The number of negative
values Kneq before truncation are plotted in Figure 2 against
the Heston model parameter ratio κvθv/σ2

v . The number
of negative values begin as ratio approaches the Feller
boundary classification separation point at κvθv/σ2

v = 0.5
and are extreme at ratio value of 0.22. The results for the
simulations use the same random number generator seed in
MATLAB. Note the negative value count is the same for the
alternate implicit, integrated solution including, in part the
deterministic solution of (24).

In fact, the alternate and Heston-Euler simulations are
virtually the same, with the same maximum absolute dif-
ference of 2.46e–03 from the perfect square simulation,
suggesting that the problem is a numerical one with the
square root function of the variance. Also, there is appears
to be a discrepancy between the variance violations of the
simulations for the process model and Feller’s description
of the positivity for the distribution solution. The likely
reason is that the Euler simulations of the diffusion process
are discrete, while the theoretical process is continuous, in
which case the trajectory must be at zero for an instant
before becoming negative. However, when V (t) = 0 then
dV (t)=κvθvdt> 0, so the trajectory will reflected back to
positive values. Thus, the simulated negative values, though
very small must be a discretization flaw. This is a good reason
for setting any negative value at least to zero. See also the
comments in Higham and Mao [20] or Lord et al. [25] on
discretization treatments.

9. CONCLUSIONS.
The consistency of the Heston stochastic–volatility model

under transformations with the Itô lemma with respect to the
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Fig. 2. Nonpositive variance counts for the Heston Euler and Alternate
solution simulations, counted prior to truncation to zero. The coordinate
axis is the Heston model parameter ratio κvθv/σ2

v , where κv =2.00 and
θv =0.01, while σv ∈ [0.20, 0.30].

diffusion approximation is shown by considering the relation
between the time-step and variance as they both become
small using basic calculus principles.

Some practical results are given for the positivity of the
variance are given for the Heston [19] stochastic–volatility
model as a result of a transformation to the model diffusion
approximation with purely additive noise. The solution is
shown to have an implicit perfect square form in the general
parameter case. For solution consistency, it is also confirmed
that the transformed, truncated model formal solution re-
duces back to the Heston model in the joint small ∆t and
εv limit.

An explicit solution is given for the case where the speed
of reversion times the level of reversion is one quarter of the
square of the volatility of the variance coefficient.

The spurious simulation of small negative values from the
corresponding discretized Heston model is studied.
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