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Abstract

The Heston stochastic-volatility model is a square-root diffusion model for the stochastic-
variance. It gives rise to a singular diffusion for the distribution as noted by Feller (1951).
Hence, there is an order constraint on the relationship between the limit that the variance goes
to zero and the limit that time-step goes to zero, so that any non-trivial transformation of the
Heston model leads to a transformed diffusion in the It6 Calculus. Several transformations are
introduced that lead to proper diffusions and preservation of the nonnegativity of the variance
in a perfect-square form. An exact, nonsingular solution is found for a special combination of
the Heston stochastic volatility parameters.

A computationally simple and practical simulation recipe of solutions of the Heston model
is introduced that is consistent with the proper diffusion scaling for the time-step and the vari-
ance when both are small.

Key words: stochastic-volatility, square-root diffusions, simulations, transformations,
Itd diffusion approximation, nonnegative-variance verification.

1 Introduction.

In financial markets, the log-returns differ from the geometric or linear diffusions due to several
properties. Some of these are jumps and random or time-dependent statistical properties. One
significant property difference is that variance, or its square root, the volatility, can be stochastically
time-dependent, i.e., we have stochastic volatility. Stochastic volatility in the market, mostly in
options pricing, has been studied by Garman and Klass [12], Johnson and Shanno [21], Ball and
Torous [3], Hull and White [18], Wiggins [27], Stein and Stein [26, see corrections in [2]], Ball
and Roma [2], Scott [24], and Lord, Koekkoek and Dijk [23]]. Andersen, Benzoni and Lund [1], as
well as others, have statistically confirmed the importance of both stochastic volatility and jumps
in equity returns. Bates [4] studied stochastic-volatility, jump-diffusion models for exchange rates.

The mean-reverting, square-root-diffusion, stochastic-volatility model of Heston [[17] is fre-
quently used. Heston’s model derives from the CIR model of Cox, Ingersoll and Ross [/] for



interest rates. The CIR paper also cites the Feller [[10] justification for proper (Feller) boundary
conditions, process nonnegativity and the distribution for the general square-root diffusions. In a
companion paper to the CIR model paper, Cox et al. [6] present the more general theory for asset
processes.

In their monograph, Fouque, Papanicolaou and Sircar [11] cover many issues involving vari-
ous models with stochastic volatility with applications to many types of financial derivatives with
techniques for estimating parameters. Lewis [22], in his interesting and useful book, presents op-
tion pricing solutions of many stochastic-volatility diffusion models, as well as many properties of
stochastic volatility models. In their often cited paper on affine jump-diffusions, Duffie, Pan and
Singleton [9] include a section on various stochastic-volatility, jump-diffusion models. Yan and
Hanson [28,29,16] explored theoretical and computational issues for both European and American
option pricing using stochastic-volatility, jump-diffusion models with log-uniform jump-amplitude
distributions. Wiggins [27]] considers the optimal portfolio problem for the log-utility investor with
stochastic volatility and using equilibrium arguments for hedging. Zariphopoulou [30] analyzes
the optimal portfolio problem with CRRA utility, a stochastic factor, i.e., stochastic volatility, and
unhedgeable risk.

Glasserman [[13] gives a second-order Milstein-like simulation scheme for the Heston model.
Jackel and Kabhl [20] further developed fast and strong Milstein simulation schemes for stochastic
volatility models. Broadie and Kaya [3] devised an exact simulation method (ESM) for stochastic-
volatility, affine-jump-diffusion models for option pricing in the sense of an unbiased Monte Carlo
estimator, sampling the variance from the exact chi-squared distribution conditioned on a prior
value. Smith [25] proposed an almost exact simulation method (AESM) for the Heston model that
is faster and applicable to more financial derivatives.

However, here we are interested in the properties of the Heston model alone, in simple meth-
ods of revealing its non-negativity and the consistency of the It6 diffusion approximation under
transformation of the stochastic variance when the stochastic variance can be small. As Jickel [19]]
states regarding the Heston variance process model (here (2.1))):

In an infinitesimal neighbourhood of zero, Ito’s lemma cannot be applied to the vari-
ance process. The transformation of the variance process to a volatility formulation
results in a structurally different process!

This remark is also emphasized by Lord, Koekkoek and Dijk [23]].

This It6 dilemma for the Heston model and transformations will be examined for several trans-
formations and leads to questions about structural consistency of the Heston model itself and the
solution consistency of related simulations. One of these consistent transformations, to a state-
independent guarantees positivity of the variances. Otherwise, the usual Euler simulation of the
Heston model leads to a number of negative values of the variance depending on a certain rato of
Heston model parameters.

In Section [2} the stochastic-volatility, or stochastic variance dynamics, is specified. In Sec-
tion 3] the nonnegativity of the variance is verified using a proper singular form of a perfect-square
form of the solution found from the variance-independent transformed form of the model. In Sec-
tion 4] a consistency condition for the It6 lemma diffusion approximation is derived, when the
variance is very small and positive, placing constraints on the relative smallness of the time-step;
this also has implications for stochastic variance simulations. In Section[5] a proper singular limit
formulation is given for the perfect-square form of Section 3| In Section [6] an exact, nonsingular
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solution is given for special values of the Heston model [[17] stochastic-volatility parameters. In
Section [/ an alternate implicit integral form is given that incorporates the deterministic solution.
In Section 8] selected simulations are given as illustrations of the theory. In Section[9] conclusions
are drawn.

2 Heston’s Stochastic Volatility Model.

The stochastic variance is modeled with the Cox-Ingersoll-Ross (CIR) [6, 7] and Heston [17]
mean-reverting stochastic variance V' (¢) and square-root diffusion y/V/(t), with a triplet of param-

eters {r,(t),0(t), o, (t) }:
AV (t) = ky(t) (0,(t) — V() dt + o, (t)\/V (£)dW, (¢ (2.1

with V(0) = Vi > 0, log-rate k,(t) > 0, reversion-level 6,(t) > 0 and volatility of volatility
(variance) o,(t) > 0, where W, (t) is a standard Brownian motion V' (¢).

It will be assumed that the variance is nonnegative, i.e., V' (¢) > 0, but see Section [3|for impor-
tant practical qualifications in theory and computation. Equation (2.1) comprises the underlying
stochastic-volatility (SV) model. See also [4, 24, 11} 28, 29, |16] for other applications.

In the next section, there are some recent, practical results for the positivity of the variance for
the Heston [17] model, an implicit perfect square solution in the general parameter case and an
explicit form for the case where the speed of reversion times the level of reversion is one quarter
of the square of the volatility of the volatility coefficient.

3 Verification of Nonnegativity of Stochastic Variance
by Transformation to Perfect-square Form.

In some financial applications such as the Merton-type optimal portfolio problem, the optimal
stock-fraction is singular as the variance goes to zero. The corresponding stock-fraction term is
sometimes called the Merton fraction and is inversely proportional to the variance v,

p(t) — r(t)
(I=yv "’
where (t) is the asset drift coefficient, r(¢) is the spot rate at ¢ and + is the power of the risk-
aversion utility. For such fractions is important to know if the model yields positive variance in
calculations, beyond the theoretical nonnegative variance constraint. However, if there are finite
bounds on the stock-fraction in the optimal portfolio problem, then that would provide a cutoff
for these singularities. See Hanson [15] for a stochastic-volatility, jump diffusion Merton optimal
portfolio problem example.

On the other hand, the nonnegativity of the stochastic variance, V' (¢) > 0, was settled long ago
for the square-root diffusion model by Feller [10], using very elaborate Laplace transform tech-
niques on the corresponding Kolmogorov forward equation to obtain the noncentral chi-squared
distribution for the distribution. He has given the boundary condition classification for the dis-
tribution of the process in terms of the parameters, which helps to determine the values that
would guarantee positivity preservation in the range of nonnegativity preserving values. So, in
the time-independent form notation here, positivity and uniqueness of the distribution is assured if
Kyl /0% > 1/2 with zero boundary conditions in value and flux at v = 0, while if 0 < k,0, /02 <



1/2 then only positivity can be assured for the distribution is the flux vanishes at v = 0. For
other qualifications and information, see Cox et al. [/], Glassman [13], Jickel [19], Broadie and
Kaya [5]], Jackel and Kahl [20], Smith [25] and Lord et al. [23]], in addition to Feller [10]. This
includes various distribution simulation techniques, many associated with the corresponding asset
option problem with stochastic volatility.

Using the general transformation techniques in Hanson [14] with Y (t) = F(V (¢), ), itis possi-
ble to find a general perfect square solution to (2.1)). Using It6’s lemma, the following transformed
SDE is obtained,

1 2

dY (t) = F(V (), 0)dt + B,V (5),0)dV (1) + 5 Fa(V (D), 02OV (1), 3.1)

to dt-precision. Then a simpler form is sought with volatility-independent noise term, i.e.,
dY (t) = ( O 1) + 1M (t)/ \/V(t)> dt + o, (t)dW, (t) (3.2)
with Y(0) = F(V4,0), where Y (t), ,uél)(t) and o0, (t) are time-dependent coefficients to be de-

termined. Equating the coefficients of dWW,(t) terms between (3.1) and (3.2)), given V' (t) = v > 0,
leads to

1
Fy(v,1) = (@) ()~ (3.3)
ot v
and then partially integrating (3.3)) yields
Pl =2(2) v+ al, G4

which is the desired transformation with a function of integration ¢, (¢). Additional differentiations

of (33) produce
Fy(v,t) =2 (&)/(t)\/ﬁ L) & Fu(vt) = —% (-)(t)v-W.

Oy

Terms of order v°dt imply that | (t) = ug(,o) (t), but this equates two unknown coefficients, so we

©) (t) = 0 for simplicity. Equating terms of order y/vdt and integrating imply

set iy
(- E)oms = (o= (e

where

For convenience, we set 0, (0) = ,(0). For order v~/2dt, we obtain

pD(t) = Fu(t)/2 (Kvev - }lag> (t),
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completing the coefficient determination.
Assembling these results we form the solution as follows,

Y (t) = 260 (0)/2 70,

and inverting this yields the desired nonnegativity result:
Theorem 3.1. Nonnegativity of Variance: Ler V (t) be the solution to the Heston model (2.1)),
then

V(t) = e Folt) (@)2 >0, (3.5)
due to the perfect square form, where
Y(t) = 2/Vp + /t eFu(s)/2 m)——i& (s)ds + (0,dW,)(s) | . (3.6)
0 VvV

This is an implicit form that is singular unless the solution V'(¢) is bounded away from zero,
V(t) > 0. More generally it is desired that the solution is such that 1 / \/V(t) is integrable in ¢ as
V(t) — 07, so the singularity will be ignorable in theory.

4 Model Consistency for Ito Diffusion Approximation Lemma
Under Transformation and Limit of Vanishing Variance.

In general, we will assume v is both positive and bounded, i.e., 0 < ¢, < v < B,, where B,
is a realistic rather than theoretical upper bound. It is necessary to check the consistency of the
It6 diffusion approximation in because of the competing time-variance limits. As the time-
increment At — 0" in the mean square limit for the Ité6 approximation and as the variance singu-
larity is approached, V'(t) — 07, i.e., ¢, — 07, difficulties arise from the limited differentiability
for small values of the square root of variance. This means that it no longer make sense to assume
that the state variable V' (¢) is fixed if a uniform approximation in At and V'(¢) is needed for model
consistency and robustness.

The partial derivatives of the F'(v,t) given in (3.4), in the form F(v,t) = By(t)\/v + c1(t), and
following equations imply that they satisfy the power law

k
O 0. 1) = Bty

for coefficient (3 () such that 841(t) = —(k — 0.5)5,(¢) when k& > 0 with 5,(t) = (0,/0,)(t),
so the partial derivative will be bounded as long as v is positive. For At < 1, the corresponding
increment in F’ will be expandable as a Taylor series depending on the relative sizes of At and v,
as

AF(V (), )= F(V{t)+AV(t),t+ At) — F(V(t),1)

2
= EAv) + G ar+ L TE VY + L avar

2
+7%7F(At) + %%(AV)‘?( ) + %%(AV}%)M T
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If At < 1, conditioning the current variance on v, letting 1, (t) = k,(t)(0,(t) —v) and AW, (t) =
VAtZ,(t) with standard normal Z,(t) =" A/(0, 1), then

[AV (V1) = 0] = 0y () VOALZ, (1) + () At

Just in terms of small At when k£ > 1, the pure diffusion terms, those having only v-derivatives
will dominate the cross diffusion-drift terms with mixed v and ¢ derivatives, as well as the pure
drift terms with only ¢ derivatives, since for At < 1 then At < VAL < 1, also assuming v is
fixed. Thus for £ > 1, only the powers of diffusion part of [AV(¢)|V (t) = v| need be considered.
The mean estimate of the absolute value of dominant diffusion power is

E [lav(t)\/EAWU‘k| V(t) = U} :Oék@)(UAt)km,

where ay(t) = oF(t)E[Z%(t)]. The products of these terms are an estimate of the corresponding
dominant terms in the Taylor expansion,

e NN N G A GO

for v, (t) = au(t)| Bk (t)|, separated into the order At/+/v of the It diffusion approximation (k= 2)
term and the factor relative to it. Hence, to eliminate all terms of higher order than k£ = 2, we
need At/v < 1, ie., At < &, < 1 to obtain a proper Itd diffusion approximation for the
transformation Y () = F(V/(¢),t) in (3.4). Summarizing the results we have

Theorem 3.2. Conditions for a Consistent It6 Diffusion Approximation for Transforming
the Heston Model to a Variance-Independent Noise Model: Let the variance be positive and
finite such that 0 < ¢, < V(t) < B,, then the variance independent model is a consistent
Ito diffusion approximation to the Heston model uniform in the limits At < 1and e, < 1
provided At < &,.

S Solution Consistency for Singular Limit Formulation
Suitable for Theory and Computation.

However, as V(t) — 07, the validity of neglecting higher order terms in the Taylor expansion
underlying Itd’s lemma is questionable, unless the integral is treated as a singular integral and the
method of integration steps is properly specified.

First (3.5)-(3.6) are simply reformulated as

V(t) = e Fult <\/70+1 ) (5.7)
where

1 2
Kyly — =0,
A4 1 (s)ds+ (o,dW,)(s) ] . (5.8)

1(t) = 0.5 / " Fu(s)/2 o

Modifying the method of ignoring the singularity (8] to this implicit singular formulation, let

VE) () = max(V (1), &,)
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where €, > 0 such that At/s, < 1 is some reference numerical increment At — 0F. This
ensures that the time-step goes to zero faster than the cutoff singular denominator. The result is
1td diffusion approximation (3.1]) consistency and the numerical consistency of the solution (5.7).
Next (5.7)-(5.8) is reformulated as a recursion using some algebra for the next time increment At
and the method of integration is specified for each subsequent time-step, i.e.,

2
VE (¢ 4+ At) = max (e—AEU(t)< VE(t) + G—Ev(t)/QAIéev)(t)) ,Ev), (5.9)

where

AR, (t) = /t Ko(8)ds — Ky (t)At

as At — 0. Similarly, a scaled increment of an integral is defined by

1
e~ Fu(t )/QA[ () = 0,5/t+m€(ﬁv(3) —Fu(t))/2 Wv——(})ag (s)ds + (0dW,)(s)
t 1 o (5.10)
I | i ()AL + (0, AW,)(1)
: NG AW, ;
such that
Atfe, — 0% as At — 0" & ¢, — 0. (5.11)

An It6-Taylor expansion to precision dt or small At confirms that (5.9)-(5.10) yields the Hes-
ton [[17] model, proving solution consistency. Thus, the square in formally justifies the non-
negativity of the variance and the volatility of the Heston [17] model, for a proper computational
nonnegativity-preserving procedure.

However, for the general validity of applications of the chain rule and simulations, the At-
variance limit (5.1T)) required for (5.7)-(5.8) implies that the non-negative variance condition is not
needed in both theory and simulation using this perfect square form.

Further, the logarithmic transformation used for the geometric Brownian motion leads to sin-
gular derivatives of all orders, but the singularities are exactly cancelled out by the linear property
of the underlying SDE, i.e., the singularity is removable with a logarithmic transformation.

6 Nonsingular, Explicit, Exact Solution.
In any event, the singular term in (5.7)-(5.8) vanishes in the special parameter case, such that

1az(t), vt (6.12)

/fv(t)ev(t) = 47

Hence, we obtain a nonnegative, nonsingular exact solution

V(t) = e Tl (\/70+05/ o(8)/2(,aw,) (s ))2, (6.13)
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with the numerical form corresponding to (5.9)-(5.10),
_ 1 [tHAt_ _ 2
VED) (14 At) =max <6_A"€”(t><\/v(5v)(t)+§/ G(HU(S> - K”<t))/2(avde)(s)),5v (6.14)
t

7 Alternate Solution Relative to Deterministic Solution Using

Integrating Factor Transformation.

Similarly, the chain rule for the integrating factor form X (¢) = exp(®,(t))V (¢) for the general
stochastic volatility (2.1)) leads to a somewhat simpler integrated form,

V= v (g) 4 o Fult) /t JFu(s) (UU\/vde> (s), (7.15)

using the maximum with respect to zero to remove spurious numerical simulations in absence of a
perfect square form. In (/.15),

v = 0 (v [aa () 716

is the deterministic part of V'(¢). Note that there is only a linear change of dependent variable
according to the stochastic chain rule [[14] using the transformation Y () = exp(R,(t))V(t). So
the deterministic part is easily separated out from the square-root dependence and replaces the
mean-reverting drift term. The V(4¢Y)(¢) will be positive for positive parameters. For simulation
purposes the incremental recursions are useful:

V14 at) = B0 (e 1 ) | Y (v.a()) ®)  am

and
t+AE

V(t+ At) = e~ AFu(1) (V(t) + e_ﬁv(t)/ eFo(s) (I{UQU + UU\/VdWU> (s)) . (7.18)

Note that with constant coefficients, 6, (t) =6y, k,(t) =Ko and o, (t) = 09,

then (7.1647.18]) become

VO (t) = Voe ™ot 4 gy (1— e rot) (7.19)
VO (4 4 Af) =y + o~ oAl (V(det)<t> —6)), (7.20)

and
V(t+ At) = Oy + e FoAL <V(t) 0+ am/V(t)AW(t)> . (7.21)

However, as Lord et al. [23] point out, a sufficiently accurate simulation scheme and a large
number of simulation nodes are required so that the right-hand side of (2.I) generates nonnegative
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values. Nonnegative values using the stochastic Euler simulation have been verified for Hes-
ton’s [[17] constant risk-neutralized parameter values {x, = 2.00, 6, = 0.01, o, = 0.10} as
long as the scaled number of nodes per unit time N/(x,t;) > 100.

Hence, since the variance by definition for real processes cannot be negative, practical con-
siderations suggest replacing occurrences of V() by max (V' (¢), €), where € is some numerically
small, positive quantity for numerical purposes to account for the appearances of negative variance
values.

8 Selected Numerical Simulations.

In Figure (1| the simulations for the Euler approximation to Heston’s stochastic variance equation
(2.1)), truncating any negative values to zero, compared to the perfect square solution simulations
in (5.9) using € = 0 since is not needed for nonpositivity. Also, shown is the deterministic solution
V{det) (¢ + At) simulation from . The negative of the difference between the the truncated
Heston Euler simulations and the perfect square form is shown at the bottom of the figure in red.
The maximum absolute value of this difference is 2.46e-3. Otherwise, the Heston-Euler and perfect
square simulation trajectories are barely distinguishable in Fig.[I] The parameter values used are
{ky = 2.00, 6, = 0.01, o, = 0.25}, which coincidentally have the Heston model parameter ratio
kyBy/0? = 0.25 from the exact solution using .

Stochastic Volatility and Square Simulations

0.12 ' —VeulerHs(t), State 3
VexactSq(t), State 3|
0.1} —=25"Verr12(t)
<)) - Vdeterministic
g V(0) =V0
S 0.08; &0
= —Zero
©
> L
L 0.06] ‘
‘t;)' l W‘__‘
© . (]
'S 0.04"“‘ ’ I ;“\:
] [ o
~ 0.02f!
£
>
0
003 2 8 10

4 6
t, Time

Figure 1: Comparison of the Heston-Euler simulation of (2.1)) with negative values truncated to
zero and the perfect square solution(5.9). Also shown are the deterministic solution (7.17) and the
negative of the error magnified 25 times. The Heston model parameter ratio is x,0,/02 = 0.25.

There are 10° sample points over 10 time units.
In the simulation of Fig. (I, the Heston-Euler simulation before truncation produces K., = 76

improper nonpositive values over one million sample points, while the perfect square solution
does not even produce zero values. The most negative value of the Heston-Euler simulation is
V' =-1.01e-6. The number of negative values K, before truncation are plotted in Figure [2] against
the Heston model parameter ratio x,0,/02. The number of negative values begin at a ratio value
of 0.22+0.001 and become extreme as the ratio approaches the Feller boundary classification



separation point at 0.5. The results for the simulations use the same random number generator
seed in MATLAB. Note the negative value count for the alternate implicit, integrated solution
including, in part the deterministic solution of (7.18).

In fact, the alternate and Heston-Euler simulations are virtually the same, with the same maxi-
mum absolute difference of 2.46e-03 from the perfect square simulation, suggesting that the prob-
lem is a numerical one with the square root function of the variance. Also, there is appears to
be a discrepancy between the variance violations of the simulations for the process model and
Feller’s description of the positivity for the distribution solution. The likely reason is that the Euler
simulations of the diffusion process are discrete, while the theoretical process is contintinuous, in
which case the trajectory must be at zero for an instant before becoming negative. However, when
V(t)=0 then dV (t) = k,0,dt > 0, so the trajectory will reflected back to positive values. Thus, the
simulated negative values, though very small must be a discretization flaw. This is a good reason
for setting any negative value at least to zero.

Nonpostive Heston Simulated Variance Counts
1000 ' ' ' ' 3

800f

600f

400

Kneg, Nonpositive Counts

0.25 20:3 035 04 045 05
k6/0°, Heston Parameter Ratio

Figure 2: Nonpositive variance counts for the Heston Euler and Alternate solution simulations,
counted prior to truncation to zero. The coordinate axis is the Heston model parameter ratio
ko0, /02, where K, = 2.00 and 6, = 0.01, while o, € [0.20,0.30].

9 Conclusions.

Some recent, practical results for the positivity of the variance are given for the Heston [[17] model.
There are an implicit perfect square solution in the general parameter case and an explicit form for
the case where the speed of reversion times the level of reversion is one quarter of the square of the
volatility of the volatility coefficient. Also, effort has been made to examine the consistency of the
Heston model under transformations considering small variance and also the spurious simulation
of small negative values.
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