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1 Introduction

Closed, multiple class queueing networks are widely used to analyze the performance of large

computer systems. A typical model consisting of N service nodes, M terminals, and R job

classes is shown in Figure 1. For a fairly general class of networks [1, 9], there exists an
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Figure 1: Multiple-Chain Closed Queueing Network System.

exact expression for the stationary queue length distribution as a product form solution.

Performance measures, such as marginal queue-length distributions, mean queue lengths,

throughputs and mean response times and delays, can be computed directly from the product

form solution. However, for networks with a large number of job classes, terminals or nodes,

the direct computation of the performance from the product solution is not feasible since

the computational cost, depending on the algorithms used, grows exponentially either with

the number of chains or with the number of nodes in the network [6, 9].

Several algorithms have been developed to efficiently compute the performance mea-

sures. These algorithms essentially belong to two classes, either they require computing the

normalization constant for the product form solution or compute performance measures di-

rectly. Typical examples of former class are the Convolution algorithm due to Buzen [3] and

the RECAL algorithm developed by Conway and Georganas [7]. Algorithms of the later class

include the Mean Value Analysis (MVA) algorithm discovered by Reiser and Lavenberg[15]

and Mean Value Analysis by Chain (MVAC) algorithm by Conway, de Souza e Silva and
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Lavenberg[8]. The Convolution algorithm is a recursion based on building the network one

node at a time. On the other hand, MVA builds the network by adding one job at a time.

The Convolution algorithm and MVA algorithm require approximately the same amount of

computations but the computation costs of both algorithms grow exponentially with the

number of closed chains in the network, i.e., the computational costs are O(cR) as R → ∞

with N fixed and where c is some constant. In RECAL, each job chain that has more than

one job is converted into the same number of identical chains. Then each chain contains a

single job and number of chains in the network equals the number of jobs. The recursion of

the RECAL algorithm is based on adding one chain at a time. The computational cost of

the RECAL algorithm grows as a polynomial function of the number of closed chains, but

grows exponentially with the number of nodes in the network, i.e., the computational cost

is O(RN) for R → ∞ with N fixed. It has significant computational advantages over the

Convolution algorithm for networks with many closed chains and few service centers. The

MVAC is similar in form and computational requirements to the RECAL algorithm, but

does not require the computation of the normalization constant.

Recently, de Souza e Silva and Lavenberg[16] presented the distribution analysis by

chain algorithm (DAC). They have shown that the DAC algorithm is more efficient than

the Convolution and the RECAL algorithms for computing the joint queues length prob-

abilities and is also more efficient than the MVAC algorithm for computing mean values.

The Convolution algorithm and the RECAL algorithm both require the computation of the

normalization constant before computing the joint queue-length probabilities. However, the

DAC algorithm involves calculating of the unnormalized joint queue-length probabilities,

and has a smaller cost to evaluate joint queue-length probabilities than the Convolution

algorithm and the RECAL algorithm. Also, the DAC algorithm computes marginal queue-

length probabilities, mean queue length and throughputs more efficiently than the MVAC
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algorithm. The basic step of the MVAC algorithm only computes mean queue lengths and

throughputs, while DAC algorithm besides computing these measures computes all joint

queue-length probabilities using almost same cost of the basic step of the MVAC algorithm.

Currently, the DAC is one of the most efficient serial algorithms for computing performance

measures in closed multiple class queueing networks with more chains than nodes in which

case its computational cost is O(RN), i.e., grows as a polynomial in the number of closed

chains, but exponentially with the number of nodes.

Even though these computational algorithms are improvements over direct calculation

methods, each has disadvantages and often require a large number of calculations. For

example, the costs of Convolution algorithm and the MVA are of exponential order on the

number of chains, and costs of MVAC, RECAL and DAC are of high polynomial order on

the number of chains if these algorithms are implemented via a uniprocessor system. This

limitation, as we will see in the paper, is a bottleneck for further improvement.

Recently, Greenberg and McKenna[4] implemented a parallel version of the RECAL

algorithm on a shared memory MIMD (Multiple Instruction, Multiple Data) multiprocessor.

Their implementation resulted in an improvement over the serial implementation of the

RECAL algorithm. Techniques such as indexing, parallel overwriting with buffer storage

were used. In the SIMD the matrix data is processed in parallel. Greenberg and Mitrani

[5] also improved the one-step and multi-step convolution of the Convolution algorithm for

a different SIMD processor, using the fast Fourier transform and parallel prefix problem to

accelerate the computation.

In this paper, we describe a parallel implementation of the DAC algorithm using a dif-

ferent type of parallel architecture, data parallel. Data parallel computation methods are

based on the use of massively parallel machines such as the CM-2 which is the largest com-

mercially available system of this type [17, 2, 12]. Recent applications [11, 13, 10] have shown
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the promise of using data parallel computation. Our data parallel version of the DAC algo-

rithm, called PDAC, is implementable and efficient. PDAC can compute joint queue-length

distributions and the mean performance measures in computational complexity O(R2 log R)

for fixed N and large R with the computations spread over O(RN−1) processors. The main

difference, aside from the differences between the Convolution and DAC algorithms, between

the implementation of Greenberg and McKenna [4] and the current parallel implementation

of DAC is that they use an MIMD implementation that requires much processor and memory

synchronization, especially in their overwriting scheme, while our implementation is for an

SIMD (Single Instruction, Multiple Data) or distributed memory processor.

The paper is organized as follows: in Section 2 we present the Distribution Analysis

by Chain (DAC) algorithm and discuss its advantages and disadvantages; in Section 3 we

develop several rules and the parallel index-generation algorithms which are used to support

PDAC, and also give the details for the PDAC algorithm; in Section 4 we describe the data

parallel Connection machine CM-2; in Section 5 we analyze the computational requirements

for PDAC and present some examples comparing DAC with PDAC.

2 Distribution Analysis by Chain (DAC)

We consider a closed product-form queueing network with multiple chains. Every chain

that has more than one customer is converted into identical single customer chains [16].

The DAC algorithm uses recursive computation to compute the joint distribution of queue

lengths at all service centers from which, the chain throughputs and then marginal queue-

length distributions are computed. We use the following notation to describe the DAC

algorithm:

• N : number of service nodes in the network.

• R: total number of chains in the network.
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• µj(kj) : service rate of server node j when there are kj jobs at node j = 1, ..., R.

• Tr : throughput of r chains (or jobs).

• wjr : total work load of r chains on node j, where r = 1, ..., R.

• k = (k1, k2, ..., kN) : joint queue length; kj is the number of jobs at node j.

• 1j : N-dimensional unit vector of form (0, · · · , 0, 1, 0, · · · , 0), such that the jth

element is one and other elements are zeros.

• Sr = {k|∑N
j=1 kj = r} : state space of possible queue lengths at distinct nodes with

r chains (jobs).

• P r(k): steady-state probability with joint queue-length k ∈ Sr.

• pr
j(kj): marginal state probabilities with kj jobs at node j.

• Gr : normalization constant or partition function of the network with single-job

chains 1, ..., r present, where Gr = Gr−1/Tr is satisfied.

The cost of calculating the normalization constant Gr is approximately O(N2R) expo-

nential order by the Convolution algorithm and O(RN) polynomial of high degree order by

the RECAL algorithm[9]. However, the normalization constant Gr is not explicitly calcu-

lated in the DAC algorithm. In addition, by not using Gr explicitly, floating point overflow

and underflow problems in the performance measures can be reduced.

In following discussion, the variables N, R, kj, µj(kj) and wjr are assumed to be given.

The DAC algorithm consists of the three basic equations:

P r(k) = Tr

N∑
j=1

wjrkjP
r−1(k− 1j)/µj(kj) (1)

Tr =

 N∑
j=1

wjr

r∑
x=1

xpr−1
j (x− 1)/µj(x)

−1

(2)
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pr−1
j (x) =

∑
k∈Sr−1

kj=x

P r−1(k) (3)

With above definitions and equations, the DAC algorithm can be written as:

1. Set r = 1 and p1
j(1) = wj1/

∑N
k=1 wk1, for j = 1, 2, ..., N nodes.

2. For r = 2, ..., R chains :

(a) Use Equation (2) to calculate Tr.

(b) Use Equation (1) to calculate P r(k) for all k ∈ Sr.

(c) Use Equation (3) to calculate pr
j for all j = 1, 2, ..., N nodes and k = 0, 1, ..., r

jobs.

We note that in the DAC algorithm step (2b) and step (2c) are executed over all the

index vectors k ∈ Sr. In serial implementation of the DAC algorithm, however, the compu-

tation of the steady-state probability P r(k) must be executed one at a time for each of the

index vectors k ∈ Sr in the sequence:

(r, 0, · · · , 0), (r − 1, 1, · · · , 0), ..., (0, 0, · · · , r).

Since the total number of index vectors in Sr is(
N + r − 1

N − 1

)
= O(rN−1) , (4)

for r � 1 and N fixed, the computation cost is at least O(rN−1) (i.e., polynomial order for

the large number of chains (jobs) limit with the number of nodes fixed). This computation

requirement, O(rN−1), is a lower bound for the serial implementation of the DAC algorithm,

and also a bottleneck for further improvement of the implementation on uniprocessor sys-

tems. Using a parallel implementation, we can overcome this bottleneck by computing P (k)

for all k ∈ Sr simultaneously. However, this requires that the generation of all indices in Sr

be executed in parallel.
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3 Parallel Distribution Analysis by Chain (PDAC)

We now present a data parallel computation method for DAC algorithm based on the Con-

nection Machine model, which is discussed in section 4.

The generation of indices in serial implementation is a data dependent [14] problem since

the generation of kth index vector in the sequence is dependent on the contents of previous

(k − 1)th index vector generations for k = 1 to r. Since the output of the (k − 1)th index

vector is input or data to the calculation of the kth index vector, we say that the kth is

data dependent on the (k − 1)th index vector. This means that the parallelization of the

index vector is restricted to the calculation of each kth index vector, unless the calculation

is restructed, such as in the data parallel method discussed below.

Each time a new index vector generated, it must be guaranteed that the new index

vector is not a duplicate. The parallel computation is based on the idea of generating the

set of index vectors simultaneously instead of generating them one at a time. We define

an index array as two dimensional matrix, whose rows consist of index vectors. As we

see later, the initial index array is of relative small size. Our data parallel algorithm starts

with the initial index array and constructs a new larger index array. The new index arrays

are constructed one at a time until a final index array, namely an array consisting of all

the necessary index vectors, is constructed. In the process of computation, one index array

corresponds to an array of single processors with each processor possessing one element of

the index vectors. Thus, array computation here signifies the computation by a group of

processors, i.e., data parallel computation.

By efficient use of the massively data parallel processors, the costs for steps (2b) and

(2c) are reduced to polynomial order of low degree. Whether a group of massive parallel

processors can perform calculations cooperatively for DAC algorithm, specifically for the

index generation problem bottleneck, is another topic studied in this section.
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3.1 PDAC Index Generation Algorithms

In this section, the formal structure of array computation is discussed. We first introduce

some definitions:

• An index vector of parameter (N, R) is represented as k = (k1, ..., kN) with nonnega-

tive components, kj ≥ 0 and j = 1, ..., N , which satisfy the equation k1+k2+· · ·+kN =

R (i.e., k ∈ SR, where SR = Sr when r = R).

• A vector of decreasing order: “�” (vector of increasing order: “�”) is a

partial order between index vectors. Let k = (k1, k2, ..., kN) and k′ = (k′1, k
′
2, ..., k

′
N)

be index vectors, then k � (�) k′ implies there exists an integer i, for 1 ≤ i ≤ N ,

such that ki > (<)k′i and kj = k′j for all 1 ≤ j ≤ i− 1.

• An index vector array M(N |R) is a matrix having
(

N + R− 1
N − 1

)
rows and N

columns. The rows are index vectors, k ∈ SR. We assume that the rows in M(N |R)

are listed in vector of increasing order.

• Fill operation is a binary operation, which adds one column of a given number of

integer elements k to the leftmost side of array M(i|R) to give a new index vector

array M(i + 1|R).

EX. If M(2|1) =

(
1 0
0 1

)
, then filling “1” into M(2|1) gives

(
1 1 0
1 0 1

)

• Merge operation is a binary operation which vertically merges two index vector

arrays of same column size.

EX. Merge M(2|1) =

(
1 0
0 1

)
with M(2|2) =

 2 0
1 1
0 2

 results in


1 0
0 1
2 0
1 1
0 2
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• M(i|R)− n̄j is the operation to reduce all the elements on jth column of M(i|R) by

constant n.

EX. if M(2|2) =

 2 0
1 1
0 2

 then M(2|2)− 1̄1 =

 1 0
0 1
−1 2

.

• Cut-Off operation is an operation used to cut off the rows of M(i|R) whose leftmost

side elements are negative.

EX. If M(2|2)− 1̄1 =

 1 0
0 1
−1 2

 then Cut-Off (M(2|2)− 1̄1) =

(
1 0
0 1

)

We construct Algorithm (1) to generate a large index array based on the input of

several small index arrays. The resulting large index array has one more column than all

these small index arrays, and number of rows in the large index array is the sum of the

number of rows of all small index arrays.

Algorithm (1) : Merge small index vector arrays into
one large index vector array.

Input : M(i|0), M(i|1),..., M(i|R)
Output : M(i + 1|R)
Begin

M ←− empty block
For k = 0 to R do

Begin
l = R− k
Fill “l” into M(i|k) −→ ML(i|k)
M ←− Merge M with ML(i|k)

End
Return M(i + 1|R)

End

EX. For the case of i = 2 and R = 2, we have :
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Input:
(

0 0
)
,

(
1 0
0 1

)
,

 2 0
1 1
0 2


⇓ Algorithm (1)

Output:



2 0 0
1 1 0
1 0 1
0 2 0
0 1 1
0 0 2


.

Algorithm (2) works opposite to Algorithm (1). The input is one large index array,

and output are several small index arrays. These small index arrays have the same number

of columns as the large index array but each has less rows than the large one.

Algorithm (2) : Decompose one large index vector array into
small index vector arrays.

Input : M(i + 1|R)
Output : M(i + 1|R− 1),...,M(i + 1|0)
Begin

M ←− M(i + 1|R)
For k = 1 to R do

Begin
Minus all elements in first column

of M by “+k”
M(i + 1|R− k)←− Cut-Off Block (M)

End
Return M(i + 1|R− 1), M(i + 1|R− 2),..., M(i + 1|0)

End

EX. For the case of i = 2 and R = 2, we have :
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Input:



2 0 0
1 1 0
1 0 1
0 2 0
0 1 1
0 0 2


.

⇓ Algorithm (1)

Output:

 1 0 0
0 1 0
0 0 1

 ,
(

0 0 0
)

Using Algorithm (1) and Algorithm (2), we can generate an entire array of index

vectors rather than one vector at a time. Further, by alternately using Algorithm (1) and

Algorithm (2), we can generate the array of index vectors, M(N |R), which are needed for

the PDAC algorithm. The index array M(N |R) is generated by Algorithm (3) below:

Algorithm (3) : Generate index vector array M(N |R).

Input : Parameters : (N |R)
Output : M(N |R)
Begin

Construct M(1|0), M(1|1),...,M(1|R)
For i = 2 to N − 1 do

Begin
Use Algorithm (1) to get M(i|R)
Use Algorithm (2) to get M(i|R− 1),..., M(i|0)

End
Use algorithm (1) to get M(N |R)

End

The fact that Algorithm (3), using Algorithm (1) and Algorithm(2), generates

the desired state space can be proved by induction on the number of nodes n for any fixed

number of jobs R in the network, where n = 1, ..., N .

Using the Connection Machine computation model, we see that Algorithm (3) has time

computational cost of O(NR) since the “for loop” in Algorithm (3) requires computational

cost of O(N), while the “for loops” in Algorithm (1) and in Algorithm (2) require
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computational costs of O(R). The Cut-Off operation, the Fill operation and the Merge

operation can be implemented on Connection Machine CM-2 in O(1) computational steps.

Therefore, a total of O(NR) computational steps are required.

3.2 PDAC Algorithm

The PDAC algorithm is based on the data parallel index generation method. We know

that the index array M(N |r) contains all the index vectors k ∈ Sr. By using these index

vectors, we can compute step (2b) and step (2c) in the DAC algorithm simultaneously or

in parallel. At computational step (2) of the DAC algorithm with a loop index r fixed, the

PDAC algorithm accesses all the steady-state probabilities P r−1(k) indexed by k ∈ Sr−1

simultaneously. Then, we use expression (1) to compute all steady-state probabilities P r(k)

indexed by k ∈ Sr in parallel, and store all the results at the same time for use in next loop

iteration r + 1. This allows us to compute all the marginal state probabilities indexed by

kj and j in parallel over all of these available steady-state probabilities using parallel sum

function. It should be pointed out the loop at computational step (2) of the DAC algorithm

is executed in serial in the PDAC algorithm. Therefore, the terminology “parallel” here

means the parallel computation over index vectors not over the loop. Further modification

would be needed to reduce the number of iterations. In addition, at each iteration loop,

the Cut-Off operation is employed to achieve the task of applying the data parallel index

generation method to the DAC algorithm. In particular, the PDAC algorithm is:

1. Use Algorithm (3) to get M(N, R).

2. Set r=1 and p1
j(1) = wj1/

∑N
k=1 wk1, for j = 1, 2, ..., N nodes.

3. For r = 2, 3, ..., R chains :

(a) Use Equation (2) to calculate Tr.

(b) Generate all vectors k ∈ Sr :

Reduce all the elements of first column of M(N, R) by “R− r”, then all k are in

the Cut-Off of M.
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(c) Use Equation (1) to calculate P r(k) for all k ∈ Sr simultaneously.

(d) Use Equation (3) to calculate pr
j(kj) for all j = 1, 2, ..., N nodes and kj = 0, 1,

..., r jobs, over all the vectors k ∈ Sr.

Steps (1-3) in the DAC algorithm yield the joint queue-length distributions of the net-

work as well as the mean performance measures for chain R. As we show in Section 5, our

current implementation of the PDAC algorithm has in computational cost O(R2 log R) with

CM Fortran release 0.7.

4 Parallel Processor Description

The Connection Machine (CM) is well suited for parallel index generation computation,

specifically for large number of chains (jobs). The full Connection machine CM model 2 is a

massively parallel single instruction, multiple data (SIMD) machine with up to 64K physical

processors connected in a 12-dimensional hypercube network. It consists of computer chips

with 16 bit processors connected together in a nearest neighbor network. Each processor

typically has eight kilobytes of local memory, the entire primary memory of the CM com-

prises up to half a Gigabyte. An important aspect that simplifies parallel programming is

the concept of virtual processors. Each of the physical processors can simulate a number

of virtual processors. The maximum number of virtual processors is limited only by the

available memory.

To accelerate scientific computing speeds, the full CM-2 has 2048 floating-point ac-

celerator chips, one for every 32 bit processors. This accelerator has two options: single

precision or double precision. Both options support IEEE standard floating-point formats

and operations, and increase the rate of floating-point calculations by a factor of more than

20.

In the CM model, each processor is supposed to hold one data problem. In prac-

tice, a larger scale problem must be decomposed into data elements over a configuration

of processors. The parallel computation using this configuration depends on whether the
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decomposition is efficient.

The CM Fortran and Paris languages have been developed on the current Connection

machine system for scientific computations. CM Fortran contains many of the extensions

of Fortran-90 standard. It provides array constructs and operations. Techniques, such as

one-to-many broadcasting, many to many broadcasting, fan-in sum operation and nearest-

neighbor NEWS shifting, are basic parallel computation tools. We use CM Fortran release

0.7 to implement the parallel PDAC algorithm on a 32K machine at NCSA. We also have

implemented the serial DAC algorithm on IBM 3090 at UIC with Fortran-77.

5 Performance Analysis

In order to compare the PDAC algorithm with the DAC algorithm, we measure the compu-

tational cost using the numbers of multiplications and additions as in [16]. We define one

CM-multiplication by the multiplication between CM arrays or the multiplication between a

scale variable and a CM array. Similarly, one CM-addition is defined by one array addition

or by one step fan-in addition in the case of summing n scalar elements. For simplicity,

the division operation is assumed to have the same cost as the multiplication operation.

The network has number of jobs, R � 1 with the number of nodes N = O(1). It must

be pointed out that our implementation method is not quite optimal. Thus, the following

analysis gives an overestimate for the calculation of the computational cost. An optimal

implementation is being investigated.

We first observe that at step (2) of the PDAC algorithm, we can compute P 1
j (1) si-

multaneously for all j = 1, 2, ..., N . This requires one CM multiplication and order log(N)

CM additions. (In CM Fortran, the build-in sum function is executed in a logarithmic order

number of steps by a fan-in addition [18].) The largest number of computational steps in the

PDAC algorithm occurs in step (3). In the calculation of Tr at step (3a), the inner summa-

tion can be computed in logarithmic order, dlog2(r)e = O(log r), for each r = 2, 3, ..., R by

the fan-in sum function, the outer summation is computed one at a time. Hence, NO(log r)

CM-additions are needed for each r = 2, 3, ..., R and N fixed. For the multiplication op-
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erations, the inner part is calculated over all distinct indices x in parallel using two CM-

multiplications, then one CM-multiplication is needed to multiple the inner summand with

factor wjr, and another is needed to compute the inverse. Thus, the computation of Tr needs

(3N + 1) CM-multiplications for each r = 2, 3, ..., R. One CM-addition is counted at step

(3b) to do the reduction operation for each r = 2, 3, ..., R, for a total of R CM-additions in

step (3b). At step (3c) to get P r(k), the multiplications, for each j = 1, 2, ..., N , can be

executed in parallel over all distinct index vectors k in Sr, and the summation is computed

in a linear order of steps by a DO loop statement, this gives (3N + 1) CM-multiplications,

including one multiplication by the factor Tr, and (N − 1) CM-additions. For step (3d) to

get pr−1
j (x), we have

(
N + r − 1

N − 1

)
vectors in Sr, for each given j = 1, 2, · · · , N and each given

x = 1, 2, · · · , r. Thus, the summation operations over each pair of j and x can be computed

in

log

(
N + r − 1

N − 1

)
∼ log

rN−1

(N − 1)!
∼ (N − 1) log r (5)

CM-additions for large r and fixed N . An optimal implementation should allow all pr
j(x) be

computed simultaneously for different pair of j and x with the CM Fortran forall statement.

However, the currently implemented data structure does not provide the best computational

environment for the forall statement to successfully operate. More study is needed to see

if all pr
j(x) can be computed in parallel. Right now, we simply implement them by serial

execution for the N · r different pairs of j and x, i.e., the total cost for each r of step 3 is

asymptotic to

N(N − 1)r log r (6)

CM additions for large r and fixed N . In the PDAC algorithm, step (3a) - step (3d) are

executed in (R− 1) steps, so the total number of CM multiplications is:

(R− 1)(3N + 1 + 3N + 1) = (R− 1)(6N + 2) = O(R), (7)

where for fixed N as R → ∞, so that the N dependence is ignored. The total number of
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CM additions is approximately

R∑
r=2

N(N − 1)r log r = O(R2 log R), (8)

as R → ∞ and for fixed N . It must be noted that step (3b) costs O(1) execution time since

both the Reduce and Cut-Off operations need O(1) computation costs, either by the one to

many broadcasting operation or by the subarray copy operation. In the case of R → ∞

and N is fixed, we find from expressions (7) and (8) that the multiplication operation costs

are O(R) and the addition operation costs are O(R2 log R) respectively.

The performance analysis results for the DAC algorithm were given in [16] and show

that the number of multiplications of the DAC algorithm is :

(3N + 1)

(
N + R

N

)
+ NR(R + 2) + R− 3N2 − 6N − 2 = O(RN). (9)

And the number of additions is

(N − 1)

(
N + R

N

)
+

(
N − 1 + R

N − 1

)
+

(
N − 2 + R

N − 1

)
−N2 − 1 = O(RN), (10)

as R→∞ and for N fixed. We conclude that the PDAC algorithm has polynomial compu-

tational complexity of lower degree O(R2 log R) = o(R3) for large numbers of chains (jobs),

namely for R � 1 and N fixed, while the DAC algorithm has polynomial computational

complexity of large degree O(RN) for large numbers of chains (jobs) R and for a sufficiently

large fixed number of nodes, N > 3.

However, the number of processors PDAC requires is relatively large. PDAC needs(
N + R − 1

N − 1

)
= O(RN−1) Connection Machine one-bit processors for large R and N fixed.

This is due to steps (3a- 3d) in the PDAC algorithm which are executed from r = 2, · · · , R in

R − 1 iterations. Each iteration requires the results of the previous iteration. Therefore for

the rth iteration computation, it is necessary to save the results from (r−1)th iteration in the

storage. In addition, we need to save all index vectors ∈ Sr at rth step in order to compute

all P r(k) for k ∈ Sr. In the Connection Machine model this can be done in O(RN−1) storage

elements, or virtual processors.
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The analyzed performances can be verified from Figure 2 and Figure 3, where the

execution time has been decomposed into the various steps of the PDAC algorithm and

displayed as a bar graph. In these two figures we observe that step (3d) contributes most of

the computational cost in the PDAC algorithm, and step (3c) contributes the second most

of the computational cost, unless the number of chains is small. Further, the time for step

(3d) grows the fastest as R gets large. These results agree with our performance analysis. It

is noted that there is a jump for the total timing performance when R goes from 6 to 8 in

Figure 3 (this also occurs when N = 4 about R = 16, but is not shown here). This occurs

when the VP ratio, the number of virtual processor divided by number of physical processors,

changes from 1 to two or more. The change in the VP ratio can affect performance, because

the number of virtual processors assigned to a physical processor can affect the scheduling

and load balancing of the processor computational resources.

The graphs of the total execution time performances, exec − timePDAC(R), are shown

in Figure 4 and Figure 5. In Figure 4, we fix the number of nodes of the network to be 4.

In Figure 5, we fix the number of nodes to be 5. A larger number of nodes problem can

be executed on the 32K and 64K Connection Machine according to the actual problem size

(R = 23 for N = 5 or R = 59 for N = 4 can be computed on an ACL 16K CM-2, without

dedicated access to the full machine), but can not be further computed on the IBM 3090

due to memory limitations. Thus, we only compare the time performance curves of the DAC

and the PDAC by using the problems that IBM 3090 can compute.

Using O(RN−1) physical processors has reduced the number of operations in the above

performance analysis. Since the execution time is proportional to the number of operations, it

also leads to a reduction on the execution time. The execution time of the DAC algorithm,

exec − timeDAC(R), is O(RN) for fixed N and R � 1, while the execution time of the

optimal PDAC algorithm, exec− timePDAC(R), should be O(RN)/RN−1 = O(R). However,

due to the fact that the operations in the PDAC algorithm are not fully balanced but data

dependent, PDAC algorithm has computational costs which are O(R) in multiplications and

O(R2 log R) in additions according to the analysis. A fully balanced computation is one in
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which all the processors have same amount of computational work, and all processors are

active at the same time. The multiplication operations and addition operations take different

execution time with respect to the same operand length. This causes the actual growth of

the PDAC performances are somewhere between O(R) and O(R2 log R).

The significant improvements in the time performance are clear. However, the serial

version of the DAC algorithm is better for a small number of chains. This is due to the

fact networks with a small number of chains has much less computational requirements, and

uniprocessor system out performs massively parallel machine in this situation. However,

for the large number of chains, massively one-bit processors working together have more

computational power than the IBM 3090. As we see from Figure 4 and Figure 5, the PDAC

algorithm is faster with a very nearly quadratic growth in the total execution time. The

total execution time of the DAC algorithm grows like O(RN).

6 Summary

We have presented a parallel implementation of the DAC algorithm based on the PDAC

index generation algorithm. This new computational method is applied to multiple-chain,

closed queue networks. The algorithm provides substantial savings in computational costs

over a traditional serial implementation of DAC. The data parallel Connection Machine

computation model is new to queueing theory and its applications, and will be useful in

other computational problems.
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