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Abstract

We consider the effects of large inflationary price fluciagi on the computed optimal
harvest strategy for a randomized Schaefer model. Botlepand population sizes are as-
sumed random with both background (Wiener) and jump (Po)ssomponents. Population
fluctuations are assumed to be density independent, ilativeechanges are independent of
population size. Stochastic dynamic programming is engaldy find the optimal harvesting
effort and economic return for a realistic set of bioecoroddta for Pacific halibut. It is found
that inflationary effects have a pronounced influence onpiienal return, even in a hazardous
or disastrous environment. However, optimal harvestirfigrefevels are much less sensitive
to inflationary effects.

1. Introduction

Bioeconomic resource models incorporating random flucinatn either population size or model
parameters have been the subject of much interest. Reeflddn&dered optimal harvest and es-
capement policies in the presence of general discretettioigplicative noise for a variety of as-
sumptions. Gleit [3] gave an exact solution for the optinralsent value, and corresponding linear
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optimal control, of an exponentially growing resource sgbjo Gaussian white noise fluctuations.
Ludwig [4, 5] solved by perturbation methods the more genswatrol problem for populations
with Ricker type growth influenced by lognormal noise, wHiledwig and Varah studied these
problems numerically in [6]. Ryan and Hanson [7] solved dyabe optimal harvest problem for
constant effort and exponential growth in the presencergelfiuctuations modeled by Poisson
processes and in [8] numerically constructed the optineli@ck control for logistic growth with
the same type of noise. See also [7, 8] for a more extensilie@ibphy.

In the above models per unit prices are either constant ayemnaus and deterministic. How-
ever, random price fluctuations are a realistic effect anak eeen incorporated in standard re-
source models. Andersen [9] has studied continuous timenaptharvest models with logis-
tic growth when prices follow a general probability distrilon. Lewis [10, 11] has examined
similar models in discrete time when both prices and popuiatize are allowed to be random.
Pindyck [12] has studied the economic consequences of tanugrin population size as well as
unit price for a variety of continuous-time harvest modatsng Gaussian distributed Wiener pro-
cesses to model fluctuations. Clark [13] discusses a destirae model with randomly varying
seasonal prices. Ryan [14] considered a model in which titgtine changes suddenly at a ran-
dom time. Comprehensive introductions to these problemgigaen by Mangel [15] and Andersen
and Sutinen [16].

In the present paper, we explore the effects of price flurinaton the computed optimal
harvest strategy for a randomized Schaefer type model. imaalel unperturbed prices consist
of an inflation adjusted constant price term plus a supphpéated term. Random price variation
is incorporated into the model through a multiplicativedam process that includes both small
continuous-time fluctuations and the possibility of ocoaal, large random changes. Since our
primary interest is to model, and study numerically, the& of randomness on supply/demand
factors, we ignore both random and inflationary effects @npbstulated cost function. Techni-
cally, random and inflationary effects of the type hypothegifor the supply/demand function are
easy to incorporate into the model. However, random fluinatin cost are likely to be much
more complicated and require a more complicated generaemabhus, we restrict our atten-
tion to serially uncorrelated exogenous random price anifadion fluctuations. Our analytical
emphasis is primarily numerical.

The presence of such fluctuations is well documented in fesheFigure 1 shows price ver-
sus year and Figure 2 shows catch versus year for the PadititithéHippoglossus hippoglos-
sug9 system. See the 1984 and 1985 International Pacific Hallmmmission (IPHC) Annual
Reports [17, 18]. The price data show low level fluctuatiaikoived by a precipitous decline fol-
lowed by moderate fluctuations over a short time period. T wersus catch data as shown in
Figure 3 reflect similar but more pronounced fluctuation waitporominent trough in the highly in-
flationary time around 1979. In general, random catch anditerent fluctuations are particularly
well documented. See [8] for a more detailed survey.

In the present paper we explore the effects of both randormlpbpn fluctuations as well as
random price fluctuations on the computed optimal harveategfy. Our model is new in that
it simultaneously incorporates the possibility of largecflations in both resource size and per
unit prices while maintaining the general structure emetbyn the previously discussed work.
Section 2 briefly develops the deterministic model. Thelststic model is presented in Section 3.
Numerical methods and results are discussed in Section 4.
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Figure 1: Pacific halibut prices in U.S. dollars per kilogrimmeach year from 1935 to 1985. The
source of the data in the table in Appendix Il in the IHPC 1984 4985 Annual Reports [17, 18].

2. Deterministic M odel

A frequently employed model for the harvesting of a renewabsource of siz&/(s) at times is
the differential equation

dN(s) =[riN(1 - N/K) — H(s)] ds, s>0, N(0)=u=z. (2)

Here,r; and K are the population’s intrinsic growth rate and carryingamaty, respectively. The
harvest term is assumed to be givendaych per unit effort hypothesj$9]

H(s)=q-E-N(s), (2)

whereq is the catchability coefficient. The effolf = E(N(s), s), in feedback control form here,
is a measure of harvesting effort and is assumed to satisfgdahdition

Emin S E S Emax < 0.

The value of the harvest is given by the discounted preséue \d future resources

o B) = [ P paBN(s) - ()] ds, @
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Figure 2. U.S.-Canadian catch in millions of kilograms fack year from 1935 to 1985. The
source is the same as Figure 1.

with 7" the time horizon¢ the discount ratep the price of a unit of harvested biomass, a(f')
the cost of a unit of effort when the population size\is The instantaneous net return or profit is
given by

R(s)=p-H(s)—c(E)=p-q-E-N(s) - c(E)

at times. If it is assumed that the goal of the harvest is to find thereféwel £* that maximizes
the total profit, then we must compute

v (z) =v(x; EY) = mgx[v(x; E)], 4)

subject to the dynamical constraint in Eq. (1). This is a fobin optimal control theory and can
be studied using Pontryagin’s maximum principle (see (a®k on the maximum principle in the
context of fishery bioeconomics). However, that method dmgseadily extend to the stochastic
case. A more efficient form for computing optimal controlshe presence of random fluctuations
is the Bellman equation of dynamic programming (see Brysahtdo [20], for instance). Thus,
we consider the current value form of Eq. (3) given by

Vie,t;B) = [ e O OpgBEN(s) ~ ()] ds, (5)
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Figure 3: Pacific halibut price in U.S. dollars per kilograersus catch in millions of kilograms for

the years from 1935 to 1985. The source is the same as Figited, .the linear regression for the

price times catch as a function of catch from 1980 to 1985gpldiyed as the smooth hyperbolic
price curve.

and apply the principle of optimality to derive an equation f
V*(x,t) = mgx[V(x, t; B,
(see [8] for a simple, formal derivation),
Vi(z,t) + ra(l —z/K)V (2, t) — 0V (x,t) + S*(z,t) = 0, (6)

where
S (@, t) = max[(p — V(. 1)) ¢Ex — c(E)]. (7

Let Er(x,t) be the regular solution of (E) = (p — V.*(x, t))qx corresponding to the uncon-
strained maximum in Eq. (7). For instance, in the case of g@ctosts with:(E) = ¢;- E+cy- E?,
we obtain

(p — V;*(x,t))qx - Cl.

ER(':E? t) = 2 . 02
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Upon imposing the constraints on the harvesting effgrive get thebang-regular-bangontrol

Emaxa Emax S ER(xa t)
E*(z,t) =< Egr(z,t), Eun < Fr(z,t) < Fpax - (8)
Emina ER(.T, t) S Emin

The full problem is determined by imposing the final boundaogdition

Vi(z,T) =0, (9)
and natural boundary condition
* - (Cl + CZEmin)Emin —5(T—t)
V*(0,t) = — ; (1-e ). (10)

in the case of increasing, convex quadratic costsd.ex 0 andc, > 0, provided that the discount
rated is positive. Note that it = 0, thenN(¢) = 0 by the vanishing of the right hand side of (1)
with (2) at extinction and the optimal harvesting effort e at the minimun¥.,;, due to the
negativity of the cost function.

See [8] for details. This is the form of the problem most gagéneralized to the stochastic
model discussed in Section 3.

3. Stochastic M odel

An 1td stochastic differential equation describing thewth and harvesting of a model resource
population subjected to large random changes in size isatiomized Schaefer model [8]

dN(s) = [mN(1—N/K)— H(s)]ds+ oyNdWy(s) + Nzn:aj dZ;(s, fi),

(11)
N(t) = =z,

wherer,, K andH (s) = ¢E'N(s) are as described in Section 2.
There are two random components in Eqg. (11). Large rare famiplitude fluctuations are
characterized by the density independent, compound Ropsaess

Niaj dZ;(s; ;).

J=1

Here, the relative jump amplitudg > —1, the jump ratef; > 0, the Wiener noise coefficient

o1 > 0, and thejth incremental Poisson process;(s; f;) has infinitesimal mean and variance
fjds drawn from the se{dZ,,...,dZ,} of independent Poisson processes. The independent
density amplitude factaW is chosen so that any variation is proportional to currepitation size

as measured by the, i.e., relative changes are independent of den$itdackground fluctuations

are modeled by the normalized, Gaussian distributed WiprmressdlV; with zero mean and
infinitesimal variancels. Thus, in the model (11) the population size is known at a time 0

with future population size determined from the deterntioisomponent, the serially uncorrelated
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fluctuations occurring fromd1/;, and the random increases occurring at the times of events of
the dZ; with frequencyf;. Large scale effects, typically brought about by very caewpand
poorly understood mechanisms, are thus estimated in (ldlesped sum of density independent
terms. Such large fluctuations are commonly observed inmaagcruitment data and are well
documented in the fisheries literature [21, 22, 23, 24]. Aalysis of the moments to the process
defined by (11) in the absence of harvesting is given in [25].

In the economic component of the model we assume managemeatiral to risk and that
prices are random and given by the supply/demand relation

Po) = (4 ) Y0 12)

where againd (s) = gEN(s) is the amount of harvested biomagXs) - H(s) is the gross return
on harvestH (s), p; is a constant price per unit harvested biomass coefficientpgis the sup-

ply/demand coefficient component of the price. In (12}s) is a fluctuating inflationary factor
satisfying the Itd stochastic differential equation

dY (s) =Y ds+ oY dWs(s) + Y Z b; dQ;(s; g5), Y(t)=vy, (13)
j=1

with relative jump amplitudé, > —1, jump rateg; > 0, and Wiener coefficient; > 0. ThedQ);
for j =1,...,m, anddWW; are, respectively, incremental Poisson processes andreeY\peocess,
as in (11). Equation (12) describes prices inflated at an amate r,, subjected to the rapid
background perturbations @i, as well as the occasional random jump increases or decreases
brought about by thé(Q;. Such a characterization for the pridas plausible from Figure 3, which
shows price versus catch for the Pacific halibut fishery fr@851to 1985. The estimated mean
price is hyperbolic in nature with both types of fluctuati@védent about the mean. In particular,
in the absence of discernible correlations in the fluctuatibhe data suggest the multipliérto be
independent of°.

Computation of the optimal exploitation policy in the stasltic case is much more complicated
than that for the deterministic model (1)—(5). Equationrf)st be modified to account for the
random terms describing fluctuationsAhand P and given by (11)—(13). Corresponding to (4)—
(5), we seek a policy* (z, y, t) that maximizes the expected discounted current value

V(z,y,t) = Mean [/tT e 0= [(po+ p1gEN)Y (s) —c(E)] ds | N(t) ==z, Y(t) =y|, (14)
where

Mean = Mean
{dZ,dQ.dW}

denotes the mean or expectation taken over the vector peeég = [d7),...,dZ,), dQ =
[dQ, .. .,dQ,], anddW = [dWW,, dW,]. Here,
P(s)- H(s) = c(E) = (po+p1 - H(s)) - Y(s) = ¢(E), (15)

is the net return on harvested biomds$ss) at times. We further specialize effort costs to the
guadratic form
c(E) = c1E + o B (16)
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The additional quadratic cost terepE?, appropriately scaled, may be viewed as a perturbation
on the more typically employed linear costs as well as a tigciento avoid difficulties inherent in
the computation of singular controls [19, 20]. We assumelib¢h ¢, andc, are positive, so that
costs are an increasing function and costs grow faster thiaeax function of effort. Such a cost
function is, however, relatively common and has been engalawg fisheries studies by a number
of authors [10, 11, 27, 28, 29].

Note that we do not include inflationary effects in the costsesour main focus in on price dy-
namics, but since we have modeled the price dynamics ingudflationary effects, the discount
rated in Eq. (14) must be considered the nominal discount rateerdttan the real or inflation
corrected discount rate. Also, we have selected a finitebofi’ rather than an infinite horizon,
since we believe that the finite horizon case embodies mailisng particularly when motivated
by fisheries problems where the fishing season can be ratberasid the environment dynamic.
In this current paper, we are concerned with the dynamiclpnoland not the equilibrium solutions
such as those associated with the infinite horizon case.

Since N andY are stochastic processes afids a function of the state as well as time, the
easiest approach to the calculation(éf*, V*) is via the Bellman equation of continuous-time
dynamic programming [8, 15, 30]. Sinc¢é andY involve discontinuous processes, the Bellman
equation will involve functional delay terms in bothandy as well as a second-order derivative
term arising from the Wiener processes in (11) and (13). ThusndV* satisfy

2,.2
0 = W tna(l—a/K)V; + 22V =0V + 3D f 1V (4 aj)a,y. 1) = V(. 1)
j
17)
o3y’
+ szvy* + 9 Vyz + Zg] [V*<l’, (1 + bj)y7 t) - V*(J},y,t)] + S*('Ta Y, t)?
j

whereS* is the control switching term containing the argument ofrtreximum in (17),

S*(w,y,1) = max [po -y + (p1 -y = Vi (w,y,1)) qBx — (e1E + e, E7)| (18)
with unconstrained, regular control given as

En(r,y.t) = Py = Vilwy,t)) g -1 (19)

2'02

determined from the argument of the maximum in (18), and #ighconstrained, optimal control
given as

Emaxa Emax S ER(xa Y, t)
E*(%y?t) = ER(xa Y, t)a Emin S ER(xa Y, t) S Emax ) (20)
Emina ER('I7 Y, t) S Emin
similar to the formin Eq. (8) in the one-dimensional, detiistic case, but with a two-dimensional
dependence.
Equation (17) is augmented by the side conditions
Vi(z,y, T) = 0, (21)
Erin) B
V*(O, 0’ t) _ (Cl + Co 6m1n) min (1 B 6_5(T_t)) 7 (22)
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with the same reasoning given for (9) and (10) in the detdstiincase, but here with'(s) =

0 wheny = Y (t) = 0. The most appropriate method of solution for (17)—(22) appe¢o be
numerical. Perturbative techniques might be suggestegd fando, small, but these are not likely
to be effective because of tig 1) nature of the functional terms in (17). The numerical praced
are discussed more fully in Section 4.

4. Numerical Results

In this section we examine the results of the numerical swiludf Eq. (17) for certain values
of the parameters. The numerical solution of (17) is alstiroad.

Our parameter values are based on Pacific halibut data owenber of years and come from
a variety of sources. We use estimates;of- 0.71/year andk = 80.5 x 10° Kg (see Clark [19]).
The price and cost data were taken from the 1984 and 1985 IPht@iad Reports [17, 18] for
the period 1980 to 1985 to allow some temporal perspectideamaid the anomalous inflationary
period of the late 1970's. Linear regression was used to liitevaersus catchy = p, + p1 - H,
for 1980 to 1985. Although we use only six data poipts= $8.46/year andy; = $1.59/Kg with
78% of the variance explained. The results of the linearaggjon for the value is displayed in
Figure 3 as the smooth hyperbolic curve of the price verstehca

]SZV/HIPO/HJFPb

fitting only the higher price fluctuations in the original IRHprice versus catch data from 1935 to
1985.

Other parameter values are taken to be:= 0.01/year,7 = 10 years,d = 0.06/year,
c1 = $96 x 1079 /(skate-year/year (a standard skate is a 550 meter ground line with 100 hooks.
Note that in the IPHC data [17, 18] the annual effort is giveminits of skates with year dimen-
sions implicit, thus year dimensions have been explicitged here to effort, cost and catcha-
bility to preserve dimensional correctness),= $0.10 x 107%/(skate-yeaF /year, ¢ = 3.30 x
1079/ (skate-year/year, Fni, = 0, and Ey.. = 71/q = 0.2152 x 10° skate-years. Since our
primary focus is on discontinuous effects, we take= 0 ando, = 0, removing the continuous
background noise. We further lump the additive effects ef jumps by takingf; = 0.5 with
fi=0forj >2,a; =—-0.5witha; =0forj > 2, g = 0.5with g; = 0 for j > 2, andb, = 0.5
with b; = 0 for j > 2.

The numerical solution of (17) has been obtained by emptpginybrid extrapolated predictor-
corrector and Crank-Nicolson finite difference method rfiedito account for

1. functional terms that appear due to the Poisson processego characterize the large fluc-
tuations in both population and inflation rate, and

2. the maximization embodied in the switching term (18).

We discretize using;; = (i — 1)Az, i = 1,---, N, for the population,y; = (j — 1)Ay,
j =1,---, N, for the inflationary factor, and, = 7" — (k — 1)At, k = 1,---, N, for the time,
whereAz = K/(N, — 1), Ay = e™* /(N, — 1), andAt = T/(N, — 1). The dependent variable
V*(x;,y;, tx) is represented by the discrete variable .. Second order central finite differences
are used for spatial derivatives such thitz;, y;, ) is approximated bpVX; ; , = %(VMM —
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Vicijk)/Az andVy (x4, y;, tx) is approximated bpVY; ;. = (V;]H k — Vij—1.k) /Ay, with ap-
propriate forms for the boundaries. The second denvatenessv;*x(xz, Yj, te) andVy: (x4, 5, tr)
are discretized by the central difference formuPVX; ; . = (Viy15 — 2Vijk + Vie1) / (Ax)?
andDDVY, i x = (Vijs1.6 — 2Vijk + Vij—1k)/(Ay)?, respectively. The backward time derivative
Vi (xi, yj, teros) 1S approximated bYOVT, ;, = — (Vi x+1 — Vijx)/At, which is also a second
order central finite difference, but about the half time stepthe Crank-Nicolson method. The
functional terms/*((1+ a;)x;, y;, t) andV*(x;, (14 b,)y;, ;) are approximated, respectively, by
linear interpolation between the two nearest nodal valges consistent with order of the errors
in the second order central finite differences used for tlagigderivatives. We denote the linear
interpolation ofV*((1 + a;)z;, y;, tx) bY ZV; j 1 andV*(z;, (1 + b))y, t) bY QVi j k-

The Crank-Nicolson average for the midpoint time-stép;., 5 is denoted bWM, ;. =
0.5(Vi;x + Vijk+1), and the accelerating extrapolated starting valu&/By; , = 0.5(3V; ;5 —
Vi.j.k—1) providedk < 2, with corresponding notations for the spatial derivatives

Thus, the discrete extrapolated, predictor approximatmmnesponding to the Bellman equa-
tion (17) is

1
VP = VD 4 At |ra(1 — 2/ K)DVXE ;5 + 501 7DDVXE, ;. — 6VE,

+ Xfi(ZVE ki — VE ;) + r2y;DVYE ; & (23)

1
+ 502y2DDVYE” K+ Xig1(QVE i x1 — VEijx) + SE k|,

WhereVZ(JZ is the final correction from thgth backward time ste@VXE, ; . = 0.5(VE 11, —

VE;_1,x)/Axz, forexample, an¥E; ; , = 0.5(31/(” —V(j-,’,’j)_l) providedk < 2 so that corrections

2

are available on at least two starting time steps. In theipi@devaluation stepDVXM, DVYM
DDVXM, DDVYM ZVM, andQVM are evaluated using the discrete values

VMZ]k =0. 5(‘/2(362 + v]k—l—l)

From (19), it follows that the regular contrélz(z;, y;, tx+0.5) at the predictor step is given ap-
proximately by

ERMY), — (1Y — VXM, - - 05 — 1)/ (2. 24)

The predicted, constrained, optimal conE(MIZ "/« IS computed using composite formula (20) with
ERME ' substituted forEz(z, y,t) on the right hand side and the maximized control switching

term is computed from the argument of the maximum in (18) ysstuting the optlmaEMz(’; &
for E.
Consequently, thel + 1)th correction to the discretized Bellman equation is given b

c,L 1 (e,L)
VLD ylen | A [rm( — 21/ K)DVXM) + ot DDVXM) — M)
+ SAZYMEE, = VM) 4 oy, DVYMSY (25)

1 . .
SoByZDDVYMS) + S QUM — VML) +sw§;§j},
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for L =0to L*, WhereVMEfjfo = VMf’; & 1-€., the prediction is theth correction. The subsequent

correction evaluation step is again the Crank-Nicolsomaaye

VMY = 0.5V + ven ),

1,5,k ) )

which is used to calculatd. + 1)th corrections for all differenced derivatives and funcderms
as well asERM 7Y, EMISTY andSMSL Y.

1,5,k
Corrections are contlnued until a relatlve stopping coter

LA+1 L)
|Vi§yc',k+1) - Vz(g k+1| < 5|Vzgck+1|

is satisfied for alls, j} at fixed discrete timé& + 1 and some relative toleranee> 0 with the
stopped correction counter denotedBy= L + 1. The final correction value that is used in the

next time step is more concisely denotedLbS]Z) = VZ(J .. Typically, only a few corrections are
needed for reasonable accuracy, beyond the starting, fihad atk = 1.

The convergence of the corrections is not a simple mattecandgergence difficulties increase
with the dimension of the state space, since the convergeribe discretized stochastic dynamic
programming procedure critically depends on the mesh ditiht compared to some metric of
Az and Ay. For more information on the approximate quasi-deterrtimonvergence criteria
used, comparison to other methods, and additional refesetie reader is referred to the survey
chapter of Hanson [26].

Figure 4 shows the optimal current valué( K, y, ¢) in million dollar units using optimal effort
qE*(K,y,t)/r; versus a scaled price factgr exp(—r,7), i.e., with the deterministic inflationary
partexp(+r,1") at the final time scaled out. The figure is intended to show ffexts on the
optimal current value due to the inflationary factor. Thevesrindexed by time-to-g@; — ¢t = 0,
2,4, 6, 8, 10 starting at the bottom along the abscis§a-att = 0 (i.e., the final time = T') to
the uppermost curve dt— ¢ = 10 (i.e., initial timet = 0). As expected, the optimal current value
increases as a function of increasing scaled inflation fagtihh a nearly constant slope for fixed
T — t, except for the zero final current valuetat T'. From the curve§" —t =2t04,4106, 6
to 8 and 8 to 10 the current value shows a substantial incfa®ut 2.9, 2.2, 2.0 and 1.9 times,
respectively. The optimal current value as a function ofypaton size (not pictured) is relatively
flat but shows similar large increases when indexed overrtieated intervals. The displayed
curves are essentially linear with slope approximapety (K, y, t) N (K, t) for the relatively short
horizonT = 10. Thus, even when influenced by density independent disasiteroptimal current
value is extremely sensitive to the stochastic inflatioriacyor with the rate of increase increasing
for longer times. As a word of caution in interpreting Figwk note that the scaled inflationary
factory-exp(—ryT') justindicates a rough, average scaling ér this model and does not indicate
an exponential growth in the price of halibut since we tooky gmice parameters from the halibut
fishery and not inflation parameters.

Since the priceP is time dependent, the instantaneous return or value widlitezed by both
changes in the stock levél(¢) and the price leveP(t). In order to motivate this and our more
general numerical results, we examine the simplifying gdaterministic approximation [25],
bearing in mind that the results displayed in Figs. 4 throGgine for the stochastic problem with
random Poisson jumps in price and population. The rate aigdan the inflationary factor can be
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Figure 4: Optimal current valué/*(K,y,t), in millions of U.S. dollars versus the scaled price
factor,y - exp(—ry - T'), with time parametet = 0.0, 2.0, 4.0, 6.0, 8.0, 10.0 for each curve ordered
from top to bottom, respectively, and with population sizedi at carrying capacity = K.

approximated by the quasi-deterministic approximatioBdqo (13), wher&,, satisfies

dYQD(t) = Mean [dY(t) | Y(t) = YQD(t)] = (7’2 + Z bjgj) YQD(t) dt, (26)

i.e., approximated by the exponential growth:

Yon(t) = y(0) exp ((TQ + Z bjgj> t) . (27)

Similarly, the stock level has the quasi-deterministicragpmation,Ng(t), assuming in (11) that
the effort £ is constant and that

Hop(t) =q- E- Nop(t),
for simplicity,

dNgp(t) = Mean [N (1) | N(t) = Nop(t)]



F. B. Hanson and D. Ryan, Harvesting with Price Dynamics 13

(28)

= (ﬁ (1= Ngp(t)/K)—q-E+ Z%’fj) Nep(t) dt,
j
i.e., a “Schaefer” model modified by the linear, mean jumptigbution. The quasi-deterministic
price, from Eq. (12), is then

Pop(t) = (po/Hgp(t) +p1) - Yon(t).
Consequently, the approximate instantaneous return,
Rqop(t) = Pop(t) - Hop(t) — c(E),
has a marginal rate of increase that decomposes into

dRQD dNQD dYQD
dt dt dt (®). (29)

Thus the approximate immediate return changes with theggsaim stock level, but also with the
average approximate inflationary jump rate, which will berewapid for longer times from (27).
Note that this approximate result ignores changes in theesting effort.

The wide separation in the curves may be accounted for bpgnthiat starting the discounting
at s = t makes the Bellman equation autonomous. Since the WienePaisdon processes are
stationary each separate curve represents the expecteidmdaol 1/* starting from the previous
time. In other wordg can be thought of as a restarted inflation rate at any timelowinlg a
jump in price this increment is positive and augments thegmat increase in the expected value
of current yield revenues.

Figure 5 shows the scaled optimal feedback effdst (K, y,t)/r, versusy - exp(—ryT') for
time-to-go7 —t = 0, 2, 4, 6, 8, 10. This shows that optimal effort is not very #@resto the
lumped effects of the inflation factor and ti€,. While the optimal current values differ by over
380% betweel’ —t = 2 and7T —t = 0 atz = K, the optimal effort needed to obtain these levels
shows a relative difference of about).13% for the same values, i.e., a slight decrease. This is
consistent over the full range of time-to-go values. Thastsastic inflationary effects dramatically
change optimal return while leaving effort levels relalyventouched. This is reasonable since for
x nearK for increasing times the rapid inflationary increaseFits offset by a rapid increase in
the shadow pric&*. Away from the constraints this tends to keep effort levids/l changing.

Figure 6 displays the sensitivity of the optimal currenuegV’* (K, y, 0), to the inflation price
factor rater,. The curves are parameterized by the scaled inflation paiceify - exp(—r,T")
ranging from 1.0 for the topmost curve to 0.2 at the bottoméps of 0.2. The convexity of the
curves is most upward for, near 0.2 and the scaled price factor near 1.0 suggestingetfoan is
sensitive to the starting inflation rate. Rpnear zero the expected return will stay positive as long
as the shadow pricé/*, is less thar(p, + p1gEx)y, in which case we see the expected present
value approximately proportional to For the parameter values chosen, the combined effects of
the random jumpg(); in the price factor and the inflationary driff - Y overcome the effect of the
occasional disaster according to the random populatiopgui#s; that might drive the population
to near zero. These combined effects are more pronouncéagioer inflation levels with higher
variability as the inflation rate increases.

t)=pi-q E- (t) + (po+p1i-q-E-Ngp(t)) -



14 F. B. Hanson and D. Ryan, Harvesting with Price Dynamics

0.01

0.008

o
o
S
>
T

qEHK,y,t)/r,, Optimal Feedback Effort
I
o
S
I

o

o

S

V]
T

| | | | | |
0 0.2 0.4 0.6 0.8 1
y@xp(-ro[T), Inflationary Price Factor

Figure 5: Optimal feedback effor; £* /r (K, y, t), in dimensionless form versus the scaled price
inflation factor,y - exp(—ry - T'), with time parameter covering= 0.0, 2.0, 4.0, 6.0, 8.0, 10.0 for
each curve closely spaced from the bottom to top, respégtimed with population size fixed at
carrying capacityr = K.

5. Summary

We have examined the effects of random price fluctuation®iercomputed optimal harvest strat-
egy and return for a randomized Schaefer model with densitypendent disasters. Model popu-
lation and economic parameters were taken from [19] and9B4 @and 1985 IPHC Annual Reports
[17, 18].

We have found that random price fluctuations that includgelanflationary increases against
a background of continuous inflationary growth stronglyeeffoptimal return but have a much
less significant impact on optimal effort. Random inflatigneffects, even in the presence of a
hazardous environment, are therefore much more likelyap @kole in determining optimal return
than in scheduling effort.
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Figure 6: Sensitivity of optimal current valug; (K, y, 0), to the inflation price factor rate, with
curves parameterized by the scaled inflation price fagtefexp(—ry - T'), ranging from 1.0 at
the top to 0.2 at the bottom in steps of 0.2, with time fixed atittitial valuet = 0.0, and with
population size fixed carrying capacity= K.
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