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Abstract

We consider the effects of large inflationary price fluctuations on the computed optimal
harvest strategy for a randomized Schaefer model. Both prices and population sizes are as-
sumed random with both background (Wiener) and jump (Poisson) components. Population
fluctuations are assumed to be density independent, i.e., relative changes are independent of
population size. Stochastic dynamic programming is employed to find the optimal harvesting
effort and economic return for a realistic set of bioeconomic data for Pacific halibut. It is found
that inflationary effects have a pronounced influence on the optimal return, even in a hazardous
or disastrous environment. However, optimal harvesting effort levels are much less sensitive
to inflationary effects.

1. Introduction

Bioeconomic resource models incorporating random fluctuations in either population size or model
parameters have been the subject of much interest. Reed [1, 2] considered optimal harvest and es-
capement policies in the presence of general discrete-timemultiplicative noise for a variety of as-
sumptions. Gleit [3] gave an exact solution for the optimal present value, and corresponding linear
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optimal control, of an exponentially growing resource subject to Gaussian white noise fluctuations.
Ludwig [4, 5] solved by perturbation methods the more general control problem for populations
with Ricker type growth influenced by lognormal noise, whileLudwig and Varah studied these
problems numerically in [6]. Ryan and Hanson [7] solved exactly the optimal harvest problem for
constant effort and exponential growth in the presence of large fluctuations modeled by Poisson
processes and in [8] numerically constructed the optimal feedback control for logistic growth with
the same type of noise. See also [7, 8] for a more extensive bibliography.

In the above models per unit prices are either constant or exogenous and deterministic. How-
ever, random price fluctuations are a realistic effect and have been incorporated in standard re-
source models. Andersen [9] has studied continuous time optimal harvest models with logis-
tic growth when prices follow a general probability distribution. Lewis [10, 11] has examined
similar models in discrete time when both prices and population size are allowed to be random.
Pindyck [12] has studied the economic consequences of uncertainty in population size as well as
unit price for a variety of continuous-time harvest models,using Gaussian distributed Wiener pro-
cesses to model fluctuations. Clark [13] discusses a discrete-time model with randomly varying
seasonal prices. Ryan [14] considered a model in which the unit price changes suddenly at a ran-
dom time. Comprehensive introductions to these problems are given by Mangel [15] and Andersen
and Sutinen [16].

In the present paper, we explore the effects of price fluctuations on the computed optimal
harvest strategy for a randomized Schaefer type model. In our model unperturbed prices consist
of an inflation adjusted constant price term plus a supply/demand term. Random price variation
is incorporated into the model through a multiplicative random process that includes both small
continuous-time fluctuations and the possibility of occasional, large random changes. Since our
primary interest is to model, and study numerically, the effects of randomness on supply/demand
factors, we ignore both random and inflationary effects on the postulated cost function. Techni-
cally, random and inflationary effects of the type hypothesized for the supply/demand function are
easy to incorporate into the model. However, random fluctuations in cost are likely to be much
more complicated and require a more complicated general model. Thus, we restrict our atten-
tion to serially uncorrelated exogenous random price and population fluctuations. Our analytical
emphasis is primarily numerical.

The presence of such fluctuations is well documented in fisheries. Figure 1 shows price ver-
sus year and Figure 2 shows catch versus year for the Pacific halibut (Hippoglossus hippoglos-
sus) system. See the 1984 and 1985 International Pacific HalibutCommission (IPHC) Annual
Reports [17, 18]. The price data show low level fluctuations followed by a precipitous decline fol-
lowed by moderate fluctuations over a short time period. The price versus catch data as shown in
Figure 3 reflect similar but more pronounced fluctuation witha prominent trough in the highly in-
flationary time around 1979. In general, random catch and recruitment fluctuations are particularly
well documented. See [8] for a more detailed survey.

In the present paper we explore the effects of both random population fluctuations as well as
random price fluctuations on the computed optimal harvest strategy. Our model is new in that
it simultaneously incorporates the possibility of large fluctuations in both resource size and per
unit prices while maintaining the general structure employed in the previously discussed work.
Section 2 briefly develops the deterministic model. The stochastic model is presented in Section 3.
Numerical methods and results are discussed in Section 4.
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Figure 1: Pacific halibut prices in U.S. dollars per kilogramfor each year from 1935 to 1985. The
source of the data in the table in Appendix II in the IHPC 1984 and 1985 Annual Reports [17, 18].

2. Deterministic Model

A frequently employed model for the harvesting of a renewable resource of sizeN(s) at times is
the differential equation

dN(s) = [r1N(1 − N/K) − H(s)] ds, s > 0, N(0) = x. (1)

Here,r1 andK are the population’s intrinsic growth rate and carrying capacity, respectively. The
harvest term is assumed to be given bycatch per unit effort hypothesis[19]

H(s) = q · E · N(s), (2)

whereq is the catchability coefficient. The effortE = E(N(s), s), in feedback control form here,
is a measure of harvesting effort and is assumed to satisfy the condition

Emin ≤ E ≤ Emax < ∞.

The value of the harvest is given by the discounted present value of future resources

v(x; E) =
∫ T

0
e−δs[pqEN(s) − c(E)] ds, (3)
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Figure 2: U.S.-Canadian catch in millions of kilograms for each year from 1935 to 1985. The
source is the same as Figure 1.

with T the time horizon,δ the discount rate,p the price of a unit of harvested biomass, andc(E)
the cost of a unit of effort when the population size isN . The instantaneous net return or profit is
given by

R(s) = p · H(s) − c(E) = p · q · E · N(s) − c(E)

at times. If it is assumed that the goal of the harvest is to find the effort level E∗ that maximizes
the total profit, then we must compute

v∗(x) ≡ v (x; E∗) = max
E

[v(x; E)], (4)

subject to the dynamical constraint in Eq. (1). This is a problem in optimal control theory and can
be studied using Pontryagin’s maximum principle (see Clark[19] on the maximum principle in the
context of fishery bioeconomics). However, that method doesnot readily extend to the stochastic
case. A more efficient form for computing optimal controls inthe presence of random fluctuations
is the Bellman equation of dynamic programming (see Bryson and Ho [20], for instance). Thus,
we consider the current value form of Eq. (3) given by

V (x, t; E) =
∫ T

t
e−δ(s−t)[pqEN(s) − c(E)] ds, (5)
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Figure 3: Pacific halibut price in U.S. dollars per kilogram versus catch in millions of kilograms for
the years from 1935 to 1985. The source is the same as Figure 1.Also, the linear regression for the
price times catch as a function of catch from 1980 to 1985 is displayed as the smooth hyperbolic
price curve.

and apply the principle of optimality to derive an equation for

V ∗(x, t) = max
E

[V (x, t; E)],

(see [8] for a simple, formal derivation),

V ∗
t (x, t) + r1x(1 − x/K)V ∗

x (x, t) − δV ∗(x, t) + S∗(x, t) = 0, (6)

where

S∗(x, t) = max
E

[(p − V ∗
x (x, t)) qEx − c(E)] . (7)

Let ER(x, t) be the regular solution ofc′(E) = (p − V ∗
x (x, t))qx corresponding to the uncon-

strained maximum in Eq. (7). For instance, in the case of quadratic costs withc(E) = c1·E+c2·E
2,

we obtain

ER(x, t) =
(p − V ∗

x (x, t))qx − c1

2 · c2

.
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Upon imposing the constraints on the harvesting effortE, we get thebang-regular-bangcontrol

E∗(x, t) =





Emax, Emax ≤ ER(x, t)
ER(x, t), Emin ≤ ER(x, t) ≤ Emax

Emin, ER(x, t) ≤ Emin

. (8)

The full problem is determined by imposing the final boundarycondition

V ∗(x, T ) = 0, (9)

and natural boundary condition

V ∗(0, t) = −
(c1 + c2Emin)Emin

δ

(
1 − e−δ(T−t)

)
, (10)

in the case of increasing, convex quadratic costs, i.e.,c1 > 0 andc2 > 0, provided that the discount
rateδ is positive. Note that ifx = 0, thenN(t) = 0 by the vanishing of the right hand side of (1)
with (2) at extinction and the optimal harvesting effort must be at the minimumEmin due to the
negativity of the cost function.

See [8] for details. This is the form of the problem most easily generalized to the stochastic
model discussed in Section 3.

3. Stochastic Model

An Itô stochastic differential equation describing the growth and harvesting of a model resource
population subjected to large random changes in size is the randomized Schaefer model [8]

dN(s) = [r1N(1 − N/K) − H(s)] ds + σ1N dW1(s) + N
n∑

j=1

aj dZj(s, fj),

(11)

N(t) = x,

wherer1, K andH(s) = qEN(s) are as described in Section 2.
There are two random components in Eq. (11). Large rare finiteamplitude fluctuations are

characterized by the density independent, compound Poisson process

N
n∑

j=1

aj dZj(s; fj).

Here, the relative jump amplitudeaj > −1, the jump ratefj > 0, the Wiener noise coefficient
σ1 ≥ 0, and thejth incremental Poisson processdZj(s; fj) has infinitesimal mean and variance
fj ds drawn from the set{dZ1, . . . , dZn} of independent Poisson processes. The independent
density amplitude factorN is chosen so that any variation is proportional to current population size
as measured by theaj , i.e., relative changes are independent of densityN . Background fluctuations
are modeled by the normalized, Gaussian distributed WienerprocessdW1 with zero mean and
infinitesimal varianceds. Thus, in the model (11) the population size is known at a times > 0
with future population size determined from the deterministic component, the serially uncorrelated
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fluctuations occurring fromdW1, and the random increases occurring at the times of events of
the dZj with frequencyfj . Large scale effects, typically brought about by very complex and
poorly understood mechanisms, are thus estimated in (11) asa lumped sum of density independent
terms. Such large fluctuations are commonly observed in marine recruitment data and are well
documented in the fisheries literature [21, 22, 23, 24]. An analysis of the moments to the process
defined by (11) in the absence of harvesting is given in [25].

In the economic component of the model we assume management is neutral to risk and that
prices are random and given by the supply/demand relation

P (s) =

(
p0

H(s)
+ p1

)
Y (s), (12)

where againH(s) = qEN(s) is the amount of harvested biomass,P (s) · H(s) is the gross return
on harvestH(s), p1 is a constant price per unit harvested biomass coefficient, and p0 is the sup-
ply/demand coefficient component of the price. In (12),Y (s) is a fluctuating inflationary factor
satisfying the Itô stochastic differential equation

dY (s) = r2Y ds + σ2Y dW2(s) + Y
m∑

j=1

bj dQj(s; gj), Y (t) = y, (13)

with relative jump amplitudebj > −1, jump rategj > 0, and Wiener coefficientσ2 ≥ 0. ThedQj

for j = 1, . . . , m, anddW2 are, respectively, incremental Poisson processes and a Wiener process,
as in (11). Equation (12) describes prices inflated at an annual rater2, subjected to the rapid
background perturbations ofdW2 as well as the occasional random jump increases or decreases
brought about by thedQj. Such a characterization for the priceP is plausible from Figure 3, which
shows price versus catch for the Pacific halibut fishery from 1935 to 1985. The estimated mean
price is hyperbolic in nature with both types of fluctuationsevident about the mean. In particular,
in the absence of discernible correlations in the fluctuations the data suggest the multiplierY to be
independent ofP .

Computation of the optimal exploitation policy in the stochastic case is much more complicated
than that for the deterministic model (1)–(5). Equation (5)must be modified to account for the
random terms describing fluctuations inN andP and given by (11)–(13). Corresponding to (4)–
(5), we seek a policyE∗(x, y, t) that maximizes the expected discounted current value

V (x, y, t) = Mean

[∫ T

t
e−δ(s−t) [(p0 + p1qEN)Y (s) − c(E)] ds | N(t) = x, Y (t) = y

]
, (14)

where
Mean = Mean

{dZ,dQ,dW}

denotes the mean or expectation taken over the vector processesdZ = [dZ1, . . . , dZn], dQ =
[dQ1, . . . , dQn], anddW = [dW1, dW2]. Here,

P (s) · H(s) − c(E) = (p0 + p1 · H(s)) · Y (s) − c(E), (15)

is the net return on harvested biomassH(s) at times. We further specialize effort costs to the
quadratic form

c(E) = c1E + c2E
2. (16)



8 F. B. Hanson and D. Ryan, Harvesting with Price Dynamics

The additional quadratic cost termc2E
2, appropriately scaled, may be viewed as a perturbation

on the more typically employed linear costs as well as a technique to avoid difficulties inherent in
the computation of singular controls [19, 20]. We assume that bothc1 andc2 are positive, so that
costs are an increasing function and costs grow faster than alinear function of effort. Such a cost
function is, however, relatively common and has been employed in fisheries studies by a number
of authors [10, 11, 27, 28, 29].

Note that we do not include inflationary effects in the costs since our main focus in on price dy-
namics, but since we have modeled the price dynamics including inflationary effects, the discount
rateδ in Eq. (14) must be considered the nominal discount rate rather than the real or inflation
corrected discount rate. Also, we have selected a finite horizonT rather than an infinite horizon,
since we believe that the finite horizon case embodies more realism, particularly when motivated
by fisheries problems where the fishing season can be rather short and the environment dynamic.
In this current paper, we are concerned with the dynamic problem and not the equilibrium solutions
such as those associated with the infinite horizon case.

SinceN andY are stochastic processes andE is a function of the state as well as time, the
easiest approach to the calculation of(E∗, V ∗) is via the Bellman equation of continuous-time
dynamic programming [8, 15, 30]. SinceN andY involve discontinuous processes, the Bellman
equation will involve functional delay terms in bothx andy as well as a second-order derivative
term arising from the Wiener processes in (11) and (13). Thus, E∗ andV ∗ satisfy

0 = V ∗
t + r1x(1 − x/K)V ∗

x +
σ2

1x
2

2
V ∗

xx − δV ∗ +
∑

j

fj [V ∗ ((1 + aj)x, y, t) − V ∗(x, y, t)]

(17)

+ r2yV ∗
y +

σ2
2y

2

2
V ∗

yy +
∑

j

gj [V ∗(x, (1 + bj)y, t) − V ∗(x, y, t)] + S∗(x, y, t),

whereS∗ is the control switching term containing the argument of themaximum in (17),

S∗(x, y, t) = max
E

[
p0 · y + (p1 · y − V ∗

x (x, y, t)) qEx −
(
c1E + c2E

2
)]

, (18)

with unconstrained, regular control given as

ER(x, y, t) =
(p1 · y − V ∗

x (x, y, t)) · q · x − c1

2 · c2
, (19)

determined from the argument of the maximum in (18), and withthe constrained, optimal control
given as

E∗(x, y, t) =






Emax, Emax ≤ ER(x, y, t)
ER(x, y, t), Emin ≤ ER(x, y, t) ≤ Emax

Emin, ER(x, y, t) ≤ Emin

, (20)

similar to the form in Eq. (8) in the one-dimensional, deterministic case, but with a two-dimensional
dependence.

Equation (17) is augmented by the side conditions

V ∗(x, y, T ) = 0, (21)

V ∗(0, 0, t) = −
(c1 + c2Emin)Emin

δ

(
1 − e−δ(T−t)

)
, (22)
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with the same reasoning given for (9) and (10) in the deterministic case, but here withY (s) ≡
0 wheny = Y (t) = 0. The most appropriate method of solution for (17)–(22) appears to be
numerical. Perturbative techniques might be suggested forσ1 andσ2 small, but these are not likely
to be effective because of theO(1) nature of the functional terms in (17). The numerical procedures
are discussed more fully in Section 4.

4. Numerical Results

In this section we examine the results of the numerical solution of Eq. (17) for certain values
of the parameters. The numerical solution of (17) is also outlined.

Our parameter values are based on Pacific halibut data over a number of years and come from
a variety of sources. We use estimates ofr1 = 0.71/year andK = 80.5 × 106 Kg (see Clark [19]).
The price and cost data were taken from the 1984 and 1985 IPHC Annual Reports [17, 18] for
the period 1980 to 1985 to allow some temporal perspective and avoid the anomalous inflationary
period of the late 1970’s. Linear regression was used to fit value versus catch,̃V = p0 + p1 · H,
for 1980 to 1985. Although we use only six data points,p0 = $8.46/year andp1 = $1.59/Kg with
78% of the variance explained. The results of the linear regression for the value is displayed in
Figure 3 as the smooth hyperbolic curve of the price versus catch

P̃ = Ṽ /H = p0/H + p1,

fitting only the higher price fluctuations in the original IPHC price versus catch data from 1935 to
1985.

Other parameter values are taken to be:r2 = 0.01/year, T = 10 years,δ = 0.06/year,
c1 = $96 × 10−6/(skate-year)/year (a standard skate is a 550 meter ground line with 100 hooks.
Note that in the IPHC data [17, 18] the annual effort is given in units of skates with year dimen-
sions implicit, thus year dimensions have been explicitly added here to effort, cost and catcha-
bility to preserve dimensional correctness),c2 = $0.10 × 10−6/(skate-year)2/year, q = 3.30 ×
10−6/(skate-year)/year, Emin = 0, andEmax = r1/q = 0.2152 × 106 skate-years. Since our
primary focus is on discontinuous effects, we takeσ1 = 0 andσ2 = 0, removing the continuous
background noise. We further lump the additive effects of the jumps by takingf1 = 0.5 with
fj = 0 for j ≥ 2, a1 = −0.5 with aj = 0 for j ≥ 2, g1 = 0.5 with gj = 0 for j ≥ 2, andb1 = 0.5
with bj = 0 for j ≥ 2.

The numerical solution of (17) has been obtained by employing a hybrid extrapolated predictor-
corrector and Crank-Nicolson finite difference method modified to account for

1. functional terms that appear due to the Poisson processesused to characterize the large fluc-
tuations in both population and inflation rate, and

2. the maximization embodied in the switching term (18).

We discretize usingxi = (i − 1)∆x, i = 1, · · · , Nx for the population,yj = (j − 1)∆y,
j = 1, · · · , Ny for the inflationary factor, andtk = T − (k − 1)∆t, k = 1, · · · , Nt for the time,
where∆x = K/(Nx − 1), ∆y = er2T /(Ny − 1), and∆t = T/(Nt − 1). The dependent variable
V ∗(xi, yj, tk) is represented by the discrete variableVi,j,k. Second order central finite differences
are used for spatial derivatives such thatV ∗

x (xi, yj, tk) is approximated byDVXi,j,k = 1
2
(Vi+1,j,k −
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Vi−1,j,k)/∆x andV ∗
y (xi, yj, tk) is approximated byDVYi,j,k = 1

2
(Vi,j+1,k − Vi,j−1,k)/∆y, with ap-

propriate forms for the boundaries. The second derivativestermsV ∗
xx(xi, yj, tk) andV ∗

yy(xi, yj, tk)
are discretized by the central difference formulasDDVXi,j,k = (Vi+1,j,k − 2Vi,j,k + Vi−1,j,k)/(∆x)2

andDDVYi,j,k = (Vi,j+1,k − 2Vi,j,k + Vi,j−1,k)/(∆y)2, respectively. The backward time derivative
V ∗

t (xi, yj, tk+0.5) is approximated byDVTi,j,k = −(Vi,j,k+1 − Vi,j,k)/∆t, which is also a second
order central finite difference, but about the half time steps of the Crank-Nicolson method. The
functional termsV ∗((1+al)xi, yj, tk) andV ∗(xi, (1+ bl)yj, tk) are approximated, respectively, by
linear interpolation between the two nearest nodal valuesVî,ĵ,k consistent with order of the errors
in the second order central finite differences used for the spatial derivatives. We denote the linear
interpolation ofV ∗((1 + al)xi, yj, tk) by ZVi,j,k,l andV ∗(xi, (1 + bl)yj, tk) by QVi,j,k,l.

The Crank-Nicolson average for the midpoint time-stepVi,j,k+0.5 is denoted byVMi,j,k ≡
0.5(Vi,j,k + Vi,j,k+1), and the accelerating extrapolated starting value byVEi,j,k ≡ 0.5(3Vi,j,k −
Vi,j,k−1) providedk ≤ 2, with corresponding notations for the spatial derivatives,

Thus, the discrete extrapolated, predictor approximationcorresponding to the Bellman equa-
tion (17) is

V
(p)
i,j,k+1 = V

(c,∗)
i,j,k + ∆t

[
r1xi(1 − xi/K)DVXEi,j,k +

1

2
σ2

1x
2
i DDVXEi,j,k − δVEi,j,k

+ Σlfl(ZVEi,j,k,l − VEi,j,k) + r2yjDVYEi,j,k (23)

+
1

2
σ2

2y
2
j DDVYEi,j,k + Σlgl(QVEi,j,k,l − VEi,j,k) + SEi,j,k

]
,

whereV
(c,∗)
i,j,k is the final correction from thekth backward time step,DVXEi,j,k = 0.5(VEi+1,j,k −

VEi−1,j,k)/∆x, for example, andVEi,j,k ≡ 0.5(3V
(c,∗)
i,j,k −V

(c,∗)
i,j,k−1) providedk ≤ 2 so that corrections

are available on at least two starting time steps. In the predictor evaluation step,DVXM, DVYM,
DDVXM, DDVYM, ZVM, andQVM are evaluated using the discrete values

VM(p)
i,j,k = 0.5(V

(c,∗)
i,j,k + V

(p)
i,j,k+1).

From (19), it follows that the regular controlER(xi, yj, tk+0.5) at the predictor step is given ap-
proximately by

ERM(p)
i,j,k = (p1Yj − DVXM(p)

i,j,k · q · xi − c1)/(2c2). (24)

The predicted, constrained, optimal controlEM(p)
i,j,k is computed using composite formula (20) with

ERM(p)
i,j,k substituted forER(x, y, t) on the right hand side and the maximized control switching

term is computed from the argument of the maximum in (18) by substituting the optimalEM(p)
i,j,k

for E.
Consequently, the(L + 1)th correction to the discretized Bellman equation is given by

V
(c,L+1)
i,j,k+1 = V

(c,∗)
i,j,k + ∆t

[
r1xi(1 − xi/K)DVXM(c,L)

i,j,k +
1

2
σ2

1x
2
i DDVXM(c,L)

i,j,k − δVM(c,L)
i,j,k

+ Σlfl(ZVM(c,L)
i,j,k,l − VM(c,L)

i,j,k ) + r2yjDVYM(c,L)
i,j,k (25)

+
1

2
σ2

2y
2
j DDVYM(c,L)

i,j,k + Σlgl(QVM(c,L)
i,j,k,l − VM(c,L)

i,j,k ) + SM(c,L)
i,j,k

]
,
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for L = 0 to L∗, whereVM(c,0)
i,j,k = VM(p)

i,j,k, i.e., the prediction is the0th correction. The subsequent
correction evaluation step is again the Crank-Nicolson average

VM(c,L)
i,j,k = 0.5(V

(c,∗)
i,j,k + V

(c,L)
i,j,k+1),

which is used to calculate(L + 1)th corrections for all differenced derivatives and functions terms
as well asERM(c,L+1)

i,j,k , EM(c,L+1)
i,j,k andSM(c,L+1)

i,j,k .
Corrections are continued until a relative stopping criterion,

|V
(c,L+1)
i,j,k+1 − V

(c,L)
i,j,k+1| < ε|V

(c,L)
i,j,k+1|

is satisfied for all{i, j} at fixed discrete timek + 1 and some relative toleranceε > 0 with the
stopped correction counter denoted byL∗

k = L + 1 . The final correction value that is used in the

next time step is more concisely denoted byV
(c,∗)
i,j,k = V

(c,L∗

k
)

i,j,k . Typically, only a few corrections are
needed for reasonable accuracy, beyond the starting, final value atk = 1.

The convergence of the corrections is not a simple matter andconvergence difficulties increase
with the dimension of the state space, since the convergenceof the discretized stochastic dynamic
programming procedure critically depends on the mesh ratioof ∆t compared to some metric of
∆x and∆y. For more information on the approximate quasi-deterministic convergence criteria
used, comparison to other methods, and additional references the reader is referred to the survey
chapter of Hanson [26].

Figure 4 shows the optimal current valueV ∗(K, y, t) in million dollar units using optimal effort
qE∗(K, y, t)/r1 versus a scaled price factory · exp(−r2T ), i.e., with the deterministic inflationary
part exp(+r2T ) at the final time scaled out. The figure is intended to show the effects on the
optimal current value due to the inflationary factor. The curves indexed by time-to-go,T − t = 0,
2, 4, 6, 8, 10 starting at the bottom along the abscissa atT − t = 0 (i.e., the final timet = T ) to
the uppermost curve atT − t = 10 (i.e., initial timet = 0). As expected, the optimal current value
increases as a function of increasing scaled inflation factor with a nearly constant slope for fixed
T − t, except for the zero final current value att = T . From the curvesT − t = 2 to 4, 4 to 6, 6
to 8 and 8 to 10 the current value shows a substantial increaseof about 2.9, 2.2, 2.0 and 1.9 times,
respectively. The optimal current value as a function of population size (not pictured) is relatively
flat but shows similar large increases when indexed over the indicated intervals. The displayed
curves are essentially linear with slope approximatelyp1qE(K, y, t)N(K, t) for the relatively short
horizonT = 10. Thus, even when influenced by density independent disasters, the optimal current
value is extremely sensitive to the stochastic inflationaryfactor with the rate of increase increasing
for longer times. As a word of caution in interpreting Fig. 4,we note that the scaled inflationary
factory ·exp(−r2T ) just indicates a rough, average scaling ofy for this model and does not indicate
an exponential growth in the price of halibut since we took only price parameters from the halibut
fishery and not inflation parameters.

Since the priceP is time dependent, the instantaneous return or value will bealtered by both
changes in the stock levelN(t) and the price levelP (t). In order to motivate this and our more
general numerical results, we examine the simplifying quasi-deterministic approximation [25],
bearing in mind that the results displayed in Figs. 4 through6 are for the stochastic problem with
random Poisson jumps in price and population. The rate of change in the inflationary factor can be
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Figure 4: Optimal current value,V ∗(K, y, t), in millions of U.S. dollars versus the scaled price
factor,y · exp(−r2 ·T ), with time parametert = 0.0, 2.0, 4.0, 6.0, 8.0, 10.0 for each curve ordered
from top to bottom, respectively, and with population size fixed at carrying capacityx = K.

approximated by the quasi-deterministic approximation toEq. (13), whereYQD satisfies

dYQD(t) = Mean [dY (t) | Y (t) = YQD(t)] =



r2 +
∑

j

bjgj



YQD(t) dt, (26)

i.e., approximated by the exponential growth:

YQD(t) = y(0) exp




r2 +

∑

j

bjgj


 t


 . (27)

Similarly, the stock level has the quasi-deterministic approximation,NQD(t), assuming in (11) that
the effortE is constant and that

HQD(t) = q · E · NQD(t),

for simplicity,

dNQD(t) = Mean [dN(t) | N(t) = NQD(t)]
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(28)

=



r1 · (1 − NQD(t)/K) − q · E +
∑

j

ajfj



NQD(t) dt,

i.e., a “Schaefer” model modified by the linear, mean jump contribution. The quasi-deterministic
price, from Eq. (12), is then

PQD(t) = (p0/HQD(t) + p1) · YQD(t).

Consequently, the approximate instantaneous return,

RQD(t) ≡ PQD(t) · HQD(t) − c(E),

has a marginal rate of increase that decomposes into

dRQD

dt
(t) = p1 · q · E ·

dNQD

dt
(t) + (p0 + p1 · q · E · NQD(t)) ·

dYQD

dt
(t). (29)

Thus the approximate immediate return changes with the changes in stock level, but also with the
average approximate inflationary jump rate, which will be more rapid for longer times from (27).
Note that this approximate result ignores changes in the harvesting effort.

The wide separation in the curves may be accounted for by noting that starting the discounting
at s = t makes the Bellman equation autonomous. Since the Wiener andPoisson processes are
stationary each separate curve represents the expected addition to V ∗ starting from the previous
time. In other wordsy can be thought of as a restarted inflation rate at any time. Following a
jump in price this increment is positive and augments the marginal increase in the expected value
of current yield revenues.

Figure 5 shows the scaled optimal feedback effortqE∗(K, y, t)/r1 versusy · exp(−r2T ) for
time-to-goT − t = 0, 2, 4, 6, 8, 10. This shows that optimal effort is not very sensitive to the
lumped effects of the inflation factor and thedQj . While the optimal current values differ by over
380% betweenT − t = 2 andT − t = 0 atx = K, the optimal effort needed to obtain these levels
shows a relative difference of about−0.13% for the same values, i.e., a slight decrease. This is
consistent over the full range of time-to-go values. Thus stochastic inflationary effects dramatically
change optimal return while leaving effort levels relatively untouched. This is reasonable since for
x nearK for increasing times the rapid inflationary increase inP is offset by a rapid increase in
the shadow priceV ∗

x . Away from the constraints this tends to keep effort levels slowly changing.
Figure 6 displays the sensitivity of the optimal current value,V ∗(K, y, 0), to the inflation price

factor rater2. The curves are parameterized by the scaled inflation price factory · exp(−r2T )
ranging from 1.0 for the topmost curve to 0.2 at the bottom in steps of 0.2. The convexity of the
curves is most upward forr2 near 0.2 and the scaled price factor near 1.0 suggesting thatreturn is
sensitive to the starting inflation rate. Fory near zero the expected return will stay positive as long
as the shadow price,V ∗

x , is less than(p0 + p1qEx)y, in which case we see the expected present
value approximately proportional toy. For the parameter values chosen, the combined effects of
the random jumpsdQj in the price factor and the inflationary driftr2 ·Y overcome the effect of the
occasional disaster according to the random population jumpsdZj that might drive the population
to near zero. These combined effects are more pronounced forhigher inflation levels with higher
variability as the inflation rate increases.
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Figure 5: Optimal feedback effort,q ·E∗/r1(K, y, t), in dimensionless form versus the scaled price
inflation factor,y · exp(−r2 · T ), with time parameter coveringt = 0.0, 2.0, 4.0, 6.0, 8.0, 10.0 for
each curve closely spaced from the bottom to top, respectively, and with population size fixed at
carrying capacityx = K.

5. Summary

We have examined the effects of random price fluctuations on the computed optimal harvest strat-
egy and return for a randomized Schaefer model with density independent disasters. Model popu-
lation and economic parameters were taken from [19] and the 1984 and 1985 IPHC Annual Reports
[17, 18].

We have found that random price fluctuations that include large inflationary increases against
a background of continuous inflationary growth strongly affect optimal return but have a much
less significant impact on optimal effort. Random inflationary effects, even in the presence of a
hazardous environment, are therefore much more likely to play a role in determining optimal return
than in scheduling effort.
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Figure 6: Sensitivity of optimal current value,V ∗(K, y, 0), to the inflation price factor rater2, with
curves parameterized by the scaled inflation price factor,y · exp(−r2 · T ), ranging from 1.0 at
the top to 0.2 at the bottom in steps of 0.2, with time fixed at the initial valuet = 0.0, and with
population size fixed carrying capacityx = K.
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