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Abstract

This paper treats the risk-averse optimal portfolio problem with consumption in contin-
uous time for a stochastic-jump-volatility, jump-diffusion (SJVID) model of the underlying
risky asset and the volatility. The new developments are the use of the SJVJD model with log-
truncated-double-exponential jump-amplitude distribution in returns and exponential jump-
amplitude distribution in volatility for the optimal portfolio problem. Although unlimited bor-
rowing and short-selling play an important role in pure diffusion models, it is shown that
borrowing and short-selling are unrealistically constrained for infinite-range jump-amplitudes.
Finite-range jump-amplitude models can allow constraints to be very large in contrast to infi-
nite range models which severely restrict the optimal instantaneous stock-fraction to [0,1]. The
reasonable constraints in the optimal stock-fraction due to jumps in the wealth argument for
stochastic dynamic programming jump integrals remove a singularity in the stock-fraction due
to vanishing volatility. Main modifications for the usual constant relative risk aversion (CRRA)
power utility model are for handling the partial integro-differential equation (PIDE) resulting
from the additional variance independent variable, instead of the ordinary integro-differential
equation (OIDE) found for the pure jump-diffusion model of the wealth process. In addition to
natural constraints due to jumps when enforcing the positivity of wealth condition, other con-
straints are considered for all practical purposes under finite market conditions. Computational
results are presented for optimal portfolio values, stock fraction and consumption policies.

Key words: optimal-portfolio problem; stochastic-jump-volatility; jump-diffusion; finite
markets; jump-bankruptcy condition; double-exponential jump-amplitudes

1 Introduction

The empirical distribution of daily log-returns for real financial investments differs in many ways
from the ideal pure diffusion process with its log-normal distribution as assumed in the Black-
Scholes-Merton option pricing model [10, 47]. One of the most significant differences is that



actual log-returns exhibit occasional large jumps in value, whereas the diffusion process in Black-
Scholes [10] is continuous. Statistical evidence of jumps in various financial markets is given by
Ball and Torous [7], Jarrow and Rosenfeld [33], and Jorion [36]. Long before this statistical-jump
evidence, Merton [48] (also [49, Chap. 9]) published a pioneering jump-diffusion model using log-
normal jump-amplitudes. Other jump-diffusion models were proposed including Kou and Wang’s
log-double-exponential [39, 40] and Hanson and Westman’s log-uniform [26, 28] jump-diffusion
models or Zhu and Hanson’s log-double-uniform model [60, 61]. However, it is difficult to separate
the outlying jumps from the diffusion, although separating out the diffusion is a reasonable task as
shown by Ait-Sahalia [1].

Another difference is that the empirical log-returns are usually negatively skewed, since the
negative jumps or crashes are likely to be larger or more numerous than the positive jumps for
many instruments over sufficiently long periods, whereas the normal distribution associated with
the logarithm of the diffusion process is symmetric and hence has zero skew. A third difference
is that the empirical distribution is usually leptokurtic, since the coefficient of kurtosis, i.e., the
variance-normalized fourth central moment [15],

= My/(Ms)? > 3, (1.1)

is bounded below by the normal distribution kurtosis value of three. Qualitatively, this means that
the tails are fatter than a normal with the same mean and standard deviation, compensated by a
distribution that is also more slender about the mode (local maximum).

A fourth difference is that the market exhibits time-dependence in the distributions of log-
returns, so that the associated parameters are time-dependent. In particular, another significant
difference is the volatility, which is time-dependent and stochastic, i.e., we have stochastic volatil-
ity. Stochastic volatility in the market, mostly in options pricing, has been studied by Garman
and Klass [20], Johnson and Shanno [35], Ball and Torous [6], Hull and White [32], Wiggins [56],
Stein and Stein [55, see corrections in [5]], Ball and Roma [5], Scott [54], and Lord, Koekkoek and
Dijk [42]. The mean-reverting, square-root-diffusion, stochastic-volatility model of Heston [31] is
frequently used. Heston’s model derives from the CIR model of Cox, Ingersoll and Ross [13] for
interest rates. The CIR paper also cites the Feller [18] justification for proper (Feller) boundary
conditions, process nonnegativity and the distribution for the general square-root diffusions. In a
companion paper to the CIR model paper, Cox et al. [12] present the more general theory for asset
processes. In their monograph, Fouque, Papanicolaou and Sircar [19] cover many issues involving
various models with stochastic volatility. Andersen, Benzoni and Lund [2], as well as others, have
statistically confirmed the importance of both stochastic volatility and jumps in equity returns. In
their often cited paper on affine jump-diffusions, Duffie, Pan and Singleton [14] include a sec-
tion on various stochastic-volatility, jump-diffusion models. Bates [9] studied stochastic-volatility,
jump-diffusion models for exchange rates. Broadie and Kaya [11] devised an exact simulation
method for stochastic-volatility, affine-jump-diffusion models for option pricing in the sense of an
unbiased Monte Carlo estimator. Yan and Hanson [57, 58, 30] explored theoretical and compu-
tational issues for both European and American option pricing using stochastic-volatility, jump-
diffusion models with log-uniform jump-amplitude distributions. However, Eraker, Johannes and
Polson [16] using Bayesian variants of the Markov Chain Monte Carlo (MCMC) estimation found
that it was necessary to include jumps in volatility as well as returns else the dynamic model was
misspecified.



For the optimal portfolio with consumption problem, Merton [45, 46] (see also [49, Chap-
ters 4-6]), in a prior pioneering paper, analyzed the optimal consumption and investment portfolio
with geometric Brownian motion and examined an example of hyperbolic absolute risk-aversion
(HARA) utility having explicit solutions. Generalizations to jump-diffusions consisting of Brow-
nian motion and compound Poisson processes with general random finite amplitudes are briefly
discussed. Earlier in [44] ([49, Chapter 4]), Merton also examined constant relative risk-aversion
(CRRA) problems.

In the 1971 Merton paper [45, 46] there are a number of errors, in particular in boundary con-
ditions for bankruptcy (negative wealth) and vanishing consumption. Some of these problems are
directly due to using a general form of the HARA utility model. These errors are very thoroughly
discussed in a seminal collection assembled by Sethi [52] from his papers and those with his coau-
thors. Sethi in his introduction [52, Chapter 1] thoroughly summarizes these errors and subsequent
generalizations. In particular, basic papers of concern here are the KLSS paper with Karatzas,
Lehoczhy, Sethi and Shreve [37] (reprint [52, Chapter 2]) for exact solutions in the infinite horizon
case and with Taksar [53] (reprint [52, Chapter 2]) pinpointing the errors in Merton’s [45] work,
with erratum [46].

Hanson and Westman [23, 29] reformulated an important external events model of Rishel [50]
solely in terms of stochastic differential equations and applied it to the computation of the optimal
portfolio and consumption policies problem for a portfolio of stocks and a bond. The stock prices
depend on both scheduled and unscheduled jump external events. The complex computations were
illustrated with a simple log-bi-discrete jump-amplitude model, either negative or positive jumps,
such that both stochastic and quasi-deterministic jump magnitudes were estimated. In [24], they
constructed a jump-diffusion model with marked Poisson jumps that had a log-normally distributed
jump-amplitude and rigorously derived the density function for the diffusion and log-normal-jump
stock price log-return model. In [25], this financial model is applied to the optimal portfolio and
consumption problem for a portfolio of stocks and bonds governed by a jump-diffusion process
with log-normal jump amplitudes and emphasizing computational results. In two companion pa-
pers, Hanson and Westman [26, 27] introduce the log-uniform jump-amplitude jump-diffusion
model, estimate the parameter of the jump-diffusion density with weighted least squares using
the S&P500 data and apply it to portfolio and consumption optimization. In [28], they study the
time-dependence of the jump-diffusion parameter on the portfolio optimization problem for the
log-uniform jump-model. The appeal of the log-uniform jump model is that its finiteness is consis-
tent with the stock exchange introduction of circuit breakers [3] in 1988 to limit extreme changes,
motivated by the crash of 1987 and implemented in stages. On the contrary, the normal [48, 2, 24]
and double-exponential jump [39, 40] models have an infinite domain, which is not a problem
for the diffusion part of the jump-diffusion distribution since the contribution in the dynamic pro-
gramming formulation is local, appearing only through model partial derivatives. However, the
influence of the jump part in dynamic programming is global through integrals with integrands
that have shifted arguments. This has important consequences for the choice of jump distribution
since the portfolio wealth restrictions will depend on the range of support of the jump density.

However, there has been much less effort on the optimal portfolio with consumption problem
when stochastic volatility is included, and what is available tends to be very theoretical in na-
ture. Cox, Ingersoll and Ross [12] consider the very general optimal portfolio with consumption
problem for a very general state vector that could include stochastic volatility and a von Neumann-
Morganstern utility, and in the CIR model paper [13] they considered the special case of the log-
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arithmic utility. Wiggins [56] considers the optimal portfolio problem for the log-utility investor
with stochastic volatility and using equilibrium arguments for hedging. Zariphopoulou [59] ana-
lyzes the optimal portfolio problem with CRRA utility, a stochastic factor, i.e., stochastic volatility,
and unhedgeable risk.

In this paper, the log-double-exponential jump-amplitude, jump-diffusion asset model with a
Heston model stochastic volatility is applied to the portfolio and consumption optimization prob-
lem. In Section 2, the stochastic-volatility, jump-diffusion model is formulated as the underlying
two-dimension process for the optimal portfolio and consumption problem. In Section 3, the port-
folio optimization with consumption problem is formulated by stochastic dynamic programming
and jump-no-bankruptcy conditions are derived. In Section 4, the canonical solutions for CRRA
power and logarithmic utilities are derived using a implicit type of Bernoulli transformation. In
Section 6, conclusions are drawn. Finally, in an Appendix, the preservation of positivity of the
optimal wealth from positive initial wealth is formally justified.

2 Optimal portfolio problem and underlying SJVJD model

Let S(t) be the price of a single underlying financial asset, such as a stock or mutual fund, governed
by a Markov, geometric jump-diffusion stochastic differential equation,

aS(t) = (1) (s (V (1) dt + V/V([D)AG,(1) + QuaPy(1)) @.1)

with S(0) = Sy > 0, where us(V/(t)) is the mean appreciation return rate at time ¢ and dependent

on the variance V'(t), V(t) = o2(t) is the diffusive variance, dG,(t) is a continuous Gaussian

process with zero mean and dt variance (the usual symbol W is used here for wealth and B is used
for the bond price), dPs(t) is a discontinuous, standard Poisson process with jump rate Ay, with
common mean-variance of A\;dt. The associated IID jump-amplitude is (), that is log-normally
distributed with with jump-mean ;,,(t) and jump-variance o7 (t), where the log-return is y =
Y(t) = log(S(t) and @, = log(1 + Q5), so Qs > —1 for bounded log-returns. The stochastic
processes G4(t) and Ps(t) are assumed to be Markov and pairwise independent.

The stochastic variance is modeled with a jump-diffusion version the Cox-Ingersoll-Ross (CIR)

[12, 13] and Heston [31] mean-reverting stochastic volatility, o5(t) = /V (t), and singular square-
root diffusion with parameters (x,, 0, 0, ):
AV () = (8, — V() dt + 00/ VDG (1) + QuiPy(t), (22)

with V' (0) = V > 0, log-rate x, > 0, reversion-level 8, > 0 and volatility of volatility (variance)
o, > 0, where G(t) and G,(t) are standard Brownian motions for S(t) and V' (¢), respectively,
with correlation Corr[dG,(t), dG,(t)] = pdt. The dP,(t) is also a discontinuous, standard Poisson
process with jump rate )\, independent of {dPs(t),Gs,G,}. The associated jump-amplitude is
¢ and depends on the mark ¢ = @), with jump-mean s;,(¢) and jump-variance a?’v(t), while
g > 0 ensures volatility positivity, though ¢ > V' (¢) would be sufficient. The return-volatility pair
(2.1,2.1), is often referred to a the stochastic volatility model or problem.
In Egs. (2.1,2.2), the following short-hand notation is used,

(P;+dP;)

k=P;(t)+1
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for i = s or i = v, provided dF;(t) > 1, else the sum is defined as zero by convention, where Q); x
is the kth mark of Poisson process ¢. The (); ;, are independent, identically distributed (IID) ran-
dom variables, conditioned on the occurrence of the kth jump, with jump-amplitude mark density
¢, (q;t) on the mark-space Q;.

It will be assumed that the variance is positively bounded, i.e., V' (t) > ¢, > 0, but see Han-
son [22] for important practical qualifications in stochastic calculus theory and computation. While
the singular diffusion property in the asset price is uniformly removable by the usual logarithmic
transformation, the same is not true for the stochastic variance. In [22], it is shown that a trans-
formation to a V-independent diffusion is not uniformly valid with respect to the Itd stochastic
calculus unless the time-step satisfies dt < ¢, or dt < ¢, < 1 for a small variance cut-off.

Since we often deal with log-return data, with Eraker et al. [16] we let Y (¢) = In(S(¢)) and by
[td’s formula extended to jump-diffusions

AY () = pydt + /V(0)dG4(t) + Q,dPy(t), (2.3)

where along with [16] we let 1, = ps(V(t)) — V(t)/2 be a constant, since they find that the
need for a volatility premium of the form cV/(¢) is insignificant. The coupled jump-diffusions in
(2.3) and (2.2) comprise the stochastic volatility model with independent jumps (SVIJ) of Eraker,
Johannes and Polson [16], not considering that they use normal and exponential jump-amplitude
distributions, where here we use truncated double-exponential jump-amplitude distribution for the
log-returens since their finite-range is important in the optimal portfolio problem, but keep the
semi-infinite range exponentially distributed jumps in the volatility or variance since these jumps
do not effect the jump-bankruptcy condition.

There are many jump-amplitude distributions for the log-return that are used to define ¢, (¢; ).
Among them are the log-normal jump-amplitude distribution used by Merton [48] in his pioneer-
ing jump-diffusion finance paper (see also Hanson and Westman [25]), the log-double-exponential
distribution used by Kou and coauthor [39, 40], and the log-uniform as well as log-double-uniform
distributions used by Hanson and coauthors [26, 27, 60, 61, 58]. Since it is difficult to determine
what the market jump-amplitude distribution is, the double-uniform distribution is the simplest
distribution that clearly satisfies the critical finite fat-tail property and allows separation of crash
and rally behaviors by the double composite property. However, the truncated double-exponential
distribution,will be a better approximation to the log-return jump parameter data of Eraker, Jo-
hannes and Polson [16] and conveniently splitting the range at the peak ;, of the jump normal
distribution.

So, let the truncated-double-exponential density be

(0, —co<qg<a)
exp(—(q — Hjy) /1) Q<
) 7 < q < W,
sty = ) Pl = exp(={a — i) 1) 1 2.4)
Qy (1 _pl) exXp _(q — Mjﬂ/)/lua) 14 < q <b 7
il — exp(—(b— fy) )" 1w S 05
L 0, b<gqg<+oo )

where a < j1;,, < b, 1 < 0 < o, p, > 0 is the probability of a negative jump and 1 — p, > O is

the probability of a non-negative jump, both relative to the jump-mean 1.



Since the volatility is necessarily positive to avoid singularities, the single exponential distri-
bution is assumed

$Q.(q) = {

where it is necessary that y;,, > 0.

Equations (2.1) and (2.2) comprise the underlying stochastic-jump-volatility, jump-diffusion
(SJVID) model. See also [9, 54, 19, 57, 58, 30] for other applications.

The riskless asset with a variable interest rate yields variable deterministic exponential growth,

0, —oo<q<0}

2.5
exp(—q/ )/ Mjwr 0 < q < o0 (2.5

dB(t) = r(t)B(t)dt, (2.6)

where B(0) > 0 and r(t) is the interest rate.

The portfolio consists of the stock S(¢) and the bond B(t) with instantaneous portfolio-fractions
Us(t) and Uy(t), respectively, such that U,(t) = 1 — U,(t). The wealth W (t) satisfies the self-
financing condition, so that

AW (t) = W(t) - <r(t)dt ULt - ((u FV(1)/2 — r(t)dt + V()G (t)

2.7)

+ (% — 1) dPs(t)>) —C@)dt,
where W (0) = W, > 0, Uy(t) has been eliminated and C'(¢) is the instantaneous consumption.
The portfolio system consists of the wealth equation in (2.7) plus an additional equation for the
variance (volatility) equation in (2.2) beyond the usual portfolio problem [44, 45]. The variance
V(t) is an auxiliary variable with respect to the wealth. The system is subject to constraints that
there be no bankruptcy, W (t) > 0, that for the stock fraction to be an admissible control it must it
must be constrained, i.e.,

U™ < U(t) < US™, (2.8)
that consumption cannot exceed a certain fraction of wealth, i.e.,
0<Ct) < C™™ - w(t) 2.9)

with 0 < C’émax) < 1, and that there be positive variance, V'(t) > 0. Note that it is assumed that
the instantaneous stock fraction will not be constrained to [0, 1], but excess shortselling will be
allowed, i.e., Uy(t) < 0, and similarly excess borrowing, i.e., Uy(t) < 0.

Later, we will find an additional constraint on the stock-fraction as a consequence of the ef-
fect of jumps on the bankruptcy condition [61]. Note that Merton’s [45] definition of bankruptcy
W (t) < 0 differs from the Karatzas et al. [37] definition IV (¢) = 0, since that just means no wealth
while W (¢) < 0 means that the investor is in debt. Here we take a more practical view looking
a positivity of wealth due to linear properties of the equation and ignore the unreal and peculiar
limits of infinite wealth and vanishing probabilities as discussed in the Appendix.

The optimization criterion or performance index is the optimal, conditionally expected, dis-
counted utility of final wealth plus the cumulative, discounted utility of running consumption,

7 w,0,0) = max [E | PG, 0 + ! By (O ar

u,c

CH . (2.10)
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where C = {W(t) = w, V(t) = v,C(t) = ¢, U(t) = u} is the conditioning, 3(t;7) = [, 3(y)dy
is the cumulative discount, ((¢) is the instantaneous discount, U, (w) is the utility of the final
wealth w and U,.(c) is the utility of the instantaneous consumption c. The consumption ¢ and the
stock-fraction u are obviously the two control variables of the optimal portfolio problem and their
optimal values are derived as the arguments of the maximization.

There are several side conditions deducible from the criterion (2.10). As the final time is
approached, t — t;, the final condition is obtained,

J* (w,0,t7) = Uy(w), (2.11)

for any final wealth level w > 0. As the wealth approached zero, w — 07, so does the consump-
tion, ¢ — 0T, since it is constrained as a fraction of wealth and by definition zero wealth is an
absorbing boundary with boundary condition, from the objective (2.10),

T (0%, 0,8) = Uy, (07) e P L) 1y, (0%) / VBT, 2.12)

for any ¢ in [0,¢¢]. Merton [49, Chap. 6] states that for no arbitrage, zero wealth must be an
absorbing state.

3 Portfolio stochastic dynamic programming

Upon applying stochastic dynamic programming (SDP) to the stochastic optimal control problem
posed in the previous section, the PDE of stochastic dynamic programming in Hamiltonian form
can be shown to be

0=J/(w,v,t) +H(w,v,t;u"(w,v,t),c (w,v,t)), 3.1)
where J;(w, v, t) is the time partial derivative of J*(w, v, t) and the (pseudo) Hamiltonian is

H(w, v, t;u,c) = —p(t)J*(w, v, t) +Uec(c) + ((r(t) + (py +v/2 —r(t))u) w — c) Ji(w,v,t)

+%vu2w2Jz’;w(w, v, t) 4 Ky (0, — v) I3 (w, v, 1)
+%03@ij(w, v,t) + poyouwJi (w, v, t)

b (3.2)
A [ 00 0) (I (K (), v,8) = (1, 0.6) do
+)\U/ b0, (@) (J*(w, (1 + q)v, ) — J*(w, 0,1)) dg,

0

where
K(u,g)=1+ (e1—1)u (3.3)

is the critical function for determining the natural jump bankruptcy condition [61]. See the ap-
plied derivations in Hanson [21, page 190, Exercises 3-4] in the case of discounting. The double-
exponential density (2.4) for S(¢) and the single-exponential density in (2.5) for V' (¢) have been
used to obtain the explicit jump-integral formulations in the last two lines of (3.2).
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3.1 Wealth jump positivity constraint

Although, the no bankruptcy condition requires that wealth be positive, due to the fact that the
wealth equation is effectively linear in wealth and as explained later in the Appendix if the wealth
starts out positive it must remain positive w > 0, including the postjump wealth, K (u,q)w > 0.
Hence, we must have

K(u,q) > 0.

Since the variate and parameters of the market double-uniform jump-amplitude distribution satisfy
a < g<banda < 0 < b, then the lower bound on the critical function satisfies

K(u,a), u>0
K{u,q) 2{ K(u,b), u<0 } > 0.

This leads to the natural jump-bankruptcy, stock-fraction control bounds to enforce the no bankruptcy
condition upon using the lemma in Zhu and Hanson [61] without dependence on stochastic-
volatility, v, in addition to dependence on time, .

Lemma 3.1 Jump stock-fraction control bounds for non-negative wealth:

e T pr i (34)

Remarks 3.1:

e The bounds depend only on the jump-amplitude mark space bounds in the stocks, not on the
jump log-process distribution and not on the volatility.

e Here, 0™ and ™™ define the natural upper and lower bounds on the admissible stock-

fraction control space due to the positive wealth constraint. When the stock mark space,
[a, b], is finite such that —B} < a < —B; <0 < B, <b < B, for some positive constants
B and Bj, then ﬂ(()min) and ﬂ(()max) are obviously finite, since 0 < 1 —e B < 1 — ¢ <
1 — e84 < 1 with similar bounds for the denominator ¢® — 1.

e However, if the jump distribution is of infinite range like the un-truncated log-normal, expo-
nential, log-exponential, and log-double exponential jump-amplitude distribution, then the
admissible stock-fraction controls must be in [0, 1], and short-selling as well as borrowing
would be severely restricted. Hence, we use the truncated double-exponential distribution
here and not the un-truncated normal log-return jump-amplitude distribution in [16].

3.2 Hamiltonian regular optimization conditions

Before attempting to solve the PDE of SDP, the Hamiltonian equations are used to get the critical
points that determine the regular controls, i.e., the optimal controls in absence of constraints. Thus,
the critical point for regular consumption control is found from (3.1-3.2) and leads to

OH (reg) .
(8_) (w,v,t; w8, c(reg)) =U. (c(reg) (w,v,t)) — Ji(w,v,t) =0,
c



so 8 (w, v, t) is given implicitly by
UL () (w, v, 1)) = J5 (w,v,t) (3.5)

and c*(w,v,t) = 8 (w, v, t) if &) (w,v,t) < w - Cémax). The optimal consumption control
will generally be a composite bang-regular-bang control,

0, clreg) (w,v,t) <0
Fw,v,t) =4 B (w, v, t), 0< e (w,v,t)<w-CM™ % (3.6)
w - C’émax), w - C’émax) < clr8) (w)

The Hamiltonian condition for the regular stock-fraction control is

PN

(%) (w,v,t; e, C(reg)) = (py +v/2 —r(t)w;(w,v,t)
+vu(rebg)(w, v, )w? JE (w,v,t) + poow]r (w,v,t)
—l—)\s/a (bQétde) (q) (eq — 1)
wJ (K(u(reg)(w, v, t), q) w, v, t) dg =0,

with sufficient differentiability of J* using (3.3). So, u(°®) (w, v, t) is given implicitly by

vw? JE (W, v, ) ul® (w,v,t) = —(u, +v/2 — r(t))wJ (w,v,t) — po,ow, (w,v,t)
b
—Asw [ o (q) (e1—1) (3.7

Sy (K(u(reg)(w, v,t), q) w, v, t) dg

and u*(w, v,t) = ul™® (w, v, t) if u™® (w, v, t) is an admissible control, assuming that u(w, v, t) =
U (t) is an admissible instantaneous stock-fraction control if it satisfies the constraint (2.8), assum-
ing specified bounds Uomm) and Uémax), are independent of w. Hence, the optimal stock-fraction
control will generally be a composite bang-regular-bang control,

Uémilﬂ)7 w(ree) (w,v,t) < Uémin)
u*(w,v,t) — u(reg)(w,v,t), Uo(mm) < u(reg) (U),’U,t) < Uémax) . (38)
Uémax), Uémax) < u(reg) (w, v, t)

A good choice for the admissible bounds, Uémm) and Uémax), would be the natural stock-fraction

control jump bounds, 7™ and T"™, given in (3.4).

4 CRRA canonical solution to optimal portfolio problem

The constant relative risk aversion (CRRA) utility when v < 1 is a power utility [49], but is a
logarithm when the power 7 is zero,

U(z) = { f;(g) zig } @.1)

9



The range v < 1 represents several kinds of risk aversion, but, in general, the relative risk-aversion
(RRA) is defined by RRA(z) = —U"(z)/U'(x)/xz) = (1 —v) > 0, v < 1. The utility
corresponding to the value v = 0, arising from the well-defined limit of (z” — 1)/yasy — 0, is a
popular level of risk aversion associated with the Kelly capital growth criterion [38]. The negative
range v < 0 represents extreme risk aversion, and the range 0 < v < 1 represents a more moderate
level of risk aversion. The value v = 1 signifies risk-neutral behavior and the remainder v > 1
means risk-loving behavior.

4.1 CRRA power case,v < 1,but~y # 0

Setting both utilities to a common form, U.(z) = U(z) = U,(z), and noting the final condi-
tion (2.11) now is J*(w,v,t;) = U(w), the following CRRA canonical form of the solution is
suggested for the SVJD vector process,

J(w,v,t) =U(w)Jo(v, 1), 4.2)

when v # 0 and v < 1, where Jy(v, t) is a function of the variance and time that is to be determined
based on the consistency of (4.2). The v = 0 case requires an additional wealth-independent term
Ji(v,t) and the risk-neutral v = 1 case leads to a singular control problem. The original final
condition (2.11) yields the greatly reduced final condition .Jy(v,tf) = 1. The solution derivative
Ji(w,v,t) = w1 Jy(v, t) is valid even when y = 0 and leads to

()" (w, v, 1) = w Vo o, 1)
This can be solved explicitly for the regular consumption control,
8 (w, v, ) = wJ&/w_l)(v, t) = wc(()reg)(v, t) (4.3)

where the consumption wealth fraction ¢*® (v, ¢) = J3/O ™V (v, 1) < C™™ and 0 < C™™ < 11,
the fraction of wealth depending on investor preference. Note that the linear form (4.3) in w is
consistent with the linear bound (2.9) on the consumption C(¢). In the presence of consumption
control constraints, the general optimal consumption control ¢*(w, v, t) = w - ¢(v, t) is calculated
from the composite form (3.6) using (&) (w, v, ) = w - ¢ (v, 1).

Next using J, (w,v,t) = (v — 1)w?~2Jy(v, t) similarly leads to a reduced implicit formula
for the regular stock fraction control from (3.7),

ulre® (w, v, t) = u(()reg)(v, t) = m (,uy +v/2 —r(t) + poyv(Jow/Jo)(v,t)

4.4)
+As 1y (uéreg) (v,t))) ,
independent of the wealth w, necessarily with v > ¢, > 0, where
b
IMOE/@@@@Nﬂ—DKTWMQM (4.5)

I'This constraint is a practical one, but mathemaitcally C(()max) could exceed one.
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is a jump integral, valid even when v = 0.
Note that in the pure diffusion CRRA utility case with constant coefficients, i.e., s(v) = po,
r(t) = ro, v = o and \, = 0, the regular control in (4.4) becomes Merton’s portfolio fraction [44],
Ho —To
(1—=7)ap

In the presence of stock-fraction control constraints, the general optimal stock-fraction control

ul™® (w, 02, t) = (4.6)
u'(w,v,t) = ug(v, ) 4.7)
is calculated from the composite form (3.8) with bounds (2.8) using
w8 (w, v, t) = u((]reg)(v, t).
It is easy to see from (4.4) that
w8 (v,t) = O(1/v) as v — 0,

since this implies, for v — 1 < 0, asymptotic consistency by

Kt (u[()reg)(v, t), q) =0 ((ugeg))v_l(v,t)) =0 (v'77) =o(1) as v — 0%.

Using these reduced control solutions, they lead to the CRRA reduced PIDE for SDP after
some algebra, using (3.1-3.3),

_0
0= Jos(v,t)+(1—7) <gl(v, t)Jo(v,75)—}—92(1),15)1107 N 1(0, t))

(4.8)
+g3(v7t)J0,v+%03UJ0,vv7
where
1
gi(v,t) = T (=B(t) + v (r(t) + (uy +v/2 = r(t)ui(v, 1))
1
—5 (=)l 2(0,8) + A (B up(v,6)) = 1) @
+)\v ((13[J0]/J0> (Uat) - 1)) )
1 ch(v,t) ! ch(v,t)
1) = 01 —y 2], 4.10
g2 (U ) 1— ~y <Céreg) (U, t)) v (C((]reg) (’U, t)) ( )
g3(v,t) =4k, (0, —v)+vpo,vug (v, t), 4.11)
and where a second jump integral is
b
IQ(U) = /¢Q?(jde) (q)K’y(u7q)dq7 (412)

11



provided v # 0, and the third integral is

Lol v, ) = / “b0u(@) (1 + g)v. t)dg “13)

Also for the formula for gy(v,t) in (4.10), the following identity has been used to combine the
consumption terms into the coefficient of the power J /O=1) (v,1),

()7 (0,1) = A (0, D) dolv,1) = (1= )gaw, )]0 ™ Vw1,

assuming Cémax) < 1.

4.2 CRRA logarithmic (Kelly criterion) case,v = 0

In the logarithmic case, the canonical solution is no longer purely linear in the utility I (w) of
wealth as in (4.2) for the power case, but is affine in U (w) = In(w),

J*(w,v,t) = In(w)Jo(v,t) + J1(v, 1), (4.14)

where J; (v, t) is a parallel solution form arising from partial derivatives of J(w, v, t) with respect
to In(w). The final condition, J(w,v,t;) = U(w) = In(w), produces two parallel final conditions,
Jo(v,tf) = 1and Jy(v,tf) = 0, since In(w) and the constant 1 are independent functions of w.

Since the determination of the regular control functions involves only derivatives of J(w, v, t)
with respect to wealth w, the formulas in (4.3) and (4.4) are valid for v = 0. So

8 (w, v, t) = wcgeg) (v,t) = w/Jy(v,t)
and
u® (w, v, t) = uf® (v,1) = %(My o+ 0/2= (1) 4 (o Jo) (0, )+ ATy (12 (0, 1))
However, the reduced SDP PIDE is not the same as in (4.8) when v # 0. Two parallel reduced

PIDEs are obtained. The first is found by separately equating the cumulative coefficient of In(w)
to zero by independence, yielding a linear PIDE in Jy(v, ),

0= JO,t(U’ t) - ﬁ(t>JO(U7 t) + gO(Ua t)v (415)

where
1
go(v,t) =14 Ky (0, — v)Jy (v, t) + 50'12)UJ071,U(U,7§) + s - (L3[Jo] — Jo) (v, 1) (4.16)
The second for the remaining terms yields another linear PIDE, but in J; (v, t),

0= Jiy(v,t) — B) (v, 1) + ¢ (v, 1) 4.17)

12



where

¢, t) =—In(Jo(v, 1)) — 1

(P8 + (1 + 0/2= ()i (0,£) =0.50 () (v,8) +A L (w5 (0,1))) Jo (0,

. (4.18)
+hy (0, —0)J1 4 (v, 8)+ 2O'UUJ1 w (0, 1) + poyu(ugdy., ) (v, t)
+Ao - (I3[ N] = J1)(v, 1),
and
I(u / ¢ o (a) In(K (u, q))da, (4.19)

in this special case. Note that the parallel PIDEs are unidirectionally coupled, so that if (4.15) for
Jo(v,t) is solved first, then (4.17) for J;(v,t) can be solved as a single PIDE using the solution
Jo(v,t) using methods similar to that for v # 0 except that the Bernoulli transformation is not
needed nor does it help.

The static case of logarithmic utility of wealth or Kelly criterion is surveyed by MacLean and
Ziemba [43]. They note that several legendary investors have used the Kelly criterion. One is
Edward O. Thorp who was a prime promoter of the criterion in gambling and market investments.
Another is Warren Buffet, who is identified as a Kelly criterion investor from the performance of
the Berkshire-Hathaway fund.

4.3 Transformation to an implicit type of Bernoulli equation

In the pure stochastic diffusion case with constant coefficients, the PDE of SDP becomes a Bernoulli
ODE in time using the CRRA power utility [44, 45]. Using the classical Bernoulli transformation,
the nonlinear ODE can be transformed to a linear ODE suitable for very standard methods. In the
stochastic jump-diffusion case with time dependent coefficients and control constraints, the PDE
of SDP becomes a Bernoulli ODE complicated by implicit dependence through the jump integrals
and optimal controls [23, 25, 27, 28, 29, 61]. The Bernoulli transformation still has significant
benefits for the case v < 1 and  # 0, but additional iterations are needed to treat the implicit de-
pendencies. In the SJVID case, the stochastic volatility terms mean that the PDE of SDP remains
a PDE, but with some Bernoulli nonlinear properties that can be reduced to something simpler.
The Bernoulli-like PDE is given in Eq. (4.8). This is a nonlinear diffusion equation with implicit
coupling to the controls ¢ (v, t), c® (v, t) and u}j(v, t).
For the formal PDE in (4.8), the simplifying Bernoulli transformation is given by

w(0,t) = J TV (4.20)

with inverse
Jo(v,t) = 2t~ V(1)

and the transformed PDE, which can viewed as a formal linear equation, is

0= xt(”vt) + gl(v,t)at(v,t) + 94(U7 t)> (421)
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assuming (v, t) # 0 and with final condition x(v,tf) = 1, where

ga(v,t) = ga(v,t) + g3(v, t)x, (v, t) + %Ugv (T — y22 /) (0, 1), (4.22)

which includes the suppressed variance-derivative and consumption terms that can be treated by
iteration.

It can be seen from (3.7) that the regular stock-fraction control u(()reg) (v, t) becomes unbounded
as the volatility v — 0, which is handled by a finite control space [U™™, U{™](v, t) as indi-

~(min) ~(max)

cated by the jump-bankruptcy bounds [@,  ~, Uy ]

Since the PDE (4.21) can be solved by computational iteration at each time step, (4.21) can be
treated like an ODE in time by formally writing the transformed solution in quadratures using an
integrating factor,

_ tr
z(v,t) = 91(v: 1 15) +/ egl(v’t’T)g4(v,T)dT, (4.23)

t

where
gjl(v,t,r)z/ g1(v, s)ds. (4.24)
t

Thus, the implicit solution for the variance-time function can be written as

_ ty _ 1—y
Jo(v, 1) = <691(”’tvtf>+ / egl(mﬁ)%(v,f)m) (4.25)
t

with the full wealth-dependent solution given by

~

J*<U}, v, t) = wTJO(U7 t)

4.3.1 CRRA logarithmic case formal solution, v = 0

For the 7 = 0 case, the Bernoulli transformation (4.20) is the identity operator. So both solu-
tion forms Jy(v,t) and Jy(v,t) satisfy unidirectionally coupled linear equations that are solved
in sequence. As for the general risk-averse case, the PIDEs (4.15) and (4.17) are prepared for
better-posed time-stepping iterations using integrating factors, so that for the coefficient of In(w),

Jo(v,t) = e_ﬁ(t; t) 4+ /tf 6_B<t; T)go(U,T)dT, (4.26)

t

since Jy(v,t;) = 1, where go(v,t) is given in (4.16) and includes the variance-derivative terms.
Given Jy(v, t), the wealth-independent term .J; (v, t) implicitly satisfies

t —
Ti(v,t) = / " BET) Oy Py, 4.27)
t

since Ji(v,tf) = 0, where géo) (v,t) is given in (4.18) which includes suppressed Jy and .J;-

variance-derivative terms. In summary, for v = 0, the full solution satisfies

J*(w,v,t) = In(w)Jy(v,t) + Ji(v,t).
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5 Computational Considerations and Results

5.1 Parameter Data

e Due to the complexity of the data, the elaborate parameter estimates of Eraker, Johannes
and Polson [16] for their SVIJ model from the S&P 500 index returns from the beginning
of 1980 to the end of 1999, including the extreme market stresses in 1987, 1997 and 1998.
Their methods of estimation include Bayesian oriented Markov chain Monte Carlo simula-
tions [51, 34].

e In our notation, the original parameter estimates of Eraker, Johannes and Polson [16] are
given in Table 1 along with converted estimate in units appropriate for the PDE formulation
(i.e., annualized and non-percentage units):

Table 1: SV1J Parameter Estimates

Estimated SvlJ SvlJ Scale
Parameter | Original | Converted Factors*
Iy 0.0506 0.1275 x252/100
Ky 0.0250 6.3000 X252
0, 0.5585 0.01407 %252 /100?
O 0.0896 0.2258 x252/100
p -0.5040 | -0.5040 x1
Ay 0.0046 1.1592 X252
iy -3.0851 | -0.030851 x1/100
Ojy 2.9890 0.02989 x1/100
Ay 0.0055 1.3860 X252
Hjv 1.7980 0.04531 %252 /1007
Tjv 1.7980 0.04531 (exponential dist.)
Pjvy 0 0 (independent jumps)

* The standard 252 trading days was used to convert daily units to annual units, while
division by 100 cancels percentage scaling. The conversion factors follow from the
comments on a few key parameters in Eraker, Johannes and Polson [16]and preserving
dimensional consistency with the driving SDEs, (2.1,2.2).

e Since the log-return jump-amplitude distributions are different from those of Eraker, Jo-
hannes and Polson [16], it is necessary to convert the log-return normal jump-amplitude
basic moments to the basic moments of the truncated double-exponential distribution here to
take advantage of Eraker, Johannes and Polson’s very large scale estimation, assuming that
a consistent matching of half-range and full range moments will be suitable for our purpose.

The log-return jump-amplitudes are converted from the normal distribution of [16] to the
double-exponential distribution parameters here by conserving the first three moments, both
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as full-range and split-range moments, suitable for the four unknown model parameters
{:ula H2, a, b} given Hjy and O3,y

My exp (—(q— F‘jyy)Q/@JJZ,y)) dg _ 1
e : =5 (5.28)

oo '
27TO'j’y

so the conservation of probability, the Oth moment, is conserved since the split-range densi-
ties are properly normalized. The split-range matching is as follows with e; = exp(—(¢; —
fiy)/pi) fori=1:2and ¢; = aorcy = b,

(90 — /’”*y qexp (—(q — pjy)/m) dg _ i (@ — pjy)er
' o pa| (1 = e1) (1—e1)
a _ [" aexp(=(g— py)*/(207,))dg 2 (>29)
= Hiy = : = Hiy =\ %5
—00 D14/ 27073,
and
wao) [ aexp(=(q— pjy)/p2)dg _ (b— piy)en
2 = =p2et g —
iy pr2(1 — e2) (1—e2)
0 5.30
o qexp(—(q — pjy)°/(205,))dg 2 (5.30)
= Hiy = = Hiw T\~
Hiy (1 —p1)y/2703,
Simplifying the split-range matching conditions,
2 a — [Ljy)e
/’Ll = _\/jo-jﬂ _|_ (_M’
™ (1 81)
( ) (5.31)
. 2 b— M) €2 )
/JLQ - +\/;U],y + (1 o 62) I
yielding forms suitable for iteration with the split-range second moments.
The matching of the split-range central second moments are
0 (q - u(fde)>2 exp(—(q — pjy)/p1)dg 2
(o2 :/ Gy _ (M‘ B ’ugtde)>
ay pa|(1 = e1) Y
o (de) _(a—pjy)en
+2 (M;,y %) ) <,u1 —17)
(5.32)

((a = pjgy)® + 2u1(a — piy))er

+2p1 —

Jy = oo
oo ,
D1 05y
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5.2

<O_(tde)>2 :/b (q - Métde)>26xp(_(q — Hiy)/12)dq _ ( (tde)>2
H

- p2(1 — e2) How =10

e b— pjy)e
+2 (s — 15 (uz R Gl f{’;;) 2>

(b= prjy)® + 2pu2(b — pjy))es
1— €9

+2015 —

2

< (2))2 o (q_ué‘?zj) exp(—(q — pjy)*/(203,))dg (1 2) ,

= \%jy E/ o
15,y (1-— p1)\/27f0j27y

The formulas in (5.29) for {"*, (5.30) for 15" and (5.31) for both i; and 5 can be used
to simplify the formulas of (5.32) for aitde) and (5.33) for aétde). This leads to approximate
quadratic formula for the truncated cutoffs (a — y;,) and (b — p;, ), relative to the jump-
amplitude mean y;,, but neglecting the dependence in the exponentials ¢, and e;. Thus, the
iteration useful formulas for these cutoff values a and b are

a = fljy — \/g%y <1+\/1+(1—7T/2)61/(1—61))7
b ZijJf\/ng,y <1+\/1+(1—7T/2)€2/(1—€2)>'

The iteration formulas (5.31) are coupled to (5.34) and since the exponentials e; and e; are
subdominant, a good starting iteration is to set them to zero as they would be in the infinite
range case. The final iterates satisfying precision consistent with the five significant digit
parameter data yields,

(5.34)

1 =~ —0.086346, o ~ 4+0.086346, a ~ —0.083958, b ~ +0.022256. (5.35)

The corresponding approximations to the jump stock-fraction control bounds in Lemma 3.1
using the approximate a and b are

™™~ —44.434, ™™ ~ +12.418. (5.36)

The interest prime rate r(¢) and discount rate 3(¢) parameters for the two-year period from
the beginning of 1980 to the end of 1999 are from the Federal Reserve Statistical Release
H.15 [17]. This rate data is displayed in Figure 1 below:

Computational Considerations

The primary problem is having stable computations and much smaller time-steps At are
needed compared to variance-steps AV, since the computations are drift-dominated over the
diffusion coefficient, in that the drift mesh ratio term with upwinding,

R, = 0.5max [|ky, (0, — v) + ypo,oul] At/AV, (5.37)
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Figure 1: FRB prime rates r(¢) and discount rates 3(t) for ¢t € [1980,2000].

associated with Jp , and wJp ,,, can be almost hundred times larger than the variance diffu-
sion mesh ratio term,

Ry, = max [oJv] At/(AV)?, (5.38)

associated with Jy ,,. For the current application, the drift contribution is R,/R,, ~ 62.8.
In summary, the drift-adjusted mesh ratio (Kushner and Dupuis [41] or Hanson [21]) need
satisfy

R=R,+R,, <1 (5.39)

for stability of the numerical solution and here R ~ 1.22¢ — 01. The condition (5.39) can be
satisfied by making the time-step At sufficiently small, given a reasonably sized variance-
step AV. Refining AV more required a corresponding refinement of A¢. The parabolic
convergence condition was most troublesome for the SJVID model.

The transformed Bernoulli PDE equation (4.21) is iteratively solved for x (v, ), while Jy(v, t)
obtained from the formal Bernoulli solution (4.25), rather than the formal original Bernoulli
PDE (4.8) for the variance-time coefficients of Jy(v, t).

Drift upwinding is implemented by having the finite differences for the drift-partial deriva-
tives follow the sign of the drift-coefficient and thus providing more stability for the compu-
tations, while central differences are sufficient for the diffusion partials. For the market and
volatility parameters used, the drift-ratio R, (¢) (5.37) is many times larger than the diffusion-
ratio R,,(t) (5.38) and in fact R,,(¢) is negligible compared to R,(t), the diffusion is still
needed for the stock fraction control.

The primary numerical method was time stepping with predictor-corrector iterations with
Crank-Nicholson mid-point evaluation in time. Inside each time-step, alternate policy and
value value iterations were used until both converged within a specified tolerance starting
with the policy or control iteration. The most sensitive part of the iterations were that of
the regular controls due to their intrinsic implicitness and Newton’s method was used to
accelerate this part.
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e Iteration calculations in time, controls and volatility are sensitive to small and negative devi-
ations, as well as the form of the iteration in terms of the formal implicitly-defined solutions.
It was especially important the min(v) be positive and not too small because the variance v
appears in denominator such as that of the regular control u(™8) (w, v, t) = u{® (v, t) (4.4),

but just skipping the first variance-step at zero was sufficient.

e Computations took only a few minutes on a Mac with OSX v. 10.6.7 and a 2.5 GHz Intel
Core 2 Duo processor.

5.3 Computational Results

The regular u(*®) (v,,, ) and optimal u*(v,, t) stock fraction policies or controls are given in Sub-
figures 2(a) and 2(b), respectively, for fixed variance such that the volatility is o, = /v, = 22%.
Note that the regular control never violates the large [G™™), Gi™™] ~ [—44.434, +12.418] control
space marked by the red dashed lines marked in Subfigure 2(b), so in this case the fraction regular
control is the same the fraction optimal control. However, there is some truncation if the jump-
amplitude support were infinite, in which case the truncation would be restricted to the small space
between the dashed green lines at «* = 0 and u* = 1.

Reg. Fraction Policy Ureg(Vp,t), 0y = 22% Opt. Fract. Policy U*(Vp,t), 0,= 22%
1 - ) e
10f
2 05
S 2 o NN
[%]
£ -05 s
2 8
K3 -1 & —20f
= _1.5 = —U'(v,H
> G0 >>-30r Umax
2 -2 - 5 1.0
5 1.0 -40r 0.0
-2.5 0.0 | e ==-Umin [T
1980 1985 1990 1995 2000 1980 1985 1990 1995 2000
t, Time in Years t, Time in Years
(a) Regular fraction policy u(*8) (v,, t). (b) Optimal fraction policy, u* (vp, t) .

Figure 2: Regular and optimal portfolio stock fraction policies, u(*® (v,, ) and u*(v,,t) at 0, =
VUp = 022 = 22% on t € [1980,20007], while u*(v,,t) € [~44.434,+12.418]. Note that the
jump-bankruptcy bounds are outside the Subfigure (a), but are included in (b).

The optimal value J*(w, v,, t) and optimal consumption policy or control ¢*(w, v,, t) are given
in Subfigures 3(a) and 3(b), respectively, for fixed variance such that the volatility is o, = /v, =
22%. The value J*(w, vy, t) figure is molded by the wealth utility function ¢/ (w) for fixed ¢ as a
template and similarly the consumption is molded by the linear dependence on w for fixed ¢.

In an alternate view with respect to variance v and time ¢ with wealth as the fixed parameter
w, = 55, the optimal value J*(w,, v, t) and optimal consumption policy or control c*(w,, v, t) are
given in Subfigures 4(a) and 4(b). The dependence on variance v is not too interesting for both
functions.

The optimal portfolio stock fraction policy u*(v,t) versus v and t presented in Fig. 5. Quite
different from behavior of the optimal value and consumption displayed in subfigures of the prior
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Opt. Value J*(W,Vp,t), op =22% Opt. Consumption, C*(W,Vp,t), op =22%

J*(W,Vp,t), Optimal Value

0 2000 ¢ 1980 0 w

(a) Optimal portfolio value J*(w, vy, ). (b) Optimal consumption policy ¢*(w, vy, t) .

Figure 3: Optimal portfolio value J*(w, v, t) and optimal consumption policy ¢*(w, v,, t) at o, =
Oy = 0.22 = 22% on (w, t) € [0,110] x [1980,20007], while ¢* (w, v, t) € [0,0.75 - w].

Opt. Value J*(Wp,V,t), Wp =55 Opt. Consumption C*(WP,V,t), Wp =55
[=
9
E £
© =
:
S °©
= a
= o
;‘a ='>.-§ 10
£ g; 2000
o .
1980
v t
(a) Optimal portfolio value J*(wy, v, t). (b) Optimal consumption ¢*(w,, v, t) .

Figure 4: Optimal portfolio value J*(w,, v, t) and optimal consumption ¢*(w,, v, t) at w, = 55 for
(v,t) € X[Umin, 1.0] x [1980, 2000~ ], while ¢*(w,, v,t) € [0,0.75 - wy).

Fig. 4, the stock fraction u*(w,,v,t) is strongly dependent on the variance v and shows more
influence on the time-dependence of the market parameters. Note the fraction control constraint
is active on the portfolio fraction, u*(v,t) € [—44.434,+12.418], in Fig. 5 near small variance
v = vmn > 0. Note the large effect that the interest rate has on u*(v,t), particularly in the
afterward of the extreme inflationary period in the early 1980s at the lower values of variance (i.e.,
volatility squared) when Paul Volcker was chairman of the Federal Reserve.

6 Conclusions

The optimal portfolio and consumption problem has been extended to stochastic-volatility, jump-
diffusion environments with the stock truncated log-double-exponential jump-amplitude distribu-
tion and including exponentially distributed jump in the variance.

The practical jump-wealth, positivity condition has been reconfirmed with extra benefits due
to the natural stock-fraction jump constraints. The constraints help avoid stochastic-volatility and
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Opt. Fraction Policy U*(V,t)

1980

Figure 5: Optimal portfolio fraction policy u*(v, t) for (v,t) € [vmin, 1.0] x [1980, 2000~ ], while
wt(v, 1) € [44.434, +12.418).

CRRA power exponent singularities in the wealth solution. For all practical purposes the wealth
1s not just non-negative but also remains positive due to the geometric nature of the wealth process
and the constraint singularity protection if the initial wealth is positive.

We also revalidated that jump-amplitude distributions with compact support are much less
restricted on short-selling and borrowing compared to the infinite support case in the SVJD optimal
portfolio and consumption problem.

Our prior jump-diffusion optimal portfolio problem computations have been converted to pro-
duce SJVID computations. The computational result show that the CRRA reduced canonical op-
timal portfolio problem is strongly drift-dominated for sample market parameter values over the
diffusion terms, so at least first order drift-up-winding is essential for stable Bernoulli PDE com-
putations. The theory and results also confirm that there are significant effects on variation of
instantaneous stock fraction policies due to time-dependence of interest and discount rates, along
with small variance sensitivities for STVJD optimal portfolio and consumption models.
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A Optimal wealth trajectory without bankruptcy

To check whether the no bankruptcy condition W (¢) > 0 holds, the optimal controls for the
stock-fraction (4.4) and consumption (4.3) are substituted into the wealth SDE (2.7) obtaining a
geometric jump-diffusion,

dW*(t) = W*(t) (M;Vw(t),t)dt + V)G () + (9 — 1) dPi(t; Q)) , (A1)
coupled with the stochastic volatility SDE (2.2), where
pay (0,8) = () + (s (v) = 7(8))ug(v, 1) = (v, 1),

An exponential form of the solution for (A.1) can be found by (1) using the standard logarithmic
transform L(t) = In(W*(t)) for the geometric jump-diffusion (A.1), (2) using the correspond-
ing SVJD extension of Itd’s stochastic chain rule to remove W*(¢) from the right-hand-side (see
Hanson [21]), and (3) integrating the simplified SDE, yielding

w(0) = Woesp ([ (4 Vo) )i + V@G0 +Quan) ). 42)

where
pr (v, t) = piy(v,t) —v/2.
Assumptions A.1:  All relevant coefficients, i.e.,
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SO’ /’LS(U) = Uy + ?J/Q, As, Qs’ a, b, D1, %9 Ry 01)’ Oy, .
Bo(t), r(t), Wo, Us(1), C(t), CS™™), B(t), US™™) (v, 1), U™ (v, t) and 7,

are assumed to be bounded.

In particular, the practical bounds on the Gaussian noise, based upon the equivalence in

distribution that G.(t) dist V/tZ, with standard normal RV Z,, are

GL(1)] < Bavt & |Gu(t)| < Bavt, (A3)
for a large finite, positive constant B and finite horizon ¢ < 7T'.

The bounds on a, b, p; and C™™ have already been stated. Both U™ (v, t) and U™ (v, t)
have been superseded by the jump forced stock-fraction control bounds in (3.4), ﬂ(()mm) (v,t) and

A (y, 1), respectively.
Since W, > 0 has been assumed for the initial condition, we have, using (A.2) when v < 1

and v # 0, the following lemma.

Lemma A.2 Positivity of optimal wealth trajectory: Under the bounded coefficients assump-
tions and the practical bounds (A.3), then

W (t) > 0. (A.4)

Practical Remarks A.3: In particular, we assume that the Gaussian processes are for all
practical purposes bounded, i.e., |G,(t)] < BgVt and |G,(t)| < BgVt, since in real markets
the noise is bounded and the usual assumption of unbounded noise is only an artifact of the ideal
mathematical models of Wiener or Brownian motion. The bounds (A.3) mean that the Gaussian
extremes of very small probability are not realistic. It does not make sense for practical purposes
to spend time examining the importance, if any, of the most extreme deviations with the most small
probabilities. There are also the circuit breakers [3] of the NYSE that prevent, in installments, the
most extreme market changes like those in 1987. Again, note that the reasons for and consequently
the results in (A.4) are quite different from those in [37] and [53] for pure diffusions. Real markets
have extremes, but they are bounded extremes.

Thus, Lemma A.2 shows there is no possibility of bankruptcy or zero wealth starting from
positive initial wealth for the CRRA power utility with v < 1, including v = 0.
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