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Online Appendix A

Deterministic Optimal
Control

As far as the laws of mathematics refer to reality,
they are not certain;

and as far as they are certain,
they do not refer to reality.

—Albert Einstein (1879–1955), quoted by J.R. Newman
in The World of Mathematics

m = L/c2.
—Albert Einstein, the original form

of his famous energy-mass relation E = mc2,
where L is the Lagrangian, sometimes a form of energy

and the cost part of the Hamiltonian
in deterministic control theory

It probably comes as a surprise to many Americans that the Wright brothers,
Orville and Wilbur, did not invent flying, but they developed the first free, con-
trolled and sustained powered flight by man as reviewed in Repperger’s historical
perspective on their technical challenges [233]. Indeed, control is embedded in many
modern appliances working silently in computers, motor vehicles and other useful
appliances. Beyond engineering design there are natural control systems, like the
remarkable human brain working with other components of the central nervous sys-
tem [172]. Basar [21] lists 25 seminal papers on control and Bernstein [29] reviews
control history through feedback control. The state and future directions of control
of dynamical systems were summarized in the 1988 Fleming panel report [90] and
more recently in the 2003 Murray panel report [91].

This chapter provides summary background as a review to provide a basis
for examining the difference between deterministic optimal control and stochastic
optimal control, treated in Chapter 6. Summarized with commentary are Hamil-
ton’s equations, the maximum principle and dynamic programming formulation. A
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A2 Online Appendix A. Deterministic Optimal Control

special and useful canonical model, the linear quadratic (LQ) model, is presented.

A.1 Hamilton’s Equations: Hamiltonian and
Lagrange Multiplier Formulation of
Deterministic Optimal Control

For deterministic control problems [164, 44], many can be cast as systems of ordinary
differential equations so there are many standard numerical methods that can be
used for the solution. For example, if X(t) is the state nx-vector on the state space
X in continuous time t and U(t) is the control nu-vector on the control space U ,
then the differential equation for the deterministic system dynamics is

dX

dt
(t) = f(X(t),U(t), t), X(t0) = x0. (A.1)

Here, f(x,u, t) is called the plant function and may be nonlinear. The cost
objective functional or performance index is to achieve the minimal cumula-
tive running or instantaneous costs C(x,u, t) on (t0, ff ) plus terminal cost
function S(x, t), that is,

V [X,U, tf ](x0, t0) =

∫ tf

t0

C (X(t),U(t), t) dt + S (X(tf ), tf ) . (A.2)

Often in deterministic control theory and the calculus of variations, the cost
function is also called the Lagrangian, i.e., L(x,u, t) = C(x,u, t), from analogy
with classical mechanics. The notation V [X,U, tf ](x0, t0) means that the cost is a
functional of the state and control trajectory functions V [X,U, tf ], i.e., a function
of functions, but also is a function of the values of the initial data (x0, t0), i.e., a
function dependence in the ordinary sense. This fairly general functional form with
running and terminal costs is called the Bolza form of the objective functional.
However, the notation C(x,u, t) will be used for the instantaneous component of
the objective even when it is not a cost and the overall objective is maximization
rather than minimization, e.g., the maximization of profit.

Here, the value of the minimum total costs with respect to the control space
U will be considered,

v∗(x0, t0) = min
U∈U

[V [X,U, tf ](x0, t0)] , (A.3)

unless otherwise specified, subject to the initial value problem for the controlled
dynamics in (A.1). There is very little difference between the global minimum
and the global maximum problem; the smallest value is found in the former and
the largest value in the latter. The search in both cases is over all critical points,
which consist of the set of all regular points or local optima, which here are points
where the control derivative or gradient is zero, boundary points of the control
domain and singular points or other irregular points. If the control space U is the
whole space Rnu , the control problem is said to be unconstrained, or in absence
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A.1. Hamilton’s Equations A3

of constraints, the problem is mainly searching for regular points, assuming there
are no singular points, so

v∗(x0, t0) = v(reg)(x0, t0) = min
U∈Rnu

[V [X,U, tf ](x0, t0)] . (A.4)

In the Hamiltonian formulation [164], the Bolza form of optimization objec-
tive is replaced by a running cost optimal objective extended to include the state
dynamics and the new optimization objective function is called the Hamiltonian:

H(X(t),U(t), λ(t), t) ≡ C(X(t),U(t), t) + λT (t)f(X(t),U(t), t), (A.5)

where λ(t) is the nx-vector Lagrange multiplier, also called the adjoint state
or costate or auxiliary vector. The Lagrange multiplier provides the objective
extension for including the state dynamics. The symbol λ should not be confused
with the Poisson rate usd in stochastic jump modeling, since the jump rate does
not appear in deterministic problems, but both deterministic and stochastic uses
are standard notations in the appropriate context.

Theorem A.1. Gradient Necessary Conditions for a Regular Control
Optimum – Interior Point Optimum Principle.
Let the Hamiltonian H have continuous first order derivatives in the state, costate
and control vectors, {x,u, λ}. Then the necessary conditions for an interior
point optimum (maximum or minimum) of the Hamiltonian H at the optimal
set of three vectors, {X∗(t),U∗(t), λ∗(t)}, marked with an asterisk (∗), are called
Hamilton’s equations:

dX∗

dt
(t)=

(
∂H
∂λ

)∗

≡
(

∂H
∂λ

)
(X∗(t),U∗(t), λ∗(t), t) = f(X∗(t),U∗(t), t), (A.6)

−dλ∗

dt
(t)=

(
∂H
∂x

)∗

≡
(

∂H
∂x

)
(X∗(t),U∗(t), λ∗(t), t)=

(
∂C

∂x
+

∂fT

∂x
λ

)∗

, (A.7)

0=

(
∂H
∂u

)∗

≡
(

∂H
∂u

)
(X∗(t),U∗(t), λ∗(t), t) =

(
∂C

∂u
+

∂fT

∂u
λ

)∗

, (A.8)

where from the critical condition (A.8), the optimal control is the regular control,
i.e.,

U∗(t) = U(reg)(t),

at a regular or interior point and U(reg)(t) is called a regular control, so
critical condition (A.8) does not necessarily apply to boundary points or singular
points of the control, but certainly does apply to the case of unconstrained control.
The associated final conditions are listed in Table A.1 below.

Proof. The proof is a standard optimization proof in the calculus of variations
[40, 15, 164, 44] and is a significant generalization of the usual first derivative optima
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Table A.1. Some final conditions for deterministic optimal control.

X(tf ) = xf Fixed X(tf ) Free & tf -Independent

tf Fixed x∗
f = X∗(tf ) = xf λ∗

f = λ∗(tf ) = ∇x[S](x∗
f , tf)

at t = tf at t = tf
x∗∗

f = X∗(t∗f ) = xf λ∗∗
f = λ∗(t∗f ) = ∇x[S](x∗∗

f , t∗f )

tf Free (H + St)
∗∗
f = 0 (H + St)

∗∗
f = 0

at t = t∗f at t = t∗f

Notation: x∗
f ≡ X∗(tf ), u∗

f ≡ U∗(tf ), λ∗
f ≡ λ∗(tf ) and H∗

f ≡ H(x∗
f ,u∗

f , λ∗
f , tf ) in

the case of fixed final time tf , while x∗∗
f ≡ X∗(t∗f ), u∗∗

f ≡ U∗(t∗f ), λ∗∗
f ≡ λ∗(t∗f ) and

H∗∗
f ≡ H(x∗∗

f ,u∗∗
f , λ∗∗

f , t∗f ) in the case of free final time with optimal final time t∗f .

test. Our formal justification is a brief formulation after Kirk’s description [164],
but in our notation.

Note that the gradient

(
∂H
∂x

)∗

≡ ∇x[H](X∗(t),U∗(t), λ∗(t), t) =

[
∂H
∂xi

(X∗(t),U∗(t), λ∗(t), t)

]

nx×1

,

so is the x-gradient and a column nx-vector like X itself here (elsewhere row vector
gradients may be used, e.g., [44]) The gradients of C and f have corresponding di-
mensions. The triple set (A.6), (A.7), (A.8) of equations form a set of three vector
ordinary differential equations for the optimal trajectory under the optimal control
U∗(t). The first equation (A.6) merely reaffirms the specified state dynamical sys-
tem (A.1) and that the inclusion with the Lagrange multiplier λ∗(t) is proper. The
prefix minus on the time derivative of the Lagrange multiplier in (A.7) indicates
that it is a backward-time ODE, in contrast to the forward-time state ODE (A.6).

For the calculus of variations, the objective (A.2) is extended in two ways.
First, the terminal cost is absorbed in the integral of running costs using the fun-
damental theorem of calculus,

S(X(tf ), tf ) = S(x0, t0) +

∫ tf

t0

dS

dt
(X(t), t)dt

= S(x0, t0) +

∫ tf

t0

(
∂S

∂t
(X(t), t) + Ẋ$(t)

∂S

∂x
(X(t), t)

)
dt,

noting that the initial condition S(x0, t0) is fixed and so can be ignored in the
optimization, but the final time tf will be allowed to be free rather than fixed.

Second, the negative of the state derivative, −Ẋ(t), is included in the Lagrange
coefficient of the Hamiltonian. Thus, the extended or augmented objective is

V +[Z, Ẋ, tf ] ≡
∫ tf

t0

C+(Z(t), Ẋ(t), t)dt, (A.9)
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A.1. Hamilton’s Equations A5

where for brevity an extended state vector is defined as

Z(t) ≡




X(t)
U(t)
λ(t)



 (A.10)

and the extended cost function is

C+(Z(t), Ẋ(t), t)≡H(Z(t), t)+
∂S

∂t
(X(t), t)+Ẋ$(t)

(
∂S

∂x
(X(t), t)−λ(t)

)
. (A.11)

The objective extension also enables the optimal treatment of the final or stopping
time tf when tf is a free variable.

Next, the variations of the independent variables about potential optima, e.g.,
Z∗(t), are introduced,

Z(t) ≡ Z∗(t) + δZ(t);

Ẋ(t) ≡ Ẋ∗(t) + δẊ(t);

tf ≡ t∗f + δtf ,

the latter permitting optimal stopping times t∗f in addition to free final states for
generality. Assuming all variations are small and neglecting higher order variations,
i.e., O(|δZ(t)|2), a preliminary form of the first variation of the extended objective

V +[Z, Ẋ, tf ] % V +[Z∗, Ẋ∗, t∗f ] + δV +[Z, Ẋ, tf ]

is

δV +[Z, Ẋ, tf ] %
∫ t∗f

t0

(
δZ$

(
∂C+

∂z

)∗

+δẊ$
(

∂C+

∂ẋ

)∗)
dt+δtf (C+)∗

∣∣∣∣∣
t=t∗f

,

where the latter term derives from a forward approximation of the final integral
fragment on [t∗f , t∗f + δtf ] for small first variation δtf , ignoring second variations.

Also, the shorthand notation such as (∂C+/∂z)∗ = (∂C+/∂z)(Z∗(t), Ẋ∗(t), t) has
been used.

Since

δX(t) = δX(t0) +

∫ t

t0

δẊ(s)ds,

the variation δẊ(t) is not independent of its integral δX(t), but this dependence
can be removed by a primary applied mathematics technique of integration by parts.
So, replacing the objective variation δV + by δV † without δẊ(t),

δV †[Z, tf ] %
∫ t∗f

t0

(
δZ$

(
∂C+

∂z

)∗

−δX$ d

dt

(
∂C+

∂ẋ

)∗)
dt

+

(
δtf (C+)∗+δX$

(
∂C+

∂ẋ

)∗)∣∣∣∣∣
t=t∗f

.
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A6 Online Appendix A. Deterministic Optimal Control

However, the variation
δX(t∗f ) ≡ X(t∗f ) − X∗(t∗f )

is only the variation at t = t∗f and not the total final variation required, which is

δX̂(t∗f ) ≡ X(t∗f + δtf ) − X∗(t∗f ),

the difference between a final trial value at tf = t∗f + δtf and a final optimal state
value at the optimal stopping time t = t∗f . By using a tangent line approximation,
the former can be converted to the other with sufficient first variation accuracy,

δX̂(t∗f ) % X(t∗f ) + Ẋ(t∗f )δtf − X∗(t∗f ) % δX̂(t∗f ) + Ẋ∗(t∗f )δtf ,

where Ẋ(t∗f )δtf % Ẋ∗(t∗f )δtf within first variation accuracy. Hence, the proper

final first variation δX̂(t∗f ) with tangent correction can be substituted for δX̂(t∗f ),
yielding

δV †[Z, tf ] %
∫ t∗f

t0

(
δZ$

(
∂C+

∂z

)∗

−δX$ d

dt

(
∂C+

∂ẋ

)∗)
dt

+

(
δtf

(
C+−

(
Ẋ

)$
(

∂C+

∂ẋ

)∗)
+δX̂$

(
∂C+

∂ẋ

)∗)∣∣∣∣∣
t=t∗f

.
(A.12)

The fundamental theorem of the calculus of variations [164] states
that the first variation, here δV †[Z, tf ], must vanish for all admissible variations,
here assuming δZ(t) is continuous, on an optimal trajectory, here Z∗(t). Thus,

δV †[Z, tf ] = 0.

Further, the fundamental lemma of the calculus of variations [164]
states that given a continuous function Fi(t) and

∫ tf

t0

δXi(t)Fi(t)dt = 0

for every continuous trajectory δXi(t) on [t0, tf ], then

Fi(t) = 0

on [t0, tf ]. For multidimensional trajectories and independent component variations
δXi(t) for i = 1:nx, the result holds for all components.

Using the definition of the extended cost C+ in (A.11), extended state Z in
(A.10) and the Hamiltonian (A.5) with the first variation δV †[Z, tf ] in (A.12), we
have

• Coefficient of δλ$(t) =⇒
(

∂C+

∂λ

)∗

=

(
∂H
∂λ

)∗

− Ẋ∗(t) = 0 =⇒

Ẋ∗(t) =

(
∂H
∂λ

)∗

= f(X∗(t),U∗(t), t) on t0 < t ≤ tf .
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A.1. Hamilton’s Equations A7

• Coefficient of δX$(t) =⇒
(

∂C+

∂x

)∗

− d

dt

(
∂C+

∂ẋ

)∗

=

(
∂H
∂x

)∗

+ λ̇
∗
(t) = 0 =⇒

λ̇
∗
(t) = −

(
∂H
∂x

)∗

=−
(

∂C

∂x
+

∂fT

∂x
λ

)∗

, on t0 ≤ t < tf .

• Coefficient of δU$(t) =⇒
(

∂C+

∂u

)∗

=

(
∂H
∂u

)∗

=

(
∂C

∂u
+

∂fT

∂u
λ

)∗

= 0, on t0 ≤ t < tf .

Cautionary Remark: This critical point result is valid only for isolated,
interior critical optima, so it would not be valid for the case that H is linear
in U or a singular case. However, the equations for Ẋ∗(t) and λ̇

∗
(t) remain

valid.

• Coefficient of δtf =⇒
If tf is fixed, then δtf ≡ 0 and no information can be implied about the
coefficient, else if tf is free and if δtf (= 0 is otherwise arbitrary, then

(
(C+)∗−

(
Ẋ∗

)$
(

∂C+

∂ẋ

)∗)∣∣∣∣∣
t=t∗f

=

(
H∗ +

(
∂S

∂t

)∗)∣∣∣∣∣
t=t∗f

= 0.

• Coefficient of δX̂$(t∗f ) =⇒
If X(tf ) is fixed and tf fixed, then δX̂$(t∗f ) ≡ 0 and no information can
be implied about the coefficient, else if X(tf ) is free and tf is fixed, then

δX̂$(t∗f ) (= 0 and

(
∂C+

∂ẋ

)∗
∣∣∣∣∣
t=t∗f

=

((
∂S

∂x

)∗

− λ∗
)∣∣∣∣∣

t=tf

= 0 =⇒

λ∗(tf ) =
∂S

∂x
(X∗(tf ), tf ),

or else if both X(tf ) and tf are free, then the combined conditions are

λ∗∗
f ≡ λ∗(t∗f ) =

∂S

∂x
(X∗(t∗f ), t∗f ),

(
H +

∂S

∂t

)∗∗

≡
(
H∗ +

(
∂S

∂t

)∗)∣∣∣∣∣
t=t∗f

= 0,

the double asterisk notion denoting the optimal stopping time on the optimal
path.
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The first three items complete the proof of the theorem, while the last two items
complete the justifications of the final conditions listed in Table A.1.

The state vector X∗(t) satisfies specified initial conditions X∗(t0) = x∗
0 at t0.

The final conditions for the state X∗(tf ) and costate or adjoint state λ∗(tf ), if
any, depend on the application and a fairly complete set is tabulated in Kirk [164],
Bryson and Ho [44], and Athans and Falb [15]. The final conditions depend on
whether the final time tf is fixed (specified) or free (unspecified) and whether the
corresponding final state vector xf = X(tf ) is fixed or free. A partial list of some
of the conditions is given in Table A.1.

See the classical sources of Athans and Falb [15], Kirk [164], and Bryson and
Ho [44] for additional final conditions such as moving boundaries Γ(X(t)) = 0 or
Γ(X(t), t) = 0 and other variants that enter into the final conditions. For other
variants with more economic interpretations, the bioeconomics book by Clark [57]
is very readable and useful. Other condition variants include a multitude of mixed
and hybrid cases that are vector component combinations of the purely fixed and
free vector cases presented in Table A.1. Some of these final conditions arise as
natural boundary conditions because they cannot be independently specified but
follow from the structure of the optimal control problem by the method of calculus
of variations [40, 15, 164, 44].

The final conditions for the free terminal time and free terminal state case

λ∗∗
f = λ∗(t∗f ) = ∇x[S](x∗∗

f , t∗f ), (A.13)

0 = H(x∗∗
f ,u∗∗

f , λ∗∗
f , t∗f ) + St(x

∗∗
f , t∗f) (A.14)

in Table A.1 are a good example of the results from the calculus of variations. The
equation (A.13) is the final or transversality condition for the optimal Lagrange
multipier that usually accompanies the stationary point Euler–Lagrange equations
(A.7) for the optimal multiplier and (A.8) for the optimal control [44]. The Euler–
Lagrange equations along with the dynamic constraint equation and initial condition
(A.1) satisfy a two-point boundary value problem, also called a final-initial value
problem.

Theorem A.2. Legendre–Clebsch Sufficient Conditions for Regular Con-
trol Optimum.
If the Hamiltonian H (A.5) has continuous second order derivatives in the control
vector u, then the sufficient condition for a regular point maximum is that
the Hessian matrix must be negative definite, i.e., H is concave at the regular
point,

H∗
uu = ∇u

[
∇$

u [H]
]
(X∗(t),U∗(t), λ∗(t), t) < 0 (A.15)

and the sufficient condition for a regular control minimum is that the Hessian
matrix must be positive definite, i.e., H is convex at the regular control,

H∗
uu = ∇u

[
∇$

u [H]
]
(X∗(t),U∗(t), λ∗(t), t) > 0. (A.16)
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These sufficient conditions are called the (strengthened) Legendre–Clebsch con-
ditions.

The proof is a standard optimization proof in multivariate calculus [263, 221,
44] and is a general form of the so-called second derivative optimum test.

If the Legendre–Clebsch conditions do not hold, then extra conditions usually
are needed. For example, if H is linear in the control u, then the control problem
may be singular [24] and more basic optimization principles may be needed.

See the next section for how to handle some of these exceptions to regular
control or normal control with the critical, stationary condition with respect to
the control u here, using basic optimization principles in terms of a maximum or
minimum principle.

Example A.3. Regular Control Problem.
This problem is a simplified fragment of a financial portfolio application. Let the
dynamics be linear in the positive scalar state X(t) > 0, denoting the measure of
the wealth at time t, but bilinear in the control-state, such that

Ẋ(t) ≡ dX

dt
(t) = (µ0 − U(t))X(t), X(0) = x0 > 0, 0 ≤ t ≤ tf , (A.17)

where µ0 is a fixed mean production rate of the wealth and U(t) is the control
variable that is a measure of the rate of consumption of the wealth at time t. The
consumption is constrained to be nonnegative and bounded above,

U (min) = 0 ≤ U(t) ≤ U (max). (A.18)

The objective is to maximize the cumulative utility of instantaneous consumption
where the utility is a power law

C(x, u, t) = uγ/γ (A.19)

for positive powers γ > 0, but in the following analysis we will exclude the linear
case γ = 1 to keep this a regular or normal control problem. In addition, let there
be terminal wealth utility using the same power law,

S(x, t) = xγ/γ. (A.20)

Thus, this is a Bolza problem described above, but here the maximum utility is sought
rather than the minimum cost. The difference between solving a maximum versus
a minimum problem is trivial, as can be seen from the Legendre–Clebsch sufficient
conditions, (A.15) and (A.16), with only a difference in the sign of the inequality.

Solution. The Hamiltonian is then

H(x, u, λ, t) = uγ/γ + λ(µ0 − u)x. (A.21)
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Hamilton’s equations for a regular control solution are

Ẋ∗(t) = +H∗
λ = (µ0 − U (reg)(t))X∗(t), (A.22)

λ̇∗(t) = −H∗
x = −(µ0 − U (reg)(t))λ∗(t), (A.23)

0 = H∗
u = (U (reg))γ−1(t) − λ∗(t)X∗(t); (A.24)

the latter equation yields the regular control,

U (reg)(t) = (λ∗(t)X∗(t))1/(γ−1) (A.25)

provided that γ (= 1, as promised, i.e., excluding what is called the neutral risk
case. Since the control is a regular control, then, strictly speaking, X∗(t) = X(reg)(t)
and λ∗(t) = λ(reg)(t).

Before designating the regular control as the optimal control, the Legendre–
Clebsch second derivative sufficient conditions are examined:

Huu = (γ − 1)uγ−2; (A.26)

it is seen from the Legendre–Clebsch sufficient condition for a maximum that H is
concave or (Huu)(reg) < 0, and this condition is only satisfied for γ < 1, the “low”
risk adverse case. Hence, U∗(t) = U (reg).

However, for γ > 1 and risk-seeking utility, the regular control (A.25) yields
a minimum since H is convex or (Huu)(reg) > 0, but it would not be rational to get
a minimum utility. If maximizing the utility is needed when γ > 1, then the control
constraints must be used. See Exercise 6 for how to obtain the proper maximum
utility solution when γ > 1.

The first two Hamilton’s equations, though seemingly complicated, can be solved
by dividing both sides of the equations and examining them in the phase plane with-
out the time dependence,

dX∗

dλ∗ = −X∗

λ∗ , (A.27)

which is just the product rule of differentiation, d(X∗λ∗)/dt = 0, slightly rearranged
and the solution is

X∗λ∗ = K, (A.28)

where K is a constant of integration. Consequently, our optimal control is the
regular control and must be a constant as well,

U∗(t) = U (reg) = K1/(γ−1) ≡ K0, (A.29)

provided 0 ≤ U (reg) ≤ U (max). Constant control means that the state and costate
equations here are equations of simple exponential growth, so

X∗(t) = x0e
(µ0−K0)t, (A.30)

λ∗(t) = λ∗(tf )e−(µ0−K0)(t−tf ), (A.31)
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where the constant K0 and the final adjoint value λ∗(tf ) = λ∗
f need to be deter-

mined. By the transversality condition in Table A.1 for tf fixed and X∗(tf ) = x∗
f

unspecified,

λ∗
f = Sx(x∗

f , tf ) = (x∗
f )γ−1 =

(
x0e

(µ0−K0)tf

)γ−1
, (A.32)

using the derivative of the terminal utility S(x, t) in (A.20) and the state solution
X∗(t) in (A.30). Finally, the definitions of K in (A.28) and K0 in (A.29) yield a
nonlinear equation for the control constant U∗(t) = K0 using (A.28–(A.32),

K0 = K
1

γ−1 = (x∗
fλ∗

f )
1

γ−1 = (x∗
f )

γ
γ−1 =

(
x0e

(µ0−K0)tf

) γ
γ−1

, (A.33)

in terms of the specified X0, µ0 and γ < 1.
We are assuming that the control constraint U (max) is sufficiently larger than

K0, so that the control remains regular. Control constraint violations, bang control
and linear or singular control are treated in the next section.

The Hamiltonian when γ = 0.5 is displayed along with some sample optimal
wealth state X∗(t) and costate λ∗(t) solutions in Figure A.1 such that the Hamilto-
nian is in Subfigure A.1(a) while the optimal solution for maximum utility is in Sub-
figure A.1(b) using the Online Appendix C code C.23 called RegCtrlExample6p1a.m.
The terminal wealth at the terminal time tf = 1.0 starting from x0 = 10.0 is
S = 1.038 for γ = 0.5. The mean production rate was µ0 = 0.10 or 10% in ab-
sence of consumption. The MATLAB modification of Brent’s zero finding algorithm
fzero [88] is used to find the control constant U∗(t) = K0 whose approximate value
is 3.715 when γ = 0.5 to accuracy of order 10−15 in satisfying (A.33).
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ity example for power γ = 0.5.

Figure A.1. Hamitonian and optimal solutions for regular control problem
example from (A.30) for X∗(t) and (A.31) for λ∗(t). Note that the γ = 0.5 power
utility is only for illustration purposes.

For completeness and to provide a contrasting illustration with a nonregular,
bang control case for a power utility with γ = 2.0, the Hamiltonian and optimal paths
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are displayed in Subfigures A.2(a)–A.2(b), respectively, using the same code C.23
called RegCtrlExample6p1a.m. The control constant U∗(t) has an approximate
value of 10.0 when γ = 2.0. The terminal wealth is S = 5.02e-4 at the terminal
time tf = 1.0 starting from x0 = 10.0 for γ = 2.0. See Exercise 6 for obtaining a
proper maximum utility solution when γ > 1.
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Figure A.2. Hamiltonian and optimal solutions for bang control problem
example from (A.30) for X∗(t) and (A.31) for λ∗(t). Note that the γ = 2.0 power
utility is only for illustration purposes.

Remark A.4. Many control problems are not this easy, since they may require
much more analysis, especially in multiple dimensions, and often numerical ap-
proximation is needed. For more information on optimal finance portfolios with
consumption, see Section 10.4 in Chapter 10 on financial applications.

A.1.1 Deterministic Computation and Computational
Complexity

Except for simple or analytical homework problems, usually numerical discretization
and iterations are required until the solution (X∗(t),U∗(t), λ∗(t)) converges to some
prescribed accuracy. If there are nt discrete time nodes, Tk = t0 + (k − 1)∆T for
k = 1 : Nt with ∆T = (tf − t0)/(Nt − 1), then the nx dimensional state vector
X∗(t) is discretized into X∗(Tk) = Xk = [Xi,k]nx×Nt or nx · Nt discrete variables.
For the three-vector solution the computational complexity or the order of the
computational cost [111] is

CC(nx, nt) = O(3nx · Nt) (A.34)

per iteration, i.e., bilinear in the dimension and number of time nodes, a very
manageable computational problem, even for today’s powerful personal computers.
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In addition, MATLAB [210] has a good number of control Toolboxes for han-
dling problems. There are also several good online tutorials available, such as
Tilbury and Messner’s [268, 205] Control Tutorials for MATLAB and Simulink.

Some early surveys on computational methods for optimal control problems
are by Larson [182], Dyer and McReynolds [77], and Polak [227].

A.2 Optimum Principles: The Basic Principles
Approach

For many problems, as discussed in Section B.15 of Online Appendix B of prelim-
inaries, the unconstrained or regular control conditions expressed by Hamilton’s
equations (A.6), (A.7), (A.8) are in general inadequate. The inadequacy arises in
problems for which the optima are not located at interior points but are located at
the boundaries of the state and control domains, such as when the domains have
bounded constraints in addition to dynamical constraints like (A.1). One excep-
tional case is the linear control problem. Another exception is when the optima are
at interior points at which the derivatives in Hamilton’s equations cease to exist,
or any of the multitude of combinations of these exceptions depending on all or a
subset of the components of the variables involved.

Basic Optimum Principle. Hence, for general optimization theory and its
application, it is essential to return to basic optimization principles, that the global
minimum is the smallest or that the global maximum is the biggest.

Example A.5. Simple static Example of State-Dependent Control with
Quadratic Costs and Control Constraints.
Consider the static quadratic cost function with scalar control u and state x,

H(x, u) = C(x, u) = 2 + x +
1

2
x2 − xu +

1

2
u2 = 2 + x +

1

2
(u − x)2 (A.35)

with control constraints

−1 ≤ u ≤ +1, (A.36)

but without any dynamical constraints like (A.1). The objective is to find the optimal
control law and optimal cost.
Solution: The control gradient or derivative is

∂C

∂u
(x, u) = −x + u,

yielding the critical, stationary point with respect to the control, called a regular
control in control theory,

U (reg)(x) = x,

which would be the global minimum in absence of control constraints since the second
partial with respect to the control is positive, Cuu(x, u) = +1 > 0 with corresponding
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regular cost

C(reg)(x) ≡ C(x, u(reg)(x)) = 2 + x

that is linear (affine) in the state variable.
However, this example has control constraints (A.36) which forces the cor-

rect optimal control to assume the constrained values when the regular control goes
beyond those constraints, i.e.,

U∗(x) =






−1, x ≤ −1
x, −1 ≤ x ≤ +1

+1, +1 ≤ x





. (A.37)

This type of optimal control could be called a bang-regular-bang control, where the
term bang signifies hitting the control constraints, the control boundaries becoming
active. The corresponding correct optimal cost is

C∗(x) = C(x, u∗(x)) =






2 + x + 1
2 (x + 1)2, x ≤ −1

2 + x, −1 ≤ x ≤ +1
2 + x + 1

2 (x − 1)2, +1 ≤ x





. (A.38)

For this example, C∗(x) is continuous and continuously differentiable, but not twice
continuously differentiable. However, optimal controls and optimal costs of some
problems can have much worse analytic properties. The optimal solution (A.38)
for this simple, somewhat artificial, static optimal control problem is illustrated in
Figure A.3 with the optimal control in Subfigure A.3(a) and the optimal cost in Sub-
figure A.3(b), using the Online Appendix C code C.24 called SimpleOptExample.m.
This simple example provides motivation about why the stationary optimality con-
dition (A.8) for the optimal control is not generally valid.
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Figure A.3. Optimal solutions for a simple, static optimal control problem
represented by (A.35) and (A.36), respectively.
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The basic optimum principle is just the underlying principle for optimiza-
tion, but the rigorous justification is beyond the scope of this text. In control theory
the optimum principle is associated with the name Pontryagin maximum prin-
ciple [226] in the Russian literature, where the Hamiltonian is formed with an extra
multiplier λ0 to include the objective functional as the 0th dynamical constraint

Ẋ0(t) = C(X(t), U(t), t),

so the maximum refers to the Hamiltonian when the objective is minimum costs and
λ0 must be nonpositive. (See also (A.39) below.) Often the optimum principle is
called the minimum principle in the English literature [164, 44, 258], particularly
when dealing with minimum cost problems, though not exclusively. The difference
between a maximum and a minimum principle is essentially a difference in the sign
of the Hamiltonian and the fact that the conversion from a maximum objective to
a minimum objective problem is quite simple:

max
u

[F (u)] = −min
u

[−F (u)]. (A.39)

With regard to applications, which version of the optimum principle is used
depends on the whether the optimal objective is minimum costs or maximum profit,
or minimum energy or maximum energy, minimum time or maximum speed, and
there are many other objective choices:

• Minimum time (C = 1 and S = 0).

• Minimum control (C = |u| and S = 0).

• Minimum fuel (C = |u|, i.e., thrust measure of fuel consumption, and S = 0).

• Minimum energy (C = u2, i.e., energy, and S = 0).

• Minimum net profit (C = p0X − c0, i.e., profit less cost, and S = 0).

• Maximum utility of consumption (C = U(u), i.e., utility of consumption, and
S = U(x), i.e., utility of portfolio wealth).

• Maximum thrust angle (C = sin(θ(t)) and S = 0).

• Minimum distance.

• Minimum surface area.

Here, the maximum and minimum principles are only stated, but see the ref-
erences at the end of the chapter for more information, such as Anderson-Moore [8],
Athans-Falb [15], Bryson-Ho [44], Kirk [164], Pontryagin et al. [226] and Bell-
Jacobson [24]. While the statement of the principle seems very intuitive, the rigorous
proof is far from easy.

Theorem A.6. Optimum Principles.
The necessary condition for a maximum or maximum principle is

H∗ = H(X∗(t),U∗(t), λ∗(t), t) ≥ H(X∗(t),U(t), λ∗(t), t), (A.40)
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but the necessary condition for a minimum or minimum principle is

H∗ = H(X∗(t),U∗(t), λ∗(t), t) ≤ H(X∗(t),U(t), λ∗(t), t), (A.41)

in general replacing (A.8), where X∗(t) and λ∗(t) are candidates for optimal state or
costate, respectively. The optimal state X∗(t) must satisfy the dynamical constraint

Ẋ∗(t) = (Hλ)∗ (A.6) and the costate λ∗(t) must satisfy the costate equation λ̇
∗
(t) =

−(Hx)∗ (A.7). The optimal control U∗(t) is the argument of the corresponding
maximum in (A.40) or minimum in (A.41).

Remarks A.7.

• Note that the optimal principles (A.40) and (A.41) as in the basic optimizing
principles are used as a general replacement for the necessary conditions for a
regular point H∗

u = 0 (A.8), the Legendre–Clebsch second order sufficient con-
ditions H∗

uu < 0 (A.15) for a maximum and (A.16) H∗
uu > 0 for a minimum.

However, these first and second order derivative conditions are still valid for
interior or regular points.

• In fact, Pontryagin et al. [226] justify briefly that the optimum principles are
sufficient conditions because they are more basic conditions.

• If we let the control perturbation be

δU(t) ≡ U(t) − U∗(t), (A.42)

then the corresponding perturbation or variation in the Hamiltonian is

∆uH(X∗(t),U∗(t), λ∗(t), t) ≡ H(X∗(t),U∗(t) + δU(t), λ∗(t), t) (A.43)

−H(X∗(t),U∗(t), λ∗(t), t)

and the maximum principle can be reformulated as

∆uH(X∗(t),U∗(t), λ∗(t), t) ≤ 0, (A.44)

while the minimum principle can be reformulated as

∆uH(X∗(t),U∗(t), λ∗(t), t) ≥ 0. (A.45)

In the language of the calculus of variations, the optimum principles are that
the first variation of the Hamiltonian is negative semidefinite for a maximum,
while it is positive semidefinite for a minimum.

• Concerning the simple static example A.5, the perturbation form of the min-
imum principle (A.45) can be used to justify the choice of the bang controls
given in (A.37). The perturbation for the example is

∆uH∗ = (U∗ − x)δU∗ +
1

2
(δU∗)2,
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where only the linear term need be considered for its contribution to the non-
negativity of the perturbation since the quadratic term is never negative. When
there is minimal bang control, U∗ = −1, then the perturbation δU∗ must nec-
essarily be nonnegative, otherwise the control constraints (A.36) would be vio-
lated, so for nonnegativity of the Hamiltonian perturbation the control pertur-
bation coefficient (−1−x) must also be nonnegative or that x ≤ −1. Similarly,
when there is maximal bang control, U∗ = +1, then the perturbation has to be
nonpositive, δU∗ ≤ 0, to avoid violating the control constraints. So ∆uH∗ ≥ 0
(A.45) implies that the coefficient (1 − x) of δU∗ must be nonpositive or that
x ≥ +1.

• Similar techniques work with the application of the optimum principles to the
case where the Hamiltonian is linear in the control. For example, consider the
scalar, linear control Hamiltonian,

H(x, u, λ, t) = C0(x, t) + C1(x, t)u + λ(F0(x, t) + F1(x, t)u)

subject to control constraints

U (min) ≤ U(t) ≤ U (max)

and such that

Hu(x, u, λ, t) = C1(x, t) + λF1(x, t) = Hu(x, 0, λ, t),

so no regular control exists. However, the perturbed Hamiltonian has the form

∆uH(X∗, U∗, λ∗, t) = Hu(X∗, 0, λ∗, t)δU∗,

so optimal control is of the bang-bang form, which for a minimum of H using
∆uH ≥ 0 yields the composite form,

U∗(t) =

{
U (min), (Hu)∗ = C1(X∗(t), t) + λ∗(t)F1(X∗(t), t) > 0

U (max), (Hu)∗ = C1(X∗(t), t) + λ∗(t)F1(X∗(t), t) < 0

}

, (A.46)

since for (Hu)∗ > 0, then δU∗ ≥ 0 or equivalently U∗(t) = U (min). Similarly
when (Hu)∗ < 0, then δU∗ ≤ 0 or equivalently U∗(t) = U (max), but if (Hu)∗ =
0 no information on either δU∗ or U∗(t) can be determined.

Example A.8. Bang-Bang Control Problem.
Consider a simple lumped model of a leaky reservoir (after Kirk [164]) given by

Ẋ(t) = −aX(t) + U(t), X(0) = x0,

where X(t) is the depth of the reservoir, U(t) is the net inflow of water at time t
and a > 0 is the rate of leakage as well as usage. The net inflow is constrained
pointwise 0 ≤ U(t) ≤ M for all 0 < t ≤ tf and also cumulatively by

∫ tf

0
U(t)dt = K > 0, (A.47)
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where K, M and tf are fixed constants, such that K ≤ M · tf for consistency. Find
the optimal control law that maximizes the cumulative depth

J [X ] =

∫ tf

0
X(t)dt

and optimal depth X∗(t).

Solution. The extra integral condition (A.47) presents a variation on our standard
control problem, but can be treated nicely by extending the state space letting X1(t) =
X(t) and Ẋ2(t) = U(t) starting at X2(0) = 0, so that X2(tf ) = K is precisely the
constraint (A.47). Thus, the Hamiltonian is

H(x1, x2, u, λ1, λ2, t) = x1 + λ1(−ax1 + u) + λ2u, (A.48)

where λ1 and λ2 are Lagrange multipliers. The Hamilton equations for the optimal
state and costate solutions are

Ẋ∗
1 (t) = H∗

λ1
= −aX∗

1 (t) + U∗(t), X∗
1 (0) = x0;

Ẋ∗
2 (t) = H∗

λ2
= U∗(t), X∗

2 (0) = 0;

λ̇∗
1(t) = −H∗

x1
= −1 + aλ∗

1(t);

λ̇∗
2(t) = −H∗

x2
= 0.

Consequently, λ∗
2(t) = C2, a constant, and X∗

2 (tf ) = K is fixed. Also, λ∗
1(t) =

C1 exp(at) + 1/a with the constant determined from the transversality condition
λ∗

1(tf ) = 0 of Table
textnormalrefDetFCs with X∗

1 (tf ) free and no terminal cost, i.e., S(x) ≡ 0, so
C1 = − exp(−atf )/a and

λ∗
1(t) =

1

a

(
1 − e−a(tf−t)

)
. (A.49)

Since
H∗

u = λ∗
1(t) + λ∗

2(t) (= 0

in general, the usual critical point condition will not directly produce an optimal
control U∗(t), but a bang-bang control will work. By applying the essential Pon-
tryagin maximum principle (first derivative test) in the form (A.43)–(A.44) with
δU(t) = U(t) − U∗(t),

∆uH(X∗(t),U∗(t), λ∗(t), t) = (λ∗
1(t) + λ∗

2(t))(U(t) − U∗(t)) ≤ 0,

so if (λ∗
1(t) + λ∗

2(t)) > 0, then U(t) − U∗(t) ≤ 0 and U∗(t) = max[U(t)] = M ,
but if (λ∗

1(t) + λ∗
2(t)) < 0, then U(t) − U∗(t) ≥ 0 and U∗(t) = min[U(t)] = 0. If

(λ∗
1(t)+λ∗

2(t)) = 0, then U∗(t) cannot be determined. Now, U∗(t) cannot be zero on
all of [0, tf ] or be M on all of [0, tf ], because both options would violate the constraint
(A.47) in the strict case K < M · tf . In this case and noting that λ∗

1(t) is decreasing
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in time, there must be a switch time ts on [0, tf ] such that λ∗
1(ts) + λ∗

2(ts) = 0,
C2 = λ∗

2(ts) = −λ∗
1(ts) = −(1 − exp(−a(tf − ts)))/a < 0 and

X∗
2 (tf ) = K =

∫ ts

0
Mdt +

∫ tf

ts

0dt = Mts,

so ts = K/M . The composite bang-bang control law is then

U∗(t) =

{
M, 0 ≤ t < ts

0, ts < t ≤ tf

}

, (A.50)

and the corresponding state trajectory is given by

X∗
1 (t) = X∗(t) = x0 e−at +

M

a

{
(1 − e−at) , 0 ≤ t ≤ ts

e−at (e+ats − 1) , ts < t ≤ tf

}

. (A.51)

The optimal control (A.50), state (A.51) and the switch time indicator multiplier
sum (A.49), λ∗

1(t)+λ∗
2(t), are plotted together in Figure A.4 with sample numerical

parameter values using Online Appendix C code C.25 called bangbangdetctrl05-
fig1.m.
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Figure A.4. Optimal control, state and switch time multiplier sum are
shown for bang-bang control example with sample parameter values t0 = 0, tf = 2.0,
a = 0.6, M = 2, K = 2.4 and x0 = 1.0. The computed switch time ts is also
indicated.

Example A.9. Singular Control Problem.
Consider the scalar dynamical system for a natural resource with state or mass X(t)

Ẋ(t) ≡ dX

dt
(t) = (µ0 − U(t))X(t), X(t0) = x0 > 0, t0 ≤ t ≤ tf , (A.52)

where µ0 is the natural growth rate and U(t) is the harvest rate or effort that will
be taken as the control variable. Thus, (A.52) represents exponential growth of the



“bk0allfinal”
2007/8/10
page A20

!

!

!

!

!

!

!

!

A20 Online Appendix A. Deterministic Optimal Control

resource whose growth rate is modified by the control. Let the running “cost” for
the objective functional be

C(x, u, t) = e−δ0t max [p0x − c0, 0] u(t), (A.53)

where p0 > 0 is the fixed price per unit effort per unit mass and c0 > 0 is the fixed
cost per unit effort, so p0X(t) − c0 is the net instantaneous profit at time t.

Note that only positive profit is considered to avoid the possibility of loss, so
X(t) > c0/p0 needs to be maintained. Since the objective concerns profit rather that
costs, the objective will be the maximization of profit and the maximum version of
the optimum principle is applicable here. The factor δ0 > 0 is the fixed discount
rate or time value of money, but δ0 > µ0 is also assumed as a result of the analysis.
There is no terminal cost S. Since real applications have constraints, let the control
domain be defined by

0 ≤ U(t) ≤ U (max), (A.54)

where U (max) is positive but whose value is left open for the moment. Since the
dynamics are linear and the initial condition is positive, the state domain will also
be positive values X(t) > 0.

Solution. To find the solution, the Hamiltonian is written

H(x, u, λ, t) = C(x, u, t) + λẊ = e−δ0t(p0x − c0)u + λ(µ0 − u)x,

assuming a positive profit. Before applying basic optimization principles, we first
seek critical, stationary solutions in the control dependence. The control derivative
is

Hu(x, u, λ, t) = e−δ0t(p0x − c0) − λx, (A.55)

which is independent of the control u and when set to zero for stationarity yields
the optimal candidate for the adjoint variable, say,

λ̂(t) = e−δ0t (p0 − c0/x̂(t)) .

However, the other Hamilton’s equations specify the potential optimal dynamics of
the adjoint and state variables,

˙̂
λ(t) = −Ĥx = −e−δ0tp0û(t) − λ̂(t)(µ0 − û(t)), (A.56)

˙̂x(t) = Ĥλ = (µ0 − û(t))x̂(t). (A.57)

So, combining the last three equations, it is found that the control terms û cancel
out exactly. Consequently, this yields a singular solution for the state,

X(sing) = x̂(t) = (c0/p0)/(1 − µ0/δ0). (A.58)

This singular solution leads to the requirement that δ0 > µ0 to maintain the profit
restriction that X(t) > c0/p0. Note that the singular solution in this case is also a
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constant. The solution (A.58) is called a singular solution, rather that a regular or
normal solution, since (A.55) does not define a stationary point or regular control
and by the way the control cancels out due to the linear dependence on control.
However, the singular control can be recovered from inverting the state dynamics,

U (sing) = û(t) = µ0 − Ẋ(sing)/X(sing) = µ0.

For the optimal solution, the control constraints and the initial condition X(0) = x0

need to be considered.
If U (max) ≥ µ0, then U∗(t) = U (sing) = µ0 and X∗(t) = X(sing) on 0 < t∗ ≤

t ≤ T (max)
0 , where T (max)

0 is a transition time where the initial trajectory connects
to the singular trajectory at a point that is called a corner. The initial trajectory
must be chosen using the control bound that allows the singular path to be reached
and this control trajectory could be called a bang control trajectory.

If X(sing) < x0 and U (max) > µ0, then U∗(t) = U (max) on [0, T (max)
0 ], where

the maximal state trajectory starting from x0 at t = 0 integrating (A.57) is

X(max)
0 (t) = x0 exp

((
µ0 − U (max)

)
t
)

, 0 ≤ t ≤ T (max)
0 ,

T (max)
0 = −

ln
(
X(sing)/x0

)
(
U (max) − µ0

) > 0.

If X(sing) > x0, then U∗(t) = 0 on [0, T (min)
0 ] where the minimal state trajec-

tory starting from x0 at t = 0 integrating (A.57) is

X(min)
0 (t) = x0e

µ0t, 0 ≤ t ≤ T (min)
0 ,

T (min)
0 = +

ln
(
X(sing)/x0

)

µ0
> 0.

At the final time the adjoint final or transversality condition must be used as a
final value condition for the adjoint dynamics (A.56), which from the scalar version
of the entry for fixed tf and free X(tf) in Table A.1 on p. A4 is

λ∗(tf ) = Sx(x∗
f , tf ) = 0,

since there is no terminal value S in this example. Note that this is consistent with
the maximum principle using the calculus of variation and that the regular, critical
relation Hu = 0 cannot be used as it was for the singular path. Obviously, it is
necessary to use the maximal control in (A.56) to reach the condition λ∗(tf ) = 0
from the singular path,

λ(sing)(t) = e−δ0tp0µ0/δ0,

since that leads to a positive running cost and the minimum control cannot be used
to physically reach λ∗(tf ) = 0. Letting λf (t) = λ̂(t) be the solution of the adjoint
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dynamics equation (A.56) with conditions λ̂(T ) = 0 and connection or corner time

Tf such that λf (Tf ) = λ̂(Tf ) = λ(sing)(Tf ), then

Tf = tf +
ln

(
1 − µ0(δ0 + U (max) − µ0)/(δ0U (max))

)

(δ0 + U (max) − µ0)
.

Given the value of Tf , the corresponding state trajectory is

Xf (t) = X(sing)e−(U(max)−µ0)(t−Tf )

on [Tt, tf ].
Thus, the composite optimal control might be called bang-singular-bang with

the form

U∗(t) =






{
U (max), 0 ≤ t ≤ T (max)

0

U (sing) = µ0, T (max)
0 ≤ Tf

}

, x0 > X(sing)

{
0, 0 ≤ t ≤ T (min)

0

U (sing) = µ0, T (min)
0 ≤ Tf

}

, x0 < X(sing)

U (max), Tf ≤ t ≤ tf






(A.59)

and a composite optimal state trajectory is

X∗(t) =






{
X(max)

0 (t), 0 ≤ t ≤ T (max)
0

X(sing) T (max)
0 ≤ Tf

}

, x0 > X(sing)

{
X(min)

0 (t), 0 ≤ t ≤ T (min)
0

X(sing), T (min)
0 ≤ Tf

}

, x0 < X(sing)

Xf (t), Tf ≤ t ≤ tf






, (A.60)

where it has been assumed for both U∗(t) in (A.59) and X∗(t) in (A.60) that

T (min)
0 < Tf or T (max)

0 < Tf so that there is a nontrivial singular path. Thus,
the possibility of a pure bang-bang control is excluded, for example, when a min-

imal bang path X(min)
0 (t) from x0 intersects the maximal bang path Xf (t) from x∗

f

before hitting the singular path X(sing).
Note that this solution is for the case, U (max) > µ0. The case for U (max) ≤ µ0

is left as an open problem in Exercise 7 for the reader, who should realize that some
parameter values fail to lead to a control problem solution. One possible reason for
this failure is the realistic assumption that the control is bounded and does not allow
the state to jump from the initial condition to the singular path. Unbounded control
that could do that is called impulse control. Impulse control could be implemented
as a Dirac delta function in the differential equation and more on this matter and
similar examples can be found in Clark [57], and Bryson and Ho [44].
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Some sample results for this singular control example are displayed in Fig-
ure A.5 using model parameters µ0 = 0.08, δ0 = 0.144, p0 = 5.0, c0 = 12.0, t0 = 0
and tf = 15.0. In Subfigure A.5(a) the optimal state trajectory starts out from
x0 = 10.0 at t = 0 using maximal bang control with U (max) = 0.16 moving down to

reach the singular path at X(sing) = 9.0 below when T (max)
0 = 1.317, proceeding along

the singular path until reaching the singular-bang final corner when Tf = 8.285 and
then moving down the maximal bang path using U (max) until reaching the end of
the time horizon at t = tf = 15.0. The trajectory displayed in Subfigure A.5(b) is
similar except it starts at x0 = 8.0 and moves up to the singular path until reaching

the singular path at (X(sing), T (min)
0 ) = (9.0, 1.472); the rest of the path is the same

for this example as for the maximal initial bang trajectory. Both subfigures have
been generated by the sample Appendix C code C.26 called SingCtrlExample63.m.
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(a) Singular control optimal state X∗(x)
when x0 = 10.0.
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(b) Singular control optimal state X∗(x)
when x0 = 8.0.

Figure A.5. Optimal state solutions for singular control example leading
to a bang-singular-bang trajectory represented by (A.60). Subfigure (a) yields a max-
imal bang trajectory from x0 using U (max), whereas Subfigure (b) yields a minimal
bang trajectory from x0 using U (min).

A.3 Linear Quadratic (LQ) Canonical Models
The linear dynamics, quadratic costs or (LQ) problem has the advantage that the
regular control can be found fairly explicitly in terms of the state or the costate,
thus avoiding the singular complications of linear control problems.

A.3.1 Scalar, Linear Dynamics, Quadratic Costs (LQ)

In the scalar, constant coefficient case the linear dynamics is given by

Ẋ(t) = a0X(t) + b0U(t), t0 ≤ t ≤ tf , X(t0) = x0 (= 0, (A.61)
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where a0 (= 0 and b0 (= 0 are assumed so the dynamics is assumed to be nontrivial.
The quadratic cost objective is given by

V [X, U, tf ](x0, t0) =

∫ tf

t0

C (X(t), U(t), t) dt + S (X(tf), tf ) , (A.62)

with the quadratic running cost in state and control,

C(x, u, t) =
1

2
q0x

2 +
1

2
r0u

2, (A.63)

where r0 > 0 for minimum costs and q0 ≥ 0, while the terminal quadratic cost is
quadratic in the state only,

S(x, t) =
1

2
s0x

2, (A.64)

where s0 ≥ 0. It is assumed there are no bounds on the control U(t) to preserve
the nice canonical features of the LQ model. Otherwise the model features would
have much more complexity.

Consequently, the Hamiltonian has the form

H(x, u, t) =
1

2
q0x

2 +
1

2
r0u

2 + λ(a0x + b0u). (A.65)

Without control constraints and with quadratic control costs, the regular control
policy is the optimal one, governed by the corresponding Hamilton’s equations

Ẋ∗(t) = +(Hλ)∗ = a0X
∗(t) + b0U

∗(t), (A.66)

λ̇∗(t) = −(Hx)∗ = −q0X
∗(t) − a0λ

∗(t), (A.67)

0 = +(Hu)∗ = r0U
∗(t) + b0λ

∗(t). (A.68)

The Legendre–Clebsch second order minimum condition is satisfied, since

(Huu)∗ = r0 > 0 (A.69)

by the positive definite assumption on r0. Thus, the optimal control is

U∗(t) = U (reg)(t) = −b0λ
∗(t)/r0, (A.70)

while using (A.70) both the state and costate optimal dynamics satisfies a linear
first order matrix system of differential equations,

Ż(t) ≡
[

Ẋ∗(t)
λ̇∗(t)

]
= MZ(t) ≡

[
a0 −b2

0/r0

−q0 −a0

]
Z(t). (A.71)

The matrix differential equation (A.71) has the general eigensolution,

Z(t) = c1e
µ1(t−t0)

[
1

(a0 − µ1)r0/b2
0

]
+ c2e

−µ1(t−t0)

[
1

(a0 + µ1)r0/b2
0

]
, (A.72)
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where c1 and c2 are constants of integration and

µ1 =
√

a2
0 + q0b2

0/r0 (A.73)

is the principal eigenvalue of the matrix M defined in (A.71). This eigenvalue must
be real by the coefficient assumptions, but q0 > −r0a2

0/b2
0 would be a sufficient

condition for µ1 to be real instead of the condition q0 > 0.
The constants of integration (c1, c2) are determined by the initial condition

X∗(t0) = x0

from the first component of Z(t) in (A.72) and since tf is fixed but not X(tf), the
final or transversality condition in Table A.1 on p. A4 provides a second condition,

λ∗(tf ) = Sx(X∗(tf ), tf ) = s0X
∗(tf ) (A.74)

from the second component of Z(t) in (A.72). Upon substitution of the constants
of integration, the solution (X∗(t), λ∗(t)) can be found explicitly, say, by symbolic
computation systems such as MAPLE or Mathematica, but it is too long and com-
plicated to present here. However, an important property is that both X∗(t) and
λ∗(t) are proportional to the initial state. The linear feedback relationship between
the optimal control and the optimal state can be found from these two solutions
and the linear relationship between the optimal control and the costate in (A.70)
yields a linear feedback control law,

U∗(t) = K(t)X∗(t), (A.75)

where

K(t) = −(b0/r0)λ
∗(t)/X∗(t), (A.76)

which is called the feedback gain coefficient and is independent of the initial state
x0 since it cancels out of the costate to state ratio. The linear feedback control
law (A.75) with (A.76) is called feedback or closed loop control because it uses
state information. However, if the control law is just time-dependent and state-
independent, then the law would be called an open loop control.

If the plant manager is just concerned with what optimal control input is
needed to achieve optimal control in the next time-step, then only the feedback
gain is required, assuming the current state output X∗(t) is known. This gain K(t)
(sometimes the control law is expressed with a minus sign, U∗(t) = −K̂(t)X∗(t)) can
be found directly from a bilinear (quadratic) first order equation, called a Riccati
equation,

K̇(t) = −b0K
2(t) − 2a0K(t) + b0q0/r0, (A.77)

using a numerical differential equation solver backward in time, with just knowledge
of the system and cost parameters, as well as the final condition

K(tf) = −b0s0/r0 (A.78)

from (A.76) and (A.74).
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A.3.2 Matrix, Linear Dynamics, Quadratic Costs (LQ)

In general, LQ control problems will have time-dependent matrix coefficients, and
will have both multidimensional vector states and controls. Again, let X(t) be
nx-dimensional and U(t) be nu-dimensional. With some more effort the matrix
form of the LQ problem can be solved, using the symbolic tools of MAPLE and
Mathematica or the numerical tools of MATLAB.

Let the matrix form of the linear (L) state dynamics be

Ẋ(t) = A(t)X(t) + B(t)U(t), t0 ≤ t ≤ tf , X(t0) = x0, (A.79)

where the coefficient matrices are A(t) = [ai,j ]nx×nx and A(t) = [bi,j ]nx×nu , com-
mensurate in matrix-vector multiplication. The quadratic (Q) cost objective is

V [X,U, tf ](x0, t0) =
1

2

∫ tf

t0

[
X$(t)Q(t)X(t) + U$(t)R(t)U(t)

]
dt (A.80)

+
1

2
X$(tf )Sf (tf )X(tf ),

where the cost coefficient matrices are all symmetric, nx ×nx state cost coefficients
Q(t) and Sf (t) are positive semidefinite (Q(t) ≥ 0, Sf (t) ≥ 0), while the nu × nu

control cost coefficients must be positive definite, R(t) > 0 to ensure minimum
costs. The Hamiltonian auxiliary objective is

H(x,u, λ, t) =
1

2

(
x$Q(t)x + u$R(t)u

)
+ λ$ (A(t)x + B(t)u) , (A.81)

where λ = [λi]nx×1 is the auxiliary costate vector used to include the dynamical
constraints to the running cost objective. In absence of control constraints and with
R(t) > 0, the regular control is the optimal control and Hamilton’s equations are

Ẋ∗(t) = +(Hλ)∗ = A(t)X∗(t) + B(t)U∗(t), (A.82)

λ̇
∗
(t) = −(Hx)∗ = −Q(t)X∗(t) − A$(t)λ∗(t), (A.83)

0 = (Hu)∗ = R(t)U∗(t) + B$(t)λ∗(t), (A.84)

where, by the gradient peel theorem (B.131), the transposes of A(t) and B(t) mul-
tiply λ∗(t) in (A.83) and (A.84), respectively.

Since R(t) > 0, i.e., R(t) is positive definite and has positive R(t) eigenvalues,
it is invertible (B.134). Hence, the optimal control in absence of control constraints
is proportional to the costate vector,

U∗(t) = −R−1(t)B$(t)λ∗(t). (A.85)

As in the scalar case, we seek to show, as least formally, that the optimal
control is also feedback control depending on the state vector X∗(t). Our approach
will resemble the 2×2 scalar solution, but using (2nx)× (2nx) matrices partitioned
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into nx × nx submatrices to keep the analysis compact and close to the scalar case
as much as possible. Thus, our system has the form

Ż(t) = M(t)Z(t), (A.86)

where the partitioned forms are

Z(t) ≡
[

X∗(t)

λ∗(t)

]

, (A.87)

which has dimension (2nx) and

M(t) ≡
[

A(t) −B(t)R−1(t)B$(t)

−Q(t) −A$

]

, (A.88)

which has dimension (2nx)×(2nx). The multiplication of partitioned matrices works
essentially the same way that multiplication of nonpartitioned matrices works.

Since the ODE system in (A.87) for Z(t) is linear, the usual exponential ap-
proximations works. So let a simple trial exponential solution form be

Z(t) = Ceµtζ, (A.89)

where C is a constant of integration, µ is a constant exponent coefficient and ζ is
a constant vector with the same (2nx) dimension as Z(t). Substitution into (A.87)
yields the (2nx) dimensional eigenvalue problem (B.129)

M(t)ζ = µζ, (A.90)

so there should be (2nx) eigenvalues [µi](2nx)×1 and (2nx) associated eigenvectors

ζj = [ζi,j ](2nx)×1

which are represented as columns of the matrix

Ψ =
[
ζj

]
1×(2nx)

≡ [ζi,j ](2nx)×(2nx) . (A.91)

Linear superposition of these (2nx) eigensolutions yields the general solution

Z(t) =
2nx∑

k=1

Ckeµktζk = (Ψ. ∗E(t))C ≡ Ψ̂(t)C, (A.92)

where E(t) ≡ [exp(µit)](2nx)×1 is the exponential growth vector at the eigenmode
rate, the symbol pair . ∗ is the MATLAB dot-multiplication notation for element-
wise multiplication (e.g., x. ∗y = [xiyi]nx×nx for vector-vector multiplication or
A. ∗x = [ai,jxj ]nx×nx in matrix-vector multiplication), and

Ψ̂(t) =

[
Ψ̂11(t) Ψ̂12(t)

Ψ̂21(t) Ψ̂22(t)

]

≡ Ψ. ∗E(t) =

[
Ψ11eµ1t Ψ12eµ2t

Ψ21eµ1t Ψ22eµ2t

]

(A.93)
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is a convenient abbreviation for the coefficient matrix of C, also given partitioned
into 4 nx × nx submatrices. The constant of integration vector

C =

[
C1

C2

]

(A.94)

is determined from the initial state condition

[Zi(0)]nx×1 = Ψ̂11(0)C1 + Ψ̂12(0)C2 = X∗(0) = x0 (A.95)

and the final costate or transversality condition for free X∗(tf ) from Table A.1 on
p. A4,

[Zn+i(tf )]nx×1 = Ψ̂21(tf )C1 + Ψ̂22(tf )C2

= λ∗(tf ) =
1

2
∇x

[
X$SfX

]
(tf ) = Sf (tf )X(tf ) (A.96)

= Sf (tf )
(
Ψ̂11(tf )C1 + Ψ̂12(tf )C2

)
.

So this final condition is an algebraic equation that is homogeneous in C. Upon
rearranging the initial and final conditions, (A.95) and (A.96), the complete linear
algebraic problem for C becomes

GC ≡
[

Ψ̂11(0) Ψ̂12(0)

Ψ̂21(tf ) − Sf (tf )Ψ̂11(tf ) Ψ̂22(tf ) − Sf (tf )Ψ̂12(tf )

]

C (A.97)

=

[
x0

0

]

.

Assuming that the constant coefficient matrix G is invertible (this can be tested by
one of the numerical or symbolic toolboxes), then the solution, using partitioning
and simplification due to the homogeneity of the final condition, will formally be of
the form

C = Ĝ−1

[
x0

0

]

=

[
Ĝ−1

11 Ĝ−1
12

Ĝ−1
21 Ĝ−1

22

][
x0

0

]

=

[
Ĝ−1

11

Ĝ−1
21

]

x0, (A.98)

where Ĝ−1 is the inverse of G, i.e., Ĝ−1G = I2nx×2nx . The same relation does not
necessarily hold for the nx × nx partitioned matrices, so Ĝ−1

i,j is not necessarily the
inverse of Gi,j . Hence, the state and costate solutions will be linear in the initial
condition vector x0,

X∗(t) =
(
Ψ̂11(t)Ĝ

−1
11 + Ψ̂12(t)Ĝ

−1
21

)
x0, (A.99)

λ∗(t) =
(
Ψ̂21(t)Ĝ

−1
11 + Ψ̂22(t)Ĝ

−1
21

)
x0. (A.100)
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Assuming that the coefficient matrix in (A.99) can be inverted so the backward
evolution of the state is

x0 =
(
Ψ̂11(t)Ĝ

−1
11 + Ψ̂12(t)Ĝ

−1
21

)−1
X∗(t), (A.101)

then the optimal control is a feedback control, i.e., linear in the state vector, and is
given by

U∗(t) = K(t)X∗(t), (A.102)

where K(t) is the gain matrix, using (A.85) with (A.99)–(A.102). The initial state
thus far has been arbitrary and is

K(t) = −R(t)−1B$(t)
(
Ψ̂21(t)Ĝ

−1
11 + Ψ̂22(t)Ĝ

−1
21

)
(A.103)

(
Ψ̂11(t)Ĝ

−1
11 + Ψ̂12(t)Ĝ

−1
21

)−1
.

Note that other texts may define the gain matrix differently, some using the state to
costate relation, but here we take the view that the user is the plant manager, who
would be interested in the relation between the optimal control and the state. See
Kalman [157] for justification of (A.103). An alternative to the eigenvalue problem
approach to the solution of the dynamic equations, provided that the gain matrix
is the main interest, is the Riccati differential equation approach. ( See Anderson
and Moore [8] or Kirk [164].) Using the state to costate relation,

λ∗(t) = J(t)X∗(t), (A.104)

where the matrix J(t) is defined so that

K(t) = −R−1(t)B$J(t), (A.105)

to avoid having to differentiate the variable coefficients. By differentiating both sides
of (A.104) with respect to t, substituting for λ̇

∗
(t) from (A.83), Ẋ∗(t) from (A.82),

λ∗(t) from (A.104), and U∗(t) from (A.85), and setting the common coefficient of
X∗(t) equal to zero produces the quadratic, matrix Riccati equation,

J̇(t) =
[
JBR−1B$J − JA − A$J − Q

]
(t) (A.106)

with the final condition

J(tf ) = Sf (tf ) (A.107)

from the final condition λ∗(tf ) = Sf (tf )X(tf ) in (A.96). Hence, J(t) is just an
extension of the terminal cost quadratic coefficient Sf (t) for 0 ≤ t < tf . This makes
the Riccati problem (A.106) a final value problem rather than an initial value prob-
lem. It can be shown that J(t) is symmetric from (A.106) and Sf (tf ) is assumed to
be symmetric, so only the upper or lower half of J(t) plus its diagonal need to be
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calculated. The control gain matrix K(t) can be recovered using (A.105). Numer-
ical approximation is almost always needed using methods of ordinary differential
equation solvers in the numeric and symbolic computational toolboxes or elsewhere.

Once the feedback gain, either as K(t) or J(t), and the optimal state trajectory
X∗(t) are obtained, the corresponding optimal control trajectory can be computed,
and then the optimal total cost value v∗(x0, t0) = minU [V [X,U](x0, t0)] can be
computed from (A.3) by integrating the running cost and adding the sum to the
terminal cost term.

In the case where the cost function is a full quadratic polynomial in x and u,
i.e., with linear (affine) cost terms, then the control has X∗(t)-independent terms
requiring another companion ordinary differential equation for J(t).

A.4 Deterministic Dynamic Programming (DDP)
Dynamic programming is another approach to the optimal control problem whose
aim is to obtain the feedback optimal control u∗(x, t) and the optimal value v∗(x, t),
rather than primarily seeking the optimal trajectory set {X∗(t), λ∗(t),U∗(t)} using
Hamilton’s equations (A.6), (A.7), (A.8). The dynamic programming approach is
principally due to Bellman [25] and begins with a slightly different formulation of
the Bolza problem designed for better analytical manipulation using an arbitrary
initial state X(t) = x in the state domain. The deterministic dynamical system
(A.1) is reformulated as

dX

ds
(s) = f(X(s),U(s), s), X(t) = x, (A.108)

and the objective value functional as

V [X,U, tf ](x, t) =

∫ tf

t
C (X(s),U(s), s) ds + S (X(tf ), tf ) (A.109)

with total minimum costs or optimal value starting from (x, t)

v∗(x, t) = min
U(t,tf ]

[V [X,U, tf ](x, t)] (A.110)

and optimal terminal value

v∗(x, tf ) = S (x, tf ) . (A.111)

When t = tf the running cost integral vanishes leaving only the terminal cost
term and since the initial state is reduced to the final state when t = tf , then
the minimization is no longer operative. The x in (A.111) thus can be arbitrary,
coinciding with the fact that X(tf ) is unspecified in this optimal control formulation.

A.4.1 Deterministic Principle of Optimality

Dynamic programming relies crucially on a recursion for the current optimal value
in terms of a future optimal value called Bellman’s principle of optimality. The
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basic concept is the assumption that the minimization operation in (A.110) can be
decomposed over the control path U(s) for the time variable s on (t, tf ], open on
the left since the state x at time t is given, into a product over increments in time
using the minimization operator multiplicative decomposition rule, written
symbolically without arguments,

min
U(t,tf ]

op
= min

U(t,t+∆t]
min

U(t+∆t,tf ]
(A.112)

for some positive time increment ∆t such that t < t + ∆t < tf and with an anal-
ogous rule for maximization. Using this rule and the fact that an integral has a
corresponding additive decomposition rule:

∫ tf

t
C(X(s),U(s), s)ds =

∫ t+∆t

t
C(X(s),U(s), s)ds (A.113)

+

∫ tf

t+∆t
C(X(s),U(s), s)ds.

Application of the minimization and integration decompositions leads to

v∗(x, t) = min
U(t,t+∆t]

[∫ t+∆t

t
C(X(s),U(s), s)ds

+ min
U(t+∆t,tf ]

[∫ tf

t+∆t
C(X(s),U(s), s)ds

]
+ S(X(tf ), tf )

]

= min
U(t,t+∆t]

[∫ t+∆t

t
C(X(s),U(s), s)ds + v∗(X(t + ∆t), t + ∆t)

]
, (A.114)

where the optimal value v∗(x, t) definition (A.110, (A.109) has been reused when
starting at the future state X(t + ∆t) = x + ∆X(t) at time t + ∆t. Thus, the
following form of the optimality principle has been formally derived.

Lemma A.10. Bellman’s Deterministic Principle of Optimality.
Under the assumptions of the operator decomposition rules (A.112), (A.113),

v∗(x, t) = min
U(t,t+∆t]

[∫ t+∆t

t
C(X(s),U(s), s)ds + v∗(x + ∆X(t), t + ∆t)

]

. (A.115)

A.4.2 Hamilton–Jacobi–Bellman (HJB) Equation of
Deterministic Dynamic Programming

In the derivation of the partial differential equation of deterministic dynamic pro-
gramming or Hamilton–Jacobi–Bellman (HJB) equation, Bellman’s principle of op-
timality is applied for small increments ∆t, so ∆t is replaced by the differential dt.
The future state is approximated by a first order Taylor approximation,

X(t + dt)
dt
= X(t) +

dX

dt
(t)dt = x +

dX

dt
(t)dt, (A.116)
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provided the state vector X(t) is continuously differentiable. Consequently, the
first order approximation for the optimal value v∗(x, t) according to the principle
of optimality with X(t) = x is

v∗(x, t)
dt
= min

U(t,t+dt]

[
C(x,U(t), t)dt + v∗(x, t) + v∗t (x, t)dt (A.117)

+ ∇$
x [v∗](x, t) · f(x,U(t), t)dt

]
,

provided v∗(x, t) is continuously differentiable in x and t and C(x,u, t) is continuous
so o(dt) can be neglected. Note that the optimal value v∗(x, t) appears alone on
both sides of (A.117), so both of these v∗(x, t) terms can be cancelled. Upon letting
U(t) ≡ u and replacing the vector set U(t, t + dt] by u the PDE of deterministic
dynamic programming can be summarized as the following result.

Theorem A.11. HJB Equation for Deterministic Dynamic Program-
ming.
If v∗(x, t) is once differentiable in x and once differentiable in t, while the decom-
position rules (A.112), (A.113) are valid, then

0 = v∗t (x, t) + min
u

[H(x,u, t)] ≡ v∗t (x, t) + H∗(x, t), (A.118)

where the Hamiltonian (technically a pseudo-Hamiltonian) functional is given
by

H(x,u, t) ≡ C(x,u, t) + ∇$
x [v∗](x, t) · f(x,u, t). (A.119)

The optimal control, if it exists, is given by

u∗(x, t) = argmin
u

[H(x,u, t)] . (A.120)

This HJB equation (A.118), (A.119) is no ordinary PDE, but has the following
properties or attributes.

Properties A.12.

• The HJB equation is a functional PDE due to the presence of the minimum
operator min.

• The HJB equation is a scalar valued equation, but solution output has di-
mension (nu +1) consisting of the scalar optimal value function v∗ = v∗(x, t)
and the optimal control vector u∗ = u∗(x, t) as well. These dual solutions
are generally tightly coupled in functional dependence. In general, this tight
coupling requires a number of iterations between v∗ and u∗ to obtain a rea-
sonable approximation to the (nu+1)-dimensional solution over the (nx +1)-
dimensional space of independent variables (x, t). However, it should be noted
that the optimal control u(x, t) in (6.21) is also feedback optimal control if the
x dependence is genuine.
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• In contrast to the Hamilton’s equations formulation, the dynamic program-
ming solution does not give the state trajectory directly but the state dynamics
(A.108) must be solved using the feedback optimal control u∗(X(t), t) using
(A.120). If the optimal control solution is computational, which is usual ex-
cept for special or canonical problems, then the state dynamic solution would
also be computational.

A.4.3 Computational Complexity for Deterministic Dynamic
Programming

The state-time vector valued form of the solution set, {v∗(x, t),u∗(x, t)}, given
independent state and time variables, x and t, makes the dynamic programming
quite different from the Hamilton’s equations for optimal time-dependent vector
trajectories {X(t), λ(t),U(t)}. If time is fixed at a single discrete value Tk = t0 +
(k − 1)∆T for some k, where k = 1 : Nt with ∆T = (tf − t0)/(Nt − 1), then the
independent discretization of the nx-dimensional state vector x is replaced by Xj =
[Xi,ji ]nx×1, where j = [ji]nx×1, ji = 1 : Nx for i = 1 : nx and Nx is the common
number of state nodes, simply taken to be the same for each component (otherwise,
Nx could be the geometric mean of nx node counts Ni for i = 1 : nx). However, Xj

represents only one point in state space and there is a total Nnx
x numerical nodes or

points in nx state-dimensions. Thus, total numerical representation optimal value
v(x, Tk) is

V (k) = [V (k)
j1,j2,...,jnx

]Nx×Nx×···×Nx (A.121)

per time-step k, so that the computational complexity is

CC(Nx, nx) = O(Nnx
x ) = O(exp(nx ln(Nx))), (A.122)

which by the law of exponents is exponential in the dimension with an exponent co-
efficient depending on the logarithm of the common number of nodes Nx, symboliz-
ing the exponential computational complexity of Bellman’s curse of dimensionality.
This is also the exponential order of the complexity for solving multidimensional
PDEs. For the optimal control vector, the order is nx times this order, but that
does not change the exponential order dependency. The deterministic dynamic pro-
gramming exponential complexity (A.122) should be compared with the determinis-
tic Hamilton’s equation formulation in (A.34) with its linear or bilinear complexity
O(3nx · Nt).

Further, for second order finite difference errors, the total error for one state
dimension (nx = 1) will be by definition

ET (Nx, 1) = O(N−2
x ). (A.123)

So even if the order of the complexity is fixed in state dimension nx > 1, i.e.,
N = Nnx

x is a constant, then Nx(N) = N1/nx and

ET (Nx(N), nx) = O
(
N−2/nx

)
→ O(1) (A.124)
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as nx → +∞ for fixed N and accuracy, i.e., diminishing accuracy in the limit of
large dimension.

There are many other computational issues but there is not enough space here
to discuss them. Many of these are covered in the author’s computational stochastic
dynamic programming chapter [109] and more recently in [111].

A.4.4 Linear Quadratic (LQ) Problem by Deterministic Dynamic
Programming

The linear quadratic problem is also a good demonstration of the method of dynamic
programming as it was as an application of Hamilton’s equations and the optimum
principle. Using the same formulation, but modified for dynamic programming
analysis to start at an arbitrary time t rather than a fixed time t0, with the dynamics
linear in both the control vector U(t) and the state vector X(t), the state dynamics
is given by

Ẋ(s) = A(s)X(s) + B(s)U(s), t ≤ s ≤ tf , X(t) = x. (A.125)

The objective cost functional is given by

V [X,U, tf ](x, t) =
1

2

∫ tf

t

[
X$(s)Q(s)X(s) + U$(s)R(s)U(s)

]
ds (A.126)

+
1

2
X$(tf )Sf (tf )X(tf ).

The total minimum cost is again from (A.110)

v∗(x, t) = min
U(t,tf ]

[V [X,U, tf ](x, t)] , (A.127)

provided mainly that the quadratic cost matrix R(t) > 0, i.e., is positive definite.
The HJB equation is

0 = v∗t (x, t) + min
u

[H(x,u, t)] , (A.128)

where the pseudo-Hamiltonian functional simplifies to

H(x,u, t) =
1

2

(
x$Q(t)x + u$R(t)u

)
+ ∇$

x [v∗](x, t) (A(t)x + B(t)u) . (A.129)

Comparing the dynamic programming pseudo-Hamiltonian (A.119) with the stan-
dard Hamiltonian in (A.81) shows that the optimal value gradient ∇x[v∗](x, t) (the
marginal value or shadow value in economics) plays the same role as the Lagrange
multiplier vector λ in (A.81).

Although the decomposition of the optimal value can be rigorously proven, it
is sufficient for the purposes here to propose the decomposition is a quadratic form,

v∗(x, t) =
1

2
x$J(t)x, (A.130)
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and justify it heuristically, i.e., by showing the form (A.130) works. The quadratic
coefficient J(t) is a (nx × nx) matrix and since the quadratic form ignores the
asymmetric part of the quadratic coefficient, J(t) will be assumed to be symmetric.
Thus, the optimal value gradient with respect to the state vector by (B.136) is

∇x[v∗](x, t) = J(t)x. (A.131)

In the case that the cost function is a general quadratic form with linear and zeroth
degree terms, then the optimal value LQ decomposition (A.130) will have the same
kind of terms.

It is also assumed that there are no constraints on the control to maintain the
classical LQ problem form. Thus, stationary points of the pseudo-Hamiltonian are
sought,

∇u[H](x,u, t) = R(t)u + B$(t)J(t)x = 0, (A.132)

using (B.131), (B.136) and the fact that R(t) is symmetric. Thus, the unconstrained
optimal control is the linear feedback control

u∗(x, t) = K(t) ≡ −R−1(t)B$(t)J(t)x, (A.133)

where the inverse of the quadratic cost coefficient R(t) exists since R(t) is positive
definite and where K(t) is the same gain matrix as in (A.103) found from the
Hamilton’s equation formulation. Upon substitution into the HJB equation leads
to a pure quadratic form using

v∗t (x, t) = x$J ′x (A.134)

and

H∗(x, t) ≡ H(x,u∗, t)

= x$
[
−1

2
J(t)B(t)R−1(t)B$(t)J(t) + J(t)A(t) + Q(t)

]
x. (A.135)

Taking two partial derivatives or using the Hessian matrix formula (B.137) yields
the matrix Riccati equation

J ′(t) = −1

2
J(t)B(t)R−1(t)B$(t)J(t) − J(t)A(t) − A$(t)J(t) − Q(t) (A.136)

subject to the same final condition as well,

J(tf ) = Sf (tf ). (A.137)

For feedback optimal control and optimal value, the dynamic programming ap-
proach is a more direct approach and the algebra is more manageable than the ap-
proach through Hamilton’s equations. However, the state trajectory is not produced
directly by dynamic programming. The more general linear quadratic problem with
jump-diffusion processes and other features are treated in Chapter 6.
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A.5 Control of PDE Driven Dynamics: Distributed
Parameter Systems (DPS)

Thus far, only the control of ODE-driven systems has been considered. However,
many dynamical systems are governed by PDEs, such as in fluid and solid dynam-
ics. The PDE dynamics do greatly complicate the optimal control problem and
there are many cases to consider. The control of PDE-driven systems usually ap-
pears under the heading of distributed parameter systems (DPS) and the control
is called distributed control, while ODE-driven systems are classified as lumped pa-
rameter systems in contrast. For a more thorough but very applied approach to
DPS control, consult Ahmed and Teo’s [4] DPS book, Gunzberger’s [102] recent
monograph on flow control, or the many applications in the DPS research direc-
tions proceedings [234]. See also the recent biomedical application to cancer drug
delivery to the brain by Chakrabarty and Hanson [49] (briefly summarized in the
biomedical application Section 11.2.2). Only one fairly general deterministic model
will be presented here since the focus is on stochastic problems.

A.5.1 DPS Optimal Control Problem

Let y(x, t) be a ny-vector state variable in space-time, where x is the nx-dimensional
space vector. The state dynamics for y(x, t) satisfy a nonlinear reaction diffusion
equation with drift,

∂y

∂t
(x, t) = D∇2

x[y](x, t)+C∇x[y](x, t)+B(y(x, t),x, t)+Au(x, t), (A.138)

x ∈ Dx and t0 < t ≤ tf , with initial condition

y(x, t0) = y0(x)

and mixed boundary condition

(α(n̂$∇x)[y] + βy + γ)(x, t) = 0

for x on the space domain boundary ∂Dx while n̂(x, t) is the outward normal to the
boundary. Here u(x, t) is the nu-dimensional space-time control variable in a linear
control-dependent term. All coefficient functions are assumed to be bounded while
being commensurate in multiplication and sufficiently differentiable as needed. In
particular, the diffusion tensor D = [Diδi,j ]ny×ny is a positive-definite diagional
matrix and the drift coefficient C = [Ci,kδi,j ]ny×ny×nx . The main reaction vector
B(y(x, t),x, t) is the only term assumed to be nonlinear since reaction terms are
often naturally nonlinear. The control coefficient is A = [Ai,j ]ny×nu and is assumed
to be constant but could depend on (x, t), as could C and D.

Further, let the space-time objective be in the form of the total quadratic
costs,

V [y,u, tf ] =
1

2

∫ tf

t0

dt

∫

Dx

dx
(
y$Qy+u$Ru

)
(x, t)+

1

2

∫

Dx

dx
(
y$Sy

)
(x, tf ), (A.139)
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where the quadratic control coefficient R is symmetric positive-definite, while Q and
S are symmetric positive-semidefinite to ensure a minimum. Equations (A.138)–
(A.139) provide the underlying formulation of the DPS optimal control problem.

A.5.2 DPS Hamiltonian Extended Space Formulation

For the formulation of the equations for the optimal solutions to this control prob-
lem, the dynamic and initial-boundary constraints need to be combined into a
pseudo-Hamiltonian,

H(y,u, λ, µ, ν) = V [y,u, tf ]

+

∫ tf

t0

dt

∫

Dx

dxλ$(
yt−D∇2

x[y]−C∇x[y]−B−Au
)
(x, t)

+

∫ tf

t0

dt

∫

∂Dx

dΓµ$(
α(n̂$∇x)[y] + βy + γ

)
(x, t) (A.140)

+

∫

Dx

dxν$(
y(x, t+0 ) − y0(x)

)
,

where {λ(x, t), µ(x, t), ν(x)} is a set of Lagrange multipliers that provide the mech-
anism for including the control problem constraints at the expense of extending the
state-control space to higher dimension with

z(x, t) ≡ {y(x, t),u(x, t), λ(x, t), µ(x, t), ν(x)}

denoting the extended space-control vector. Next, assuming an optimal extended
state z(x, t) = z∗(x, t) exists under sufficient differentiability properties of H(z),
perturb about this optimal extended state as z(x, t) = z∗(x, t) + δz(x, t), where
δz(x, t) is the variation, and then expand the pseudo-Hamiltonian about this vari-
ation,

H(z∗(x, t) + δz(x, t)) = H(z∗(x, t)) + δH(z∗(x, t), δz(x, t)) + O(|δz|2(x, t)).

Neglecting quadratic order perturbation terms, including the second variation of
H(z), then the first variation δH(z∗(x, t), δz(x, t)) is found to be a linear function
of the extended state perturbation δz(x, t) using (A.139)–(A.140). For this pertur-
bation, the nonlinear reaction term B(y(x, t),x, t) is assumed to be more than once
differentiable so that

B(y∗ + δy,x, t) = B(y∗,x, t) + (δy$∇y)[B](y∗,x, t) + O(|δy|2),
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for example, twice differentiable to guarantee the quadratic order error term. For
simplicity, let B∗ ≡ B(y∗,x, t). Applying multiple Taylor approximations,

δH(z∗, δz) =

∫ tf

t0

dt

∫

Dx

dx
(
(y∗)$Qδy+(u∗)$Rδu

)
(x, t)+

∫

Dx

dx
(
(y∗)$Sδy

)
(x, tf )

+

∫ tf

t0

dt

∫

Dx

dx (λ∗)$
(
δyt−D∇2

x[δy]−C∇x[δy]−(δy$∇y)[B]∗−Aδu
)
(x, t)

+

∫ tf

t0

dt

∫

Dx

dx dλ$(
y∗

t −D∇2
x[y∗]−C∇x[y∗]−B∗−Au∗) (x, t)

+

∫ tf

t0

dt

∫

∂Dx

dΓ(µ∗)$
(
α(n̂$∇x)[δy] + βδy

)
(x, t) (A.141)

+

∫ tf

t0

dt

∫

∂Dx

dΓ(δµ)$
(
α(n̂$∇x)[y∗] + βy∗ + γ

)
(x, t)

+

∫

Dx

dx
(
(ν∗)$δy(x, t+0 ) + δν$(

y∗(x, t+0 ) − y0(x)
))

.

Obtaining the critical or optimal conditions requires the reduction of the highest or-
der partial derivative terms, since under integration the perturbations δyt(x, t) and
∇2

x[δy] are not independent of lower order derivatives and the higher order deriva-
tives can be reduced by integration by parts techniques to lower order derivatives.
Thus, using integration by parts

∫ tf

t0

dt (λ∗)$δyt(x, t) = (λ∗)$δy

∣∣∣∣
tf

0

−
∫ tf

t0

dt δy$λ∗
t ,

−
∫

Dx

dx (λ∗)$C∇x[δy] = −
∫

∂Dx

dΓδy$n̂$C$λ∗ +

∫

Dx

dx δy$∇$
x [C$λ∗],

where C$ ≡ [Ck,iδk,j ]nx×ny×ny defines the transpose of a three subscript array, and
finally using a double integration by parts [103],

−
∫

Dx

dx (λ∗)$D∇2
x[δy] = −

∫

∂Dx

dΓ
(
(n̂$∇x)[δy$]Dλ∗ − δy$(n̂$∇x)[Dλ∗]

)

−
∫

Dx

dx δy$∇2
x[Dλ∗].
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Using these reduced forms in (A.141) and collecting terms as coefficients of like
extended state perturbations produces a more useful form:

δH(z∗, δz) =

∫ tf

t0

dt

∫

Dx

dx (δy)$
(
−λ∗

t −∇2
x[Dλ∗]+∇$

x [C$λ∗]+∇y[B
$]∗λ∗+Qy∗)

+

∫ tf

t0

dt

∫

Dx

dx (δu)$
(
Ru∗−A$λ∗) (x, t)

+

∫ tf

t0

dt

∫

Dx

dx (δλ)$
(
y∗

t −D∇2
x[y∗]−C∇x[y∗]−B∗−Au∗) (x, t)

+

∫ tf

t0

dt

∫

∂Dx

dΓ(n̂$∇x)[δy$]
(
α$µ∗ − Dλ∗) (x, t) (A.142)

+

∫ tf

t0

dt

∫

∂Dx

dΓ(δy)$
(
(n̂$∇x)[Dλ∗] − n̂$C$λ∗ + β$µ∗) (x, t)

+

∫ tf

t0

dt

∫

∂Dx

dΓ(δµ)$
(
α(n̂$∇x)[y∗] + βy∗ + γ

)
(x, t)

+

∫

Dx

dx δy$(Sy∗+λ∗) (x, tf )

+

∫

Dx

dx δy$(ν∗−λ∗) (x, t0) +

∫

Dx

dx δν$(
y∗(x, t+0 ) − y0(x)

)
.

A.5.3 DPS Optimal State, Costate and Control PDEs

Our interest here is to present a usable formulation for those whose prime interest
is obtaining concrete solutions for applications, so our approach is a formal applied
mathematical one. If the interest of the reader is in existence and uniqueness
properties of the solution rather than the solution itself, the reader should explore
the [4, 102, 234], and the references therein for abstract notions of Hilbert spaces
with related Sobolev spaces and functional derivatives. However, such abstract
approaches have little utility in solving real problems.

The optimal state, costate and control trajectory dynamics follow from setting
to zero the coefficients of each of the independent state, costate and control first
variations of the pseudo-Hamiltonian in (A.142), as well as any relevant boundary,
initial and final values which are assumed to be independent of the space-time
interior values.

The optimal state equation for y∗(x, t) follows from setting the critical coeffi-
cient of the costate variation δλ(x, t) on each interior point of Dx×(t0, tf ) yielding

y∗
t (x, t)=

(
D∇2

x[y∗]+C∇x[y∗]+B∗+Au∗) (x, t) (A.143)

for x ∈ Dx and t0 < t ≤ tf , while the intial condition y∗(x, t+0 ) = y0(x) follows
from setting the coefficient of the initial condition costate variation δν(x) to zero
and the boundary condition

(
α(n̂$∇x)[y∗] + βy∗ + γ

)
(x, t) = 0, x ∈ ∂Dx, t0 < t < tf ,
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follows from setting the coefficient of the final condition costate variation δν(x) to
zero. The optimal state equation (A.143), of course, has the same form as that of
the original state equation (A.138), which is a forward parabolic PDE for D > 0.

The optimal costate equation for λ∗ is derived by setting to zero the state
variation δy(x, t) coefficient to zero, so that

(
λ∗

t + ∇2
x[Dλ∗] −∇$

x [C$λ∗] −∇y[B$]∗λ∗ − Qy∗) (x, t) = 0 (A.144)

for x ∈ Dx and t0 ≤ t < tf , noting that (A.144) is a backward parabolic PDE since
the diffusion term has an opposite sign to that of the forward equation (A.143). So
a final condition is needed by setting the coefficient of δy(x, tf ) to zero, i.e.,

(λ∗ + Sy∗) (x, tf ) = 0, (A.145)

coupling the computed final condition of λ∗ to the computed final value of (−Sy∗).
The boundary conditions follow from setting the coefficient of δy on the boundary
to zero, so

(
(n̂$∇x)[Dλ∗] − n̂$C$λ∗ + β$µ∗) (x, t) = 0, x ∈ ∂Dx, (A.146)

giving rise to another complication, in that the boundary condition costate µ∗(x, t)
appears. However, the coefficient of the normal gradient (n̂$∇x)[δy$] yields

(
α$µ∗ − Dλ∗) (x, t) = 0, x ∈ ∂Dx,

which, if α$ is invertible, can be used to eliminate µ∗ on the boundary. Another
costate condition comes from the initial value of δy which gives

ν∗(x) = λ∗(x, t0),

where λ∗(x, t0) is the terminal output of the backward integration of the prime
optimal costate PDE (A.144) starting from the final condition (A.145).

From the coefficient of the control variation δu(x, t), the optimal control is
given by

(
Ru∗ − A$λ∗) (x, t) = 0, x ∈ Dx, t0 ≤ t < tf ,

and since R(x, t) should be invertible due to its positive-definite property, then

u∗(x, t) =
(
R−1A$λ∗) (x, t) (A.147)

in absence of control constraints, else it is merely the regular optimal control
u(reg)(x, t).

A numerical scheme developed in Chakrabarty and Hanson [49] for a biomed-
ical application uses a forward state integration of (A.143) and backward costate
integration of (A.144) with subsequent iterations until the norm of the iteration
difference is sufficiently small. The forward integration step for (A.143) requires a
good starting guess for the optimal control space-time distribution in addition to us-
ing the specified state initial condition. The final time approximation to y∗(x, t) is
then used as the final condition to start the costate λ∗(x, t) backward integration of
(A.144). The end approximation of the costate space-time distribution of λ∗(x, t) is
used by (A.147) to update the optimal control distribution approximation u∗(x, t),
which in turn is used in the next state forward integration.
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A.6 Exercises
1. For the deterministic linear first order dynamics,

Ẋ(t) = −µ0X(t) + β0U(t), t > 0, given X(0) = x0 (= 0, µ0 > 0, β0 (= 0,

and quadratic performance measure,

V [U ] =
r0

2

∫ tf

0
U2(t)dt, r0 > 0,

find the optimal state trajectory and optimal (unconstrained) control to bring
the state from the initial state to the final state xf in tf seconds while min-
imizing the functional V [U ] with respect to the control u, with the answer
depending on the parameter set {x0, xf , tf , µ0, β0, r0}. Note that the final
state and time are fixed.

2. Consider another simple lumped model of a leaky reservoir (after Kirk [164])
given by

Ẋ(t) = −aX(t) + U(t), X(0) = x0,

where X(t) is the depth of the reservoir, U(t) is the net flow of water per unit
time into the reservoir at time t and a > 0 is the rate of leakage and usage.
The net inflow is constrained pointwise 0 ≤ U(t) ≤ M for all 0 < t ≤ tf and
also cumulatively by

∫ tf

0
U(t)dt = K > 0,

where K, M and tf are fixed constants, such that K ≤ M · tf for consistency.
Find the optimal control law U∗(t) that maximizes only the final depth,

J [X ] = bX(tf)

with b > 0, the optimal state X∗(t), optimal final depth J [X∗] and the optimal
Hamiltonian H∗.

3. Pontryagin’s auxiliary necessary conditions for the Hamiltonian in
the special case of no explicit dependence on time: Assume sufficient
differentiability for the Hamiltonian and that

H∗ = H(X∗(t),U∗(t), λ∗(t))

so ∂H∗/∂t ≡ 0. Then show the following

(a) If the final time tf is fixed and the Hamiltonian H does not depend ex-
plicitly on time, then the Hamiltonian must be constant when evaluated
on a locally (interior) extreme trajectory, i.e.,

H∗ = H(X∗(t),U∗(t), λ∗(t)) = c, (A.148)
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where c is a constant.

Explain why fixed tf and local extremes are needed; also, explain why
Example A.8 and Exercise 2 are counter-examples for the result A.148 if
a certain condition is not satisfied, stating what that condition is.

(b) If the final time tf is free and both the Hamiltonian H and the final cost
function S = S(x) do not depend explicitly on time, then the Hamil-
tonian must be zero when evaluated on an locally (interior) extreme
trajectory, i.e.,

H∗ = H(X∗(t),U∗(t), λ∗(t)) = 0. (A.149)

4. Solve the deterministic optimal control problem with wealth state dynamics

dX(t) = (µ0 − U(t))X(t)dt

for 0 ≤ t ≤ tf , X(0) = x0 > 0, µ0 is a constant mean rate, and the wealth
consumption is unconstrained −∞ < U(t) < +∞. The objective is maxi-
mum cumulative utility, the running consumption is the risk-adverse utility
C(x, u, t) = 2

√
u, and similarly the utility of final wealth is S(x, t) = 2

√
x.

(a) Formulate the Hamiltonian H(x, u, λ, t) and the associated Hamilton’s
equations.

(b) Show that the optimal Hamiltonian H∗ is a maximum at the regular
point (X∗(t), U∗(t), λ∗(t), t), where λ∗(t) is the optimal costate.

(c) Show that optimal trajectories satisfy λ∗(t)X∗(t) = K and U∗(t) =
1/K2 ≡ K0, where K is a constant.

(d) Show that K0 is satisfied by the nonlinear equation K0x0 exp((µ0 −
K0)tf ) = 1.
{Hint: the transversality condition

λ∗(tf ) = (∂S/∂x)(X∗(tf ), tf )

since X∗(tf ) is free and tf is fixed.}

5. Find the maximum discounted net profit with objective function

C(x, u, t) = e−δ0t[p0X(t) − c0]u, S(x, t) = σ0x,

subject to the linear control-state dynamics,

Ẋ(t) = µ0X(t) − U(t), X(t0) = x0, t0 ≤ t ≤ tf ,

where δ0, p0, c0, σ0 < 1,µ0, and x0 are fixed, positive constant parameters.
Assume that X(t) < c0/p0. Find intervals in parameter space where there is
a maximal control solution.

Discuss the difference between the solution to this problem and the solution to
a similar problem in Example A.9 with a bilinear control-state term U(t)X(t)
rather than just linear in the control U(t).
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6. For the regular control demonstration in Example A.3 with dynamics (A.17),
utility of instantaneous consumption (A.19), and terminal wealth (A.20), but
with the utility power γ > 1 (for example, γ = 2), solve the Bolza problem for
the proper maximum utility objective by using bang control with the bounded
control constraints (A.18). Recall that the regular control solution yields a
minimum rather than a maximum solution.

7. For the singular control demonstration in Example A.9 with state dynamics
(A.52), cost function C(x, u, t) (A.53), and control constraints (A.54), analyze
the case when the maximum control U (max) exceeds the mean rate µ0, i.e.,
U (max) > µ0. When the parameter values permit a control solution, then find
the solution; otherwise list the parameter ranges in which there fails to be a
control solution.

8. Find the minimal control U∗(t) for the optimal performance

v∗(x1, x2, t) = max
U

[V [X1, X2, U ](x1, x2, t)]

of the measure

V [X1, X2, U ](x1, x2, t) =
1

2

∫ tf

t
(q1X

2
1 (s) + q2X

2
2 (s) + rU2(s))ds,

q1 > 0, q2 > 0, r > 0, subject to the dynamics

Ẋ1(t) = a1,1X1(t) + a1,2X2(t) + s1U(t), s1 > 0,

Ẋ2(t) = a2,1X1(t) + a2,2X2(t) + s2U(t), s2 > 0

and the control constraints

|U(t)| ≤ K, K > 0,

formally solving for U∗(t) in terms of t, (x1, x2), first order partial derivatives
v∗x1

(x1, x2, t) and v∗x2
(x1, x2, t) using dynamic programming. Do not solve the

partial differential equation of dynamic programming but only substitute the
composite formulae for U∗(t) into it.

What changes in the solution form if the optimum is specified as a maximum
rather than a minimum?
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