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Online Appendix B

Preliminaries in
Probability and Analysis

It is remarkable that a science which began with
the consideration of games of chance should have

become the most important object of human knowledge . . . .
The most important questions in life are, for the most

part, only problems in probability.
—Pierre-Simon Laplace, Marquis de Laplace (1749–1827)

in Théorie Analytique des Probabilités

I cannot believe that God would choose to play dice with
the universe.

—Albert Einstein (1879–1955)

I would suggest that nobody — not even God — would
know what a phrase like playing dice would mean in this

context.
—Niels Henrik David Bohr (1885–1962), reply to Einstein

in 1949 on the occasion of Einstein’s 70th birthday,
continuing their famous discussion on the basis of

quantum mechanics

It is so easy to see far and discover when standing on
the shoulders of giants, who before us have developed

prior knowledge.
—Sir Isaac Newton (1642–1727) as quoted in [233]

There is randomness and hence uncertainty in
mathematics, just as there is in physics.

—Paul Davis

B1
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B2 Online Appendix B. Preliminaries in Probability and Analysis

This online appendix provides a practical common background for necessary
applied probability concepts for continuous and discrete random variables. These
concepts include conservation of probability, expectation, variance, higher moments,
and basic distributions of interest. Also treated are applied analysis concepts of dis-
continuity and nonsmoothness for deterministic processes, i.e., regular functions of
time, as they affect regular calculus concepts of Taylor approximations, asymptotics,
and optimality principles. There is more in this appendix than many readers would
be expected to know, so it should at least be browsed for familiarity and consuted
as a reference.

B.1 Distributions for Continuous Random Variables
Uppercase variables, such as X = X(ω), denote random variables, which are in gen-
eral functions of some underlying random parameter or variable ω defined on some
standard sample space Ω. For notational simplicity, the dependence on the under-
lying or background random variable ω ∈ Ω will often be suppressed. Variables in
lower case letters, such as x, denote the actual sample variables or realizations asso-
ciated with the random variables and are used as the dummy variables in integrals.

B.1.1 Probability Distribution and Density Functions

Definition B.1. The symbol Φ denotes the corresponding probability distribu-
tion such that

Φ(x) ≡ Prob[X ≤ x] (B.1)

in the case of a distribution on −∞ < X < +∞. Here, the notation Prob denotes
the probability function for the probability of occurrence of events on a subset as the
ratio relative to all events in the sample space. Elsewhere many other notations are
used, such as the minimal P and Pr.

If the distribution is proper, then Φ(+∞) = 1, i.e., we say probability
is conserved. Also, Φ(−∞) = +0 and Φ is obviously continuous as long as the
probability distribution contains no jumps in value. However, later in this book, we
will consider more general random processes, in continuous time, that are composed
of continuous processes as well as processes with jump discontinuities, possibly a
countably infinite number of jumps. Thus, in general, we have the following.

Properties B.2. Continuous Distribution Functions, Φ(x).

• Φ is nondecreasing, since probabilities must be nonnegative.

• Φ is continuous by properties of integrals with nonnegative integrands (assum-
ing there are no probability point masses, i.e., discrete components).
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B.1. Distributions for Continuous Random Variables B3

• Φ(−∞) = +0 by properties of integrals and X > −∞.

• Φ(+∞) = 1 if Φ is a proper distribution.

• Φ(x + y) = Φ(x) + Prob[x < X ≤ x + y], y > 0 by the additivity of probability
over disjoint sets, which here are (−∞, x] and (x, x + y].

Definition B.3. The symbol φ will denote a probability density such that

φ(x)dx = Prob[x < X ≤ x + dx] (B.2)

in terms of the probability for the continuous random variable X.

Properties B.4. Relation Between Distribution and Density:

• By the additivity of probability and definition of the distribution function,

φ(x)dx = Prob[x < X ≤ x + dx] = Φ(x + dx) − Φ(x).

• Thus, for infinitesimal dx and Φ differentiable,

φ(x)dx = Φ′(x)dx,

so

φ(x) = Φ′(x). (B.3)

The differentiability of the distribution Φ is not considered a serious restric-
tion here, since differentiability in the generalized sense will be considered in
Section B.12.

• The relationship between the distribution function and the density in integral
form is

Φ(x) ≡ Prob[X ≤ x] ≡
∫ x

−∞
φ(y)dy, (B.4)

in the case of a differentiable distribution on −∞ < X < +∞.

• Another more general form is

Φ(x) ≡ Prob[X ≤ x] ≡
∫ x

−∞
dΦ(y),

which is called a Stieltjes integral. In abstract formulations, the differential
is written dΦ(y) = Φ(dy) as shorthand notation for Φ((y, y + dy]) in the half-
open interval notation here.
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B4 Online Appendix B. Preliminaries in Probability and Analysis

• Sometimes it is useful to transform the random variable X to a more conve-
nient random variable Y , where X = ψ(Y ), for example. Consequently, for
clarity of notation, let φ(x) = φX(x) and similarly Φ(x) = ΦX(x), adding an
extra subscript to mark which random variable pertains to a given density or
distribution function since the argument x is only a dummy variable. Thus,
the change of distribution for a change of random variable on the
interval (x1, x2] is written

ΦX(x2) − ΦX(x1) =

∫ x2

x1

φX(x)dx

=

∫ y2

y1

φY (y)dy = ΦY (y2) − ΦY (y1), (B.5)

where

φY (y) = φX(x)

∣∣∣∣
dx

dy

∣∣∣∣ = φX(x) |ψ′(y)| (B.6)

provided ψ(y) is a differentiable monotonic function on (y1, y2), i.e., either
ψ′(y) > 0 or ψ′(y) < 0, where, in either case, the limits of integration are
given by

y1 = min[ψ−1(x1), ψ
−1(x2)]

and
y2 = max[ψ−1(x1), ψ

−1(x2)].

B.1.2 Expectations and Higher Moments

In general, there are basic definitions for averaged quantities in the case of contin-
uous distributions.

Definition B.5. The mean or expectation of any continuously distributed
random variable X is

µ ≡ E[X ] ≡
∫ +∞

−∞
xφ(x)dx (B.7)

provided the above integral converges absolutely. The symbol E is the expectation
operator. Similarly, the expectation of a function of X, f(X), is

E[f(X)] ≡
∫ +∞

−∞
f(x)φ(x)dx (B.8)

provided the integral converges absolutely.

Properties B.6. Expectations:
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B.1. Distributions for Continuous Random Variables B5

• The expectation operator is a linear operator,

E[c1X1 + c2X2] = c1E[X1] + c2E[X2], (B.9)

provided the expectations exist, for random variables Xi and constants ci, for
i = 1 : 2 (using MATLAB notation for the range of i).

Definition B.7. The variance or mean square deviation or second central
moment for any continuously distributed random variable X is

σ2 ≡ Var[X ] ≡ E[(X − E[X ])2] =

∫ +∞

−∞
(y − µ)2φ(y)dy (B.10)

provided the integral converges absolutely. The deviation and the central moments
are defined relative to the mean µ. The square root of the variance σ is called the
standard deviation.

While the mean and the variance are the most often used moments of the
distribution, i.e., of the density, sometimes some of the higher moments are useful
for further characterizing the distribution.

Definition B.8. The third central moment is defined here in the normalized
form called the skewness coefficient [83] for the random variable X:

η3[X ] ≡ E[(X − E[X ])3]/(Var[X ])3/2 (B.11)

such that the distribution is negatively skewed, symmetric or positively skewed, if
η3[X ] is negative, zero, or positive, respectively (zero being the skew of the normal
distribution as discussed in Subsection B.1.4).

Definition B.9. The fourth central moment is a measure of kurtosis (peaked-
ness) and is defined here in the normalized form called the kurtosis coefficient
textnormal[83] for the random variable X:

η4[X ] ≡ E[(X − E[X ])4]/(Var[X ])2 (B.12)

such that the distribution is platokurtic or leptokurtic if the coefficient of ex-
cess kurtosis (η4[X ] − 3) is negative or positive, respectively. (The value 3 is
η4[X ] for the normal distribution, discussed in Subsection B.1.4.)

The property of kurtosis, from the Greek word for convexity, signifies more
at the crown (as seen from the density) for a distribution with peakedness in the
case of leptokurtic and a distribution with flatness in the case of platokurtic. The
kurtosis property together with skewness is of particular interest in mathematical
finance for characterizing nonnormal properties of real market distributions.

The little book on statistical distributions of Evans, Hastings and Peacock [83]
concisely lists principal formulae for skewness, kurtosis, and many other properties
for 40 distributions. The book has more useful and easy-to-find information in it
than other books on distributions, including those requiring several volumes.
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B.1.3 Uniform Distribution

The most fundamental continuous probability distribution is the uniform distribu-
tion.

Definition B.10. The uniform density on the finite interval [a, b] is defined as

φu(x; a, b) ≡
{

1/(b − a), x ∈ [a, b]
0, x /∈ [a, b]

}
. (B.13)

Definition B.11. The uniform distribution is defined by integrating the uniform
density,

Φu(x; a, b) ≡
∫ x

−∞
φu(y; a, b)dy =






0, x ≤ a
(x − a)/(b − a), a ≤ x ≤ b
1, b ≤ x





, (B.14)

−∞ < x < +∞, so that Φu(x; a, b) = 1 for b ≤ x < +∞, conserving total probabil-
ity.

Hence, the basic moments and other properties easily follow from simple in-
tegration.

Properties B.12. Uniform Distribution Moments.

• Conservation of probability: Eu[1] = 1.

• Mean:

µ = Eu[X ] =

∫ b

a
xφu(x; a, b)dx = (b + a)/2. (B.15)

• Variance:

σ2 = Varu[X ] =

∫ b

a
(x − Eu[X ])2φu(x; a, b)dx = (b − a)2/12. (B.16)

• Uniform domain correspondence to mean and variance: a = µ−
√

3σ
and b = µ +

√
3σ.

• Coefficient of skew: η3 = 0.

• Coefficient of kurtosis: η4 = 1.8 or η4 − 3 = −1.2 is the excess value over
the normal value.

Hence, the uniform distribution is platokurtic, signifying its obvious flatness
compared to normal.

An important use of the uniform distribution is the numerical simulation of
the distributions that can be transformed from the uniform distribution. The most



“bk0allfinal”
2007/8/10
page B7

!

!

!

!

!

!

!

!

B.1. Distributions for Continuous Random Variables B7

basic random number generator is the standard uniform random number generator.
The standard uniform random number generator is usually based on a deterministic
generator called the linear congruential generator [230, 97] that is defined as nonzero
on the open interval (0, 1) instead of the closed interval [0, 1] as for the theoretical
distribution φu(x; 0, 1), which is more convenient for numerical purposes and the
end points do not contribute to the expectation integral anyway. Most computing
systems, such as MATLAB [210], Maple [1] or Mathematica [285], and programming
languages have a built-in uniform random number generator but must be used with
care considering that they use deterministic operations such as modular arithmetic,
multiplication, and division. These random number generators are more properly
called pseudo-random number generators since they generate only approxi-
mations to random numbers, which exist only exactly in theory. Pseudo-random
numbers should be carefully tested before using them in any computation. For
instance, the MATLAB uniform generator is called rand (note that the MATLAB
functions and code fragments are typeset in typewriter style) and can simulate
an approximation to a scalar, vector, or more general array of random numbers.
Figure B.1 illustrates the histograms of a row vector with N simulations of uniform
deviates for φu(x; 0, 1) using the form

x = rand(N, 1)

or more generally

y = a + (b− a) ∗ rand(N, 1),

which simulates an N -vector sample uniform on (a, b) in MATLAB. Other com-
puting systems may use a programming loop with N iterations. The approximate
distribution displays with the bin-centered histogram function hist(x). Scaling the
bin frequencies upon normalizing by the average bin count N/nbins, where nbins
is the number of bins, here 30 bins, would produce a scaled histogram more appro-
priate for approximating probability density, φu(x; 0, 1), of the theoretical uniform
distribution. Thus, if fi is the frequency associated with the ith bin [xi, xi + ∆x)
for i = 1 : nbins, in MATLAB loop notation, of width ∆x, then

nbins∑

i=1

fi = N or
1

N

nbins∑

i=1

fi = 1,

the latter in normalized form.
Clearly, the larger sample size simulation with N = 100, 000 in Subfigure B.1(b)

is a much better approximation of the uniform approximation then the much cruder
representation with N = 1, 000 in Subfigure B.1(a). The relative error for the sample
mean is −0.24% for N = 1, 000 and −0.43% for N = 100,000. Both subfigures have
been generated by the sample Online Appendix C code C.1 called uniform03fig1.m.

Note that the error in the sample mean did increase slightly with sample size,
but these are only single samples and it would not be realistic to draw any reli-
able conclusion from this case. These are just approximations to random samples,
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(b) Sample size N = 105.

Figure B.1. Histograms of simulations of uniform distribution on (0, 1) using
MATLAB [210] for two different sample sizes N .

although it would be reasonable to expect that the average over repeated sam-
ples would be lower the higher the sample size, provided that the selected random
number generator is sufficiently robust. Computing more pairs of samples using
the same sizes, N = 1,000 and N = 10,000, with different random states would
demonstrate that the sample mean error would likely be smaller, but not necessar-
ily. The relative errors for the sample standard deviation (square root of the sample
variance) are 0.95% for N = 1, 000 and −0.20% for N = 100, 000, which is more
reasonable.

The sample variance is obtained from the MATLAB function var(x), which
is normalized by number of degrees of freedom (N − 1) for the best estimate of the
variance, correcting for conditioning due to the mean value, which in MATLAB is
the function mean(x).

For more sophisticated distribution validation tests, chi-square (χ2) or better
Kolmogorov–Smirnoff [230] tests can be used. The two samples displayed in Fig-
ure B.1 illustrate the problem of single samples requiring the averaging of several
independent replications using a different random number generator initialization,
called a random seed but now called a state in MATLAB (e.g., rand(′state′, j)
sets rand in the jth state), so the error systematically decreases with sample size.
Otherwise. the user can take a larger sample size. See Online Appendix C, Sec-
tion C.1, for the MATLAB figure code.

In this appendix, we present empirical representations of distributions by his-
tograms derived from random number generation, rather than the purely mathe-
matical graphs of the probability density as portrayed in probability and statistics
texts. This is to emphasize that the distributions derived from real environments
are not as ideal as the exact mathematical density functions. Another reason is to
emphasize that sometimes computations are necessary when no exact solutions are
available or useful when exact solutions are too complicated, beyond the expertise
of the entry-level graduate student or advanced undergraduate student.



“bk0allfinal”
2007/8/10
page B9

!

!

!

!

!

!

!

!

B.1. Distributions for Continuous Random Variables B9

B.1.4 Normal Distribution and Gaussian Processes

A continuous distribution of interest for Gaussian processes and other applications
is given in terms of the normal probability density, the derivative of the normal or
Gaussian probability distribution.

Definition B.13. The normal density with mean µ = En[X ] and σ2 = Varn[X ]
is defined as

φn(x; µ, σ2) ≡ 1√
2πσ2

exp

(
− (x − µ)2

2σ2

)
, −∞ < x < +∞, σ > 0, (B.17)

where φn denotes the normal density function with argument x and parameters
{µ, σ2} following the semicolon. Here, X is called the normal random variate.

Definition B.14. The normal distribution is defined here through the density
as

Φn(x; µ, σ2) ≡
∫ x

−∞
φn(y; µ, σ2)dy, −∞ < x < +∞, (B.18)

so that Φn(+∞; µ, σ2) = 1, conserving total probability.

Remark B.15. The normal distribution can be computed using MATLAB, Maple.
or Mathematica computing systems, but the common special function that can be
used, without resorting to special packages, is the error function complement,

erfc(x) = 1 − erf(x) =
2√
π

∫ ∞

x
e−t2dt, (B.19)

so that the normal distribution can be computed from these two identities

Φn(x; µ, σ2) =
1

2
erfc

(
µ − x√

2σ

)
(B.20)

= 1 − 1

2
erfc

(
x − µ√

2σ

)
. (B.21)

Properties B.16. Normal Distribution Skew and Kurtosis:

• The normal distribution is skewless, since the coefficient of skew is
η3[X ] = 0.

• The normal distribution has no excess kurtosis, since the coefficient of ex-
cess kurtosis is (η4[X ] − 3) = 0, where 3 is the coefficient of kurtosis of the
normal distribution.

As with the uniform distribution, the normal distribution is a theoretical ideal-
ization that is very useful in the analysis of stochastic problems. However, for prac-
tical computations, numerical simulations are usually necessary. Since the normal



“bk0allfinal”
2007/8/10
page B10

!

!

!

!

!

!

!

!

B10 Online Appendix B. Preliminaries in Probability and Analysis

density function is an exponential of a quadratic, direct transformation from a uni-
form random generator is not possible. However, the usual normal random number
generating algorithm, called Box–Muller [230, 97], cleverly applies the uniform ran-
dom generator to a polar coordinate version of a two-dimensional normal distribu-
tion, reminiscent of the classic technique of converting a normal probability integral
on the infinite domain from one dimension to two dimensions and polar coordinates
to get exact integral values. In some computing systems there is a special built-in
function for a normal random generator. In MATLAB [210] the function is called
randn, also having vector or array capabilities in the vector form x = randn(N, 1)
for a N -vector sample. (More generally, y = mu + sigma ∗ randn(N, 1) would simu-
late the density φn(y; mu, sigma2), where mu is the specified mean and sigma is the
specified standard deviation.) The simulated normal density is illustrated by the his-
togram in Figure B.2 using two sample sizes, N = 1, 000 and 100, 000. Clearly, the
larger sample size in Subfigure B.2(b) gives a better qualitative representation of the
theoretical bell-shaped curve of the normal density φn(x; 0, 1). The percent relative
errors in the mean and standard deviation are, respectively, −1.53% and −0.35%
for N = 1, 000, while the errors are 1.31% and −0.083% for the N = 100, 000
sample size. See Online Appendix C, Section C.2, for the MATLAB figure code
called normal03fig1.m.
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Figure B.2. Histograms of simulations of the standard normal distribution
with mean 0 and variance 1 using MATLAB [210] with 50 bins for two sample sizes N .
The histogram for the large sample size of N = 105 in Subfigure B.2(b) exhibits a better
approximation to the theoretical normal density φn(x; 0, 1).

B.1.5 Simple Gaussian Processes

For later use, we will let W (t) denote what is called a standard, mean zero Wn zero
Wiener process with distribution

ΦW (t)(x) = Φn(x; 0, t), −∞ < x < +∞, t > 0, (B.22)
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with corresponding probability density

φW (t)(x) = φn(x; 0, t), −∞ < x < +∞, t > 0. (B.23)

A simple Gaussian process with linear mean growth in time,

X = G(t) = µt + σW (t), (B.24)

has mean E[X ] = µt and variance Var[X ] = σ2t, so that the distribution of this
process is

ΦG(t)(x) = Φn(x; µt, σ2t) =
1√

2πσ2t

∫ x

−∞
e−

(y−µt)2

2σ2t dy (B.25)

on −∞ < x < +∞, t > 0. The standard Wiener and Gaussian processes are also
called diffusion processes, so they form models of the diffusion part of the jump-
diffusion processes that are the main topic in this book. To see the connection
between the stochastic Gaussian process and the deterministic diffusion process, let

u(x, t) = ΦG(t)(x)

and take partial derivatives of u(x, t) with respect to t and x to derive the diffusion
equation with drift (−µ) and diffusion coefficient (σ2/2),

ut(x, t) = −µux(x, t) + σ2

2 uxx(x, t), −∞ < x < +∞, t > 0. (B.26)

where the subscripts on ut, ux and uxx denote partial derivatives and the equation
is called a partial differential equation (PDE).

Remarks B.17.

• Here we use the term Gaussian process as it is used in applied mathematics,
science and engineering, i.e., for processes that are normally distributed. (For
a more abstract view of Gaussian processes, see Mikosch [209].)

• There will be much more on the Wiener and Gaussian processes later, since
they form the basic process for building the diffusion component of the jump-
diffusion processes.

B.1.6 Lognormal Distribution

Often in applications, such as in many linear financial models, the exponential of a
normally distributed random variable arises and the distribution of this exponential
is called a lognormal distribution since its logarithm produces the normally
distributed exponent.

Theorem B.18. Let

Xln = exp (µ + σXn) (B.27)
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be a lognormal variate and let Xn be a standard normal variate, i.e., with zero
mean and unit variance, Then lognormal density with mean µln = E[Xln] and
(σln)2 = Var[Xln] can be written in terms of the normal density φn (B.17) such that

φln

(
x; µln, (σln)2

)
≡ x−1φn

(
ln(x); µ, σ2

)
0 < x < +∞, σ > 0, (B.28)

where φln denotes the lognormal density function with argument x and parameters
{µn, (σ2)n} = {µ, σ2} follow the semicolon. If x = 0, then define φln as the limiting
case:

φln

(
0; µln, (σln)2

)
≡ φln

(
0+; µln, (σln)2

)
= 0. (B.29)

Proof. Let the realization variable satisfy x > 0, recall that σ > 0, and that the
natural logarithm is an increasing function. Consider the corresponding lognormal
distribution definition, subsequently manipulated into the normal distribution:

Φln

(
x; µln, (σln)2

)
= Prob [Xln ≤ x] (B.30)

= Prob [exp (µ + σXn) ≤ x] (B.31)

= Prob [Xn ≤ (ln(x) − µ)/σ] (B.32)

= Φn((ln(x) − µ)/σ; 0, 1) (B.33)

= Φn(ln(x); µ, σ2). (B.34)

The last step follows a normal distribution or density identity that allows transform-
ing from the standard normal to nonstandard normal with mean µ and variance σ2

(see Exercise 9 on p. B72). Upon taking the derivatives of the first and the last of
this chain of equations, and using the chain rule to handle the logarithmic argument
of the normal distribution, the relationship between the densities is

φln

(
x; µln, (σln)2

)
= (Φln)′

(
x; µln, (σln)2

)

= x−1(Φn)′
(
ln(x); µ, σ2

)

= x−1φn

(
ln(x); µ, σ2

)
.

Note that as x → 0+, then

x−1 exp
(
−(ln(x) − µ)2/

(
2σ2

))
→ 0+,

since the exponential approaches zero much faster than the reciprocal of x ap-
proaches infinity. Thus, since the singularity at zero is removable, we define the
exception value of the lognormal density at zero to be

φln

(
0; µln, (σln)2

)
≡ φln

(
0+; µln, (σln)2

)
= 0.

In the above analytical manipulation of distribution probabilities, the general
principles are embodied in the following lemma.
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Lemma B.19. General Probability Inversion.
Let X and Y be two random variables with continuous densities φX(x) and φY (y),
respectively. Further, let the dependence between them be given by X = g(Y ),
where g(y) is continuously differentiable and increasing so that an inverse function
f exists, i.e., y = f(x) = g−1(x). Then the corresponding distributions are related
by

ΦX(x) = Prob[X ≤ x] = Prob[g(Y ) ≤ x]

= Prob[Y ≤ f(x)] = ΦY (f(x)) (B.35)

and the densities are related by

φX(x) = f ′(x)φY (f(x)). (B.36)

If, instead, g is strictly decreasing, then

ΦX(x) = Prob[Y ≥ f(x)] = 1 − ΦY (f(x)) (B.37)

and

φX(x) = −f ′(x)φY (f(x)). (B.38)

Proof. Since f is the inverse function of g, then with x = g(y) and y = f(x),
g(f(x)) = x and g′(y)f ′(x) = 1, using the chain rule and the derivatives are recip-
rocals of each other. Further, the increasing property of g means f is also increasing,
the signs of the derivatives must be the same. So if x1 ≤ x2, then f(x1) ≤ f(x2),
and the direction of an inequality is preserved upon application of f . In the g de-
creasing case, the direction is reversed. Thus, (B.35) has been demonstrated in the
increasing case. The decreasing case is similar, except for the change in inequality
direction and a minor point in converting from probability to distribution func-
tion. The probability complement equivalent of Prob[Y ≥ f(x)] would strictly be
1−Prob[Y < f(x)], but since the densities are continuous the probabilities assigned
to an isolated point are zero, i.e., Prob[Y < f(x)] = Prob[Y ≤ f(x)].

The densities follow upon differentiating by the chain rule,

Φ′
X(x) = φX(x) = f ′(x)Φ′

Y (f(x)) = f ′(x)φY (f(x))

in the increasing case, and the decreasing case is similar except for the minus sign
in the density (B.38), which also preserves the nonnegativity of the density, since
−f ′(x) > 0 in the negative case. The factor ±f ′(x) > 0 is the density conversion
factor in either case.

Properties B.20. Lognormal Distribution Moments.

• Mean:
µln = Eln[X ] = eµ+σ2/2.

• Variance:
σln = Varln[X ] = (µln)2

(
eσ2

− 1
)

.
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• Inverse, normal from lognormal:

σ2 = ln
(
1 + σln/ (µln)2

)

and

µ = ln (µln) − 1

2
σ2.

• Coefficient of skewness:

η(ln)
3 [X ] =

(
eσ2

+ 2
)√

eσ2 − 1.

• Coefficient of kurtosis:

η(ln)
4 [X ] =

(
e4σ2

+ 2e3σ2

+ 3e2σ2

− 3
)

.

Remark B.21. The mean formula is justified using the logarithmic transformation,
y = (ln(x)−µ)/σ, from lognormal back to normal along with completing the square
method in the exponent,

Eln[X ] =

∫ ∞

0

exp(−(ln(x) − µ)2/(2σ2))

x
√

2πσ2
xdx

=
1√
2π

eµ

∫ +∞

−∞
e−y2/2eσydy

=
1√
2π

eµ+σ2/2

∫ +∞

−∞
e−(y−σ2)2/2dy = eµ+σ2/2.

Then the rest of the moments rely on the same techniques.

The simulation of the lognormal distribution relies on the fact (B.27) that the
lognormal variate is the exponential of a normal variate, i.e., Xln = exp(µ + σXn).
Thus the MATLAB approximation will be the set of simulations

y = mu*ones(N,1) + sigma*randn(N,1);
x = exp(y);

where again randn(N,1) is the MATLAB normal random generator for a sample
size of N while the ones(N,1) function produces an N -vector of ones preserving
the vector form when adding the constant mu, with similar constructs in Maple and
Mathematica. Equation (B.28) for the density implies that the proper lognormal
density will be obtained in theory.

The MATLAB graphical histogram output for two sample sizes, N = 1, 000
and 100, 000, both sorted into nbins= 150, is given in Figure B.3. The selected
normal parameters are µn = µ = mu = 0.0 and σn = σ = sigma = 0.5, correspond-
ing to lognormal parameters µln * 1.133 and σln * 0.3646. The percent relative
errors in the lognormal mean and standard deviation are respectively −0.56% and
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−0.60% for N = 1, 000, while the relative errors are −0.085% and −0.30% for
the for N = 100, 000 sample size. Again, the larger sample size Subfigure B.3(b)
gives a better qualitative representation of the theoretical shape of the lognor-
mal density φln(x; µln, σln). Both subfigures confirm that the density goes to zero
as x → 0+. See Online Appendix C, Section C.3, for the MATLAB figure code
called lognormal03fig1.m.
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(b) Sample size N = 105.

Figure B.3. Histograms of simulations of the lognormal distribution with mean
µn = 0 and variance σn = 0.5 using MATLAB [210] normal distribution simulations,
x = exp(mu*ones(N,1) + sigma*randn(N,1)) with 150 bins for two sample sizes. The
histogram for the large sample size of N = 105 in Subfigure B.3(b) exhibits a better approx-
imation to the theoretical lognormal density φn(x; 0, 1) than the one in Subfigure B.3(a).

B.1.7 Exponential Distribution

The continuous exponential density is closely related to the interarrival time of a
Poisson process (discussed in Chapter 1).

Definition B.22. The exponential density is given for some exponential random
variate τe by

φe(t; µ) ≡ 1

µ
e−t/µ, 0 ≤ t < +∞, µ > 0, (B.39)

with mean µ, so the exponential distribution is called a one-parameter distribu-
tion. The explicit form of the exponential distribution is

Φe(t; µ) = Prob[τe ≤ t] =

{
1 − e−t/µ, t ≥ 0

0, t < 0

}

. (B.40)

Properties B.23. Exponential Distribution Moments.

• Conservation of probability: Ee[1] = 1.
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• Mean: µ = Ee[X ] by selection of the exponential parameter.

• Variance: σ2 = Vare[X ] = µ2 so the standard deviation is also µ.

• Coefficient of skew: η3 = 2, positive relative to the mean on [0,∞).

• Coefficient of kurtosis: η4 = 9 or η4 − 3 = 6 is the excess value over the
normal value.

Hence, the exponential distribution defines a one-parameter family of distri-
butions with the same mean and standard deviation, but also positively skewed by
virtue of the semi-infinite domain and leptokurtic with clear pointedness.

Since the exponential distribution has such a simple form it can easily be
transformed into the uniform distribution for use in practical simulations. Using the
fundamental law of transformation of probabilities [230] or as the inverse
transformation method [97] for transforming the exponential density φe(xe; µ)
to the standard (0, 1) uniform density φu(xu; 0, 1),

φu (xu; 0, 1) = φe (xe; µ)

∣∣∣∣
dxe

dxu

∣∣∣∣ . (B.41)

The Jacobian sign negative, dxe/dxu < 0 is chosen, because it leads to a faster
computational form by eliminating a constant of integration, i.e.,

xe = −µ ln (xu) . (B.42)

which when inverted is
xu = exp (−xe/µ) . (B.43)

A prime prerequisite for random simulations is that the distribution is covered in
the transformation, but the order of the covering does not matter so we have

Φe(xe; µ) = Prob [0 ≤ Xe ≤ xe]

= Prob [exp (−xe/µ) ≤ Xu ≤ 1]

= 1 − Φu (exp (−xe/µ) ; 0, 1) ,

which works although the uniform distribution here is covered from right to left
starting from 1 while the exponential distribution is covered from left to right start-
ing from xe = 0. The interested reader can check that the general expectation
Ee[f(Xe)] = Eu[f(−µ ln(Xu))] is equivalent for any integrable function f (see Ex-
ercise 12).

Hence, x = −mu ∗ log(rand(N, 1)) leads to a MATLAB exponential random
generator producing N -vector output, where log is the MATLAB natural logarithm
function and mu is the input for the mean. The MATLAB graphical output for two
sample sizes, N = 1, 000 and 100, 000, is given in Subfigures B.4(a) and B.4(b),
respectively. The percent relative errors in the mean and standard deviation are,
respectively, 7.94% and −0.71% for N = 1, 000, while the errors are 3.81% and
−0.54% for the N = 100, 000 sample size. See Online Appendix C, Section C.4, for
the MATLAB figure code called exponential03fig1.m.

Remarks B.24.
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(b) Sample size N = 105.

Figure B.4. Histograms of simulations of the standard exponential distribution,
with mean taken to be mu = 1, using MATLAB’s hist function [210] with 50 bins for two
sample sizes N , generated by x = −mu ∗ log(rand(N, 1)) in MATLAB. The histogram for
the large sample size of N = 105 in Subfigure B.4(b) exhibits a better approximation to the
standard theoretical exponential density φe(x; 1).

• Alternatively, a more direct exponential to uniform transformation could have
been selected,

x̂u = 1 − exp (−x̂e/µ)

with inverse

x̂e = −µ ln (1 − x̂u) , (B.44)

but that would not be as numerically efficient for large sample sizes N as (B.42)
which is more often used, since (B.42) requires one less floating point opera-
tion, not needing to subtract the uniform random sample from 1 per sample
in (B.44). Typically random sample sizes are huge, so good representations of
the distribution can be obtained.

• The probabilistic view of the difference between the two exponential to uniform
transformations follows from Lemma B.19 on general probability inversion. In
the direct case, ĝ(y) = −µ ln(1 − y) and f̂(x) = 1 − exp(−x/µ), so g′(y) =
+µ/(1 − y) > 0 for 0 < y < 1. Thus,

Φ bXe
(x) = Φ bXu

(1 − exp(−x/µ))

by (B.35) and

φ bXe
(x) =

1

µ
exp(−x/µ)φ bXu

(1 − exp(−x/µ))

by (B.36), which implies φ bXu
(1 − exp(−x/µ)) = 1 since its coefficient is

φ bXe
(x). In the more useful case, g(y) = −µ ln(y) and f(x) = exp(−x/µ), so
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g′(y) < 0 and

φXe(x) = +
1

µ
exp(−x/µ)φXu(exp(−x/µ))

by (B.38) and again φXu(exp(−x/µ)) = 1.

B.2 Distributions of Discrete Random Variables
In general, averaged quantities for discrete distributions involve sums rather than
integrals used in the continuous distributions. (Note: The use of the term distribu-
tion is different for discrete and continuous cases.)

Definition B.25. Let the discrete distribution be

πk = Prob[X = xk] (B.45)

for some countable set of values X = {xk|k = 0 : m}, where m could be infinite.
(The 0 : m is MATLAB loop notation.)

Definition B.26. Colon or Loop Notation.
For compactness, the range of a discrete set will be in the MATLAB colon or loop
notation [210, 143] with k = m1 : m2 denoting that the index k ranges from integers
m1 to m2 in steps of unity (1), meaning the same as the loosely defined k = m1, m1+
1, . . . , m2 − 1, m2, assuming m1 < m2. In the case of nonunit steps ∆m, then
k = m1 : ∆m : m2 is used instead of k = m1, m1+∆m, . . . , m2−∆m, m2, assuming
the range m2 − m1 is a positive integer multiple of ∆m.

Properties B.27. Discrete Distributions πk:

• Non-negativity: πk ≥ 0.

• Conservation of probability:

m∑

k=0

πk = 1. (B.46)

The basic definitions in the discrete distribution case for averaged quantities
are listed as follows:

Definitions B.28.

• The mean or expectation of the discrete set X = {xk|k = 0 : m} is

µ = E[X ] ≡
m∑

k=0

xkπk (B.47)

for any discretely distributed random variable provided the sum converges ab-
solutely.
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• Similarly, the expectation of a function f(X) of X is

E[f(X)] ≡
m∑

k=0

f(xk)πk (B.48)

provided the sum converges absolutely.

Definition B.29. The variance or mean square deviation of the discrete set
X is

Var[X ] ≡ E[(X − E[X ])2] =
m∑

k=0

(xk − µ)2πk (B.49)

for any discretely distributed random variable provided the sum converges absolutely,
where the set difference (X − µ) ≡ {xk − µ|k = 0 : m} for fixed µ.

B.2.1 Poisson Distribution and Poisson Process

Another important distribution is a discrete distribution and is called the Poisson
distribution. It is useful for modeling jumps, especially for the jump component of
jump-diffusions.

Definition B.30. The Poisson distribution with Poisson variate ν and single
Poisson parameter Λ is given by the probabilities

pk(Λ) ≡ Prob[ν = k] = e−Λ (Λ)k

k!
(B.50)

for k = 0, 1, 2, . . . and Λ ≥ 0, expressed as a simple Poisson distribution with
continuous parameter Λ which serves as both mean,

E[ν] = Λ, (B.51)

and variance ,

Var[ν] = Λ, (B.52)

of this one-parameter discrete distribution.

The mean and variance can be conveniently computed from the properties of
the exponential series,

∞∑

k=0

uk

k!
= eu = exp(u), −∞ < u < +∞, (B.53)

together with its derivatives, such as its first derivative form

∞∑

k=0

k
uk

k!
= u

d

du
eu,
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which can be used to compute the mean property from

E[ν] = e−Λ
∞∑

k=0

k
(Λ)k

k!

to derive (B.51), and its second derivative form

∞∑

k=0

k2 uk

k!
=

(
u

d

du

)2

eu,

which can be used with the mean to compute the variance property from

Var[ν] = e−Λ
∞∑

k=0

(k − Λ)2
(Λ)k

k!

to derive (B.52) upon expanding the square in the sum.
From (B.50), it is simple to deduce that pk(0+) = δk,0, where δk,0 is defined

as follows.

Definition B.31.

δi,j =

{
1 if j = i
0 if j += i

}
(B.54)

is the Kronecker delta or discrete delta function.

Figure B.5 illustrates the Poisson distribution versus the Poisson counting vari-
able k for four values of the Poisson parameter, Λ = 0.2, 1.0, 2.0 and 5.0. See Online
Appendix C, Section C.5, for the MATLAB figure code called poisson03fig1.m.
For the smaller parameter value, Λ = 0.2, the distribution resembles a discretized
version of the exponential distribution, while as Λ increases to 2.0 the distribution
is beginning to resemble the normal distribution around the peak. For large values
of the parameter Λ it can be shown (see Feller [84]) that the Poisson distribution
has a normal approximation.

For later use, let P (t) denote the simple Poisson process with linear time-
dependent parameter Λ = λt as a jump process with unit jumps, hence also char-
acterized as a counting process. It can be shown (see Çinlar [56], for instance) that
the P (t) discrete distribution is

pk(λt) ≡ Prob[P (t) = k] = e−λt (λt)k

k!
. (B.55)

If the random variable Tk is the time of the kth Poisson unit jump for k = 0 :
+∞, then time between jumps or interarrival time can be shown to be distributed
exponentially,

Prob[Tk+1 − Tk ≤ t |Tk] = 1 − Prob[Tk+1 − Tk > t |Tk]

= 1 − Prob[P (Tk + t) − P (Tk) = 0 |Tk]

= 1 − Prob[P (t) = 0]

= 1 − e−λt = Φe(t; 1/λ), (B.56)
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Figure B.5. Poisson distributions with respect to the Poisson counter variable
k for parameter values Λ = 0.2, 1.0, 2.0, and 5.0. These represent discrete distributions, but
discrete values are connected by dashed, dotted, and dash-dotted lines only to help visualize
the distribution form for each parameter value.

in the first step using conservation of probability to write the probability in terms
of one minus the complement, in the second step using the fact that the probability
that the interarrival time ∆Tk = Tk+1 − Tk > t is the same as the probability that
Poisson increment P (Tk + t) − P (Tk) = 0, in the third step using the stationarity
property that P (s + t)−P (s) and P (t) have the same distribution (to be discussed
later), and finally using (B.55) with k = 0.

Remark B.32. The Poisson process is presented in the main chapters of the text,
since it serves as the basic process for building the jump component of the jump-
diffusion processes.

B.3 Joint and Conditional Distribution Definitions
In many part of this book, several properties of joint and conditional distributions
will be useful and are summarized for two random variables here. These random
variables can be combinations of discrete and continuous random variables, e.g.,
discrete for jump variables or continuous for diffusion variables. The definition
forms are the forms that are useful in this text, but they are not necessarily the
most general definitions. Many can be easily generalized from a couple to multiple
random variables. For more general information see the long-standard reference of
Feller [85] or the workss of Karlin and Taylor [162, 265].

Definitions B.33. Jointly Distributed Random Variables.

• The joint probabilities or joint distribution functions of two random
variables X and Y depend on whether the random variables are discrete or
continuous, leading to three cases:
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1. Two jointly distributed discrete random variables, X and Y , have
the joint probability or joint distribution function

πX,Y (xi, yj) ≡ Prob[X = xi, Y = yj ] (B.57)

for specified discrete values xi and yj for integers i and j (in general,
the discrete sets are assumed to be countable or denumerable) and such
values will be assumed with the qualifications given here.

2. Two jointly distributed continuous random variables, X and Y ,
have the joint probability or joint distribution function

ΦX,Y (x, y) ≡ Prob[X ≤ x, Y ≤ y]. (B.58)

3. Two jointly distributed mixed continuous and discrete random
variables, X and Y , have the hybrid joint probability or joint dis-
tribution function

ΦX,Y (x, yj) ≡ Prob[X ≤ x, Y = yj], (B.59)

for some discrete value yj.

• The joint densities, if they exist, of two jointly distributed random variables
X and Y , are defined as follows:

1. Two jointly distributed discrete random variables, X and Y , do
not have a joint density in the usual way, but for an applied formula-
tion, the generalized functions can be used. (See Section B.12 on p. B53.)

2. Two jointly distributed continuous random variables, X and Y ,
have the joint density if the partial derivatives exist,

φX,Y (x, y) =
∂2ΦX,Y

∂x∂y
(x, y), (B.60)

and then can be used to calculate the joint distribution using the integral
formula

ΦX,Y (x, y) =

∫ x

−∞
dξ

∫ y

−∞
dη φX,Y (ξ, η). (B.61)

3. Two jointly distributed mixed continuous and discrete random
variables, X and Y , have the joint density if only the x-partial deriva-
tive exists,

φX,Y (x, yj) =
∂ΦX,Y

∂x
(x, yj). (B.62)

This is a hybrid density distribution rather than a strict joint density,
but then it can be used to calculate the joint distribution,

ΦX,Y (x, yj) =

∫ x

−∞
dξ φX,Y (ξ, yj), (B.63)

for some discrete value yj.
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• The marginal distributions in one of two random variables X and Y are
defined by summing or integrating over the other random variable:

1. Two jointly distributed discrete random variables, X and Y , have
the marginal distributions

πX(xi) =
∞∑

j=1

πX,Y (xi, yj), (B.64a)

πY (yj) =
∞∑

i=1

πX,Y (xi, yj). (B.64b)

2. Two jointly distributed continuous random variables, X and Y ,
have the marginal distributions

ΦX(x) = lim
y→+∞

ΦX,Y (x, y) =

∫ x

−∞
dξ

∫ +∞

−∞
dη φX,Y (ξ, η), (B.65a)

ΦY (y) = lim
x→+∞

ΦX,Y (x, y) =

∫ y

−∞
dη

∫ +∞

−∞
dξ φX,Y (ξ, η), (B.65b)

provided the limits exist.

3. Two jointly distributed mixed continuous and discrete random
variables, X and Y , have the marginal distributions

ΦX(x) =

∫ x

−∞
dξ

∞∑

j=1

φX,Y (ξ, yj), (B.66a)

πY (yj) =

∫ +∞

−∞
dξ φX,Y (ξ, yj), (B.66b)

provided the limit exists.

• The marginal densities of two random variables, X and Y , are defined as

1. Two jointly distributed discrete random variables, X and Y , do
not have marginal densities in the usual way, but for an applied for-
mulation, the generalized functions can be used. (See Section B.12 on
p. B53.)

2. Two jointly distributed continuous random variables, X and Y ,
have the marginal densities,

φX(x) =

∫ +∞

−∞
dη φX,Y (x, η), (B.67a)

φY (y) =

∫ +∞

−∞
dξ φX,Y (ξ, y). (B.67b)
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3. Two jointly distributed mixed continuous and discrete random
variables, X and Y , have the marginal density for the continuous
random variable X,

φX(x) =
∞∑

j=1

φX,Y (x, yj), (B.68)

and the marginal distribution πY (yj) is given in (B.66b).

• The expectation function f(X, Y ) of joint random variables, X and
Y , is defined as follows.

1. Two jointly distributed discrete random variables, X and Y , have
the joint expectation of f(X, Y ), providing the sums or integrals exist:

EX,Y [f(X, Y )] =
+∞∑

i=1

+∞∑

j=1

f(xi, yj)πX,Y (xi, yj). (B.69)

2. Two jointly distributed continuous random variables, X and Y ,
have the joint expectation of f(X, Y ),

EX,Y [f(X, Y )] =

∫ +∞

−∞
dξ

∫ +∞

−∞
dη f(ξ, η)φX,Y (ξ, η). (B.70)

3. Two jointly distributed mixed continuous and discrete random
variables, X and Y , have the joint expectation

EX,Y [f(X, Y )] =

∫ +∞

−∞
dη

∞∑

j=1

f(ξ, yj)φX,Y (ξ, yj), (B.71)

where φX,Y (x, yj) is the hybrid density distribution given by (B.62).

• The covariance of two jointly distributed random variables, X and Y ,
for all three cases, is defined as

Cov[X, Y ] ≡ EX,Y [(X − EX [X ])(Y − EY [Y ])], (B.72)

provided the expectations exist. Hence,

Cov[X, Y ] = EX,Y [X · Y ] − EX [X ] · EY [Y ]. (B.73)

• The variance of a sum or difference of two random variables, X and
Y ,

Var[X ± Y ] = VarX [X ] ± 2Cov[X, Y ] + VarY [Y ], (B.74)

by writing the variance of the sum (difference) as expectations and collecting
terms into a covariance using (B.72) using the definition of variance twice for
the remaining terms, i.e.,

Var[X ± Y ] = E[(X − E[X ] ± (Y − E[Y ]))2]

= VarX [X ] ± 2Cov[X, Y ] + VarY [Y ].
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Remarks B.34.

• The subscript on the expectation symbol is often omitted but can be used in
multivariate expectation to precisely specify which variable or variables are the
arguments of the expectation operator and to avoid confusion.

• The integral notations are equivalent,:
∫ x2

x1

dx

∫ y2

y1

dyf(x, y) =

∫ x2

x1

∫ y2

y1

f(x, y)dydx;

the former, having the element of integration following the integration sign,
makes it easy to see the order of integration and which limits of integration
go with what elements of integration.

Definitions B.35. Independently Distributed Random Variables.

• The joint distribution of two independent random variables, X and
Y , is the product of the marginal distributions:

1. Two discrete random variables, X and Y , are independent if their
joint distribution is

πX,Y (xi, yj) = πX(xi) · πY (yj). (B.75)

2. Two continuous random variables, X and Y , are independent if
their joint distribution is

ΦX,Y (x, y) = ΦX(x) · ΦY (y); (B.76)

3. Two mixed continuous discrete random variables, X and Y , are
independent if their joint distribution is

ΦX,Y (x, yj) = ΦX(x) · πY (yj). (B.77)

• The joint density of two independent random variables, X and Y , is
the product of the marginal densities:

1. Two discrete random variables, X and Y , do not have a joint den-
sity in the usual way;

2. Two continuous random variables, X and Y , are independent if
their joint distribution is

φX,Y (x, y) = φX(x) · φY (y). (B.78)

3. Two mixed continuous and discrete random variables, X and Y ,
are independent if their hybrid density distribution is

φX,Y (x, yj) = φX(x) · πY (yj), (B.79)

assuming densities exist where relevant.
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• The joint expectation of the product f(X) · g(Y ) in two independent
random variables, X and Y , is the product of the expectations,

EX,Y [f(X) · g(Y )] = EX [f(X)] · EY [g(Y )], (B.80)

covering all three cases.

• The covariance of two independent random variables, X and Y , is
zero,

Cov[X, Y ] ≡ E[(X − E[X ])(Y − E[Y ])] = 0, (B.81)

since by the separability of the expectation in (B.80),

Cov[X, Y ] = EX [(X − E[X ])] · EY [(Y − E[Y ])] = 0 · 0 = 0.

Note that the converse is not true. If Cov[X, Y ] = 0, then the random vari-
ables are not necessarily independent.

B.3.1 Conditional Distributions and Expectations

Definitions B.36.

• The conditional probability and conditional distribution of the random
variable X, conditioned on the random variable Y , are defined as follows

1. If X and Y are both discrete random variables,

πX|Y (xi|yj) ≡ Prob[X = xi |Y = yj ] =
Prob[X = xi, Y = yj ]

Prob[Y = yj ]
, (B.82)

provided the marginal distribution πY (yj) = Prob[Y = yj] += 0 from (B.64).

2. If X and Y are both continuous random variables,

ΦX|Y (x|y) ≡ Prob[X ≤ x |Y = y] =

∫ x
−∞ dξφX,Y (ξ, y)

φY (y)
, (B.83)

provided marginal density φY (y) += 0 from (B.67). See Karlin and Tay-
lor [162].

Remarks B.37.

◦ Since we can write

Prob[Y ∈ [y, y + dy]]
dy
= φY (y)dy,

i.e., in precision-dy, the formula (B.83) can be rewritten in proba-
bilities,

Prob[X ≤ x |Y = y] =
Prob[X ≤ x, Y ∈ [y, y + dy]]

Prob[Y ∈ [y, y + dy]]
,

provided Prob[Y ∈ [y, y + dy]] > 0.
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◦ Regarding (B.83), note that if Y is a continuous random variable,
then Prob[Y = y] = 0 since a single point has no probability mass
with

lim
δ→0

∫ y+δ

y
φY (η)dη = 0.

◦ The reader can confirm the consistency of these conditional proba-
bility formulas when X and Y are independent random variables.

3. If X is a continuous and Y is a discrete random variable,

ΦX|Y (x|yj) ≡ Prob[X ≤ x |Y = yj ] =
Prob[X ≤ x, Y = yj ]

Prob[Y = yj ]
(B.84)

=

∫ x
−∞ dξφX,Y (ξ, yj)

Prob[Y = yj ]
,

provided marginal distribution πY (yj) = Prob[Y = yj ] += 0 from (B.66b),
where φX,Y (ξ, yj) is the hybrid density distribution in (B.62).

• Iterated probability uses the definitions of conditional probability in reverse
to evaluate joint probability for the random variables X and Y :

1. If X and Y are both discrete random variables,

Prob[X = xi, Y = yj ] = Prob[X = xi |Y = yj] · Prob[Y = yj ], (B.85)

provided the conditional distribution Prob[X = xi |Y = yj] exists.

2. If X and Y are both continuous random variables,

Prob[X ≤ x, Y ∈ [y, y + dy]] =

∫ x

−∞
dξφX,Y (ξ, y)dy

= Prob[X ≤ x |Y = y] · φY (y)dy, (B.86)

provided the conditional distribution Prob[X ≤ x |Y = y] exists, but if
not then φY (y) = 0 should cover the case.

3. If X is a continuous and Y is a discrete random variable,

Prob[X ≤ x, Y = yj ] = Prob[X ≤ x |Y = yj ] · Prob[Y = yj ], (B.87)

provided marginal distribution πY (yj) = Prob[Y = yj ] += 0 from (B.66b),
where φX,Y (ξ, yj) is the hybrid density distribution in (B.62).

Remark B.38. These forms are convenient for decomposing joint probability
calculations into simpler parts.
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• The conditional density is

φX|Y (x|y) =
∂ΦX|Y (x|y)

∂x
(B.88)

provided X is a continuous random variable and Y is either continuous or
discrete.

• The conditional expectation of X given Y = y is defined as

EX [X |Y = y] =

∫ +∞

−∞
xφX|Y (x|y)dx (B.89)

provided X is a continuous random variable and Y is either continuous or
discrete; else

EX [X |Y = yj ] =
∞∑

i=1

xiπX|Y (xi|yj) (B.90)

when both X and Y are discrete random variables with a similar form for
EX [X |Y = y] if X is discrete but Y is continuous.

• Similarly, the expectation for a function f(X, Y ) given Y = y is

EX [f(X, Y )|Y = y] =

∫ +∞

−∞
f(x, y)φX|Y (x|y)dx.

provided X is a continuous random variable and Y is either continuous or
discrete; else

EX [f(X, Y )|Y = yj] =
∞∑

i=1

f(xi, yj)πX|Y (xi|yj)

when both X and Y are discrete random variables.

Properties B.39. Conditional Expectations.

• E[f(X)|X ] = f(X) for some function f .

• EY [EX|Y [X |Y ]] = EX,Y [X ], but EY [EX|Y [X |Y ]] = EX [X ] if X and Y are
independent random variables.

• E[c1X1 + c2X2|Y ] = c1E[X1|Y ] + c2E[X2|Y ] provided the conditional expec-
tations exist for random variables Y and Xi, and constants ci, for i = 1 : 2,
i.e., the conditional expectation is a linear operation.

• If X and Y are random variables, then the iterated expectation is

EX,Y [f(X, Y )] = EY [EX [f(X, Y )|Y ]] (B.91)
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provided the expectations exist, i.e., that f(x, y) is sufficiently integrable with
respect to any density. This is also a general form of the law of total probability
given the next section.

Proof. In the case that X and Y are both continuous random variables, the
justification is built upon the basic definition of the conditional distribution
in (B.83) which leads to the conditional density according to (B.88) upon
differentiation,

φX|Y (x|y) = φX,Y (x, y)/φY (y),

assuming φY (y) > 0. Further, φY (y) > 0 will be assumed on −R ≤ y ≤ R for
some R > 0, since φY (y) → 0+ as y → +∞ for conservation of probability
through integrability at infinity. For convenience, the limit as R → +∞ will
be ignored in the following formally justifying chain of equations:

EX,Y [f(X, Y )] =

∫ +∞

−∞
dy

∫ +∞

−∞
dxφX,Y (x, y)f(x, y)

=

∫ +∞

−∞
dy

∫ +∞

−∞
dx

(
φX|Y (x|y)φY (y)

)
f(x, y)

=

∫ +∞

−∞
dyφY (y)

∫ +∞

−∞
dxφX|Y (x|y)f(x, y)

= EY [EX [f(X, Y )|Y ]] .

The other random variable cases are similar with sums where discrete random
variables are concerned.

• If X and Y are independent, then E[X |Y ] = E[X ] and in general

E[f(X)g(Y )|Y ] = E[f(X)]g(Y ),

provided the expectations exist.

See Mikosch [209] for more conditional expectation properties in a more ab-
stract setting.

B.3.2 Law of Total Probability

Properties B.40. Law of Total Probability.

• When X is a discrete random variable and given a countable set of
mutually independent discrete random variables, {Y1, Y2, . . . , Yi, . . . },
and the conditional probabilities Prob[X |Yi] for i = 1, 2, . . . , then the
law of total probability (see Taylor and Karlin [265]) in this completely
discrete case is

Prob[X ] =
∞∑

i=1

Prob[X |Yi]Prob[Yi], (B.92)
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i.e., an extension of the law of additive probabilities for disjoint events.

• When X is a continuous random variable, the corresponding law of total
probability for the probability distribution ΦX(x) is

ΦX(x) =
∞∑

i=1

ΦX|Y (x|Yi)Prob[Yi], (B.93)

• Providing the density exists in the continuous random variable case, the cor-
responding law of total probability for the probability density of φX(x) is

φX(x) =
∞∑

i=1

φX|Y (x|Yi)Prob[Yi], (B.94)

• Finally, the expectation corresponding to the law of total probability is

E[f(X)] =
∞∑

i=1

EX [f(X)|Yi]Prob[Yi] (B.95)

for either discrete or continuous X case and assuming the expectations of f(X)
exist. This is a special case of the iterated expectations given previously
in (B.91).

Example B.41. An interesting financial example of (B.95) derived from [265] is
the set of statistics for the daily stock price return observed on a transaction by
transaction basis. Let the transaction price return be ξi = ∆Si = Si+1 − Si, where
Si is the price of the ith transaction, with S0 the initial price such as that from the
previous day’s closing. Suppose the returns are independent identically distributed
(IID) random variables with common mean Eξ[ξi] = µ and variance Varξ[ξi] = σ2.
Assume the current total daily stock return after N transactions is

X =
N∑

i=0

ξi,

where N is Poisson distributed, i.e., N is a counting process such that Prob[N =
n] = pn(Λ) with Λ being the Poisson parameter in (B.50), so EN [N ] = Λ =
VarN [N ]. Starting from the law of total probability, the expectation of the daily
return is decomposed as

EX [X ] =
∞∑

n=0

EX|N [X |N = n]pn(Λ) =
∞∑

n=0

Eξ|N

[
N∑

i=0

ξi

∣∣∣∣∣
N = n

]

pn(Λ)

=
∞∑

n=0

Eξ

[
n∑

i=0

ξi

]

pn(Λ) =
∞∑

n=0

n∑

i=0

Eξ[ξi]pn(Λ)

=
∞∑

n=0

n∑

i=0

µpn(Λ) = µ
∞∑

n=0

npn(Λ) = µΛ,
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where the independence and identically distributed properties of the ξi random vari-
ables, as well as the mean properties of N , have been used.

The variance of X is more complicated but follows from similar techniques,
except that terms are collected by completing the square in the ith return deviation
from the mean (ξi − µ) with several applications of the independence assumption,

VarX [X] = EX [(X − Λµ)2] =
∞X

n=0

Eξ|N

2

4
 

NX

i=0

ξi − Λµ

!2
˛̨
˛̨
˛̨N = n

3

5 pn(Λ)

=
∞X

n=0

Eξ

" 
nX

i=0

(ξi − µ) + (n − Λ)µ

!2#

pn(Λ)

=
∞X

n=0

Eξ

"
nX

i=0

nX

j=0

(ξi − µ)(ξj − µ) + 2(n − Λ)µ
nX

i=0

(ξi − µ) + (n − Λ)2µ2

#

pn(Λ)

=
∞X

n=0

Eξ

2

4
nX

i=0

(ξi − µ)2 +
nX

i=0

nX

j "=i

(ξi − µ)(ξj − µ) + (n − Λ)2µ2

3

5 pn(Λ)

=
∞X

n=0

"
nX

i=0

Eξ[(ξi − µ)2] + (n − Λ)2µ2

#

pn(Λ) =
∞X

n=0

[nσ2 + (n − Λ)2µ2]pn(Λ)

= Λσ2 + Λµ2 = Λ(σ2 + µ2),

such that the ith return variance is augmented by the mean squared.

B.4 Probability Distribution of a Sum: Convolutions
Combinations of random variables play an important role in the analysis of stochas-
tic processes, especially in the sum of two stochastic processes. Consider the fol-
lowing result.

Theorem B.42. Convolution for Sums of Random Variables.
If X and Y are independent random variables with densities φX(x) and φY (y),
respectively, then the distribution of the sum is

ΦX+Y (z) ≡ Prob[X + Y ≤ z] =

∫ +∞

−∞
ΦY (z − x)φX(x)dx, (B.96)

provided the integral exists, where

ΦY (y) =

∫ y

−∞
φY (η)dη.

Proof. By the independence of the variables X and Y , the joint density is sepa-
rable, φX+Y (x, y) = φX(x)φY (y). Thus, using the properties of the Heaviside step
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function,

H(x) =

{
0, x < 0
1, x ≥ 0

}
, (B.97)

then

Prob[X + Y ≤ z] = EX+Y [H(z − X − Y )]

=

∫ +∞

−∞

∫ +∞

−∞
H(z − x − y)φX(x)φY (y)dydx

=

∫ +∞

−∞

∫ z−x

−∞
φY (y)dyφX(x)dx

=

∫ +∞

−∞
ΦY (z − x)φX(x)dx

= EX [ΦY (z − X)],

where iterated integrals have been freely interchanged by the theorem of Fubini,
which asserts that if an integral exists as a two-dimensional integral, then the two
iterative integrals can be interchanged, i.e., the order of integration does not matter.
Fubini’s theorem is often used in probability theory [85, 169].

Since it has been assumed that the densities exist, then differentiation of the
sides of the equation in (B.96), but under the integral sign for those on the right,
yields the formula for the probability density of a sum, as follows.

Corollary B.43.

φX+Y (z) =

∫ +∞

−∞
φY (z − x)φX (x)dx. (B.98)

The particular functional product forms of (B.96), (B.98) are called convolu-
tions [85].

Definition B.44. Let the convolution of a distribution or density f(y) and a
density φ(x) be

(f ∗ φ)(z) ≡
∫ +∞

−∞
f(z − x)φ(x)dx (B.99)

provided the integral exists.

Consequently, we have the following properties, including the reformulation of
the above sum rules.

Properties B.45. Convolutions.
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• The convolution of densities is symmetric (f ∗ φ)(z) = (φ ∗ f)(z) , upon
change of variables in the integrand.

• φX+Y (z) = (φY ∗ φX)(z) = (φX ∗ φY )(z).

• ΦX+Y (z) = (ΦX ∗ φY )(z) = (ΦY ∗ φX)(z).

• The form for n mutually independent random variables, all with given densi-
ties, is

φX1+X2+···+Xn(z) = (φX1 ∗ φX2 ∗ · · · ∗ φXn)(z) (B.100)

=

{
((. . . ((φX1 ∗ φX2) ∗ φX3 ) · · · ∗ φXn−1) ∗ φXn)(z)

(φX1 ∗ (φX2 ∗ (φX3 ∗ . . . (φXn−1 ∗ φXn) . . . )))(z)

}

,

the latter forms depending on whether the convolution expansion is from the
right or from the left, respectively.

Remark B.46. The particular form depends on which particular inductive def-
inition is used, i.e., the right and left convolution expansion forms, respectively,
are

φPn+1
i=1 Xi

(z) =






(
φPn

i=1 Xi
∗ φXn+1

)
(z)

(
φX1 ∗ φPn+1

i=2 Xi

)
(z)




 ,

as can be shown by mathematical induction.

Lemma B.47. Convolution of Normal Densities is Normal.
If X and Y are normally distributed random variables, with probability densities
φX(x) = φn(x; µx, σ2

x) and φY (y) = φn(y; µy, σ2
y), respectively, then, letting Z =

X + Y ,

φZ(z) = (φX ∗ φY )(z) =

∫ +∞

−∞
φX(z − y)φY (y)dy = φn(z; µx + µy, σ2

x + σ2
y). (B.101)

Maple Proof.
> phi:=(x,m,s)->exp(-(x-m)^2/(2*s^2))/sqrt(2*pi*s^2);

φ := (x, m, s) → e(−1/2 (x−m)2

s2 )

√
2 π s2

> interface(showassumed=0); assume(sx>0); assume(sy>0);
> phi Z:=simplify(int(phi(z-y,mx,sx)*phi(y,my,sy),
> y=-infinity..infinity));

phi Z :=
1

2

e

„
− (z−mx−my)2

2 (sy2+sx2)

«
√

2
√

π

π
√

sy2 + sx 2

For more general results see Exercises 16, 17, and 18.
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B.5 Characteristic Functions
Often it convenient to transform distributions or densities so that moments can be
generated more systematically, leading to a class of generating functions. Here, the
emphasis will be on one class that is more useful for both positive and negative
random variables, called characteristic functions.

Definition B.48. The characteristic function of a random variable X is defined
in general as

CX(u) ≡ E
[
eiuX

]
, (B.102)

where i =
√
−1 is the imaginary unit constant, u is the characteristic function

argument, assumed real here, the complex exponential is

eiux = cos(ux) + i sin(ux)

by Euler’s formula with complex conjugate z∗ = (x + iy)∗ ≡ x − iy so

(exp(iux))∗ = exp(−iux)

and modulus (absolute value) |z| ≡
√

(x2 + y2) so

∣∣eiux
∣∣ =

√
cos2(ux) + sin2(ux) = 1

according to Pythagorus’ theorem (summarizing almost all the complex algebra that
will be needed here). Only three main forms for CX(u) are listed here:

• If X is a continuous random variable with proper probability distribution func-
tion ΦX(x), then

CX(u) =

∫ ∞

−∞
eiuxdΦX(x), (B.103)

which is called a Fourier–Stieltjes transform.

• If X is a continuous random variable and there exists a density corresponding
to ΦX(x), then

CX(u) =

∫ ∞

−∞
eiuxφX(x)dx, (B.104)

which is just an ordinary Fourier transform.

• If X is a discrete random variable with distribution function πk = Prob[X =
xk] for all nonnegative integers k, then

CX(u) =
∞∑

k=0

πkeiuxk , (B.105)

which is called a Fourier exponential series.
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Properties B.49. Characteristic Functions.

• Moment properties:

◦ CX(0) = 1 by conservation of probability;

◦ C′
X(0) = EX [X ] by differentiation of integrand;

◦ By induction for k = 0, 1, 2, . . . ,

dkCX

duk
(0) = ikEX

[
Xk

]
.

• Relationship to standard generating function:

GX(z) ≡ E
[
zX

]
, (B.106)

so letting zx = eiux, then z = eiu, u = −i ln(z), GX(z) = CX(−i ln(z)) and
CX(u) = GX(eiu).

• Complex properties: By Euler’s formula, the resolution into real and imag-
inary parts,

CX(u) = CX(u) + iSX(u),

where the real part is the cosine transform

CX(u) =

∫ ∞

−∞
cos(ux)φX(x)dx

and the imaginary part is the sine transform

SX(u) =

∫ ∞

−∞
sin(ux)φX(x)dx,

so the complex conjugate is

C∗
X(u) = CX(u) − iSX(u).

• Reality and symmetric densities: The characteristic function CX(u) is
real if and only if the corresponding probability density is symmetric, i.e.,
φX(−x) = φX(x). Note that CX(u) is real if the imaginary part SX(u) is zero
and CX(−u) = C∗

X(u) = CX(u) − iSX(u) (exp(−iux) = cos(ux) − i sin(ux)),
so

iSX(u) = 0.5(CX(u) − CX(−u)) = 0.5

∫ ∞

−∞

(
eiux − e−iux

)
φX(x)dx

= 0.5

∫ ∞

−∞
eiux (φX(x) − φX(−x)) dx,

then φX(x) symmetric implies SX(u) = 0 and SX(u) = 0 implies φX(x)
symmetric.
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• Upper bound: |CX(u)| ≤ 1, since by Euler’s formula and trigonometric
identities

|CX(u)|2 =

(∫ ∞

−∞
cos(ux)φX(x)dx

)2

+

(∫ ∞

−∞
sin(ux)φX(x)dx

)2

=

∫ ∞

−∞

∫ ∞

−∞
(cos(ux) cos(uy) + sin(ux) sin(uy))φX(x)φX(y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
cos(u(x − y))φX(x)φX (y)dxdy

≤
∫ ∞

−∞

∫ ∞

−∞
φX(x)φX(y)dxdy = 1.

• Sums of random variables and convolutions: Let {Xk; k = 1 : N} be a
set of independent random variables; then CX1+X2(u) = CX1(u) · CX1(u) since
by the convolution property (B.98)

CX1+X2(u) =

∫ ∞

−∞
eiuxφX1+X2(x)dx =

∫ ∞

−∞
eiux (φX1 ∗ φX2 ) (x)dx

=

∫ ∞

−∞
eiux

∫ ∞

−∞
φX2 (x − y)φX1(y)dydx

=

∫ ∞

−∞
eiuyφX1 (y)

∫ ∞

−∞
eiu(x−y)φX2(x − y)dxdy

= CX1(u) · CX1(u),

assuming integral interchange is permitted. Further, for a set of of N inde-
pendent random variables,

CP
N
k=1 Xk

(u) =
N∏

k=1

CXk
(u).

• Uniqueness: The characteristic function CX(u) is uniquely related to its cor-
responding distribution ΦX(x) and vice versa. (See Feller [85] for justification
and more information on characteristic and other generating functions, as well
as the inverse Fourier transform that is beyond the simple complex variables
that are assumed here.)

Examples B.50. Characteristic Functions for Common Distributions.

• Normal distribution:

Cn(u; µ, σ2) =

∫ ∞

−∞
eiuxφn(x; µ, σ2)dx = e−0.5σ2u2+iµu.

• Exponential distribution (µ > 0):

Ce(u; µ) =

∫ ∞

0
eiuxφe(x; µ)dx =

1

1 − iµu
=

1 + iµu

1 + µ2u2
.
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• Uniform distribution (a < b):

Cu(u; a, b) =
1

b − a

∫ b

a
eiuxdx =

eiub − eiua

i(b − a)u
.

• Double exponential (Laplace) distribution (µ > 0):

Cde(u; a, µ) =
1

2µ

∫ ∞

0
eiuxe−|x−a|/µdx =

eiau

1 + µ2u2
.

• Poisson distribution (Λ > 0, xk = k):

Cp(u; Λ) =
∞∑

k=0

eiukpk(Λ) =
∞∑

k=0

eiuke−Λ Λk

k!
= e−Λ

∞∑

k=0

(
eiuΛ

)k

k!
= eΛ(eiu−1).

Characteristic functions are also used to define Lévy processes, which are ba-
sically a generalization of jump-diffusion processes to include processes with infinite
jump rates. Thus, characteristic functions are essential for including such singular
behavior. For references on Lévy processes see the cited sources on Lévy processes
or jump-diffusion references that emphasize Lévy processes [12, 60, 223].

Another application is to financial option pricing for jump-diffusions with
stochastic volatility (i.e., stochastic variance) where the characteristic function for-
mulation and its inverse Fourier transform offer certain advantages for computation
(see Carr et al. [47] or Yan and Hanson [289]).

B.6 Sample Mean and Variance: Sums of
Independent, Identically Distributed (IID)
Random Variables

Just as there is no such thing as a truly random variable in practice, although
the theory of random variables is very useful, there is no such thing as a continu-
ously sampled random variable in practice. Typically, we sample discretely from a
theoretical continuous distribution and assume that the samples are independently
sampled.

Definition B.51. (IID Random Variables.
A set of n random variables {Xk|k = 1 : n} is independent, identically dis-
tributed (IID) if the Xk have the same distribution, i.e.,

ΦXk
(x) = ΦXj (x),

for all k, j = 1 : n, and Xk is independent of Xj when k += j, i.e.,

Cov[Xk, Xj ] = Var[Xj ]δk,j .
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Definition B.52. Sample Mean and Variance.
Let {Xk|k = 1 : n} be a sample of n random variables. Then the sample mean is
defined as

mn =
1

n

n∑

k=1

Xk, (B.107)

and the sample variance or population variance is

s2
n =

1

n

n∑

k=1

(Xk − mn)2, (B.108)

but the unbiased estimate of the sample variance is

ŝ2
n =

1

n − 1

n∑

k=1

(Xk − mn)2. (B.109)

An estimate Ŷ of a quantity y is called an unbiased estimate if

E
[
Ŷ
]

= y.

Theorem B.53. IID Sample Mean and Variance.
Let {Xk|k = 1 : n} be a set of IID random variables such that E[Xk] = µ and
Var[Xk] = σ2 for all k. Then

E[mn] = µ, (B.110)

E[s2
n] = σ2, (B.111)

E[ŝ2
n] =

n

n − 1
σ2, (B.112)

Var[mn] =
1

n
σ2. (B.113)

Remarks B.54.

• These sample moments and more are left as Exercises (13), (15) and, (14).
The first is trivial, but the other two rely heavily on the independence property,
so it is very helpful to collect all terms as deviations from the mean forms like
(Xk − µ). Also, split up multiple sums into a single sum for equal indices
(say j = k) and the product of an outer sum by an inner sum when the inner
index is not equal to the outer index (say, j += k) . Note that for large n, the
difference between the regular and unbiased estimates of the variance will be
small.
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• Since mn is a sum of random variables, then its distribution will be a nested
convolution of the common distribution of the Xk variates. Convolutions are
defined earlier in (B.96) of Section B.4.

• Later, the relevant limit theorems will be discussed. The law of large numbers
(B.114) says that the sample mean will approach the distribution mean and
the central limit theorem Theorem B.57, discussed later, says that the sample
distribution will approach the normal limiting distribution for large sample
sizes.

• For properties of powers of partial sums of zero-mean IID random variables
see Lemma 5.15 on p. 150.

B.7 Law of Large Numbers
When applying probability to real applications, the user may need to compare the
statistical properties of the practical sample with the ideal concepts of probability
theory. For instance, when comparing the sample mean to an ideal distribution
mean, some justification comes partly from the law of large numbers, a weak and
a strong form are given here suitable for this appendix of preliminaries (see also
Feller [84] or Karlin and Taylor [162]) .

B.7.1 Weak Law of Large Numbers (WLLN)

Theorem B.55. Law of Large Numbers, Weak Form:
Let {X1, X2, . . . Xi, . . . } be a sequence of independent identically distributed random
variables (i.e., IID random variables or mutually independent random variables with
common distribution Φ(x)) with common mean µ = E[Xi] for all i. Let Sn =∑n

i=1 Xi be a sequence of partial sums such that Sn is the sum of n of these sample
measurements, so that the sample mean is mn = Sn/n. Then for every ε > 0,

Prob[|mn − µ| > ε] −→ 0 as n → +∞. (B.114)

Thus, if the sample size is large enough, the sample mean will approximate
the distribution mean.

B.7.2 Strong Law of Large Numbers (SLLN)

Theorem B.56. Law of Large Numbers, Strong Form:
Let {X1, X2, . . . Xi, . . . } be a sequence of independent identically distributed random
variables (i.e., IID random variables or mutually independent random variables with
common distribution Φ(x)) with common mean µ = E[Xi] for all i. Let Sn =∑n

i=1 Xi be a sequence of partial sums such that Sn is the sum of n of these sample
measurements, so that the sample mean is mn = Sn/n. Then

Prob[limn→∞ mn = µ] = 1,

i.e., mn → µ with probability one as n → +∞.
(B.115)
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B.8 Central Limit Theorem
The central limit theorem is much more powerful than the law of large numbers.
Again, a simple form is given for IID random variables [84].

Theorem B.57. Central Limit Theorem.
Let {X1, X2, . . . Xi, . . . } be a sequence of independent identically distributed ran-
dom variables (i.e., IID random variables or mutually independent random vari-
ables with common distribution Φ(x)) with common mean µ = E[Xi] and variance
σ2 = Var[Xi] for all i. Let Sn =

∑n
i=1 Xi be the sum of n of these sample measure-

ments, so that the sample mean is mn = Sn/n. Then for every fixed ξ,

Prob

[
mn − µ

σ/
√

n
≤ ξ

]
−→ Φn(ξ; 0, 1), (B.116)

as n → +∞, where Φn(ξ; 0, 1) is the standard normal distribution defined in (B.1.4),
when µ = 0 and σ2 = 1.

Thus, if the sample size is large enough, the deviation of the sample mean from
the distribution mean, scaled by σ/

√
n, will be asymptotically normally distributed

with mean 0 and variance 1.
For stronger versions of the central limit theorem see the many probability

references listed at the end of this appendix.

B.9 Matrix Algebra and Analysis
Many important distributions, stochastic processes, and control problems are mul-
tivariate, rather than scalar. Here matrix algebra and matrix analysis are summa-
rized. Many of the given properties can be computed symbolically using Maple and
Mathematica, or numerically using MATLAB.

• Vector notation: x = [xi]n×1, in boldface, denotes an n-vector, where the
number xi is the ith component. Let y = [yi]n×1 be another n-vector. In this
book vectors are column vectors, unless transposed. Numbers are also called
scalars here.

• Matrix or array notation: A = [ai,j ]n×n denotes an n × n square matrix
(literally a table) or array, where the number ai,j is an element of the ith row
and jth column. Sometimes we say that A is an order n matrix. Nonsquare
matrices would be Q = [qi,j ]m×n or R = [ri,j ]n×p. Matrix elements may also
be functions.

• Matrix equality: B = A means that all matrix elements are equal, bi,j = ai,j

for i = 1 : n and j = 1 : n. The negation of the equality requires only one
pair of unequal elements, bk,% += ak,% for some (k, /).

• Matrix identity:

In ≡ [δi,j ]n×n, (B.117)
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where δi,j is the Kronecker defined in (B.54) and has the sum property that∑n
j=1 ajδi,j = ai provided i is in the range of j, j = 1 : n.

• Matrix transpose:

Q' = [qj,i]n×m, (B.118)

i.e., transposing a real matrix is switching rows and columns. If there are
complex elements, then the Hermitian transpose is used, QH = [q∗j,i]n×m,

where if z = x + îy is a complex number, then the complex conjugate is
z∗ = x − îy and î =

√
−1 is the imaginary unit such that î2 = −1. Although

this book is exclusively about real problems, there are important methods and
even real problems that introduce complex numbers into the analysis.

• Inner or dot or scalar product of two vectors:

x'y = x•y = x'y ≡
n∑

i=1

xiyi, (B.119)

provided y is also an n-vector. If there are complex vector elements or com-
ponents, then the Hermitian inner product is used:

xHy ≡
n∑

i=1

x∗
i yi.

• Matrix trace:

Trace[A] ≡
n∑

i=1

ai,i. (B.120)

• Matrix-vector product:

Qx ≡




∑

j=1

qi,jxj





m×1

, (B.121)

i.e., the ith component is (Qx)i =
∑

j=1 qi,jxj (also, integer m ≥ 1).

• Matrix-matrix product:

QR ≡
[
∑

k=1

qi,krk,j

]

m×p

, (B.122)

so for two matrices to be commensurate or consistent in multiplication the
number of columns of the premultiplier Q must be the same as the number of
rows of the postmultiplier R (also, integers m ≥ 1 and p ≥ 1).

• Transpose of a matrix product: (QR)' = R'Q'.
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• Matrix inverse: For square matrices A, the inverse A−1 has the property

A−1A = In = AA−1 (B.123)

whenever A−1 exists and this property provides a set of algebraic equations
for determining the elements of the inverse. See the MATLAB, Maple and
Mathematica packages.

• Vector norm:

||x||p ≡
(

n∑

i=1

|xi|p
)1/p

(B.124)

is the pth norm with the properties that

1. ||x||p ≥ 0;

2. ||x||p = 0 if and only if x = 0;

3. ||sx||p = |s|||x||p if s is a scalar;

4. ||x + y||p ≤ ||x||p + ||y||p, called the triangular inequality;

5. ||x'y||p ≤ ||x||p||y||p, called the Cauchy inequality.

Common norms are the

1. 1-norm, ||x||1 =
∑n

i=1 |xi|;
2. infinity-norm, ||x||∞ = maxi=1:n[|xi|];

3. 2-norm, ||x||2 =
√∑n

i=1 x2
i =

√
x'x if x real, but ||x||2 =

√
xHx if

complex.

• Matrix norm: Matrix norms are defined on the more basic vector norms,

||A||p ≡ max
||x||p (=0

[ ||Ax||p / ||x||p] = max
||u||p (=1

[||Au||p] , (B.125)

and they satisfy properties analogous to the vector norm properties above.
Usual values are p = 1, 2, or ∞.

• Matrix condition number:

condp[A] ≡ ||A||p||A−1||p (B.126)

is the pth condition number, bounded below by condp[A] ≥ 1 and is scale-
invariant since condp[sA] = |s|condp[A] if s is a nonzero scalar. Implicit in
the definition is that the inverse A−1 exists.

• Matrix determinants: If A is a square matrix, then the determinant Det[A]
has a scalar value that can be computed by recursion from smaller determi-
nants, expanding by either a row or a column. For instance,
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1. If n = 1, then Det[a1,1] = a1,1.

2. If n = 2, then

Det

[
a1,1 a1,2

a2,1 a2,2

]
= a1,1Det[a2,2] − a1,2Det[a2,1].

3. If n = 3, then

Det




a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3



 = a1,1Det

[
a2,2 a2,3

a3,2 a3,3

]

− a1,2Det

[
a2,1 a2,3

a3,1 a3,3

]

+ a1,3Det

[
a2,1 a2,2

a3,1 a3,2

]
.

4. And so forth.

Some useful properties are Det[A'] = Det[A] since row and column expansions
give the same result; the Cauchy–Binet formula states that

Det[AB] = Det[A]Det[B] (B.127)

provided A and B are commensurate, and Det[In] = 1; a corollary is Det[A−1] =
1/Det[A] if A−1A = In.

• Systems of linear equations:

Ax = b, (B.128)

where the coefficient matrix A and b = [bi]n×1 are given and the object is to
find the vector x.

1. In theory, a unique solution exists if Det[A] += 0; else if Det[A] = 0, then
A is called singular.

2. In numerical practice, a nearly singular A usually has serious problems
and the condition number cond[A] due to its scale-invariance is a better
measure of difficulties. If cond[A] is of moderate size (not much big-
ger than O(1), say), then the problem is called well-conditioned, but
if cond[A] is very large, then the problem is called ill-conditioned. In
Gaussian elimination with back substitution, row pivoting with row scal-
ing or full pivoting can reduce the conditioning problems and produce
more reliable approximate solutions. The MATLAB, Maple and Math-
ematica systems provide either numerical or symbolic functions to solve
Ax = b.
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• Matrix eigenvalue problems:

Ax = λx (B.129)

is the eigenvalue problem statement, where the object is to find a set of char-
acteristic values or eigenvalues λk and associated eigenvectors xk that char-
acterize the matrix A.

1. Since the algebraic problem (A−λkIn)xk = 0 is equivalent to the original
(B.129),

Det[A − λIn] = 0

is called the characteristic or eigen equation.

2. (A − λkIn) is a nth polynomial in λk,

Pn(λ) =
n∑

i=0

ciλ
i,

where c0 = Det[A], c1 = −Trace[A], . . . , cn = (−1)n.

3. The characteristic equation is the condition for finding a nontrivial eigen-
value, xk[xi,k]n×1 += 0.

4. Solving Det[A − λIn] = 0 yields n eigenvalues [λi]n×1.

5. The eigenvectors can be found from a subset of the original problem but
are not unique.

6. If xk is an eigenvector, then so is y = s ∗ x, where s is an arbitrary,
nonzero scalar.

7. A unit or normalized eigenvector is of the form ||uk||p = 1.

8. If A is real and symmetric, then the eigenvectors are orthogonal, x'
j xk =

||xk||22δj,k or orthonormal if ||xk||2 = 1 in addition.

9. If A is not real and nonsymmetric, then the left or adjoint eigen problem

yH
j A = µ∗

jy
H
j or AHyj = µjyj

would be needed for orthogonality conditions since 0 = (λk − µ∗
j )y

H
j xk,

so if µ∗
j += λk, then yH

j xk = 0.

• Gradient of a scalar valued function of a vector argument:

∇x[F ](x) =
∂F

∂x
(x) = Fx(x) ≡

[
∂F

∂xi
(x)

]

n×1

, (B.130)

so the gradient is a column vector with the same shape as x here. In some
texts [44], the gradient may be a row vector, so matrix-vector products will
be different there.
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• Gradient of a matrix-vector product transpose:

∇x

[
(Ax)'

]
=

[
∂

∂xi

n∑

k=1

aj,kxk

]

n×n

=

[
n∑

k=1

aj,kδi,k

]

n×n

= [aj,i]n×n = A', (B.131)

so the gradient just peels off the premultiplied x' since (Ax)' = x'A' (i.e.,
the gradient peel theorem).

• Quadratic forms:

Q = x'Ax =
n∑

i=1

n∑

j=1

xiai,jxj , (B.132)

which is a scalar, and since Q is a scalar and the transpose has no effect on
scalars, then

Q = Q' = x'A'x =
1

2

(
Q + Q') = x'ASx, (B.133)

where AS ≡ 1
2 (A+A') is the symmetric part of A. Thus, for quadratic forms,

the user might as well assume A to be symmetric or that A' = A.

• Positive definite matrices: The matrix A is positive definite if for every
nonzero vector x (x += 0) the quadratic form

x'Ax > 0, (B.134)

sometimes abbreviated as A > 0. Similarly, A is positive semidefinite if
for all x += 0,

x'Ax ≥ 0, (B.135)

or if so, then we say A ≥ 0. Further, A is positive definite if and only if all its
eigen values are positive [68], so then A is invertible, i.e., A−1 exists.

• Gradient of a quadratic form:

∇x

[
x'Ax

]
= 2Ax, (B.136)

assuming A is symmetric, by two applications of the peel theorem, one on the
left and another on the right by transposing first.

• Hessian matrix of a scalar valued function:

∇x

[
∇'

x [F ]
]
(x) =

[
∂2F

∂xi∂xj
(x)

]

n×n

, (B.137)

so the matrix of second derivatives is a square n × n matrix.

• Hessian Matrix of a Quadratic Form:

∇x

[
∇'

x [x'Ax]
]

= ∇x

[
2(Ax)'

]
= 2∇x

[
x'A

]
= 2A (B.138)

by the peel theorem, assuming that A is symmetric.
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B.10 Some Multivariate Distributions
The probability distributions, such as normal, exponential, and Poisson, previously
considered have been functions of a single real sample variable representing a single
random variate. However, some applications require multidimensional distributions
representing jointly distributed multivariate random variables. The continuous mul-
tivariate normal (multinormal) distribution and the discrete multinomial distribu-
tion will serve as examples.

B.10.1 Multivariate Normal Distribution

Definition B.58. The multivariate normal distribution for the real m-dimensional
vector random variate X = [Xi]m×1 ∈ Rm is defined by the density in matrix-vector
notation as

φn(x; µ,Σ) ≡ 1

(2π)m/2
√

Det[Σ]
exp

(
−0.5(x− µ)T Σ−1(x − µ)

)
, (B.139)

where µ = [µi]m×1 = E[X] is the vector mean,

Σ = [σi,j ]m×m = E
[
[(Xi − µi)(Xj − µj)]m×m

]

is the positive definite variance-covariance matrix, i.e., σi,i ≡ σ2
i = Var[Xi] for

i = 1 : m, while σi,j ≡ Cov[Xi, Xj ] if j += i for i, j = 1 : m, and Det[Σ] is the
determinant of Σ. The correlation coefficient is the normalized covariance,

ρi,j ≡ Cov[Xi, Xj ]√
Var[Xi]Var[Xj ]

=
σi,j

σiσj
, (B.140)

provided σi, σj += 0 and i, j += 0.
Total probability is conserved since

∫

Rm

φn(x; µ,Σ)dx = 1.

Theorem B.59. Correlation coefficient bounds.
Let X1 and X2 be two random variables. Then

|ρ(X1, X2)| ≤ 1, (B.141)

provided σ1 > 0 and σ2 > 0, but if ρ(X1, X2) = ±1, then

X2/σ2 = ±X1/σ1 + C (B.142)

for some constant C.



“bk0allfinal”
2007/8/10
page B47

!

!

!

!

!

!

!

!

B.10. Some Multivariate Distributions B47

Proof. The proof is modeled after Feller’s proof [84, p. 236]. Let ρ = ρ(X1, X2),
and using (B.74)

Var[X1/σ1 ± X2/σ2] = Var[X1/σ1] ± 2Cov[X1/σ1, X2/σ2] + Var[X2/σ2]

= 2(1 ± ρ) ≥ 0,

since Var[X ] ≥ 0, so |ρ| ≤ 1.
If ρ = 1, then let ±1 = −1 and thus X1/σ1 − X2/σ2 = C1, where C1 is a

constant, but if ρ = −1, then let ±1 = +1 and thus X1/σ1 + X2/σ2 = C2, where
C2 is a constant. Combining these two cases leads to the form (B.142).

Example B.60. The bivariate normal distribution, i.e., the two-dimensional
case, needs several conditions to keep the density well-defined: σi > 0 for = 1 : 2,
σ1,2 = ρσ1σ2, where ρ = ρ1,2 is the correlation coefficient between state 1 and state
2 such that −1 < ρ < +1. Thus,

Σ =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
, (B.143a)

Σ−1 =
1

1 − ρ2

[
1/σ2

1 −ρ/(σ1σ2)
−ρ/(σ1σ2) 1/σ2

2

]
. (B.143b)

The Σ−1 follows upon calculating the two-dimensional inverse of Σ, while substi-
tuting for Σ−1 and Det[Σ] = (1 − ρ2)σ2

1σ2
2 yields the more explicit density form:

φn

([
x1

x2

]
; µ,Σ

)
=

1

2πσ1σ2

√
1 − ρ2

exp

(

− 0.5

1 − ρ2

[(
x1 − µ1

σ1

)2

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2
+

(
x2 − µ2

σ2

)2
])

. (B.144)

Some of the first few moments are tabulated (results from the Maple symbolic com-
putation system) in Table B.1.

Remark B.61. The bivariate normal density becomes singular when σ1 → 0+ or
σ2 → 0+ or ρ2 → 1− and the density becomes degenerate. If ρ > 0, then X1 and
X2 are positively correlated, while if ρ < 0, then X1 and X2 are negatively
correlated.

B.10.2 Multinomial Distribution

The multinomial distribution may be useful for studying discrete collections of sam-
ples from continuous distributions, such as the bin frequencies of histograms and
many other applications [84, 129].
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Table B.1. Some expected moments of bivariate normal distribution.

Some Binormal Expectations

E[1] = 1
E[xi] = µi, i = 1 : 2

Var[xi] = σ2
i , i = 1 : 2

Cov[x1, x2] = ρσ1σ2

E[(xi − µi)3] = 0, i = 1 : 2
E[(xi − µi)4] = 3σ4

i , i = 1 : 2
E[(x1 − µ1)2(x2 − µ2)2] = (1 + 2ρ2)σ2

1σ2
2

Definition B.62. Using m bins where πk (0 < πk < 1) is the theoretical probability
associated with the kth bin as well as a parameter of the distribution for k = 1 : m
bins such that

m∑

k=1

πk = 1 (B.145)

and fk is the observed frequency (integer outcome count, fk ≥ 0) for the kth bin for
a sample of N observations such that

m∑

k=1

fk = N, (B.146)

the multinomial distribution is given by the joint probability mass function

p(f ; π) = Prob
[
F = f

∣∣1T π = 1,1T f = N
]

= N !
m∏

k=1

πfk

k

fk!
, (B.147)

where f = [fi]m×1 is the frequency value vector, F = [Fi]m×1 is the random fre-
quency vector, and 1 = [1]m×1 is the ones or summing vector.

Example B.63. When m = 2, the multinomial distribution is called the binomial
distribution and has probability function

p(f1, f2; π1, π2) =
N !πf1

1 πf2
2

f1!f2!
=

(
N
f1

)
πf1

1 (1 − π1)
N−f1 , (B.148)

where the binomial coefficient

(
n
k

)
≡ n!

k!(n − k)!
(B.149)

with the constraints f2 = N − f1 and π2 = 1 − π1 used on the far right-hand
side. The binomial distribution is applicable to trials with just two outcomes, called
Bernoulli trials (Feller [84]). Often these two outcomes or bins are identified
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as either a success, with probability π1, or failure, for example, with probability
π2 = 1 − π1. Feller [84] calls the binomial distribution, the normal distribution,
and the Poisson distribution the three principal distributions throughout probability
theory.

The binomial theorem gives the binomial expansion,

(π1 + π2)
N =

N∑

f1=0

(
N
f1

)
πf1

1 πN−f1
2 , (B.150)

but the coefficients are precisely the binomial probability functions

(π1 + π2)
N =

N∑

f1=0

p(f1, N − f1; π1, π2), (B.151)

which is why the distribution in (B.148) is called the Binomial distribution for bi-
nomial frequencies f1 for f1 = 0 : N (Feller [84]).

Consequently, the binomial expectation for some function g is given by

E[g(F1)] =
N∑

f1=0

g(f1)p(f1, N − f1; π1, 1 − π1).

Using parametric differentiation of the sums, with Fk being the kth random variable
and fk being the kth given conditioned variable, it can be shown that

• E[1] = 1 when g(fk) = 1 (actually (B.150) or (B.151) with π2 = π1),

• E[Fk] = Nπk when g(fk) = fk,

• Var[Fk] = Nπk(1 − πk) when g(fk) = (fk − Nπk)2,

• Cov[F1, F2] = −Nπ1π2 = −Nπk(1 − πk) = −Var[F1] when g(f1) = (f1 −
Nπ1)((N − f1) − N(1 − π1)) = −N(f1 − Nπ1)2.

As an illustration of an application of parametric differentiation to sum a
finite number of terms, consider the first moment:

E[F1] =
N∑

f1=0

f1

(
N
f1

)
π
f1
1 (1 − π1)

N − f1

= π1
d

dπ1




N∑

f1=0

(
N
f1

)
π
f1
1 (π2)

N − f1





∣∣∣∣∣∣
π2=1−π1

= π1
d

dπ1

[
(π1 + π2)

N
]∣∣

π2=1−π1
= π1N

[
(π1 + π2)

N−1
]∣∣

π2=1−π1
= Nπ1.

Similarly, forms with powers of {π1, d/dπ1} can be used for higher moments.
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Figure B.6. Binomial distributions with respect to the binomial frequency
f1 with N = 10 for values of the probability parameter, π1 = 0.25, 0.5, and 0.75.
These represent discrete distributions, but discrete values are connected by dashed,
dotted, and dash-dotted lines only to help visualize the distribution form for each
parameter value.

Figure B.6 illustrates the binomial distributions as a function of the binomial
frequency f1 when the total count is N = 10 for three values of the binomial proba-
bility parameter, π1 = 0.25, 0.5 and 0.75. See Online Appendix C, Section C.6, for
the MATLAB figure code called binomial03fig1.m. These binomial distributions
roughly resemble a discretized version of the normal distribution, except that they
are skewed for π1 = 0.25 and 0.75 while the distribution for π1 = 0.50 is symmetric.
Feller [84] states that when Nπ1(1 − π1) is large, the binomial distribution can be
approximated by the normal distribution with mean Nπ1 and variance Nπ1(1−π1),
but when N is large and π1 is the same order as 1/N , then the binomial distribution
can be approximated by the Poisson distribution with Λ = Nπ1 order one. Since
the Poisson can also be approximated by the normal approximation, there is some
overlap of the two approximations, but only the Poisson approximation is good when
Λ = Nπ1 is small.

The multinomial distribution has the same basic moments as the binomial,
but the constraints on the πk and fk also constrain the expectation summations.
The multinomial distribution in (B.147) is in fact the terms in the multinomial
expansion theorem,

(
m∑

k=1

πk

)N

= N !
m−1∏

i=1




(N−Fi−1)∑

fi=0

πfi

i

fi!



 πN−Fm−1
m

(N − Fm−1)!
,

=
m−1∏

i=1




(N−Fi−1)∑

fi=0



 p(f ; π)

∣∣∣∣∣∣
fm=(N−Fm−1)

, (B.152)
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which can be obtained from (m − 1) successive applications of the binomial ex-
pansion. It can be shown by induction upon replacing πm by (πm + πm+1) in the
induction hypothesis above and using an additional application of the binomial ex-
pansion with the power (N − Fm−1). Here, Fk ≡

∑k
j=1 fj is the partial sum of

the first k frequencies, such that F0 ≡ 0. For application to the multinomial dis-
tribution, the constraints lead to the elimination formula fm = N − Fm−1 for the
mth terms, so that the final fraction in (B.152) depends on the first m − 1 sample
frequencies fk. In the case of the multinomial distribution, also the mth theoretical
probability πm = 1 −

∑m−1
j=1 πj can be eliminated by conservation of probability.

B.11 Basic Asymptotic Notation and Results

Definitions and Results B.64. For purposes of a refined study of limits and
asymptotic behaviors found in many stochastic problems, basic asymptotic con-
cepts can be defined as follows:

• Equals big Oh or is the order of symbol is such that f(x) = O(g(x))
as x → x0 if f(x)/g(x) is bounded as x → x0 provided g(x) += 0 in a deleted
neighborhood of x = x0.

For example, 8 sin(ε/7) = O(ε) as ε → 0 or (2N2+3N+100)/(3N+5) = O(N)
as N → ∞ or exp(−0.5∆t) = 1 − 0.5∆t + O((∆t)2) as ∆t → 0. Also,
O(100∆t) = O(∆t) as ∆t → 0, since constants need not be considered. As
alternate notation, O((∆t)2) = O2(∆t) as ∆t → 0.

• Equals little oh or is smaller order than is such that f(x) = o(g(x))
as x → x0 if f(x)/g(x) → 0 as x → x0 provided g(x) += 0 in a deleted
neighborhood of x = x0. Also the notation f(x) / g(x) is equivalent to
f(x) = o(g(x)).

For example, exp(−0.5∆t) = 1−0.5∆t+o(∆t) as ∆t → 0 or
∫ t+∆t

t f(τ)dτ =
f(t)∆t+o(∆t) as ∆t → 0 provided f(t) is continuous. Note O(∆t)+o(∆t) =
O(∆t) as ∆t → 0.

• Equals ord or is the same order as is such that f(x) = ord(g(x)) as
x → x0 if f(x) = O(g(x)) but that f(x) += o(g(x)). The relation f(x) ≤
ord(g(x)) is equivalent to f(x) = O(g(x)) and f(x) < ord(g(x)) is equivalent
to f(x) = o(g(x)).

For example, (∆t)2 < ord(∆t) as ∆t → 0 but ∆t > ord((∆t)2) as ∆t → 0.

• The symbol ∼ or is asymptotic to is such that f(x) ∼ g(x) as x → x0

if f(x)/g(x) → 1 as x → x0 provided g(x) += 0 in a deleted neighborhood of
x = x0.

For example, (1 − exp(−0.425∆t))/∆t ∼ 0.425 as ∆t → 0.

Remark B.65. The symbol ∼ is commutative since if f(ε) ∼ g(ε), then
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g(ε) ∼ f(ε) as ε → 0 provided both f(ε) and g(ε) are not equal to zero
in a neighborhood of ε = 0. Also, one should never say that “f(ε) ∼ 0”
(bad asymptotics and bad mathematics), since according to our definition that
would be dividing by zero.

• A sequence {φn(x)} for n = 0 : ∞ is an asymptotic sequence if φn+1(x) <
ord(φn(x)) as x → x0.

For example, φn(x) = (x − x0)n as x → x0 or φn(∆t) = (∆t)n/2 as ∆t → 0+

for n = 0 : ∞.

• An expansion
∑∞

n=0 anφn(x), where an are coefficients constant in x and
φn(x) are elements of an asymptotic sequence, is an asymptotic expansion
which is asymptotic to a function f(x) if

f(x) −
N∑

n=0

anφn(x) < ord(φN (x))

as x → x0 for all N , and if so, then

f(x) ∼
∞∑

n=0

anφn(x)

as x → x0. As a corollary, the inductive algorithm for the coefficients follows
starting with a0 = limx→x0 f(x)/φ0(x) and

aN+1 = lim
x→x0

f(x) −
∑N

n=0 anφn(x)

φN+1(x)

for N = 0 : +∞, assuming that all limits exist.

For example, most convergent Taylor series, when considered under limiting
conditions, are asymptotic expansions, or asymptotic power series in particu-
lar,

f(x) ∼
∞∑

n=0

f (n)(x0)(x − x0)
n/n!,

as x → x0, but some asymptotic expansions can be divergent and still be useful
if a finite number of terms are used, such as the expansion of the famous
Stieltjes integral divergent asymptotic expansion example [28]

∫ ∞

0

e−tdt

(1 + xt)
∼

∞∑

n=0

(−1)nn!xn,

as x → 0, which clearly diverges. For asymptotic applications, we are usually
interested in only a few terms, whether the expansion is convergent or diver-
gent, so the first few terms of a divergent expansion can be useful. Limits
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play a different role in asymptotic expansions than they do for Taylor series,
in that limits of the independent variable (here, x) are used in asymptotics,
while limits of the index (here, n) are used to test the convergence or diver-
gence of Taylor series for a fixed value of the independent variable.

• For integrals dominated by an exponential whose exponent, say, φ(x)/ε, has a
maximum at x∗ within the interior of the range of integration (a, b) such that
φ′(x∗) = 0 and φ′′(x∗) < 0, i.e., φ(x) ∼ φ(x∗) + 0.5φ′′(x∗)(x − x∗)2, while
f(x) ∼ f(x∗) is continuous and subdominant, as x → x∗ and 0 < ε << 1,
Laplace’s method for asymptotic evaluation of integrals [28] leads to
the asymptotic approximation

∫ b

a
eφ(x)/εf(x)dx ∼

√
2πε

−φ′′(x∗)
eφ(x∗)/εf(x∗), (B.153)

as ε → 0+. If x∗ = a or x∗ = b, i.e., an end point maximum, then the integral
is asymptotic to one half the above approximation.

For example, the general factorial function or gamma function [2] for
real x with x > −1,

x! = Γ(x + 1) =

∫ ∞

0
e−ttxdt = xx+1

∫ ∞

0
ex(−y+ln(y))dy

∼
√

2πxe−xxx, (B.154)

as x → ∞, after transforming the original integral to the Laplace form us-
ing t = xy with φ(y) = −y + ln(y) and ε = 1/x, since the fast exponen-
tially decaying coefficient function exp(−t) does not satisfy the subdominant
requirement for Laplace’s method. (Often, some transformation is necessary
to fit a method.) The result is a correction to Stirling’s (asymptotic) formula
ln(x!) ∼ x ln(x), which is only the leading term of the exponent expansion of
x! as x → ∞. Some authors refer to the leading term (B.154) of the full
integral as Stirling’s formula, e.g., Feller [84].

Remark B.66. Laplace and Probability.
Since Laplace was associated with the early foundational work in the analytical the-
ory of probability with his treatise Théorie Analytique des Probabilités, it is likely
that Laplace’s method was developed for probability integrals, in particular normal
probability integrals, which were not restricted to infinite or zero limits of integration
and the integrals can be found exactly.

B.12 Generalized Functions: Combined Continuous
and Discrete Processes

In stochastic problems, especially in extreme limits and distributions, representa-
tions beyond ordinary functions, such as generalized functions, are useful for the



“bk0allfinal”
2007/8/10
page B54

!

!

!

!

!

!

!

!

B54 Online Appendix B. Preliminaries in Probability and Analysis

complete description of stochastic problems, such as combined continuous and dis-
crete processes. While there are alternative abstract representations, generalized
functions are very helpful in motivating stochastic models and solutions for associ-
ated stochastic problems as they are for the study of differential equations. Many
generalized functions are defined only under integration but can be constructed as
the limit of a sequence of ordinary functions.

Definitions B.67.

• The Heaviside step function, H(x), is a generalized function with the prop-
erty that

∫ +∞

−∞
f(x)H(x − x0)dx =

∫ +∞

x0

f(x)dx (B.155)

for some integrable function f(x) on (−∞, +∞).

• Heaviside step function:
One pointwise definition of the Heaviside step function is

H(x) =

{
0, x < 0
1, x ≥ 0

}
, (B.156)

which is right-continuous, but another version takes the average (a) value at
zero so that it has better numerical properties,

Ha(x) =






0, x < 0
1/2, x = 0
1, x > 0





, (B.157)

although the Heaviside function is often left undefined at x = 0 since a single
isolated point does not contribute to an ordinary or Riemann integral. For
generalized functions, the averaged one, Ha(x), is better for underlying nu-
merical approximations.

• For intervals on the real line, the right-continuous Heaviside step function is
related to the indicator function for some set A,

1x∈A ≡
{

1, x ∈ A
0, x /∈ A

}
, (B.158)

so that
1x∈(0,+∞) = H(x),

using the above Heaviside step function definition.

For example, the probability distribution can be written

ΦX(ξ) = EX [H(ξ − X)] = EX [1X∈(−∞,ξ]], (B.159)
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provided the density is sufficiently continuous. Note that 1(y−x)∈[a,b) = 1x∈(y−b,y−a],
by definition, is a technique which becomes more useful in calculating multivariate
probability distributions.

Definition B.68. Dirac Delta Function.
The Dirac delta function, δ(x), is a generalized function with the property that

∫ +∞

−∞
f(x)δ(x − x0)dx = f(x0) (B.160)

for any continuous function f(x) defined for x on R and some point x0 on R (see
B. Friedman [89]).

Remark B.69. The generalized function δ(x− x0) is not a regular function and it
has meaning only in the integrand of an integral. Since δ(x− x0) picks out a single
value of the function f(x), it must be concentrated at a point, i.e., for any ε > 0,

∫ x0+ε

x0−ε
f(x)δ(x − x0)dx = f(x0).

Hence, for ε → 0+, this integral will give the same answer f(x0), whereas for
an ordinary integral of calculus and f(x) continuous the answer would be O(ε) as
ε → 0+ and thus zero in the limit. Consequently, the integral with δ(x − x0) can be
ignored away from the point of concentration x0. The delta function, δ(x − x0), is
also called an impulse function when it is used to impart an impulse to drive a
differential equation.

A simple constructive approximation that in the limit leads to the delta func-
tion δ(x) is the simple triangular approximation

dε(x) ≡ 1

ε

{
(1 − |x|/ε), 0 ≤ |x| ≤ ε
0, ε ≤ |x|

}
. (B.161)

Now consider an arbitrary test function f(x) that is continuous and continuously
differentiable. Then using the definition (B.161),

∫ +∞

−∞
dε(x)f(x)dx =

1

ε

∫ +ε

−ε
(1 − |x|/ε)f(x)dx

=

∫ +1

−1
(1 − |y|)f(εy)dy

=

∫ +1

−1
(1 − |y|)[f(0) + O(ε)]dy

= f(0) + O(ε) → f(0),

as ε → 0+. Since dε(x) has the same effect at δ(x) in the limit, it can be said that

δ+0(x) = lim
ε→0+

gen
= δ(x),
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where the symbol of generalized equality is
gen
= defined as follows.

Definition B.70. Generalized Equality.
Let

g(x)
gen
= h(x)

if for a sufficient class of test functions, f(x) (sufficiently smooth, bounded with
exponential decay as x → ∞, depending on the application), both g(x) and h(x)
have the same effect in integration,

∫ +∞

−∞
f(x)g(x)dx =

∫ +∞

−∞
f(x)h(x)dx.

Using the Wiener process density φW (t)(w) (B.23), it can also be shown that
in the generalized sense,

φW (0+)(w)
gen
= δ(w). (B.162)

The generalized result (B.162) is obtained by examining the asymptotic limit as
t → 0+,

E[f(W (t))] =

∫ +∞

−∞
f(w)φn(w; 0, t)dw → f(0),

for a continuous, exponentially bounded test function |f(w)| < K exp(aw) for some
K > 0 and a < a0 for some a0 is sufficient, since the negative quadratic exponent
of the density dominates any simple exponential at infinity. One need only consider
the finite interval [−R, R] for some sufficiently large R, R/

√
t 1 1 when t / 1 will

suffice, so that the tail portion of the integral on (−∞, +∞) is negligible.

Remarks B.71.

• The technique suggested above is Laplace’s method for integrals given in (B.153);
see also [61, 28], for instance, or Exercise 23.

• Since we are interested here in limits of the normal distribution and its den-
sity, and the density has a delta function limit such that φW (0+)(w)

gen
= δ(w)

according to (B.162), then the use of the H(x) step function form (B.156) in
the relation ΦX(ξ) = EX [H(ξ − X)] (B.159) is inconsistent. This is because
Φ∆W (t)(0) = 1/2 for all positive values of ∆t, so

ΦW (0+)(w) =

∫ w

−∞
δ(v)dv =






0, w < 0
1/2, w = 0
1, w > 0





= Ha(w)

or (B.157), since the averaged value at zero is needed. However, using the
expectation form of the distribution (B.159) (normally, products of delta func-
tions cannot be made), then

E[H(w − W (0+))] =

∫ +∞

−∞
H(w − v)δ(v)dv = H(w),
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which is incorrect if w = 0 when using the generalized limits for the normal
density.

Examples B.72. Generalized Function.

• δ(ax + b)
gen
= (1/a)δ(x + b/a) for constant a > 0 and b by changing variables

ξ = ax in the integral definition (B.160).

• δ(−x)
gen
= δ(x), i.e., δ(x) behaves as an even function, since f(0−) = f(0) if

the function f is continuous.

• xδ(x)
gen
= 0, since by (B.160) with any f(x) = xF (x), F (x) continuous and

x0 = 0, ∫ +∞

−∞
F (x)xδ(x)dx = 0 · F (0) = 0.

• Let f(x) be any continuously differentiable function on R. Then the derivative
of the Dirac delta function δ′(x) is defined by

∫ +∞

−∞
f(x)δ′(x)dx = −f ′(0). (B.163)

The motivation for this definition is the integration by parts calculus tool that

∫ +∞

−∞
f(x)δ′(x)dx =

[
f(x)δ(x) −

∫
f ′(x)δ(x)dx

]∣∣∣∣
+∞

−∞
= −f ′(0),

where the fact that δ(x) is concentrated at x = 0 means the f(x)δ(x) vanishes
at infinity since δ(x) dominates by vanishing faster than any f(x) can grow.

An alternate motivation is to use the original definition of δ(x−x0) in (B.160),
and assume that δ(x− x0) is differentiable under the integral, i.e., it has been
generated by a continuously differential approximation satisfying uniformity
conditions. Then

d

dx0

∫ +∞

−∞
f(x)δ(x − x0)dx = −

∫ +∞

−∞
f(x)δ′(x − x0)dx = f ′(x0), (B.164)

the minus sign arising from differentiating (x − x0) with respect to x0 as a
simple application of the chain rule.

• Similarly, δ′′(x) for a twice continuously differentiable function f is defined
in the generalized sense by

∫ +∞

−∞
f(x)δ′′(x)dx = +f ′′(0), (B.165)

derivable by two integrations by parts and using the concentration at x =
0. The same result also follows by differentiating the integral definition of
δ(x − x0) in (B.160) twice.



“bk0allfinal”
2007/8/10
page B58

!

!

!

!

!

!

!

!

B58 Online Appendix B. Preliminaries in Probability and Analysis

• H ′(x)
gen
= δ(x) with respect to continuous function f(x) for which f(x) and its

derivative vanish as |x| → ∞, since by integration by parts,

∫ +∞

−∞
f(x)H ′(x)dx =

[
f(x)H(x) −

∫
f ′(x)H(x)dx

]∣∣∣∣
+∞

−∞

= −
∫ +∞

0
f ′(x)dx = f(0),

An alternate motivation for this result, is to start with the original definition
of the Heaviside step function,

d

dx0

∫ +∞

−∞
f(x)H(x − x0)dx = −

∫ +∞

−∞
f(x)H ′(x − x0)dx

= −f(x0)dx, (B.166)

so ignoring the two minus signs, we have H ′(x − x0)
gen
= δ(x − x0).

• A discrete distribution can be transformed into a continuous distribution by
using a sequence of delta functions such that the density for the discrete ran-
dom variable X with (m+1) possible discrete values {xk|k = 0 : m} each with
probability πk, such that the generalized density is given by

φ(gen)
X (x)

gen
=

m∑

k=0

πkδ(x − xk).

Hence, the expectation of some function f(x) is

E(gen)
X [f(X)] =

∫ +∞

−∞
f(x)φX(x)dx =

m∑

k=0

πk

∫ +∞

−∞
f(x)δ(x − xk)dx

=
m∑

k=0

πkf(xk),

which is the same formula as given in (B.48) previously. Also, conservation
of probability is confirmed by

E(gen)
x [1] = 1

using the discrete probability property (B.46). However, the implied probability

distribution Φ(gen)
X (x) is problematic since neither definition, H(x − xk) or

Ha(x− xk), of the step function is suitable at x = xk, but see the appropriate
right-continuous step function HR(x) ahead in (B.169).

Since it is an aim of the text to treat continuous and discrete distributions
together, a unified applied treatment is needed. For this treatment, generalized
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functions [185, 89], primarily step and delta functions, will be used for discrete
distributions in a manner similar to the way they are used in differential equations,
but more suited to stochastic processes. Thus, the continued discrete distribution
will be illustrated and defined for the Poisson process since the probabilities are
already ordered by integer values.

Lemma B.73.

• The Poisson distribution made right-continuous (RC) is

ΦP (t)(X) = Prob[X ≤ x] =

{ ∑*x+
j=0 pj(λt), x ≥ 0

0, x < 0

}
, (B.167)

which readily follows, and where 2x3 is the integer floor function such that
x − 1 < 2x3 ≤ x.

• In terms of the generalized right-continuous (RC) step-function HR(x)
this Poisson distribution can be generalized to

ΦP (t)(X) =
∞∑

k=0

pk(λt)HR(x − k) (B.168)

such that

HR(x) =

{
0, x < 0
1, x ≥ 0

}
, (B.169)

where the property HR(0) = HR(0+) and HR(0−) = 0 embodies the required
right-continuity property. Clearly, ΦP (t)(X) is right-continuous, rather than
purely continuous.

Proof. The distribution form (B.167) follows directly from the definition of the
continuous distribution using the discrete Poisson distribution Prob[P (t) = k] =
pk(λt) for k = 0 : ∞. Thus,

Prob[P (t) ≤ x] =
k∑

j=0

pj(λt), k ≤ x < k + 1s

for k = 0 : ∞, since it takes k jumps for x to exceed k, i.e., k = 2x3, so k ≤ x < k+1
is equivalent to x − 1 < 2x3 ≤ x, and any more will require the (k + 1)st jump.
Thus, the kth probability pk(λt) is included in the sums if x ≥ k, i.e., pk(λt) is
included in the form

pk(λt)HR(x − k),

leading to B.168).
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Definition B.74. The Poisson process density corresponding to this continuous
distribution is denoted by

φP (t)(X) =
∞∑

k=0

pk(λt)δR(x − k), (B.170)

where δR(x) is the right-continuous (RC) delta function such that

HR(x) =

∫ x

−∞
δR(y)dy (B.171)

having the desired property that HR(0) = 1 and the integral property
∫ ∞

−∞
f(y)δR(y)dy = f(0−). (B.172)

These generalized functions and their properties will be encountered in more detail
later in this text. The generalized HR(x) function is somewhat different from the
concretely defined H(x) in (B.156). Also, if the function f is continuous at x = 0
in B.172, then f(0−) can be replaced by f(0).

The relationship between the exponential distribution and the Poisson distri-
bution follows from the time of the arrival of the first jump T1 under the standard
assumption that the Poisson processes P (t) starts at t = T0 ≡ 0 and that the dis-
tribution for the first jump is the same as the probability that the Poisson jump
counter exceeded one, i.e.,

ΦT1(t; λ) ≡ Prob[T1 ≤ t] = Prob[P (t) ≥ 1] =
∞∑

k=1

pk(λt)

=
∞∑

k=1

e−λt (λt)k

k!
= e−λt

(
eλt − 1

)
= 1 − e−λt, (B.173)

which is the same result as (B.40). The same result holds for the interarrival time,
Tk+1 − Tk, between successive Poisson jumps, except that the more general result
depends on the property of stationarity of the Poisson process that is introduced in
Chapter 1.

Summarizing distribution properties for combinations of continuous random
variables and right-continuous jump processes, we have the following properties.

Properties B.75. Right-Continuous Distribution Functions Φ(x).

• Φ is nondecreasing, since probabilities must be nonnegative.

• Φ is right-continuous, by properties of integrals with nonnegative integrands
including integrands with right-continuous delta functions or probability masses.

• Φ(−∞) = +0 by properties of integrals and X > −∞.

• Φ(+∞) = 1 if Φ is a proper distribution.
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B.13 Fundamental Properties of Stochastic and
Markov Processes

B.13.1 Basic Classification of Stochastic Processes

The classification of stochastic processes is important since the classification leads
to the appropriate method of treatment of the stochastic process applications.

A stochastic process or random process is a random function of time
ξ = X(t; ω), where X(t; ω) is a random variable depending on time t and some
underlying random variable ω on the sample space Ω. (Again the ω dependence
will often be suppressed unless it is needed to describe some stochastic process
attribute.)

If the time domain is continuous on some interval [0, T ], then it is said to be
a stochastic processes in continuous time whether the domain is bounded or
unbounded. However, if the time domain is discrete, ξ = Xi in discrete time units
i = 1 : ∞ called stages, then it is a stochastic process in discrete time or
random sequence. If ξ = X(t) is not a random variable, then X(t) would be called
a deterministic process.

Stochastic processes are also generally classified according to the properties of
the range of the random variable ξ = X(t), called the state space of the process.
This state space can be continuous, in which case it is still referred to as a stochastic
process, but if the state space is discrete with a finite or infinite number of states,
then the stochastic process is called a chain. The Gaussian process is an example
of a process with a continuous state space, while the simple Poisson process with
unit jumps is an example of a process with a discrete state space. A mixture of
Gaussian and Poisson processes, called a jump-diffusion, is an example of a hybrid
stochastic system.

B.13.2 Markov Processes and Markov Chains

An important class of stochastic process is the Markov process X(t) in which the
future state depends on only some current state but not on a past state. This
Markov property offers many advantages in the analysis of the behavior of these
processes.

Definitions B.76.

• A stochastic process X(t) for t ≥ 0 in continuous time (ct) is a Markov
process on a continuous state (cs) space Scsct if for any t ≥ 0, ∆t ≥ 0 and
x ∈ Scsct,

Prob[X(t + ∆t) ≤ x|X(s), s ≤ t] = Prob[X(t + ∆t) ≤ x|X(t)]. (B.174)

• A stochastic process Xi for i = 0 : ∞ in discrete time (dt) is a Markov
process on a continuous state (cs) space Scsdt if for any n = 0 : ∞, i = 0 : ∞,
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and xn ∈ Scsdt,

Prob[Xn+1 ≤ xn+1|Xi = xi, i = 0 : n]

= Prob[Xn+1 ≤ xn+1|Xn = xn]. (B.175)

• A stochastic process X(t) for t ≥ 0 in continuous time (ct) is a Markov
chain on a discrete state (ds) space Sdsct = {0, 1, 2, . . .} if for any t ≥ 0,
∆t ≥ 0, and j(t) ∈ Sdsct,

Prob[X(t + ∆t) = j(t + ∆t)|X(s) = j(s), s ≤ t]

= Prob[X(t + ∆t) = j(t + ∆t)|X(t) = j(t)]. (B.176)

• A stochastic process Xi for i = 0 : ∞ in discrete time (dt) is a Markov
chain on a discrete state (ds) space Sdsdt = {0, 1, 2, . . .} if for any n = 0 : ∞,
i = 0 : ∞, and ji ∈ Sdsdt,

Prob[Xn+1 = jn+1|Xi = ji, i = 0 : n]

= Prob[Xn+1 = jn+1|Xn = jn]. (B.177)

The conditional probability Prob[Xn+1 = jn+1|Xn = jn] = Pn,n+1(jn, jn+1) is
called the transition probability for the step from stage n to stage n + 1.

Thus, the Markov process can be called memoryless or without after-
effects since, for example, in the continuous time case, the future state X(t+∆t)
depends only on the current state X(t), but not on the past states {x(s), s < t}.
This memoryless property of Markov processes leads immediately to the indepen-
dent increments property of Markov processes:

Lemma B.77. If X(t) is a Markov process in continuous time, then the state
increment ∆X(t) ≡ X(t + ∆t)− X(t) is independent of ∆X(s) ≡ X(s + ∆s)−
X(s), s, t, ∆s, ∆t ≥ 0, if the time intervals are disjoint except for trivial overlap,
i.e., either s + ∆s ≤ t or t + ∆t ≤ s, such that

Φ∆X(t),∆X(s)(∆x, ∆y) ≡ Prob[∆X(t) ≤ ∆x, ∆X(s) ≤ ∆y]

= Prob[∆X(t) ≤ ∆x]Prob[∆X(s) ≤ ∆y].

Note that the Markov property definition can be reformulated as

Prob[X(t + ∆t) ≤ x + ∆x|X(s), s < t; X(t) = x] = Prob[∆X(t) ≤ ∆x|X(t) = x]

and thus is independent of any increments in the past.

B.13.3 Stationary Markov Processes and Markov Chains

Definition B.78. A Markov process is called stationary or time-homogeneous
if the probability distribution depends only on the time difference, i.e.,
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• If Prob[X(t + ∆t) − X(t) ≤ y] = Prob[∆X(t) ≤ y] depends on ∆t ≥ 0 and is
independent of t ≥ 0 in the continuous time case given y in the state space,
continuous or discrete, or

• If Prob[Xi+k − Xi ≤ y] depends on k ≥ 0 and is independent of i ≥ 0 in the
discrete time case given y in the state space, continuous or discrete. (It is
also said that the transition probabilities are stationary.)

The stationary Markov chain in discrete time is fully characterized by the
transition probability matrix [Pi−1,j−1]N×N , where Pi,j = Prob[Xn+1 = j|Xn =
i] for all stages n = 0 : N −1, where N may be finite or infinite [265]. Although the
main focus here is on Markov processes in continuous time, Markov chains serve
as numerical approximation for Markov processes, such as in the Markov chain
approximation methods of Kushner and coworkers [175, 176, 179].

B.14 Continuity, Jump Discontinuity, and
Nonsmoothness Approximations

In the standard calculus, much of the emphasis is on functions that are continuous,
differentiable, continuously differentiable, or have similar nice properties. However,
many of the models for Markov processes do not always have such nice analytical
properties, since Poisson processes are discontinuous and Gaussian processes are
not smooth. Thus, the standard calculus will be reviewed and revised to include
the not-so-nice but essential properties.

B.14.1 Beyond Continuity Properties

If X(t) is a process, i.e., function of time, whether stochastic or deterministic, the
basic differences are summarized below.

Definitions B.79.

• Let the increment for the process X(t) be ∆X(t) ≡ X(t+∆t)−X(t), where
∆t is the time increment.

• Let the differential for the process X(t) be dX(t) ≡ X(t + dt) − X(t) with
respect to the time t, where dt is the infinitesimal time differential.

• The increment and differential are precisely related by the integral

∆X(t) =

∫ t+∆t

t
dX(s).

While much of the regular calculus is usually cast in a more abstract form,
much of applied stochastic calculus is based on differentials and increments, so the
following will be formulated with increments or differentials, ready to use.
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Definitions B.80.

• The process X(t) is a continuous process at the point t0 if

lim
∆t→0

X(t0 + ∆t) = X(t0),

provided the limit exists.

• Else the process X(t) is discontinuous at t0.

• The process X(t) is continuous on the interval (t1, t2) if it is continuous at
each point of the interval.

• The process X(t) has a jump discontinuity at t0 if

lim
∆t→0
|∆t|>0

X(t0 + ∆t) += X(t0),

provided both the limit exists, i.e., the limit from the left

X(t−0 ) = lim
∆t→0+

X(t0 − ∆t)

and does not agree with the limit from the right

X(t+0 ) = lim
∆t→0+

X(t0 + ∆t),

where ∆t → 0+ means {∆t → 0, ∆t > 0}. In other words, if

X(t+0 ) += X(t−0 ),

then X(t) has a jump at t = t0 [169]. The corresponding jump at the jump
discontinuity (discontinuity of the first kind) is defined as

[X ](t0) ≡ X(t+0 ) − X(t−0 ) = lim
∆t→0+

X(t0 + ∆t)− lim
∆t′→0+

X(t0−∆t′). (B.178)

• The process X(t) is right-continuous at t0 if

lim
∆t→0
∆t>0

X(t0 + ∆t) = X(t0),

such that the jump of X at t is defined as

[X ](t0) ≡ X(t0) − X(t−0 ), (B.179)

since X(t+0 ) = X(t0). Left-continuous processes are similarly defined.

Remark B.81. The jump definition is consistent with the definition of the in-
crement and consequently the differential, since if there is a jump at time t1, then
dX(t−1 ) = X(t−1 +dt)−X(t−1 ) = X(t+1 )−X(t−1 ) = [X ](t1), accepting the convention
that dt is both positive and infinitesimal so that X(t−1 + dt) = X(t+1 ). Similarly, for
the increment ∆X(t−1 ) → [X ](t1) as ∆t → 0+.

Definitions B.82.
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• The process X(t) is smooth at t0 if

lim
∆t→0

∆X(t0)/∆t

exists, i.e., X(t) is differentiable at t0.

• Else the process X(t) is nonsmooth.

Remark B.83. For example, if ∆X(t1) ∼ C
√

∆t for some nontrivial constant
C, then ∆X(t1) → 0 and ∆X(t1)/∆t ∼ C/

√
∆t → ∞ as ∆t → 0+, so X(t) is

continuous but not smooth at t1.

B.14.2 Taylor Approximations of Composite Functions

Construction of application models often relies on Taylor’s formula with remain-
der (Lagrange form) for small perturbations about some given point, given here in
the following form.

Theorem B.84. Taylor Approximation for a Scalar-Valued Function of
a Scalar Argument, f(x).
Let the function f(x) be defined, continuous, and (n + 1) times continuously differ-
entiable for |∆x| < R, then

f(x + ∆x) =
n∑

m=0

f (m)(x)

m!
(∆x)m +

f (n+1)(x + θ∆x)

(n + 1)!
(∆x)n+1, (B.180)

where f (m)(x) is the mth order derivative of f at x, θ ∈ (0, 1) is the relative location
of the mean value point x+θ∆x in the remainder term and R is the convergence
radius.

Further, if the highest derivative f (n+1) is bounded on the interval of conver-
gence, |∆x| < R, then the remainder

Sn(x; ∆x) − f(x + ∆x) = O((∆x)n+1),

as ∆x → 0, where

Sn(x; ∆x) ≡
n∑

m=0

f (m)(x)

m!
(∆x)m

is the partial sum of the first (n + 1) terms for m = 0 : n.
For most applications, only a few terms are needed, while for stochastic ap-

plications in continuous time this form will be applied when the variable x is a
process like X(t). More generally, the interest is in functions that depend explicitly
on time t and implicitly on time through the process X(t), like F (X(t), t). This is
illustrated for a deterministic process increment in function F (X(t), t), three times
continuously differentiable in both t and x. First, the increment is split up to par-
tially separate out the first argument X(t)-process and second t-argument explicit



“bk0allfinal”
2007/8/10
page B66

!

!

!

!

!

!

!

!

B66 Online Appendix B. Preliminaries in Probability and Analysis

time changes so that the one-dimensional Taylor approximation (B.180) can be sep-
arately applied to the component parts. Using partial derivatives, we have the next
theorem.

Theorem B.85. Taylor Approximation for a Scalar-Valued Function of
a Scalar-Argument X(t) and Time t, f(X(t), t).
Let f(x, t) be three times differentiable in both x and t, let the process X(t) be
continuous, and let ∆X(t) = X(t+∆t)−X(t) so X(t+∆t) = X(t)+∆X(t). Then

∆f(X(t), t) ≡ f(X(t) + ∆X(t), t + ∆t) − f(X(t), t)

= (f(X(t) + ∆X(t), t + ∆t) − f(X(t) + ∆X(t), t))

+ (f(X(t) + ∆X(t), t) − f(X(t), t))

=
∂f

∂t
(X(t), t)∆t +

∂f

∂x
(X(t), t)∆X(t) (B.181)

+
1

2

∂2f

∂t2
(X(t), t)(∆t)2 +

∂2f

∂t∂x
(X(t), t)∆t∆X(t)

+
1

2

∂2f

∂x2
(X(t), t)(∆X)2(t)

+O((∆t)3) + O((∆t)2∆X) + O(∆t(∆X)2) + O((∆X)3),

as ∆t → 0 and ∆X(t) → 0.

Remarks B.86.

• Keeping the second order partial derivative terms written out explicitly is in
anticipation that, although the process may be continuous, the process may not
be smooth as in the case of the Gaussian process.

• The above expansion can be extended to vector processes X(t) = [Xi(t)]nx×1

and is best expanded by components.

• Another difference with the stochastic cases is that X will also be a function
of the underlying probability space variable ω, so X = X(t; ω) and ∆X =
∆X(t; ω) → 0 in probability (only) as ∆t → 0+. Since ∆X(t; ω) may have
an unbounded range, e.g., in the case that ∆X(t; ω) is normally distributed
as ∆t → 0+, but ∆t > 0, the boundedness part of the order symbol defini-
tion O would be invalid if, for instance, the ∆X in O3(∆X) were replaced by
∆X(t; ω). However, something like O(E[∆X3(t; ω)]) would be valid. Never-
theless, formula (B.181) will be useful as a preliminary or formal expansion
calculation, prior to applying an expectation and neglecting very small terms.

In the case where the space process is a vector function of time, then perform-
ing the Taylor expansion by components facilitates the calculation of the Taylor
approximation.
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Theorem B.87. Taylor Approximation for a Scalar-Valued Function of
a Vector-Argument X(t) and Time t, f(X(t), t).
Let f(x, t) be three times differentiable in both x and t, let the column vector process
X(t) = [Xi]nx×1 be continuous, i.e., by component, and let ∆X(t) = X(t + ∆t) −
X(t) so X(t + ∆t) = X(t + ∆t) + ∆X(t). Then

∆f(X(t), t) ≡ f(X(t) + ∆X(t), t + ∆t) − f(X(t), t)

= (f(X(t) + ∆X(t), t + ∆t) − f(X(t) + ∆X(t), t))

+ (f(X(t) + ∆X(t), t) − f(X(t), t))

=
∂f

∂t
(X(t) + ∆X(t), t)∆t

+
1

2

∂2f

∂t2
(X(t) + ∆X(t), t)(∆t)2 + O((∆t)3)

+
nx∑

i=1

∂f

∂xi
(X(t), t)∆Xi(t)

+
nx∑

i=1

nx∑

j=1

1

2

∂2f

∂xi∂xj
(X(t), t)∆Xi(t)∆Xj(t) + O(||∆X||3)

=
∂f

∂t
(X(t), t)∆t + ∇'

x [f ](X(t), t)∆X(t) (B.182)

+
1

2

∂2f

∂t2
(X(t), t)(∆t)2 +

1

2
∆X'(t)∇x

[
∇'

x [f ]
]
(X(t), t)∆X(t)

+ ∇x

[
∂f

∂t

]
(X(t), t)∆X(t)∆t

+ O((∆t)3) + O((∆t)2||∆X||) + O(∆t||∆X||2) + O(||∆X||3),

as ∆t → 0 and ∆X(t) → 0, where the gradient of f is the vector

∇x[f ](X(t), t) ≡
[

∂f

∂xi
(X(t), t)

]

nx×1

,

the transpose vector is the row vector ∆x' = [∆xj ]1×nx, and ||∆x|| is some norm,
e.g., the infinite norm ||∆x||∞ = maxi[|Dxi|].

In the case where there is a vector-valued function f depending on time t and a
space process X(t) that is a vector function of time, then systematically performing
the Taylor expansion by both f and X components as well at by the t argument of f
and finally reasembling the results into matrix-vector form facilitates the calculation
of the Taylor approximation.

Theorem B.88. Taylor Approximation for a Vector-Valued Function of
a Vector-Argument X(t) and Time t, f(X(t), t).
Let f(x, t) = [fi(x, t)]nx×1 be three times differentiable in both x and t, let the column
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vector process X(t) = [Xi(t)]nx×1 be continuous, i.e., continuous by component, and
let ∆X(t) = X(t + ∆t) − X(t) so X(t + ∆t) = X(t + ∆t) + ∆X(t), then

∆f(X(t), t) ≡ f(X(t) + ∆X(t), t + ∆t) − f(X(t), t)

= f(X(t) + ∆X(t), t + ∆t) − f(X(t), t)

= [fi(X(t) + ∆X(t), t + ∆t) − fi(X(t), t)]nx×1

=



∂fi

∂t
(X(t), t)∆t +

nx∑

j=1

∂fi

∂xj
(X(t), t)∆Xj(t)

+
1

2

∂2fi

∂t2
(X(t) + ∆X(t), t)(∆t)2 +

nx∑

j=1

∂2fi

∆t∂xj
(X(t), t)∆Xj(t)∆t

+
1

2

nx∑

k=1

nx∑

j=1

∂2fi

∂xk∂xj
(X(t), t)∆Xj(t)∆Xk(t)

+ O((∆t)3) + O((∆t)2||∆X||) + O(∆t||∆X||2) + O(||∆X||3)





nx×1

=
∂f

∂t
(X(t), t)∆t +

(
∆X'(t)∇x

)
[f ](X(t), t) (B.183)

+
1

2

∂2f

∂t2
(X(t), t)(∆t)2 +

(
∆X'(t)∇x

) [∂f

∂t

]
(X(t), t)∆t

+
1

2

(
∆X(t)∆X'(t)

)
:
(
∇x∇'

x

)
[f ](X(t), t)

+ O((∆t)3) + O((∆t)2||∆X||) + O(∆t||∆X||2) + O(||∆X||3),

as ∆t → 0 and ∆X(t) → 0, where the gradient of f is premultiplied by the transpose
of ∆X(t) so that dimension of f is obtained,

(∆X'(t)∇x)[f ](X(t), t) ≡




nx∑

j=1

∆Xj(t)
∂fi

∂xj
(X(t), t)





nx×1

,

the second order derivative Hessian is similarly arranged as scalar-valued operator
double dot product,

(
∆X(t)∆X'(t)

)
:
(
∇x∇'

x

)
[f ](X(t), t) ≡




nx∑

j=1

nx∑

k=1

∆Xj(t)∆Xk(t)

· ∂2fi

∂xk∂xj
(X(t), t)





nx×1

,

the transpose vector is the row vector ∆x' = [∆xj ]1×nx, and ||∆x|| is some norm,
e.g., the infinite norm ||∆x||∞ = maxi[|Dxi|].
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In general the double dot product is related to the trace of a matrix (B.120).

Definition B.89. Double Dot Product of Two Square Matrices.

A : B ≡ Trace[AB] =
n∑

j=1

n∑

k=1

Aj,kBk, j (B.184)

for square matrices A and B.

However, if the process is discontinuous, as it will be for the jumps of the
Poisson process, then (B.181) is no longer valid since the assumption on X(t) is not
valid at the jump. Thus, if X(t) has a jump discontinuity at t = t1, then the most
basic form for change in f , the jump, must be used.

Theorem B.90. “Zero Order Taylor Approximation” or Jump Function
Limit for a Scalar-Valued Function of a Discontinuous Vector Process
Argument X(t) and Time t, f(X(t), t).

∆f(X(t−1 ), t−1 ) → [f ](X(t1), t1) ≡ f(X(t+1 ), t+1 ) − f(X(t−1 ), t−1 ), (B.185)

as ∆t → 0+.

This result extends the jump function definition (B.178). For right-continuous
jumps t+1 can be replaced by t1 (B.185) as in (B.179). The most fundamental
changes in processes are the large jumps, such as crashes or rallies in financial
markets or disasters and bonanzas in nature or machine failure and repair in man-
ufacturing production. It is important to be able to handle jumps, even though the
analysis may be much more complicated than for continuous processes.

B.15 Extremal Principles
Finding extremal properties, maxima and minima, through optimization is another
area where nice function properties may be overemphasized, but for many optimal
control applications results are needed for more general functions, whether deter-
ministic or random functions.

Definitions B.91. Extrema.
Let f(x) be defined on some connected domain D in Rm.

• Then f(x) has a global maximum at x∗ in D if f(x) ≤ f(x∗) for all x on
D.

• Similarly, f(x) has a global minimum at some point x∗ on D if f(x) ≥
f(x∗) for all x on D.

• Often, such global extrema are called absolute extrema.
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• Then f(x) has a local maximum or relative maximum at x∗ on D if
there is a neighborhood, N (x∗) of x∗ on D, such that f(x∗ +∆x) ≤ f(x∗) for
sufficiently small |∆x|.

• Similarly, f(x) has a local minimum or relative minimum at x∗ on D if
there is a neighborhood, N (x∗) of x∗ on D, such that f(x∗ +∆x) ≥ f(x∗) for
sufficiently small |∆x|.

• Often, such local extrema are called relative extrema.

Remarks B.92.

• The standard definition of global extrema, i.e., global maxima and global
minima, covers all of the most extreme values, the biggest and the smallest,
regardless of the analytic properties of the target function. The definition of
global extrema is the most basic definition, the one we need to turn to when
derivative methods fail. On the other hand, finding global extrema is very
difficult in general and is by no means a closed problem.

• However, the standard definition of local extrema is as strictly interior ex-
trema, due to the restriction that the neighbor be in the domain of interest,
which would exclude boundary extrema which may include the extreme value
being sought.

• The general recipe for global extrema is often given by by the following:

1. Find local extrema, usually restricted to where the target function is
well behaved.

2. Find boundary extrema, perhaps also restricted to points where the
function is well behaved.

3. Find the function values at all points where the function is not
well behaved, i.e., discontinuous, nonsmooth, etc.

4. Find the most extreme values of all of the above for the global
extreme values.

Theorem B.93. First Order Necessary Conditions for a Local Minimum
(Maximum).
Let f(x) be continuously differentiable in an open neighborhood N (x∗) of x∗. If x∗

is a local minimum (maximum), then ∇[f ](x∗) = 0.

If ∇[f ](x∗) = 0, then x∗ is also called a stationary point or interior critical
point of f . For proof see any good calculus or analysis text, else see Nocedal and
Wright [221] for a proof using Taylor’s approximation and for the following theorem.
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Theorem B.94. Second Order Necessary and Sufficient Conditions for a
Local Minimum (Maximum).
Let ∇2[f ](x) be continuous in an open neighborhood N (x∗) of x∗.

• If x∗ is a local minimum (maximum) of f , then ∇[f ](x∗) = 0 and ∇2[f ](x)
is positive (negative) definite.

• If ∇[f ](x∗) = 0 and ∇2[f ](x) is positive (negative) definite, then x∗ is a
minimum (maximum) of f .

B.16 Exercises
Many of these exercises, depending on the instructor, can be done by using MAT-
LAB, Maple or Mathematica, but if theoretical, the MATLAB Symbolic Toolbox
will be needed.

1. Prove the variance-expectation identity for any random variable X :

Var[X ] = E[X2] − E2[X ]. (B.186)

{Note that E2[X ] = (E[X ])2 here, since squaring the operator also squares the
value.}

2. Prove the following identity for the variance of the sum of two random
variables X and Y :

Var[X + Y ] = Var[X ] + 2Cov[X, Y ] + Var[Y ]. (B.187)

3. Prove the following identity for the variance of the product of two ran-
dom variables X and Y ,

Var[XY ] = X
2
Var[Y ] + 2XY Cov[X, Y ] + Y

2
Var[X ] − Cov2[X, Y ]

+ 2XE[δX(δY )2] + 2XE[(δX)2δX ] + E[(δX)2(δY )2],

where X = E[X ] and Y = E[Y ] are means, while δX = X − X and δY =
Y − Y are deviations from the mean. Further, in the case that X and Y are
independent random variables, show that

Var[XY ] = X
2
Var[Y ] + Y

2
Var[X ] + Var[X ]Var[Y ]. (B.188)

4. Prove the Chebyshev inequality,

Prob[|X | ≥ ε] ≤ E[|X |2]/ε2, (B.189)

where ε > 0.
(Hint: It is sufficient to assume that a probability density φ(x) exists. Subtract
the LHS from the RHS of the inequality, convert the expectation and probability
to integrals, and then show that the sum is nonnegative.)
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5. Prove the Schwarz inequality (Cauchy-Schwarz inequality) in terms of
expectations,

E[|XY |] ≤
√

E[X2] · E[Y 2]. (B.190)

{Hint (big): Use the fact that (u − v)2 ≥ 0 and let u = X/
√

E[X2] and

v = Y/
√

E[Y 2], assuming that X and Y have finite, positive variances. Al-
ternatively, explore the characteristic roots of E[(λX + Y )2] ≥ 0 and consider
that if there are only real roots λi at the minimum, then the discriminant
(square root argument) must be positive in the quadratic formula.}

6. Prove Jensen’s inequality: If f is a convex function, i.e., f is real and

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y) (B.191)

for all x, y and 0 < θ < 1, then

E[f(X)] ≤ f(E[X ]). (B.192)

7. (a) Derive this simple form of Bayes’ rule for two related random variables
X and Y :

Prob[X = x|Y = y] =
Prob[Y = y, X = x]

Prob[Y = y]
, (B.193)

provided Prob[Y = y] > 0.
(Hint: You need only to use the conditional probability definition (B.83).)

(b) Derive, using an expansion of (B.193) and also the law of total probabil-
ity (B.92), the multiple random variables or events form of Bayes’ rule
for the case of the random event Y that occurs in conjunction with a
member of the exhaustive (complete) and countable set of disjoint (mu-
tually exclusive) events, {Xi, i = 1 : n}, i.e., the total law of probability
if applicable,

Prob[Xi = xi|Y = y] =
Prob[Y = y, Xi = xi]∑

j=1 Prob[Y = y, Xj = xj ] · Prob[Xj = xj ]
.

8. For the uniform distribution, confirm the formulas for the mean, variance,
coefficient of skewness and coefficient of kurtosis.

9. Derive the following identity between the standard normal and the general
normal distributions:

Φn((ln(x) − µ)/σ; 0, 1) = Φn(ln(x); µ, σ2).

10. Show, for the lognormal density with random variable Xln(t), that the
maximum location, the mode of the distribution, or the most likely value
is given by

x∗ = Mode [Xln(t)] = exp
(
µ − σ2

)
.
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Also, compare the mean or expected value to the mode for the lognormal
distribution by calculating the ratio

E [Xln(t)] /Mode [Xln(t)] ;

then compare this lognormal ratio to that for the normal variates,

E [Xn(t)] /Mode [Xn(t)] .

11. For the exponential distribution, confirm the formulas for the mean, vari-
ance, coefficient of skewness, and coefficient of kurtosis.

12. Show the following equivalence between the exponential distribution ex-
pectation and the uniform distribution expectation:

Ee[f(Xe)] = Eu[f(−µ ln(Xu))]

for any integrable function f .

13. Show the sample moment formulas for a set of IID random variables Xk with
E[Xk] = µ and Var[Xk] = σ2 for k = 1 : n of Subsection B.6 are correct, i.e.,

(a) E[mn] = µ for sample mean mn (B.107);

(b) E[s2
n] = (n − 1)σ2/n for sample variance s2

n (B.108);

(c) E[ŝ2
n] = σ2 for sample variance unbiased estimate ŝ2

n (B.109);

(d) Var[mn] = σ2/n for sample mean mn.

(Hint: See Remarks B.54 on p. B38.)

14. Show that for a set of IID random variables, the covariance of the sample
mean mn and the sample variance s2

n satisfy

Cov[mn, s2
n] = µ3/n,

where the third central moment is µ3 = E[(Xk−µ)3]. Discuss what probability
property relating mn and s2

n is implied by the result if the IID distribution is
even like the normal distribution and what property is implied asymptotically
as n → +∞. See Subsection B.6.

15. Let S =
∑n

k=1 Xk be the partial sum of n IID random variables {Xk} each
with mean E[Xk] = µ and variance Var[Xk] = σ2. Further, let the mth central
moment be defined as µ(m) = E[(Xk − µ)m], so that µ(1) = 0 and µ(2) = σ2.
Show that

(a) E[S] = nµ;

(b) Var[S] = nσ2;

(c) E[(S − E[S])3] = nµ(3), so is zero if the distribution of Xk has no skew
(B.11);
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(d) E[(S − E[S])4] = nµ(4) + 3n(n − 1)σ2, where the first term is related to
the coefficient of kurtosis (B.12).
(Hint: Use the binomial theorem, S−E[S] =

∑n
k=1(Xk −µ) and the fact

µ(1) = 0.)

16. Show that the product of two normal densities is proportional to a normal
density, i.e.,

φn(x; µ1, σ
2
1) · φn(x; µ2, σ

2
2) = φn

(
x;

µ1σ2
2 + µ2σ2

1

σ2
1 + σ2

2

,
σ2

1σ
2
2

σ2
1 + σ2

2

)
(B.194)

· 1√
2π(σ2

1 + σ2
2)

exp

(
− (µ1 − µ2)2

2(σ2
1 + σ2

2)

)
.

(Hint: Apply the completing the square technique to combine the two densi-
ties.)

17. Let Xi be independent normal random variables with density φXi(x), mean
µi, and variance σ2

i for i = 1 to K.

(a) Show that the product of two normal densities is a normal density whose
mean is the sum of the means and whose variance is the sum of the
variances, using (B.194),

I2(x) ≡ (φX1 ∗ φX2) (x) =

∫ +∞

−∞
φX1(x − y)φX2(y)dy (B.195)

= φn(x; µ1 + µ2, σ
2
1 + σ2

2).

(b) Using (B.195) for K = 2 as the induction initial condition, show the
general result by induction that

IK(x) ≡
((

K−1∏

i=1

φXi∗
)

φXK

)

(x) = φn

(

x;
K∑

i=1

µi,
K∑

i=1

σ2
i

)

. (B.196)

18. Show that the distribution of the sum of two (2) IID random variables, U1 and
U2, uniformly distributed on [a, b], is a triangular distribution on [2a, 2b],
i.e., show in terms of densities that

φU1+U2(x) =

∫ +∞

−∞
φU1 (x − y)φU2(y)dy

=
1

(b − a)2






(x − 2a), 2a ≤ x < b + a
(2b − x), b + a ≤ x ≤ 2b

0, otherwise





. (B.197)

Confirm that the resulting density conserves probability on (−∞, +∞).
(Hint: It may be helpful to sketch the paths for nonzero integration in y on
the xy-plane, paying attention to the limits of integration for each fixed x.)
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Remark B.95. Different from the normal distribution results in Exercise (17),
the convolution of two uniform random variables does not conserve the uni-
formity of the distribution.

19. Show that the distribution of the sum of three (3) IID random variables,
Ui, for i = 1 : 3 uniformly distributed on [a, b], is a piecewise quadratic
distribution on [3a, 3b], i.e., show in terms of densities that

φP3
i=1 Ui

(x) =

∫ +∞

−∞
φU1+U2(x − y)φU3(y)dy (B.198)

=
1

2(b − a)3






+(x − 3a)2, 3a ≤ x < 2a + b




−(x − (b + 2a))2

+2(b − a)2

−(2b + a − x)2





, 2a + b ≤ x < a + 2b

+(3b − x)2, a + 2b ≤ x ≤ 3b
0, otherwise






using the result of the previous exercise for φU1+U2(x).
(Hint: With this and the previous exercise, symbolic computation may be more
desirable, e.g,, Maple or Mathematica.)

20. For the bivariate normal distribution, verify the inverse of Σ in (B.143)
and the explicit form for the density (B.144). Also, confirm by iterated inte-
gration that E[X1] = µ1, Var[X1] = σ2

1 and Cov[X1, X2] = ρσ1σ2.
(Hint: Only techniques such as completing the square and transformations
to the generic integral

∫ +∞

−∞
exp(−x2/2)[c0 + c1x + c2x

2]dx =
√

2π[c0 · 1 + c2 · 1]

for any constants {c0, c1, c2} are needed.)

21. For the binomial distribution in (B.148) verify that the given basic mo-
ments are correct, i.e., E[Fk] = Nπk and Var[Fk] = Nπk(1−πk) for k = 1 : 2.

22. Show that W (0+) = 0 with probability one (w.p.o.) by showing that

φW (0+)(w)
gen
= δ(w), i.e., in the generalized sense, which means that

E[f(W (t))] =

∫ +∞

∞
φW (t)(w)f(w)dw → f(0+),

as t → 0+ for continuous, continuously differentiable and sufficiently bounded
functions f(w) which vanish at infinity.
(Hint: For formal justification, scale t out of the density by a change of vari-
ables in the integral and expand f for small t, assuming that the exponential
convergence property of the normal density allows termwise integration of the
expansion. Note that X(t) is in the set S with probability one simply means
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that Prob[X(t) ∈ S] = 1.
If more rigor is desired, use the asymptotic techniques, such as Laplace’s
method for integrals (B.153, p. B53), from the text and Exercise 23.)

23. Asymptotic analysis, generalized function problem:
Show that the following sequences for the approximate right-continuous step-
function HR(x) in (B.169) and the right-continuous delta function δR(x) in
(B.171),

HR,n(x) =

∫ x

−∞
δR,n(y)dy,

δR,n(x) ≡ e−(y+µn)2/(2εn)/
√

2πεn

are valid, where εn > 0, µn > 0,
√

εn / µn / 1 when n 1 1. That is, show
for n 1 1 that HR,n(0) = HR,n(0+) ∼ 1, HR,n(0−) → 0+ and

∫ +∞

−∞
f(y)δR,n(y − x)dy ∼ f(x−)

for any continuous function f(x) that is exponentially bounded, |f(x)| ≤
Ke−a|x| on (−∞, +∞) with a > 0 and K > 0, justifying the use of HR,n(x) →
HR(x) and δR,n(x) → δR(x) as n → ∞ for the generalized representation of
Poisson processes.
(Hint: When using the Laplace asymptotic approximation of integrals tech-
nique [61, 28], change variables to ξ = y−x+µn, select the integral tail-cutoff
(−ρn, ρn) in ξ about the argument of the maximum of δR,n(ξ − µn) at ξ = 0
with εn / ρ2

n / µn / 1 so that the tails are exponentially negligible be-
ing dominated by the factor exp(−ρ2

n/(2εn)), approximate f(x − µn + ξ) ∼
f(x − µn) using continuity, and then change variables to η = ξ/

√
εn so that

the limits of integration can be expanded to ±∞. The order in which these
approximations are performed is critical.)
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