American Put Option Pricing for a
Stochastic-Volatility, Jump-Diffusion Models,
with Log-Uniform Jump-Amplitudes *

Floyd B. Hanson and Guoging Yan

Department of Mathematics, Statistics, and Computer eien

University of lllinois at Chicago

Fourth World Congress of the Bachelier Finance Society,
Tokyo, JAPAN, August 19, 2006.

American Control Conference, Invited Paper, 6 pages, to appear July 2007.

*This material is based upon work supported by the National Sence Foundation under Grant No.
0207081 in Computational Mathematics. Any opinions, findigs, and conclusions or
recommendations expressed in this material are those of theuthor(s) and do not necessarily reflect

the views of the National Science Foundation.

F. B. Hanson and G. Yan — 1 — UIC and FNMA



Outline

. Introduction.

. Stochastic-Volatility Jump-Diffusion Model.

. American (Put) Option Pricing.

. Quadratic Approximation for American Option.

. Finite Differences for American Option Linear Complemeitya
Problem.

. Implementation and Methods Comparison.
. Checking with Market Data.

. Conclusions.

F. B. Hanson and G. Yan — 2 — UIC and FNMA



1. Introduction

e Classical Black-Scholes (1973) model falils to reflect thred¢h
empirical phenomena:
o Non-normal features: return distribution skewed negadive

leptokurtic, with higher peak and heavier tails;
o Volatility smile: implied volatility not constant as in B-®odel,
o Large, sudden movements in prices: crashes and rallies.
Recently empirical research (Andersen et al.(2002), Bd1@96) and

Bakshi et al.(1997)) imply that most reasonable model aflspices
Includes both stochastic volatility and jump diffusionso@astic
volatility is needed to calibrate the longer maturities andps are

needed to reflect shorter maturity option pricing.
Log-uniform jump amplitude distribution is more realiséind

accurate to describe high-frequency data; square-rochasbic
volatility process allows for systematic volatility riske@ generates
an analytically tractable method of pricing options.
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2. Stochastic-Volatility Jump-Diffusion Model

e 2.1. Stochastic-Volatility Jump-Diffusion (SVJD) SDE:
Assume asset pricg(t), under a risk-neutral probability measure
M, follows a jump-diffusion process and conditional variemQt)
follows Heston’s (1993) square-root mean-reverting githn
process:

AN (t)

dS(t) = S(t) ((7“ — NT)dt + V() dW( ) n Z SET(Qr), (1)

AV (1) = ky (0, — V(1)) dt + 0/ V () AW, 2)

where

o r = constant risk-free interest rate;

o Ws(t) andW,(t) are standard Brownian motions with
correlation:Corr[dW(t), AW, (t)] = p;

o J(Q) = Poisson jump-amplitud€) = underlying Poisson
amplitude mark process selected so Qat In(J(Q) + 1);
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o N(t) = compound Poisson jump process with intengity
e 2.2. Log-Uniform Jump-Diffusion Model (Hanson et al., 2002

1
Pq(q) = , a<0<b
¢ b—a 0, else

Mark Mean:;; = Eg[Q] = 0.5(b + a);

Mark Variance:o> = Varg[Q] = (b — a)?/12;
Jump-Amplitude Mean:

J=E[J(Q)]|=E[e? —1]=(e"—e")/(b—a)—1.

Realism, Jump amplitudes are finite:

* NYSE (1988) usesircuit breakers limiting very large jumps;

% In optimal portfolio problem finite distributions allow riestic
borrowing and short-sellinHanson and Zhu 2006).
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3. American (Put) Option Pricing:

e Note forAmerican call optioron non-dividend stock, it is not
optimal to exercise before maturity. Sanerican call price is equal
to corresponding European call prjee least in the case of
jump-diffusions.

e American Put Option:

PASH),VO),6KT) = s [B|e " max[K - S(7),0)| 7]
T€T (t,T)

on the domairD = {(s,t)|[0,00) x |0, T}, whereK is the strike
price, T is the maturity date7 (¢,7") are a set of stopping times
satisfyingt < 7 < T.

e Early Exercise Featurdhe American option can be exercised at arj
timer € [0, 7], unlike the European option.
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e Hence, there exists@ritical Curve s = 5*(¢), a free boundary, in
the (s, t)-plane, separating the domaihinto two regions:

o Continuation Regioi&, where it is optimal to hold the option, i.e.
if s > S*(t), thenP (s, v, t; K, T) > max|[K — s,0]. Here,
P will have the same description as the European pFice .
o Exercise Regiof, where it is optimal to exercise the option, i.e.
if s < S*(t), thenPW) (s, v, t; K,T) = max[K — s,0].
e The American put option satisfies a PIDE similar to that of the
European optioflettings = S(¢t) andv = V (¢),

= 2 s,0,t K, T)+ A|PW| (s,v,t; K,T
0 P«

ot

= 8P(A) +(T—>\j)8 8P(SA)—|_ k’u (0,0 _'U) 8];:4) — TP(A)

ot o

1 . 282pA) 82p(4) 1 2 p2p(A)
+§US Os2 —|_'OO-'UUS 0sOv —|_§O-’UU Ov2

A7 (P (se?, v, K, T) = P (5,0, K, T) ) da(a)da,

for (s,t) € C and defining thdackward operataA.
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e American put optiorpricing problem agree boundary problem:

(A)
0 = 61{; (s,v,t;K,T)+A[P(A)] (s,v,t; K,T) (4)

for (s,) € C = [S*(t), 00) x [0, T7;

opP(A)

0> — (s,v,t;K,T)+A[P(A)] (s,v,¢: K,T) (5)

for (s,t) € € = [0, 5*(t)] x [0,T]. wherecritical stock priceS*(t) is not
knowna priori as a function of timegalled the free boundary
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Conditions in the Continuation Region(:

o European put terminal condition limit:

lim P(A)(:s7 v,t; K, T) = max[K — s,0],

t—T

Zero stock price limit of option:

lim P (s,v, 6 K,T) = K,

s—0

Infinite stock price limit of option:

lim P“Y(s,v,t; K,T) =0,

S— 0O

Critical option value limit:

lim P(A)(s,v,t;K,T) = K — 57(t),
s—5*(1)

Critical tangency/contact limit in addition:

lim (8P(A)/E9s) (s,v,t; K,T) = —1.

s—S*(t)
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4. Quadratic Approximation for American Put Option:

e The heuristiqquadratic approximation (MacMillan, 1986) key
insight if the PIDE applies to American optiod3(4) as well as
European option®(¥) in the continuation region, it alsapplies to
the American option optimal exercise premium

e (s, 0,6 K, T) = P (s,v,t: K,T) — P (s,v,t; K, T),

whereP(¥) js given by Fourier inverse in Yan and Hanson (2006).

Change in TimeAssuminge'*) (s, v, t; K, T) ~ G(t)Y (s, v, G(t)) and
choosingG(t) =1 — e "T~Y as a new time variable such that
) =owhenG =0att="T.

After dropping the termG(1 — G)9Y/0G since the quadratic

g(1 —g) <0.250n [0,1] makingG(t) a parameter instead of

variable, then thguadratic approximation of the PIDE is

sy L2 Y 82y
v fU_’U - —US O-IUIUS
ov 2 952 ' F DsOv

(6)
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with quadratic approximation boundary conditions
lims—oo Y (s,v,G(t)) = 0,
lims_, g+ Y(s,v,G(t)) = (K — S* — P(F)(S* v,1))/ G,
lims_, g+ (0Y/0s) (s,v,G(t)) = (=1 — (OPF)/9S) (S*,v,t))/ G.
e By constant-volatility jump-diffusion (CVJDad hoc approach
(Bates, 1996) reformulated, we assume that the dependertbe o

volatility variablewv is weak and replace by theconstant time
averaged quasi-deterministic approximatiorV/@t):

% /OT V(t)dt = 0, + (V(0) — 0.) (1 - e““”T)/ (ko T).

The PIDE (6) becomes thmear constant coefficient OIQ&vith
argument suppressed parametgrandV/,
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e Solution to the linear OIDE (8) has the power form

Y (s) = c18™ + 052,
wherec; = 0 because the positive rodt; is excluded by the
vanishing boundary condition in (7).

e The last two boundary conditions in (7) give the equationisfsad
by S*(t) andce. ThenS* = 5§*(t) can be calculated by fixed point
iteration method with the expression:

Ao (K _ p&) (S*i, t: K, T )

S* = _
Ay —1— (OPE) /9s) (S*, V.t K, T)

and

co = (K— s* — p(E) (S*,?,t; K,T))/ (G- (S*)A2) |
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5. Finite Differences for American Put Options
Linear Complementarity Problem:

e Free boundary problem transferred tgartial integro-differential
complementarity problem (PIDCR)rmulated as follows

P (s,v,t; K,T)— F(s) >0, 0P /or — AP >0,
(9)

(aP<A> O — AP<A>) (P<A> - F) — 0,
whereF(s) = max|K — s,0] andT = T — t is the time-to-go.
e Crank-Nicolson schemeith discrete state operatot ~ L,

1,7 ) 1,]

[y(k+1) _ (k)

(A) ~
oOP" /0T ~ -

& AP = L (e o).
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e Standard Linear Algebraic Definitionset U*) = {ﬁf’“)} , the

single subscripted version 6f(%) = [U,f,’;)} , with corresponding

AN

F. L. M andb®  so
ﬁzz_§f & B = <I+ %E) ow.

e Discretized LCP (Cottle et al., 1992; Wilmott et al., 199998).
Uk+) _F >0, MUK _pk) >0
(ﬁ—(zm) _ 13) T(M\ﬁ(kﬂ) _ g<k>) _ 0.

e Projective Successive OverRelaxation (PS©Rrojected SOR on
max) algorithmwith acceleration parameterfor LCP (10) by

iteratingU """ for U™ until changes are sufficiently small

) s, 00 (8- S T - ) )

J<t j>i

(10)
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e Full Boundary Conditions fot/ (s, v, 7):
U(0,v,7) = F(0) for v >0 and 7 € [0,T],
U(s,v,7) — 0 as s — oo for v >0 and 7 € [0,T],
U(s,0,7) = F(s) for s >0 and 7 € [0, 7],
oU(s,v,7)/0v =0 as v — oo for s >0 and 7 € [0,T].

e Initial Condition forU (s, v, 7):

U(s,v,0) = F(s) for s >0 and v > 0.

e Discretization of the PIDEThe first-order and second-order spatial
derivatives and the cross-derivative term are all apprakgah with
the standard second-order accurate finite differencasg @si
nine-point computational molecule. Linear interpolatis@applied to
the jump integral term and quadratic extrapolation of tHatgmn is
used for the critical stock pric€*(t) calculation.

F. B. Hanson and G. Yan — 15 — UIC and FNMA



6. Implementation and Methods Comparison:

e TheHeuristic Quadratic ApproximatioandLCP/PSORapproaches
for American put option pricing anenplemented and compareAll
computations are done on a 2.40GHz Cel&foiCPU. For the
guadratic approximation analytic formula, one Americahgption
price and critical stock price can be computed in about 7rs#x0
The finite difference method can give a series of option grfoe
different stock prices and maturity for a specific strikecprby one
Implementation. A single implementation, wilh x 101 x 51 grids
and acceleration parameter= 1.35, takes 17 seconds.

The American put option prices are implementedRarameters
r = 0.05, Sy = $100 ; the stochastic volatility parf” = 0.01,

k, = 10,0, = 0.012, o, = 0.1, p = —0.7; and the uniform jump
part.a = —0.10, b = 0.02 and\ = 0.5.
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American & European Put Option Price for T = 0.1 American & European Put Option Price for T = 0.25
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(a) American and European put option pric€s) American and European put option prices
forT" = 0.1 years. for T' = 0.25 years.

Figure 1: Theheuristic quadratic approximatiogives SVJD-Uniform
American P(4) = Péﬂ) compared to EuropeaR(¥) put option prices
for T'= 0.1 and 0.25 years, with averaged approximatiol ¢f).
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American & European Put Option Price for T = 0.5 Critical Stock Price for T = 0.5
10, r r r r r
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(a) American and European put option prices (b) Critical stock prices fofl" = 0.5.
forT" = 0.5 years.

Figure 2: Theheuristic quadratic approximatiogives SVJD-Uniform
American P = Péﬁ) compared EuropeaR(®) put option prices and
critical stock pricedor 7' = 0.5 years, with averaged approximation

V(t).
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American Put Option Price (LCP Implementation) Critical Stock Price for K = 100
14 . . . . . .

= 1 = 0.5 before Maturity
= T = 0.25 before Maturity

T = 0.1 before Maturity
= 1 =0 at Maturity
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Moneyness, S/K Time before Maturity, 1=T -t

(a) American put option prices by LCP. (b) Critical stock prices for K = 100.

Figure 3: PSOR finite difference implementation of LGfves SVJID-
Uniform American put option price8 (S, V, 1) = Pfé)P and critical stock
pricesS*(7; V') (using quadratic extrapolation approximations for smoa
contact to the payoff function).
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American Price Differences for QA and LCP
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Figure 4. Comparison of American put option prices evaluated
guadratic approximation (QA) and LCP finite difference (FiDgthods

whensS = $100 andV = 0.01. Maximum price diﬁerenc@éﬁ) = éé)p
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/. Checking with Market Data:

e Choose same timg€EQO (European optiongndOEX (American
options)quotes on April 10, 2006 from CBOE. They are based on
same underlying S&P 100 Index.

e Use XEO put option quotes to estimate parameter values of the
European put option pricing for the quadratic approxinratio

e Calculate American put option prices by quadratic appraion
formula with estimated parameter values and compare tidtses
with OEX guotes. MSE = 0.137 is obtained, showing good fitting

Table 1: SVJD-Uniform Parameters Estimatdtbm XEO quotes on
April 10, 2006

Parameters

Values
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American Price Differences for QA and OEX Quotes Critical Stock Prices for QA with OEX Data
1.5 . . . . . .

A _ p(A)
oA ~ PoEx
S *
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(a) American put option price differencés) Critical stock prices using QA versus K
between QA and OEX Quotes. with OEX quote data.

Figure 5. Comparison of American put option prices evaluated
guadratic approximation (QA) method and OEX quotes withaai stock

P — PS5y is $0.41, $0.46, $0.73, $1.15, $0.68 fbr= 11, 39, 67,

102, 168 days, respectively.
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8. Conclusions

e An alternative stochastic-volatility jump-diffusion (SVJD) model
IS proposed with square root mean reverting for stochasliatility
combined with log-uniform jump amplitudes.

e The heuristiqquadratic approximation (QA) and thel. CP finite

difference scheme for American put option priciage compared
with QA being good for practical purposes.

e The QA results are alstalibrated against real market American
option pricing data OEX (with XEO for Euro. price base), yielding
reasonable results considering the simpicity of QA.
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Future Research Directions

e Validatethe stochastic-volatility jump-diffusion modalsing high
frequency time seriegnderlying security market data to find actual
behavior and decide the most accurate underlying dynamics.

e EXxplore applicatiorhigher order numerical methotts the SVJD
American option pricing problem (cf., Oosterliee (1993nhioear
multigrid smoothing and review for the SVD American option
pricing problem).

e Price other types of optiorsased on stochastic-volatility
jump-diffusion models, such as optiowsth dividends, options with
trading cost, exotic options, and others

e Consider theptimal portfolio computations and approximate
hedgingusing the stochastic-volatility jump-diffusion modelsdahe
estimated model parameters.
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