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1. Introduction

e Classical Black-Scholes (1973) model fatis reflect the three
empirical phenomena:
o Non-normal features: return distributiskewed negativand

leptokurtic, with higher peak and heavier tails;
o Volatility smile: implied volatility not constant as in B-S model;
o Large, sudden movements in pricesashes and rallies
Recently empirical research (Andersen et al.(2002), Bd1@96) and

Bakshi et al.(1997)) imply thahost reasonable model of stock
prices includes both stochastic volatility and jump diffioss.
Stochastic volatility is needed to calibrate the longerunaes and

jumps are needed to reflect shorter maturity option pricing.
Log-uniform jump amplitude distribution is more realistiand

accurate to describe high-frequency data; square-rochasbic
volatility process allows for systematic volatility risk@ generates
an analytically tractable method of pricing options.
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2. Stochastic-Volatility Jump-Diffusion Model

e Assumeasset priceS(t), under aisk-neutral probabilitymeasure
M, follows a jump-diffusion process and conditionakiance V' (t)
follows a square-root mean-reverting diffusion process:

dS(t) = S(t) (('r —AJ)dt + \/V(t)dWS(t))

dN (t)

+ > S(T,)J(Qw),

dV(t) =k(0 —V(t)dt+ o/ V(t)dW,(t). (2)
r = constant risk-free interest rate
Ws(t) and W, (t) are standard Brownian motionsvith
correlation:Corr|[dW(t), dW,(t)] = p;
J(Q) = Poisson jump-amplitude@ = underlying Poisson
amplitudemark processelected so tha) = In(J(Q) + 1);
N (t) = compound Poisson procesgth jump intensity\.
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e Density of jump-amplitudenark @ is uniformly distributed

}, a<0<b

bq(q) = b a

1 1, a<qg<b
0, else

Mark Mean:u; = Eq[Q] = 0.5(b + a);

Mark Variance:o> = Varg[Q] = (b — a)?/12;
Jump-Amplitude Mean:

J=E[J(Q)]=E[exp(Q) —1] = (exp(b) —exp(a))/(b—a) — 1.

Realism: Jump amplitudes are finite; NYSE ueesuit breakers
that limit very large jumps; in optimal portfolio problem fie
distributions allow realistic borrowing and short-sajin

e By It0’s chain rule)og-return procesdn(S(t)) satisfies SDE:

dIn(S(t)) = (r — AJ — V(t)/2)dt + /V (&)dW,(t)
(3)
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3. European Option Prices
3.1 Probability Distribution Function:

e Price of European call optiorunder risk-neutral probability
measure:

C(S(t),V(t),t; K, T)
= e "I YEm[max[Sr — K,0]|S(t), V(H)] (4
= S{t)P.(S(t),V(t),t; K, T)
—Ke " TPy (S(t), V(t),t; K, T);
o C(S(t),V(t),t; K,T)e"T=Y = E \[max(Sy — K, 0)|S(t), V(t)],
the conditional expectation of the composite process;
e Change of variables:L(t) = In(S(t)) andx = In(K), so
C(L(t),V(t),t;r,T) = C(S(t),V(t),t; K, T) in terms of processes

or for PDES@(E, v, t;k, T) = C(exp(€), v, t;exp(k),T);
e Applying the two-dimensional Dynkin’s theorem,
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using.A as backward operator

oC .

— k) =

5 + A[C](4, v, t; k, T)

+k(9—v)@+lv82a+ ov 0°C +
oo 2 a2 TP 000 T 2

+A/ (5(5 +q,v,t) — C(£,, t)) dq(q)dg,
and by substituting and separating variables, produce:
e PIDE for Py, with boundary conditiorP; (¢, v, T; k,T) = 1y~:
F AP0, . T) + 0008

oP - > .
vt (r-A) Pt [ (@ = DB+ g 0. D00(@)ds: (6

e PIDE for P, with boundary conditioﬁ%(ﬁ, v, Tk, T) = 1psk:

‘|‘A[ﬁ2](€,?},t;lﬂ3,T) —I—Tﬁz; (7)
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3.2 Characteristic Function:

e Correspondingharacteristic functions defined by Fourier
transforms

oo

fi(,v,t;y,T) = —/ eiy“dﬁj(ﬁ,v,t;ﬁ:,T), (8)

— OO

e Satisfying thesame PIDEsas theﬁj (v, t; Kk, T):

8 .
i A1), 1, T) = 0, ©)

whereA; represents the corresponding full backward operators in
(6) and (7) with boundary conditiong; (¢, v, T;y, T) = +e%*,
respectively for; =1 : 2.

e Solutionconjecture:

fitt,v,t5y,t + 1) =exp (g;(7)+h;(T)v+iyl+B;(7)), (10)

with 3;(7) = r7d;2 and BCsy;(0) = 0 = h;(0) forj =1: 2.
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3.3 Solution Detalls:

e For the Fourier transforms; for j =1 : 2,

(7 = A%)(e™7T —1)
5(7) o?(nj + A5 — (n; — A;)eT)

((T — )\J_)zy — )\j5j,1 — 7“53',2)7'

s / T (DT 1) (q)dg (12)

0-2

ko (21n (1 _ (B +m)( _G_AjT)> + (A +77j)7) :

2,

where

n; = po(ty +6;1) —k & Aj = \/77? — o%iy(iy £ 1);

6(’iy+1)b _ e(iy+1)a

~ (iy+1)g _ .
/Oo<e U Dglads = S
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Thetall probabilities P; for j =1 : 2 are

P;(S(t), V(t),t; K,T) = %

1 [to° —iyIn(K) £.(In(S(t)), V(¢), t;y, T
Re[e fg(n(.()) (1), t;y )dy,

_|__

™ Jo+ (2]
by complex integration on equivalent contouyselding a residue of
1/2 and a principal value integral in the limit to the left of the
apparent singularity at = 0™, since the integrand is bounded in the

singular limit.
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4. Computing Fourier Integrals and Inverses

4.1 Using 10-point Gauss-Legendre formula for DFTSs:
Re-write the Fourier integral as

= lim / (14)
N —>00 Z (j 1)h

e Because of singularity at = 0 and oscillatory behaviodiscrete
Fourier tranform (DFT) sub-integrals in (14) are computed by
means of anighly accurate, ten-point Gauss-Legendre formula
which is also an open formula, not evaluating the functiotmat

endpoints.
N is not fixed but determined bylacal stopping criterion:the

Integration loop is stopped if the ratio of the contributmfrthe last

strip to the total integration becomes smaller thdie-7.
Step sizeh = 5. Good choice for fast convergence and good

precision.
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4.2 Using Fast Fourier Transform (FFT):
(After Carr and Madan (1999))

e |nitial call option price:

[©.@)

C(S(t), V(D). 1: K, T):—/ e T(S(1)—K)dP>(S(1),V (1), £: K, T); (15)

K
e Modified call option price to remove the singularity

ctmod) (S), V), t;k,T) =e""C(S(t),V(t),t; K, T); (16)
e Corresponding Fourier transform 6f™°4 (S (t), V (), t; x, T):

w(sS(t),V(t),t;y,T) :/Ooeiy“C(mOd)(S(t),V(t),t; k, T)dr; — (17)

e Thus, e
C(S(t), V(1) t; K,T) ="~ /6iy“‘I’(S(t),V(t),t;y,T)dy; (18)
0

s
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-/ / TN (S (1) — K)
dP>(S

V(t),t;k, T)dk

e (T t)fQ(y —(a+1)i)

o +a—y?+i2a+1)y’

e Transfer the Fourier integral into discrete Fourier transf (DFT)

and incorporate Simpson’s rule (Carr and Madan (1999))dcease
accuracy of thé&-FT application for Fourier inverses

(19)

— oK

N
C(S(t),V(),tk,T) = = Z TR evi(t™ ln(S))\P(y )

J:

W3+ (-1 — 45], (20)

wherea = 2.0 anddy = 0.25 are used.
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5. Numerical Results for Call and Put Options

e Two numerical algorithms give the same results within aacyr
standard. The FFT method can compute different levelsespiice
near at-the-money (ATM) in 5 seconds. The standard integrat
method can give out the results for one specific strike prniabout

0.5 seconds. The implementations are using MATLAB 6.5 anthen

PC with 2.4GHz CPU.
e Theoption prices from the stochastic-volatility jump-diffiun

(SVJD) model are compared with those of Black-Scholes model
Parameters: = 3%, So = $100; c7%, V = 0.012, p = —0.622,
0 =0.53, k =0.012; a = —0.028, b = 0.026, A = 64.
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5.1 Call Option Prices:

Call Option Price for T=0.1 Call Option Price for T=0.25 Call Option Pricefor T=1

--SVJD --SVJD --SVJD
--BS 1 25F --BS 4 --BS
25 1

100 110
Strike Price

(a) Call prices fofl’ = 0.1. (b) Call prices forl’ = 0.25. (c) Call prices forl’ = 1.0.

Figure 1: Call option prices for the SVJD model compared ®darre-
sponding pure diffusion Black-Scholes valuesfos 0.1, 0.25, 1.0.
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5.2 Put Option Prices:

Put Option Price for T=0.1 Put Option Price for T=0.25 Put Option Price for T=1

~SViD ~SVID)| 30} [+SVvaD|
--BS --BS --BS
30 E o ]
25

100, 110
Strike Price

(a) Put prices fofl’ = 0.1. (b) Put prices fofl' = 0.25. (c) Put prices fofl' = 1.0.

Figure 2: Put option prices for the SVJD model jyt-call parity com-
pared to the corresponding pure diffusion Black-Scholésegmforl =
0.1,0.25, 1.0.
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6. Conclusions

Proposed an alternative stochastic-volatility, jump-aision
(SVJD) model, stochastic volatility follows a square-root
mean-reverting stochastic process and jump-amplitude has

log-uniform distribution.
Characteristic functions of the log-terminal stock pricand the

conditional risk neutral probability a@nalytically derived
The option prices are expressed in terms of characterigtictions in

formally closed form.
Two numerical computing algorithms using an accuf&igoint

Gauss-Legendre discrete Fourier integral (DFTormula and dast
FFT are compared. Same option prices are given by two methoddfor

the SVJD model.
Compared with those from Black-Scholes model, $%JD model

have higher option pricesespecially for longer maturity and near
at-the-money (ATM) strike price.
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