
“bk06sdpfinal”
2007/1/4
page 1

i

i

i

i

i

i

i

i

Applied Stochastic Processes and Control for

Jump-Diffusions: Modeling, Analysis and

Computation

Floyd B. Hanson

University of Illinois

Chicago, Illinois, USA

Chapter 6 Stochastic Dynamic Programming

Copyright c© 2006 by the Society for Industrial and Applied Mathematics.

January 4, 2007



“bk06sdpfinal”
2007/1/4
page 171

i

i

i

i

i

i

i

i

Chapter 6

Stochastic Optimal
Control - Stochastic
Dynamic Programming

It was the owl that shriek’d, the fatal bellman,
Which gives the stern’st good-night.
—William Shakespeare (1564-1616) in Macbeth.

But the principal failing occurred in the sailing,
And the Bellman, perplexed and distressed,+
Said he had hoped, at least, when the wind blew due East,
That the ship would not travel due West!
—Lewis Carroll (1832-1898) in The Bellman’s Speech.

6.1 Stochastic Optimal Control Problem

This main chapter introduces the optimal stochastic control problem. For many ap-
plication systems, solving a SDE, or for that matter an ODE, to obtain its behavior
is only part of the problem. The SDE is, in fact, a stochastic ordinary differential
equation (SODE). Another, very significant part is finding out how to control the
SDE or ODE as a model for controlling the application system.

Thus, the general jump-diffusion SDE (5.82) is reformulated with an additional
process, the vector control process U(t) = [Ui(t)]nu×1 on some nu-dimensional
control space Du,

dX(t)
sym
= f(X(t),U(t), t)dt + g(X(t),U(t), t)dW(t)

+

∫

Q

h(X(t),U(t), t,q)P (dt,dq;X(t),U(t), t) , (6.1)

when t0 ≤ t ≤ tf subject to a given initial state X(t0) = x0, where again X(t) =
[Xi(t)]nx×1 is the vector state process on some nx-dimensional state space Dx.
The stochastic processes are the nw-dimensional vector Wiener process or diffu-
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172 Chapter 6. Stochastic Dynamic Programming

sion process W(t) = [Wi(t)]nw×1 and the np-dimensional vector Poisson process or
jump process P(t;Q,X(t),U(t), t) = [Pi(t; Qi,X(t),U(t), t)]np×1, with IID jump-
amplitude mark random vector Q = [Qi]np×1 and Poisson random measure

P(dt,dq;X(t),U(t), t) = [Pi(dt,dq;X(t),U(t), t)]np×1.

The np-dimensional vector state-dependent compound Poisson process can
also be defined as in Chapt. 5 in a zero-one law form,

Z

Q

h(X(t),U(t), t,q)P(dt,dq;X(t),U(t), t)

dt
=
zol

"
npX

j=1

hi,j(X(t),U(t), t,Q)dPj(t; QjX(t),U(t), t)

#

nx×1

,

with

E[dP(t;Q,X(t),U(t), t)|X(t) = x,U(t) = u] = λ(t;x,u, t)dt,

and jump in the ith state component

[Xi](Tj,k) = hi,j(X(T−
j,k),U(T−

j,k), T−
j,k, Qj,k),

where λ(t;x,u, t) is the jump rate vector and T−
j,k is the kth jump time of the jth

differential Poisson process and Qj,k is the corresponding mark.
The coefficient functions are the nx × 1 plant function f(x,u, t), having the

same dimension as the state x, the nx × nw volatility function g(x,u, t) or square
root of the variance of the diffusion term, and the nx × np jump amplitude of the
jump term h(x,u, t,Q), where Q is the underlying jump amplitude random mark
process, the space part of the space-time Poisson process.

The optimization objective functional for a control formulation may be the
combination of a final cost at time tf and cumulative instantaneous costs, given the
initial data (x0, t0). For instance,

V [X,U, tf ](x0, t0) =

∫ tf

t0

C(X(s),U(s), s)ds + S(X(tf ), tf ) (6.2)

is a functional of the processes X(t) and U(t), where C(x,u, t) is the scalar instan-
taneous or running cost function on the time horizon (t0, tf ] give the state at
t0 and S(x, t) is the final cost function; both are assumed continuous. This is the
Bolza form of the objective. The objective V [X,U, tf ](x0, t0) is a functional of the
state X and control process U, i.e., a function of functions, while also dependent
on the values of the initial data (x0, t0). The optimal control objective, in this
case, is to minimize the expected total costs with respect to the control process on
(t0, tf ]. The feedback control of the multibody stochastic dynamical system (6.1)
is illustrated in the block diagram displayed in Figure 6.1.

Prior to the optimization step, an averaging step, taking the conditional expec-
tation, conditioned on some initial state, is essential to avoid the ill-posed problem
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6.1. Stochastic Optimal Control Problem 173

CONTROLS
[Ui(X(t), t)]nu×1

STATES
[Xi(t)]nx×1

ENVIRONMENT

[fi(X,U, t)dt]nx×1 Controlled Nonlinear Plant

[gi,j(X,U, t)]nx×nw [dWi(t)]nw×1 Diffusion Noise

[hi,j(X,U, t,Q)]nx×np [dPi(t;Q,X,U, t)]np×1

Jump Noise

��

-

Feedback update in time dt ր

Figure 6.1. Multibody Stochastic Dynamical System Under Feedback Control.

of trying to optimize an uncertain, fluctuating objective. It is further assumed here
that the running and terminal cost functions permit a unique minimum, subject to
stochastic differential dynamics in the multi-dimensional jump-diffusion case (6.1).
Hence, the optimal, expected cost for (6.2) is

v∗(x0, t0) ≡ min
U(t0,tf ]

[
E

(W ,P)(t0,tf ]

[
V [X,U, tf ](x0, t0)

∣∣∣∣X(t0) = x0,U(t0) = u0

]]
, (6.3)

with the expectation preceding the minimization so that the minimization prob-
lem is better-posed by smoothing random fluctuations through averaging. In the
optimization in (6.4), it is implicit that the stochastic dynamical system (6.1) is
a constraint. The minimization over U(t0, tf ] denotes the minimization over the
control path U(t) for t ∈ (t0, tf ] and similarly the expectation over {W, P}(t0, tf ]
denotes expectation over the joint stochastic pair {W (t), P (t)} for t ∈ (t0, tf ].

Recall that the maximum problem, as in the maximization of profits, portfolio
returns or utility, is an equivalent problem since

max
U

[V [X,U, tf ](x0, t0)] = −min
U

[−V [X,U, tf ](x0, t0)] ,

upon reversing the value. However, switching theoretical results from those for a
minimum to get those of a maximum, basically requires just replacing the minimum
function min for the maximum function max, along with replacing positive definite-
ness conditions for negative definite conditions, in the case of regular optima. For
software optimization packages that are designed for minimizations, then the user
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174 Chapter 6. Stochastic Dynamic Programming

needs to use the negative of the function to be maximized and to take the negative
of the final minimum output, for example, MATLAB’s fminsearch.

In order to implement the dynamic part of dynamic programming, the fixed
initial condition X(t0) = x0 for the SDE (6.1) needs to be replaced by a more
arbitrary start, X(t) = x, so that the start can be analytically manipulated. This
is a small but important step to produce a time-varying objective amenable to
analysis. Hence, the optimal expected value as

v∗(x, t) ≡ min
U(t,tf ]

[
E

(W ,P )(t,tf ]

[
V [X,U, tf ](x, t)

∣∣∣∣X(t) = x ,U(t) = u

]]
. (6.4)

Since the running cost integral vanishes when t = tf , leaving only the terminal cost
term conditioned on X(tf ) = x and U(tf ) = u, a simple final condition for the
optimal expected cost follows:

v∗(x, tf ) = S(x, tf ) , (6.5)

for any x in the state domain Dx, assuming that the terminal cost function S(x, tf ) is
a deterministic function. This final condition is the first clue meaning that dynamic
programming will use a backward program in time.

6.2 Bellman’s Principle of Optimality

The basic assumption is that the optimization and expectation can be decomposed
over increments in time. Bellman’s Principle of Optimality can be systematically de-
rived from optimization in time step proceeding backward from the final increment
to the initial increment. Also, in the Markov processes case here, the independent
increment properties of the Wiener and Poisson processes permit the decomposition
of the expectation over time. This decomposition conveniently complements the de-
composition of the optimization over time as in the deterministic case presented in
Section A.4.

The semi-close-open time interval (t, tf ] in the optimal expected cost formu-
lation (6.4), given the state at time t, can be decomposed into disjoint increments
(t, t + δt] and (t + δt, tf ] for fixed δt in t < t + δt < tf . Symbolically, the decom-

position rules are written:

Rules 6.1. Decomposition for Time, Integration, Expectation and Mini-
mumization:

• Time domain Decompostion into Subintervals:

(t, tf ] = (t, t + δt] + (t + δt, tf ],

needs to be further decomposed for discrete approximations into sufficiently
small increments ∆ti for i = 1:n + 1, such that

ti+1 = ti +
i∑

j=1

∆tj ,
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6.2. Bellman’s Principle of Optimality 175

t1 = t, tℓ = t+δt for some integer ℓ ∈ [1, n+1], tn+1 = tf , δtn = maxi[∆ti] →
0 as n → ∞. Recall that the approximation to the stochastic dynamics (6.1)
is

Xi+1 ≃ Xi +

∫ ti+∆ti

ti

dX(s) ≃ Xi + fi∆ti + gi∆Wi + hi∆Pi,

for sufficiently small ∆ti, where, for example, fi ≡ f(Xi,Ui, ti), so that the
change from Xi to Xi+1 is due to the control Ui and random fluctuations
(∆Wi, ∆Pi) determined from a prior stage.

• Integration Additive Decomposition Rule:

∫ tf

t

C(X(s),U(s), s)ds =

∫ t+δt

t

C(X(s),U(s), s)ds+

∫ tf

t+δt

C(X(s),U(s), s)ds, (6.6)

for the cumulative running costs by the regular additivity property of regular or
Riemann-type integrals, or in terms of small increments in simplified notation.
Let

V =

∫ tf

t

Cds + S(X(tf ), tf ) ≃

n+1∑

i=1

Ĉi,

be the forward approximation, where Ĉi ≡ Ci∆ti = C(Xi,Ui, ti)∆ti for i =

1 : n − 1 and Ĉn+1 ≡ S(X(tf ), tf ) = S(Xn+1, tn+1) = Sn+1.

• Expectation Operator Multiplication Decomposition Rule:

V = E
(W ,P)(t,tf ]

[V |C(t)] = E
(W ,P)(t,t+δt]

[
E

(W ,P)(t+δt,tf ]
[V |C(t + δt)]

∣∣∣∣ C(t)

]
,

where V is an objective function and C(t) = {X(t),U(t)} is the conditioning
at time t. This decomposition relies on the corresponding decomposition of
the Markov processes W(t) and P(t;Q,X(t),U(t), t) into independent incre-
ments, so that the expectation over {W(s),P(s)} for s ∈ (t, tf ] is the prod-
uct of expectation over {W(s),P(s)} for s ∈ (t, t + δt] and expectation over
{W(r),P(r)} for r ∈ (t + δt, tf ]. In order to compute the expectation over
the path of a Markov process, we need to approximate the process by a sum of
n independent increments for sufficiently large n to obtain sufficiently small
∆ti and then take the product of the expectations with respect to each of these
independent increments, and finally taking the limit as n → ∞ relying on
mean square convergence in the result as in the first two chapters. In simple
notation,

V = E[V |C(t)] ≃ E

[
n+1∑

i=1

Ĉi

∣∣∣∣∣X1,U1

]
,



“bk06sdpfinal”
2007/1/4
page 176

i

i

i

i

i

i

i

i

176 Chapter 6. Stochastic Dynamic Programming

where E
[
Ĉ1

∣∣∣X1,U1

]
≡ E0

[
Ĉ1

]
= Ĉ1 since Ĉ1 = C(X1,U1, t1)∆t1,

E
[
Ĉ2

∣∣∣X1,U1

]
= E

(∆W1,∆P1)

[
Ĉ2

∣∣∣X1,U1

]
≡ E1

[
Ĉ2

]
= Π1

j=0Ej

[
Ĉ
]
,

E
[
Ĉ3

∣∣∣X3,U3

]
= E1

[
E

(∆W2,∆P 2)

[
Ĉ3

∣∣∣X2,U2

]]
≡ Π2

j=0Ej

[
Ĉ3

]
,

so in general,

E
[
Ĉi+1

∣∣∣X1,U1

]
= Πi

j=0Ej

[
Ĉi+1

]
,

with

Ej

[
Ĉi+1

]
≡ E

(∆Wj ,∆P j)

[
Ĉi

∣∣∣Xj ,Uj

]

for j = 0 : i, E
[
Ĉi+1

]
= Ĉi+1 and finally,

V ≃

n+1X

i=1

Πi−1
j=0Ej

h
bCi

i
−→ E

(W ,P )(t,t+δt]

»Z t+δt

t

Cds

+ E
(W ,P )(t+δt,tf ]

»Z tf

t+δt

Cds + S(X(tf ), tf )

˛̨
˛̨ (X,U)(t + δt)

–˛̨
˛̨ (X,U)(t)

–
,

as n → ∞, confirming the construction, assuming mean square convergence.

• Minimization Operator Multiplication Decomposition Rule:

V
∗

= min
U(t,tf ]

[
V
]

= min
U(t,t+δt]

[
min

U(t+δt,tf ]

[
V
]]

, (6.7)

where V is the expected value of an objective so that the decomposition rule is
analogous to the use in deterministic dynamic programming. This decompo-
sition depends on the reasonable heuristic idea that given a minimum on the
later interval (t + δt, tf ], taking the minimum of the given minimum over the
small earlier interval (t, t + δt] yields the minimum over the longer interval
(t, tf ]. In terms of the small increments (∆ti) construction,

V
∗
≃

n+1X

i=1

min
U(t,tf ]

h
Πi−1

j=0Ej

h
bCi

ii
=

n+1X

i=1

"
Πi−1

j=0 min
Uj

Ej

h
bCi

i#
=

n+1X

i=1

Πi−1
j=0MEj

h
bCi

i

where

ME0 ≡ min
U1

[
E0

[
Ĉ0

∣∣∣ (X0,U0)
]]

and

MEj ≡ min
Uj

[
Ej

[
Ĉi

∣∣∣Xj ,Uj

]]
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6.2. Bellman’s Principle of Optimality 177

for j = 0 : i − 1. As n → ∞ and δtn → 0, then

V
∗
→ min

U(t,t+δt]

[
E

(W ,P )(t,t+δt]

[∫ t+δt

t

Cds + min
U(t+δt,tf ]

[
E

(W ,P)(t+δt,tf ]

[∫ tf

t+δt

Cds + S(X(tf ), tf )

∣∣∣∣ (X,U)(t + δt)

]]∣∣∣∣ (X,U)(t)

]]
.

The optimal decomposition seems to work for many examples. However, for
empirical counterexamples, see Rust [240].

Thus, optimal expected cost (6.4) can be decomposed as follows:

v∗(x, t) = min
U(t,t+δt]

[
E

(W ,P)(t,t+δt]

[∫ t+δt

t

C(X(s),U(s), s)ds

+ min
U(t+δt,tf ]

[
E

(W ,P )(t+δt,tf ]

[∫ tf

t+δt

C(X(s),U(s), s)ds + S(X(tf ), tf )

∣∣∣∣{X(t + δt),U(t + δt)}

]] ∣∣∣∣X(t) = x ,U(t) = u

]]

= min
U(t,t+δt]

[
E

(W ,P)(t,t+δt]

[∫ t+δt

t

C(X(s),U(s), s)ds

+v∗(X(t + δt), t + δt)

∣∣∣∣X(t) = x ,U(t) = u

]]
, (6.8)

where the definition (6.4) for v∗ has been reused with the arguments shifted by
the time-step δt, since the inner part of the decomposition that is on (t + δt, tf ] is
precisely the definition of v∗ in (6.4) but with arguments shifted from (x, t) to (X(t+
dt), t + dt). Thus, Eq. (6.8) is a backward recursion relation for v∗. The subscript
notation U(t, t+δt] under the min operator means that the minimum is with respect
to U in the range (t, t + δt], with similar subscript notation {W,P}(t, tf ] for the
expectation operator. Thus, we have formally derived the fundamental recursive
formula of stochastic dynamic programming:

Lemma 6.2. Bellman’s Principle of Optimality:
Under the assumptions of the decomposition rules (6.7, 6.7, 6.6) and the properties
of jump-diffusions,

v∗(x, t) = min
U(t,t+δt]

[
E

(W ,P )(t,t+δt]

[∫ t+δt

t

C(X(s),U(s), s)ds

+v∗(X(t + δt), t + δt)

∣∣∣∣X(t) = x ,U(t) = u

]]
. (6.9)

The argument of the minimum when it exists, within the control domain Du,
is the optimal control u∗ = u∗(x, t). Although the SDE is a forward differential
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178 Chapter 6. Stochastic Dynamic Programming

equation integrated forward from the initial condition, the optimal control problem
is a backward general or functional equation integrated backward from the final
time. The backward equation is quite basic, when one has a final objective, here
optimal costs. Then the primary question is where to start initially to get that
optimum. People do backward calculations all the time, such as when going to a
scheduled meeting or a class, the meeting time is fixed and the problem is to estimate
what time one should leave to get to the meeting. However, when economic decisions
are made, the decision makers may not behave according to Bellman’s principle of
optimality according to the studies of Rust [240].

In general, capital letters are used for stochastic processes and lower case

letters for conditioned or realized variables.

6.3 Hamilton-Jacobi-Bellman (HJB) Equation of
Stochastic Dynamic Programming

Using the Principle of Optimality (6.9) and by taking the limit of small δt,
replacing δt by dt, we can systematically derive the partial differential equation
of stochastic dynamic programming, also called the stochastic Hamilton-Jacobi-

Bellman (HJB) equation, for the general, multi-dimensional Markov dynamics
case. From the increment form of the state differential dX(t) = X(t + dt) − X(t),
we consider the expansion of the state argument

X(t + dt) = X(t) + dX(t)

about X(t) for small dX(t) and about the explicit time argument t + dt about t
in the limit of small time increments dt, using an extension of Taylor approxima-
tions extended to include discontinuous (i.e, Poisson) and non-smooth (i.e., Wiener)
processes. Sufficient differentiability of the optimal value function v∗(x, t), at least
to first order in time and second order in state, is assumed except when its state
argument has Poisson jumps. The spirit of the derivation of the multi-dimensional
chain rule (5.98) is applied to the Principle of Optimality (6.9), except that the
mean square limit substitution for the bilinear Wiener Wi(t)Wj(t) process is not
needed here because of the pre-optimization expectation operation. Then neglect-
ing o(dt) terms as dt → 0+ (strictly, we are really working with finite increments δt)
and substituting for the conditioning on X(t) and U(t), an intermediate reduction
of the optimal expected value is

v∗(x, t)
dt
= min

u

[
E

(dW ,dP )(t)

[
C(x,u, t)dt + v∗(x, t) + v∗t (x, t)dt

+∇⊤
x [v∗](x, t) · (f(x,u, t)dt + g(x,u, t)dW(t)) (6.10)

+
1

2
dW⊤(t)g⊤(x,u, t)∇x[∇⊤

x
[v∗]](x, t)(g(x,u, t)dW(t))

+

np∑

j=1

∫

Q

(
v∗(x + ĥj(x,u, t, qj), t) − v∗(x, t)

)
Pj(dt,dqj ;x,u, t)

]]
,
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6.3. HJB Equation of Stochastic Dynamic Programming 179

where it has been assumed that the random mark variables Qj = qj are pair-wise
independently distributed and the jump amplitude is separable in the marks. So

h(x,u, t,q) = [hi,j(x,u, t, qj)]nx×np
, (6.11)

with a corresponding multiplicative factoring of the Poisson random measure. Recall
from Chapter 5 (5.100) that the jth vector component of the jump amplitude is

ĥj(x,u, t, qj) ≡ [hi,j(x,u, t, qj)]nx×1 , (6.12)

for j = 1 : np, corresponding to the jth Poisson process

dPj(t;x,u, t) =

∫

Q

Pj(dt,dqj ;x,u, t) ,

in terms of the jth Poisson mark-time random measure Pj . Note that the first t
argument of dPj is the time implicit to the Poisson process, while the second t argu-
ment is an explicit time corresponding to the implicit state and control parametric
dependence.

The next step is to take the conditional expectation over the now isolated
differential Wiener and Poisson processes, but done by expanding them in compo-
nents to facilitate understanding of the step and suppressing some arguments for
simplicity,

v∗(x, t)
dt
= v∗(x, t) + v∗t (x, t)dt + min

u
[C(x,u, t)dt

+∇⊤
x

[v∗](x, t) ·

(
f(x,u, t)dt +

nw∑

i=1

gi(x,u, t)EdWi
[dWi(t)]

)

+
1

2

nw∑

i=1

nw∑

j=1

EdWi,dWj
[dWi(t)dWj(t)]

[
g⊤(x,u, t)∇x[∇⊤

x [v∗]]g(x,u, t)
]
i,j

+

np∑

j=1

∫

Q

(
v∗(x + ĥj(x,u, t, qj), t) − v∗(x, t)

)
EPj

[
Pj(dt,dqj ;x,u, t)

]]

ind
=
inc

v∗(x, t) + v∗t (x, t)dt + min
u

[
C(x,u, t)dt + ∇⊤

x
[v∗](x, t) (f(x,u, t)dt + 0)

+
1

2

nw∑

i=1



1+

nw∑

j=1

ρi,j(1−δi,j)



[g⊤(x,u, t)∇x

[
∇⊤

x
[v∗]
]
(x, t)g(x,u, t)

]
i,j

dt

+

np∑

j=1

λj(t;x,u, t)

∫

Q

(
v∗(x + ĥj(x,u, t, qj), t) − v∗(x, t)

)

·ΦQj
(dqj ;x,u, t)dt

]
, (6.13)

where we have used the expectations

E[dWi(t)] = 0, E[dWi(t)dWi(t)] = (δi,j + ρi,j(1 − δi,j)dt
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180 Chapter 6. Stochastic Dynamic Programming

with correlation coefficient ρi,j and

E[Pj(dt,dqj ;x,u, t)] = λj(t;x,u, t)dtΦQj
(dqj ;x,u, t)

= λj(t;x,u, t)φQj
(qj ;x,u, t)dqjdt .

Also, with sufficiently small dt, U(t, t + dt] has been replaced by the conditioned
control vector u at t.

Note that the v∗(x, t) value on both sides of the equation cancel and then the
remaining common multiplicative factors of dt also cancel, so the HJB equation

has been derived for this general case:

Theorem 6.3. Hamilton-Jacobi-Bellman Equation (HJBE) for Stochastic
Dynamic Programming (SDP)
If v∗(x, t) is twice differentiable in x and once differentiable in t, while the operator
decomposition rules (6.7-6.6) are valid, then

0 = v∗t (x, t) + min
u

[H(x,u, t)] ≡ v∗t (x, t) + H∗(x, t) (6.14)

where the Hamiltonian (technically, a pseudo-Hamiltonian) functional is given by

H(x,u, t) ≡ C(x,u, t) + ∇⊤
x

[v∗](x, t) · f(x,u, t)

+
1

2

(
gR ′g⊤

)
(x,u, t) : ∇x

[
∇⊤

x [v∗]
]
(x, t)

+

np∑

j=1

λj(t;x,u, t)

∫

Q

[
v∗
(
x + ĥj(x,u, t, qj), t

)
− v∗(x, t)

]

·φQj
(qj ;x,u, t)dqj , (6.15)

where the correlation modified indentity R ′ is defined in (5.95) as

R ′ ≡ [δi,j + ρi,j(1 − δi,j)]nw×nw
, (6.16)

and where the correlation coefficient between i and j components is

ρi,jdt = Cov[dWi(t), dWj(t)] , (6.17)

provided j 6= i for i, j = 1 : nx. The double-dot product A : B is defined in (5.99).
The optimal control, if it exists, is given by

u∗ = u∗(x, t) = argmin
u

[H(x,u, t)] , (6.18)

subject to any control constraints.

This HJB equation (6.14) is no ordinary PDE, but but has the following
properties or attributes:

Properties 6.4.
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• The HJBE is a functional PDE or PIDE due to the presence of the minimum
operator min and the Poisson integral term (the last term) with steps in the
state argument of the optimal value function v∗ due to the jump amplitude.

• The HJBE is a scalar valued equation, but has a (nu + 1)-dimensional so-
lution consisting of the scalar optimal value function v∗ = v∗(x, t) and the
optimal control vector u∗ = u∗(x, t) as well. These dual solutions are gen-
erally tightly coupled in functional dependence. In general, this tight coupling
requires a number of iterations between v∗ and u∗ to obtain a reasonable ap-
proximation to the (nu+1)-dimensional solution. However, it should be noted
that the optimal control u(x, t) in (6.18) is deterministic and if the x depen-
dence is genuine then it is also feedback optimal control. In fact, the HJB
equation is a deterministic equation as well.

• A further complication in this functional PDE or PIDE is that the HJB equa-
tion (6.14) has global state dependence due to the Poisson jump functional
integral term, whereas the HJB equation for purely Gaussian or Wiener pro-
cesses is essentially a diffusion equation that has only local state depen-
dence since it depends only on the values v∗(x, t), u∗(x, t), the gradient vector
∇x[v∗](x, t), and the Hessian matrix of 2nd order derivatives ∇x[∇⊤

x [v∗]](x, t)
at (x, t). Contrast this with the random noise case including the Poisson ran-
dom measure disturbance, with local dependence at x, but global dependence
on a range of points at x + ĥj(x,u, t, qj) depending on the Poisson mark
distribution.

While letting C∗(x, t) ≡ C(x,u∗, t), f∗(x, t) ≡ f(x,u∗, t), g∗(x, t) ≡ g(x,u∗, t),

ĥ
∗

j (x, t, qj) ≡ ĥj(x,u∗, t, qj), and so forth for all control-dependent functions, then
the HJB equation (HJBE) takes the form of a backward parabolic partial differential
equation except that it has an additional integral term:

0 = v∗t (x, t) + H(x,u∗(x, t), t)

= v∗t (x, t) + C∗(x, t) + ∇⊤
x [v∗](x, t) · f∗(x, t)

+
1

2

(
g∗R ′g∗⊤

)
(x, t) :∇x

[
∇⊤

x
[v∗]
]
(x, t) (6.19)

+

np∑

j=1

λ∗
j (t;x, t)

∫

Q

∆j [v
∗](x, t, qj)φ

∗
Qj

(qj ;x, t)dqj ,

where the jth jump increment is defined as

∆j [v
∗](x, t, qj) ≡ v∗

(
x + ĥ

∗

j (x, t, qj), t
)
− v∗(x, t) (6.20)

and the double-dot product (A : B) is defined in (5.99). The final condition is given
by v∗(x, tf ) = S(x, tf ).

The Hamilton-Jacobi-Bellman name of the equation comes from the fact that
Bellman [25, 26] was the founding developer of dynamic programming and the fact
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that the general evolution equation, v∗t (x, t) + H∗(x, t) = 0, is called a Hamilton-
Jacobi equation and where H(x,u, t) is like a classical Hamiltonian. Sometimes,
the HJB equation (6.14) is called simply the Bellman equation, or the stochastic
dynamic programming equation or the PDE of stochastic dynamic programming,
or in particular, the PIDE of stochastic dynamic programming where PIDE denotes
a partial integral differential equation).

6.4 Linear Quadratic Jump-Diffusion (LQJD)
Problem

The linear quadratic jump-diffusion (LQJD) problem is also called a linear quadratic
Gaussian Poisson (LQGP) problem or jump linear quadratic Gaussian (JLQG)
problem. The Markov property of the jump-diffusion processes described in this
book leads to an analogous dynamic programming formulation to dynamic pro-
gramming for deterministic processes as in the deterministic linear quadratic (LQ)
problem of Subsection A.4.4. In this chapter, the LQJD problem is presented in
more generality than in Chapter A.

The linear quadratic problem in both state and control leads to a quadratic
decomposition of the optimal value function with respect to the state and a linear or
feedback decomposition of the optimal control. However, first the LQJD problem is
examined for a special case that is linear quadratic in control only to show how much
an advantage is gained by the control dependence alone. For many applications it
is not appropriate to have the problem linear quadratic in the state.

6.4.1 LQJD in Control Only (LQJD/U) Problem

A general variant of the LQJD problem is the LQJD/U problem that is LQJD in
control only. Just having a control problem linear quadratic in control retains an
important feature of the full linear quadratic control problem in that the optimal
control can be solved for exactly in terms of the optimal value, even though the
state decomposition property does not follow. The restricted linear quadratic prob-
lem in the control only will be treated first to examine how far the analysis can be
taken before treating the full linear quadratic problem in the state and the control.
In many control problems, the state dependence of the plant function f(x,u, t) is
dictated by the application and may be significantly nonlinear, but the control de-
pendence of the dynamics is up to the control designer who might chose to make
the control simple, e.g., linear, so that the control process will be manageable for
the control manager. Hence, the LQ problem in control only, may be more appro-
priate for some applications. In the past, linear systems were preferred since linear
methods were well-known, but now nonlinear methods and problems have become
more prevalent as we try to make more realistic models for applications.

Let the jump-diffusion linear quadratic model, in the control only, be given
with the plant function for the deterministic or non-noise dynamics term,

f(x,u, t) = f0(x, t) + f1(x, t)u , (6.21)
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with the diffusion term,

g(x,u, t) = g0(x, t) , (6.22)

assumed control-independent for simplicity, with a jump term decomposition cor-
responding to independent sources of np-type jumps

h(x,u, t,q) = h0(x, t,q) = [h0,i,j(x, t, qj)]nx×np
, (6.23)

also assumed control-independent along with the very simplified Poisson noise

dP(t;Q,x,u, t) = dP(t;Q,x,u, t) , E[dP(t;Q,x,u, t)] = λ(t;x,u, t)dt ,(6.24)

and finally with the quadratic running cost function,

C(x,u, t) = C0(x, t) + C⊤
1 (x, t)u +

1

2
u⊤C2(x, t)u . (6.25)

It is assumed that all right hand side coefficients are commensurate in multiplication
and that the product is the same type at that on the left hand side. A crucial
assumption in case of a minimum objective is that the quadratic control C2(x, t)
is positive definite, but C2(x, t) can be assumed to be symmetric without loss of
generality by the symmetric property of quadratic forms (B.135).

Thus, the pseudo-Hamiltonian is quadratic in the control,

H(x,u, t) = H0(x, t) + H⊤
1 (x, t)u +

1

2
u⊤H2(x, t)u , (6.26)

where the scalar coefficient is

H0(x, t) =

[
C0 + f⊤0 ∇x[v∗] +

1

2
g0g

⊤
0 :∇x[∇x[v∗]]

]
(x, t)

+

np∑

j=1

λj(t;x, t)

∫

Qj

∆j [v
∗](x, t, qj)φQj

(qj)dqj , (6.27)

where the double-dot product (5.99) is GG⊤ : A = Trace[G⊤AG], while the jump
increment is

∆j [v
∗](x, t, qj) ≡ v∗

(
x + ĥj(x, t, qj), t

)
− v∗(x, t) ,

the linear control coefficient nu-vector is

H1(x, t) =
[
C1 + f⊤

1 ∇x[v∗]
]
(x, t) , (6.28)

and the quadratic control coefficient nu × nu-matrix is simply

H2(x, t) = C2(x, t) , (6.29)

where H2(x, t) is assumed to be symmetric along with C2(x, t). If the minimum
cost is the objective, then H2(x, t) is positive definite since C2(x, t) is assumed to
be positive definite.
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Thus, in search of a regular control minimum, the critical points of the pseudo-
Hamiltonian H(x,u, t) is considered by examining the zeros of its gradient,

∇u[H](x,u, t) = H1(x, t) + H2(x, t)u = 0 , (6.30)

yielding the regular control,

u(reg)(x, t) = −H−1
2 (x, t)H1(x, t)

= −C−1
2 (x, t)

(
C1 + f⊤

1 ∇x[v∗]
)
(x, t) , (6.31)

with the existence of the inverse being guaranteed by positive definiteness. The
fact that the regular control can be solved for exactly in terms of the optimal value
v∗(x, t) is a major benefit of having an LQJD problem that is just quadratic in the
control. If the usual LQ assumption it made that the control is unconstrained, then
the regular control is also the optimal control:

u∗(x, t) = u(reg)(x, t) (6.32)

and the optimal Hamiltonian using (6.31) is

H∗(x, t) ≡ H(x,u∗, t)

=

[
H0 − H⊤

1 H
−1
2 H1 +

1

2
H⊤

1 H
−⊤
2 H2H

−1
2 H1

]
(x, t)

=

[
H0 −

1

2
H⊤

1 H
−1
2 H1

]
(x, t) , (6.33)

where by symmetry the inverse transpose H−⊤
2 = H−1

2 . Since the difference of the
quadratic H in control from the designated minimum using the Taylor approxima-
tion form and the critical condition (6.30) is

H(x,u, t) −H∗(x, t) = H0 −H∗(x, t) + (u− u∗)⊤∇u[H](x,u∗, t)

+
1

2
(u − u∗)⊤∇u[∇⊤

u
[H]](x,u∗, t)(u − u∗)

=
1

2
H⊤

1 H
−1
2 H1 +

1

2
(u − u∗)⊤H2(u − u∗)

=
1

2

(
H⊤

1 H
−1
2 H1

)
(x, t) +

1

2
(u − u∗)⊤H2(x, t)(u − u∗)

≥
1

2

(
H⊤

1 H
−1
2 H1

)
(x, t) ≥ 0 , (6.34)

it is always possible to solve the optimal control in the minimum problem if C2(x, t)
and thus H2(x, t) are symmetric, positive definite. This corresponds to the mini-
mum principle discussed for deterministic optimal control problems in Chapter A.

Within the generality of this linear quadratic problem in control only, the
optimal control will generally be nonlinear in the state, so the corresponding HJB
equation,

v∗t (x, t) + H∗(x, t) = 0 , (6.35)
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will be highly nonlinear in the state, with H∗(x, t) given by (6.33) and coefficients
(6.27, 6.28, 6.29). This requires careful solution by numerical PDE or PIDE methods
or the computational methods of Chapter 8.

These LQJD/U derived results are summarized in the following theorem:

Theorem 6.5. LQJD/U Equations:
Let the problem be the LQJD in control only problem, so that the deterministic plant
function f(x,u, t) is linear in the control as given in (6.21), the coefficient g(x,u, t)
of the Wiener process dW(t) is given in (6.22), the jump amplitude h(x,u, t,q) of
the Poisson jump process dP(t;Q,x, t) is given by (6.23), and the quadratic running
cost C(x,u, t) is given in (6.25).

Then, the Hamiltonian H(x,u, t) is a quadratic in the control (6.26) with
coefficients {H0(x, t), H1(x, t),H2(x, t)} given in (6.27, 6.28, 6.29), respectively.
The optimal control vector, in absence of control constraints, has the linear feedback
control form,

u∗(x, t) = u(reg)(x, t) = −C−1
2 (x, t)

[
C1 + f⊤

1 ∇x[v∗]
]
(x, t) , (6.36)

as long as the quadratic control coefficient C2(x, t) is positive definite in case of a
minimum expected objective and in absence of constraints on the control. Assuming
that an optimal value v∗(x, t) solution exists, then v∗(x, t) satisfies the Hamilton
Jacobi Bellman equation,

v∗t (x, t) +

(
H0 −

1

2
H⊤

1 H
−1
2 H1

)
(x, t) = 0 . (6.37)

The solution v∗(x, t) is subject to the final condition

v∗(x, tf ) = S(x, tf ) , (6.38)

and any necessary boundary conditions.

For solutions of LQJD/U problems, computational methods are quite essential;
see Hanson’s 1996 chapter [108] or Chapter 8.

6.4.2 LLJD/U or the Case C2 ≡ 0:

If the quadratic cost coefficient C2(x, t) ≡ 0, then

H(x,u, t) = H0(x, t) + H⊤
1 (x, t)u , (6.39)

the linear linear jump-diffusion (LLJD/U) problem in control only. The minimum
with respect to the control depends on the linear cost coefficient

H∗(x, t) = min
u

[
H0(x, t) + H⊤

1 (x, t)u
]

= H0(x, t) + min
u

[
H⊤

1 (x, t)u
]

. (6.40)

Since this is a problem of linear or singular control, it makes sense only if the
control is constrained, e.g., component-wise constraints,

U
(min)
i ≤ ui ≤ U

(max)
i . (6.41)
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For this type of constraint the minimum is separable by component and the optimal
control ia a nu-dimensional bang-bang control

H∗(x, t) = H0(x, t) +

nu∑

i=1

min [H1,i(x, t)ui]

= H0(x, t) +

nu∑

i=1






H1,i(x, t)U
(max)
i , H1,i(x, t) < 0

0, H1,i(x, t) = 0

H1,i(x, t)U
(min)
i , H1,i(x, t) > 0






= H0(x, t) +
1

2
H1(x, t). ∗

[
U(min). ∗(1 + sgn1)

+U(max). ∗(1 − sgn1)
]

, (6.42)

where 1 ≡ [1]nu×1, sgn1 ≡ [sgn(H1,i(x, t)]nu×1,

sgn(x) ≡






−1, x < 0
0, x = 0
+1, x > 0




 (6.43)

is the sign or signum function, U(min) ≡ [U
(min)
i ]nu×1, U(max) ≡ [U

(max)
i ]nu×1, and

v. ∗u ≡ [viui]nu×1 is the dot-star or element-by-element product. The optimal
control is undefined for components for which H1,i(x, t) = 0, but otherwise is given
in composite form:

u∗
i (x, t) =

{
U

(max)
i , H1,i(x, t) < 0

U
(min)
i , H1,i(x, t) > 0

}
. (6.44)

If the components of H1 change sign often, then that can lead to chattering con-

trol.

6.4.3 Canonical LQJD Problem

The standard or canonical LQJD problem is linear in the dynamics and quadratic
in the costs with respect to both state and control vectors. This LQJD problem
is a special case of the LQJD problem in control only and results in substantial
simplifications of the solution with a quadratic state decomposition of the optimal
value function and the a linear or feedback decomposition of the optimal control
vector. The decomposition of optimal value and control is similar to that of the
deterministic LQ problem, but here the more general quadratic state and linear
control decompositions is presented.

Let the more general jump-diffusion linear quadratic model be given with the
plant function for the deterministic or non-noise dynamics term and be linear in
both state X(t) and U(t),

f(x,u, t) = f0(t) + f⊤
1 (t)x + f⊤

2 (t)u , (6.45)
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the first subscript indicating the degree and the subsequent subscripts, if present,
indicating either state (1) or control (2), with the diffusion term,

g(x,u, t) = g0(t) , (6.46)

assumed state-independent and control-independent for simplicity, and with the
jump term,

h(x,u, t,q) = h0(t,q) , (6.47)

also assumed state-independent and control-independent for simplicity. The current
form of the linear SDE (6.1) is written here as

dX(s)
sym
= f(X(s),U(s), s)ds + g0(s)dW(s) + h0(s,Q)dP(s;Q, s) , (6.48)

on t ≤ s ≤ tf , with E[dP(t;Q, t)] = [λ0,j(t)dt]np×1.
The quadratic running cost function is

C(x,u, t) = C0(t) + C⊤
1 (t)x + C⊤

2 (t)u

+
1

2
x⊤C1,1(t)x + x⊤C1,2(t)u +

1

2
u⊤C2,2(t)u (6.49)

and the terminal cost also has a general quadratic form

S(X(tf ), tf ) = S0(tf ) + S⊤
1 (tf )X(tf ) +

1

2
X⊤(tf )S1,1(tf )X(tf ) , (6.50)

in the state vector. It is assumed that all right hand side coefficients are com-
mensurate in multiplication and the product is the same type as that on the left
hand side. It is assumed that all coefficients are well-defined, but in particular that
C2,2(t) is positive definite for the minimum problem, a crucial assumption, and
symmetric due to the quadratic form, while C1,1(t) and C1,2(t) need to be positive
semi-definite. Also, S1,1(tf ) is symmetric, positive semi-definite.

As in the deterministic LQ problem in Section A.4.4, a quadratic function of
the state vector is sought. However, due to the extra linear terms in the quadratic
cost beyond the pure quadratic form in (A.126) a more general quadratic decom-
position is heuristically assumed for the optimal value,

v∗(x, t) = v0(t) + v⊤
1 (t)x +

1

2
x⊤v1,1(t)x , (6.51)

where the optimal value coefficients {v0(t),v1(t), v1,1(t)} are compatible in multipli-
cation and any product is scalar valued. Without loss of generality, the quadratic
coefficient v1,1(t) is taken to be symmetric. Consequently, the partial derivative
with respect to time is

v∗t (x, t) = v̇0(t) + v̇⊤
1 (t)x +

1

2
x⊤v̇1,1(t)x ,

where {v̇0(t), v̇1(t), v̇1,1(t)} denote the state time derivatives, the state gradient is

∇x[v∗](x, t) = v1(t) + v1,1(t)x ,
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the state Hessian is
∇x

[
∇⊤

x [v∗]
]
(x, t) = v1,1(t)

and the jump increment is

∆j [v
∗](x, t, qj) = v⊤

1 (t)ĥ0,j(t, qj) +
1

2
ĥ
⊤

0,j(t, qj)v1,1(t)ĥ0,j(t, qj)

+x⊤v1,1(t)ĥ0,j(t, qj) ,

where
ĥ0,j(t, qj) = [h0,i,j(t, qj)]nx×1

for j = 1 : np.
With the proposed general quadratic decomposition (6.51) of v∗(x, t), the

pseudo-Hamiltonian has a quadratic decomposition in both state and control vectors
like the cost coefficient C(x,u, t) decomposition (6.49),

H(x,u, t) = H0(t) + H⊤
1 (t)x + H⊤

2 (t)u

+
1

2
x⊤H1,1(t)x + x⊤H1,2(t)u +

1

2
u⊤H2,2(t)u , (6.52)

where the scalar coefficient is

H0(t) = C0(t) + f⊤0 (t)v1(t) +
1

2

(
g0g

⊤
0

)
(t) : v1,1(t)

+v⊤
1 (t)h0(t). ∗λ0(t) +

1

2
v1,1(t). ∗(h0Λh0)(t) , (6.53)

where

h0(t) ≡

[∫

Qj

h0,i,j(t, qj)φQj
(qj ; t)dqj

]

nx×np

, (6.54)

λ0(t) ≡ [λ0,i(t)]np×1 , (6.55)

Λ0(t) ≡ [λ0,i(t)δi,j ]np×np
, (6.56)

h0Λ0h⊤
0 (t) ≡

[
np∑

k=1

λ0,k

∫

Qj

h0,i,k(t, qk)h0,j,k(t, qk)φQk
(qk; t)dqk

]

nx×nx

,(6.57)

the linear state coefficients is

H1(t) = C1(t) + f1(t)v1(t) + v1,1(t)f0(t) + v1,1(t)h0(t). ∗λ0(t) , (6.58)

the linear control coefficient is

H2(t) = C2(t) + f2(t)v1(t) , (6.59)

and the quadratic coefficients are

H1,1(t) = C1,1(t) + 2f1(t)v1,1(t) , (6.60)

H1,2(t) = C1,2(t) + v⊤1,1(t)f
⊤
2 (t) , (6.61)

H2,2(t) = C2,2(t) . (6.62)
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Since quadratic forms only operate on the symmetric part of the quadratic coefficient
(B.135), H2,2(t) will be symmetric, positive definite with C2,2(t).

The optimal control is the same as the regular control in the absence of control
constraints, so the zero of

∇u[H](x,u, t) = H2(t) + H⊤
1,2(t)x + H2,2(t)u

results in

u∗(x, t) = −H−1
2,2(t)

(
H2(t) + H⊤

1,2(t)x
)

= −C−1
2,2(t)

(
C2(t) + f2(t)v1(t) +

(
C⊤

1,2(t) + f2(t)v1,1(t)
)
x
)

.
(6.63)

Hence, the optimal control vector is a linear or affine function of the state vector,
the general form of linear feedback control. This completes the preliminary work
on the LQJD problem for the feedback control state dependence.

Upon substituting the preliminary reduction of the linear optimal control
(6.63) into the Hamilton Jacobi Bellman equation (6.35), then the HJB equation
becomes

0 = v̇0(t) + v̇⊤
1 (t)x + 1

2x
⊤v̇1,1(t)x + H0(t) + H⊤

1 (t)x

−H⊤
2 (t)H−1

2,2(t)
(
H2(t) + H⊤

1,2(t)x
)

+ 1
2x

⊤H1,2(t)H
−1
2,2(t)x − x⊤H1,2(t)H

−1
2,2(t)

(
H2(t) + H⊤

1,2(t)x
)

+ 1
2

(
H⊤

2 (t) + x⊤H1,2(t)
)
H−1

2,2(t)
(
H2(t) + H⊤

1,2(t)x
)

.

(6.64)

Next, separating this LQJD form of the HJBE (6.64) into purely quadratic terms,
purely linear terms and state-independent terms leads to a set of three uni-directionally
coupled ordinary matrix differential equations for the optimal control coefficients
v1,1(t), v1(t) and v0(t) which are summarized in the following theorem which we
have just derived.

Theorem 6.6. LQJD Equations:
Let the nx × 1 jump-diffusion state process X(t) satisfy dynamics linear in both the
state and the nu × 1 control U(t) with nx × 1 linear deterministic plant term

f(x,u, t) = f0(t) + f⊤
1 (t)x + f⊤

2 (t)u

from (6.45), with nx × nw state and control independent diffusion coefficient g0(t)
of the nw×1 Wiener process dW(t), and with nx×np state and control independent
jump amplitude h0(t, q) (6.46) of the np × 1 Poisson process dP(t;Q, t). Let the
scalar quadratic running cost be

C(x,u, t) = C0(t) + C⊤
1 (t)x + C⊤

2 (t)u

+
1

2
x⊤C1,1(t)x + x⊤C1,2(t)u +

1

2
u⊤C2,2(t)u
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and terminal cost be

S(X(tf ), tf ) = S0(tf ) + S⊤
1 (tf )X(tf ) +

1

2
X⊤(tf )S1,1(tf )X(tf ) .

Then the optimal stochastic control problem admits a solution quadratic in the state
vector

v∗(x, t) = v0(t) + v⊤
1 (t)x +

1

2
x⊤v1,1(t)x ,

with optimal control vector that in linear in the state vector

u∗(x, t) = −C−1
2,2(t)

(
C2(t) + f2(t)v1(t) +

(
C⊤

1,2(t) + f2(t)v1,1(t)
)
x
)

.

The optimal value v∗(x, t) coefficients satisfy a uni-directionally coupled set of ma-
trix ordinary differential equations, which are solved starting from the nx × nx

quadratic coefficient equation

0 = v̇1,1(t) + C1,1(t) + 2f1(t)v1,1(t) (6.65)

−
(
C1,2(t) + v1,1(t)f

⊤
1 (t)

)
C−1

2,2 (t)
(
C⊤

1,2(t) + f1(t)v1,1(t)
)

for v1,1(t), then the nx × 1 linear coefficient equation

0 = v̇1(t) + C1(t) + f1(t)v1(t) (6.66)

−
(
C1,2(t) + v1,1(t)f

⊤
1 (t)

)
C−1

2,2(t) (C2(t) + f2(t)v1(t))

+v1,1(t)h0(t)λ0(t)

for v1(t) using the existing solution for v1,1(t), and finally the scalar state-independent
coefficient equation

0 = v̇0(t) + C0(t) + f⊤0 (t)v1(t) +
1

2
g0(t)g

⊤
0 (t) : v1,1(t) (6.67)

−
1

2

(
C⊤

2 (t) + v⊤
1 (t)f2(t)

)
C−1

2,2 (t) (C2(t) + f2(t)v1(t))

+v⊤
1 (t)h0(t). ∗λ0(t) +

1

2

(
h0Λ0h⊤

0

)
(t) : v1,1(t).

Remarks 6.7.

• The nonlinear differential equation (6.65) for the quadratic coefficient v1,1(t)
is called a matrix Riccati equation due to the quadratic linearity in v1,1(t).
Since v1,1(t) can be assumed to be symmetric without loss of generality since
it is defined as the coefficient of a quadratic from, computational effort can be
reduced to just finding the upper or lower triangular part, i.e., just nx(nx+1)/2
elements.

• Once v1,1(t) is known or a reasonable approximation is found, the equation
(6.66) for the linear coefficient v1(t) will be a linear matrix equation which is
relatively simpler to solve than the matrix Riccati equation.
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• Similarly, once both v1,1(t) and v1(t) are found to reasonable approximations,
then equation (6.67) for the state-independent coefficient v0(t) will be a linear
scalar equation.

• Once the solutions to the time-dependent coefficients v1,1(t), v1(t) and v0(t)
are obtained, then the optimal value v∗(x, t) quadratic decomposition (6.51) is
justified, at least heuristically.

6.5 Exercises

1. For the scalar linear jump-diffusion dynamics with arithmetic rather than
geometric diffusion,

dX(t) = (µ0X(t) + β0U(t))dt + σ0dW (t) + ν0X(t)dP (t),

for 0 ≤ t ≤ tf and initial state X(0) = x0 > 0 and the control process
−∞ < U(t) < +∞ is unconstrained. The coefficients µ0 6= 0, β0 6= 0, σ0 > 0,
ν0 ≥ 0 and λ0 > 0 are constants, where E[dP (t)] = λ0dt (note that the jump
process here is a discrete, Poisson process, since there is no mark process).
The costs are quadratic, i.e.,

V [X, U ](X(t), t) =
1

2

∫ tf

t

(
q0X

2(s) + r0U
2(s)

)
ds +

1

2
SfX2(tf )

for q0 > 0, r0 > 0, and Sf > 0. Let the optimal, expected value be

v∗(x, t) = min [E [V [X, U ](X(t), t) |X(t) = x, U(t) = u ]] .

(a)

(b) Derive the PDE of Stochastic Dynamic Programming for the optimal
expected value:

v∗(x, t) = min
u

[E [V [X, U ](X(t), t) |X(t) = x, U(t) = u ]] ,

starting from the Principle of Optimality;

(c) Specify the final condition for v∗(x, t) fully qualified;

(d) Formally find the optimal (unconstrained) control u∗(x, t) in terms of
the shadow “cost” v∗x(x, t);

(e) Obtain an LQJD solution form for v∗(x, t) and an explicit linear feedback
control law for u∗(x, t);

2. Derive the modifications necessary in the set of Riccati-like equations for the
scalar Linear-Quadratic Jump-Diffusion (LQJD) problem when the dynamics
are scalar and linear (affine), i.e.,

dX(t) = f(X(t), U(t), t)dt + g(X(t), U(t), t)dW (t) + h(X(t), U(t), t)dP (t) ,
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where
E[dP (t)] = λ(t)dt ,

f(x, u, t) = f0(t) + f1(t)x + f2(t)u ,

g(x, u, t) = g0(t) + g1(t)x ,

h(x, u, t) = h0(t) + h1(t)x ,

the jump amplitude being independent of any mark process. The running and
terminal costs for a maximum objective are quadratic,

C(x, u, t) = C0(t) + C1(t)x + C2(t)u + 0.5C1,1(t)x
2 + C1,2(t)xu + 0.5C2,2(t)u

2 ,

where C2,2(t) < 0, and

S(x, t) = S0(t) + S1(t)x + 0.5 ∗ S1,1(t)x
2 ,

where S1,1(t) < 0.

If the objective is to maximize the expected total utility in the unconstrained
control case, then find the Riccati ODEs for the coefficient functions v0(t),
v1(t), v1,1(t), in the solution form,

v∗(x, t) = v0(t) + v1(t)x + 0.5v1,1(t)x
2

and u0(t) and u1(t) in the form

u∗(x, t) = u0(t) + u1(t)x

explicitly in terms of the {v0(t), v1(t), v1,1(t)}, dynamical and cost coefficient
functions. Do not try to solve the Riccati equation system of ODEs for
{v0(t), v1(t), v1,1(t)}.

3. Let β(t) be the discount rate at time t and

exp
(
−β̂(t, s)

)
= exp

(
−

∫ s

t

β(r)dr

)
= β̂(0, s) − β̂(0, t) (6.68)

be the cumulative discount factor for the time-interval [t, s], so the optimal,
expected, discounted costs are

v∗(x, t)=min
u

[
E

[∫ tf

t

e−
bβ(t,s)C(X(s), U(s), s)ds+e−

bβ(t,tf )S(X(tf ), tf )

∣∣∣∣ C(t)

]]
,

where C(t) = {X(t) = x, U(t) = u} is the conditioning set. Noting that this
v∗(x, t) does not have the form to satisfy the Principle of Optimality given
in (6.9) because of the dual-time dependence of the discount factor on (t, s),
so

(a) show that w∗(x, t) = exp
(
−β̂(t)

)
v∗(x, t) properly satisfies the usual

form of the Principle of Optimality (6.9) and hence
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(b) show that proper modification of the Principle of Optimality for dis-
counted costs is

v∗(x, t) = min
u

[
E

[∫ t+δt

t

e−
bβ(t,s)C(X(s), U(s), s)ds

+e−
bβ(t,t+δt)v∗(X(t + δt), t + δt)

∣∣∣ C(t)
]]

.

(6.69)

4. Derive the Hamilton-Jacobi-Bellman PDE for the scalar optimal stochastic
control problem (a simplified jump-diffusion optimal portfolio and consump-
tion problem), with stochastic dynamical system,

dX(t) = X(t)
(
µ0(t)dt + U1(t)

(
µ1(t)dt + σ(t)dW (t) +

(
eQ − 1

)
dP (t)

))

−U2(t)dt ,

where t ∈ [0, tf ], X(0) = x0 > 0, E[dP (t)] = λ(t)dt = Var[dP (t)], E[dW (t)] =
0, Var[dW (t)] = dt, Q is an IID uniformly distributed mark on [a, b], a < 0 < b,

{µ0(t), µ1(t), σ(t), λ(t)}

are specified time-dependent coefficients, X(t) ≥ 0 is the state, {U1(t), U2(t)}
is the control set, 0 ≤ U2(t) ≤ K2X(t), K2 > 0, −UN ≤ U1(t) ≤ UP , UN > 0,
UP > 0 and the optimal objective is

v∗(x, t) = max
{u1,u2}

[
E{W,P}

[∫ tf

t

e−β̂(t, s)Uγ
2 (s)

γ
ds

+e−β̂(t, tf ) Xγ(tf )
γ

∣∣∣∣ C(t)

]]
,

where C(t) ≡ {X(t) = x, U1(t) = u1(t), U2(t) = u2(t)} is the conditioning

set, β(t) > 0 is the discount rate with the cumulative discount β̂(t, s) defined
in (6.68), γ ∈ (0, 1) is a constant utility power and the zero-state absorbing
boundary condition for this problem is v∗(0+, t) = 0.

(a) If Exercise 3 on the form of the Principle of Optimality of discounting
has not been done, then do it now, otherwise proceed to next item.

(b) Derive the modified HJBE for time-discounting from the discount form
of the Principle of Optimality in (6.69), with the minimum merely re-
placed by a maximum. Be sure to point out the difference from the
non-discounting form.

(c) Derive the relationship of the optimal controls to the shadow utility
v∗x(x, t), accounting for the control constraints.

(d) Test the validity of the CRRA (constant relative risk aversion) canonical
separated form of the regular solution,

v∗(x, t) = v0(t)x
γ/γ,

determining what reduced ODE the time-dependent solution factor sat-
isfies, specifying what side (final and boundary) conditions need to be
satisfied for the problem.
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