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Chapter 7

Kolmogorov Forward and

Backward Equation and

Their Applications

The theory of probability as mathematical discipline can and
should be developed from axioms in exactly the same way as
Geometry and Algebra.
—Andrey Nikolaevich Kolmogorov (1903-1987), Wikipedia,
March 2006.

Here, the Kolmogorov forward (Fokker-Planck) and backward equations are
treated, including their inter-relationship and their use in finding transition distri-
butions, densities, moments and optimal state trajectories. There is a close relation-
ship between the PDE representations in the Kolmogorov equations and the SDE
representation. Unlike the SDE which is a symbolic representation that requires
specification of the stochastic ne integration rule to be well posed, the Kolmogorov
equations are deterministic. They can be derived from an SDE using expectations
and a chain rule such as Itô’s chain rule. Some investigators prefer to solve problems
with the Kolmogorov PDEs rather than directly from the underlying SDEs.

7.1 Dynkin’s Formula and the Backward Operator

Prior to deriving the Kolmogorov PDEs, a useful formula due to Dynkin is derived.
Dynkin’s formula relates the expectation of a function of a jump-diffusion process
and a functional of the backward jump-diffusion operator. There are many variants
of Dynkin’s formula [77], but here a derivation of Schuss [244] for pure-diffusions is
modified for jump-diffusions in the time-inhomogeneous case and in one-dimension
to start.

Theorem 7.1. Dynkin’s Formula for Jump-Diffusions on [t0, t] in One

Space Dimension:

195
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196 Chapter 7. Kolmogorov Equations

Let X(t) be a jump-diffusion process satisfying the SDE,

dX(t)
sym
= f(X(t), t)dt + g(X(t), t)dW (t) + h(X(t), t, Q)dP (t; Q, X(t), t) ,(7.1)

with smooth (continuously differentiable) coefficients {f, g, h} with bounded spa-
tial gradients. The diffusion process is the Wiener process W (t) and the jump
process is the Poisson process P (t; Q, X(t), t) such that E[dP (t; Q, X(t), t)|X(t) =
x] = λ(t; x, t)dt and Q is the jump amplitude mark random variable with density
φQ(q; X(t), t). Let v(x, t) be twice continuously differentiable in x and once in t,
while bounded at infinity. Then the conditional expectation of the composite process
v(X(t), t) satisfies Dynkin’s formula in integral form,

u(x0, t0) = v(x0, t0; t) ≡ E[v(X(t), t)|X(t0)=x0]

= v(x0, t0)+E

[∫ t

t0

(
∂v

∂t
(X(s), s)+Bx[v](X(s), s)

)
ds

∣∣∣∣X(t0)=x0

]
, (7.2)

where the dependence on the parameter t is suppressed in u(x0, t0). The jump-
diffusion backward operator Bx0 with respect to the state x0 for time t dependent
coefficients, in backward coordinates, is

Bx0 [v](x0, t0) ≡ f(x0, t0)
∂v

∂x0
(x0, t0) +

1

2
g2(x0, t0)

∂2v

∂x2
0

(x0, t0)

+λ̂(x0, t0)

∫

Q

∆h[v](x0, t0, q)φQ(q; x0, t0)dq, (7.3)

where λ̂(x0, t0) ≡ λ(t; x0, t0) suppresses the forward time t and the Poisson h-jump
is

∆h[v](x0, t0, q) ≡ v(x0 + h(x0, t0, q), t) − v(x0, t0) . (7.4)

Note that the subscript x0 on the backward operator Bx0 only denotes that the oper-
ator operates with respect to the backward state variable x0 for jump-diffusions and
only denotes partial differentiation in the pure-diffusion (h(x0, t0, q) ≡ 0) case.

In the time-homogeneous case, f(x, t) = f(x), g(x, t) = g(x) and h(x, t, q) =
h(x, q), so v(x, t) = v(x) and

u(x0) ≡ E[v(X(t))|X(t0) = x0]

= v(x0) + E

[∫ t

t0

Bx[v](X(s))ds

∣∣∣∣X(t0) = x0

]
, (7.5)

dropping the t dependence of the backward operator here.

Proof. Dynkin’s formula follows from Itô’s chain rule for jump-diffusions here.
Thus,

dv(X(t), t)
dt
=

(
∂v

∂t
+ f

∂v

∂x
+

1

2
g2 ∂2v

∂x2

)
(X(t), t)dt +

(
g
∂v

∂x

)
(X(t), t)dW (t)

+

∫

Q

∆h[v](X(t), t, q)P(dt,dq; X(t), t) , (7.6)
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7.1. Dynkin’s Formula and the Backward Operator 197

where common arguments have been condensed. Upon integrating in t,

v(X(t), t) = v(x0, t0)+

∫ t

t0

((
∂v

∂t
+ f

∂v

∂x
+

1

2
g2 ∂2v

∂x2

)
(X(s), s)ds (7.7)

+

(
g
∂v

∂x

)
(X(s), s)dW (s)+

∫

Q

∆h[v](X(s), s, q)P(ds,dq; X(s), s)

)
.

Next taking expectations while using the facts that follow from the independent
increment property of Markov processes,

E

[∫ t

t0

G(X(s), s)dW (s)

]
= 0

after (2.43) and with the zero mean jump process

E

[∫ t

t0

H(X(s), s)P̂(ds,dq; X(s), s)

]
= 0,

generalized from (3.27) with dP̂ (s), where here the mean-zero Poisson random mea-
sure is

P̂(dt,dq; X(t), t) ≡ P(dt,dq; X(t), t) − λ(t; X(t), t)φQ(q; X(t), t)dqdt, (7.8)

then using the definition of the backward operator Bx[v],

E[v(X(t), t)|X(t0)=x0] = v(x0, t0)

+E
[∫ t

t0

(
∂v
∂t

+Bx[v]
)
(X(s), s)ds |X(t0)=x0

]
.

(7.9)

In the time-homogeneous case, without time-dependent coefficients, we need
only use the x-dependent test function v = v(x) and the Dynkin formula reduces
to (7.5).

Example 7.2. Application of Dynkin’s Formula to Final Value Problems:

Consider the final value problem for the backward problem with PDE

∂v
∂t0

(x0, t0) + Bx0 [v](x0, t0) = α(x0, t0) x0 ∈ Ω, t0 < tf ,

v(x0, tf ) = γ(x0, tf ) x0 ∈ Ω ,
(7.10)

where the general functions α(x, t) and γ(x, t) are given, while Bx0 [v](x0, t0) is the
jump-diffusion backward operator defined in (7.3). From Dynkin’s formula (7.2)
with t = tf ,

E[γ(X(tf), tf )|X(t0) = x0] = v(x0, t0) + E

[∫ tf

t0

α(X(s), s)

∣∣∣∣X(t0) = x0

]
,
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198 Chapter 7. Kolmogorov Equations

where the jump-diffusion process is given by the SDE (7.1). By simple rearrange-
ment, the formal solution to the final value problem is given by

v(x0, t0) = E

[
γ(X(tf), tf ) −

∫ tf

t0

α(X(s), s)

∣∣∣∣X(t0) = x0

]
, (7.11)

in a more useful form, suitable for stochastic simulations using the given problem
functions and the SDE.

The final problem (7.10) can be called the Dynkin’s equation corresponding
to Dynkin’s formula (7.2).

7.2 Backward Kolmogorov Equations

Many exit and stopping time problems rely on the backward Kolmogorov equations,
since they represent perturbations of the initial condition when the final condition
for exit or stopping is known. Another very useful application is a PDE governing
the behavior of the transition density as a function of the initial state. First the gen-
eral backward equation in the sense of Kolmogorov is derived using an infinitesimal
form of Dynkin’s equation.

Theorem 7.3. General Backward Kolmogorov Equation

for Jump-Diffusions on [t0, t] in One Space Dimension:

Let the jump-diffusion process X(t) at time t with X(t0) = x0 at initial or back-
ward time t0 satisfy (7.1) along with associated conditions and let the test function
v(X(t)) also satisfy relevant conditions. Let

u(x0, t0)=v(x0, t0; t)≡E[v(X(t))|X(t0) = x0]=E(t0,t][v(X(t))|X(t0) = x0], (7.12)

suppressing the forward time t in favor of the backward time t0. Then u(x0, t0)
satisfies the following backward PDE with backward arguments,

0 =
∂u

∂t0
(x0, t0) + Bx0[u](x0, t0) , (7.13)

where the backward operator with respect to x0 operating on u is

Bx0[u](x0, t0) = f(x0, t0)
∂u

∂x0
(x0, t0) +

1

2
g2(x0, t0)

∂2u

∂x2
0

(x0, t0) (7.14)

+λ̂(x0, t0)

∫

Q

∆h[u](x0, t0, q)φQ(q; x0, t0))dq ,

the h-jump of u is

∆h[u](x0, t0, q) ≡ u(x0 + h(x0, t0, q), t0) − u(x0, t0) , (7.15)

with final condition

lim
t0↑t

u(x0, t0) = v(x0). (7.16)
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7.2. Backward Kolmogorov Equations 199

Proof. This formal proof is a modified version of the one for pure diffusions in
Schuss [244] modified to include Poisson jump processes. First, the objective is to
calculate the backward time partial derivative

u(x0, t0) − u(x0, t0 − dt)
dt
=

∂u

∂t0
dt ≡

∂u

∂t0

∣∣∣∣
x0 fixed

dt ,

so consider the infinitesimal backward difference in the spirit of Dynkin’s formula,
noting that the initial time t0 is perturbed one step backward in time to t0 −
dt with fixed x0. On the other hand, using the representation (7.12), splitting
the expectation at t0 using the new random variable X(t0) and expanding by the
stochastic chain rule,

u(x0, t0) − u(x0, t0 − dt) = u(x0, t0) − E[v(X(t))|X(t0 − dt) = x0]

= u(x0, t0) − E[E[v(X(t))|X(t0)]|X(t0 − dt) = x0]

= u(x0, t0) − E[u(X(t0), t0)|X(t0 − dt) = x0]

= E[u(x0, t0) − u(X(t0), t0)|X(t0 − dt) = x0]
dt
= E[Bx0[u](x0, t0)dt + g(x0, t0)dW (t0)

+

∫

Q

∆h[u](X(s), s, q)P̂(ds,dq; X(s), s)|X(t0 − dt) = x0]

= E[Bx0[u](x0, t0)dt|X(t0 − dt) = x0]

= Bx0 [u](x0, t0)dt

=

[
f(x0, t0)

∂u

∂x0
(x0, t0) +

1

2
g2(x0, t0)

∂2u

∂x2
0

(x0, t0)

+ λ̂(x0, t0)

∫

Q

∆h[u](x0, t0, q)φQ(q; x0, t0)dq

]
dt ,

where the stochastic chain rule (5.41) was used, marked by the dt-precision step,
along with expectations over the zero-mean jump-diffusion differentials. Just equat-
ing the two about results for u(x0, t0)− u(x0, t0 − dt) and eliminating the dt factor
yields the backward Kolmogorov equation (7.13) result. The final condition (7.16)
simply follows from the definition of u(x0, t0) in (7.12) and taking the indicated
limit from the backward time t0 to the forward time t for fixed x0,

lim
t0↑t

u(x0, t0) = lim
t0↑t

E[v(X(t))|X(t0) = x0] = E[v(X(t))|X(t) = x0] = v(x0).

Transition Probability Distribution ΦX(t)(x, t; x0, t0):

One of the most important applications of the backward Kolmogorov equation is
for the transition probability whose distribution is given by

ΦX(t)(x, t; x0, t0) ≡ Prob[X(t) ≤ x|X(t0) = x0] (7.17)
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200 Chapter 7. Kolmogorov Equations

with density

φX(t)(x, t; x0, t0) =
∂ΦX(t)

∂x
(x, t; x0, t0) (7.18)

or alternatively by

φX(t)(x, t; x0, t0)dx
dx
= Prob[x < X(t) ≤ x + dx|X(t0) = x0] (7.19)

= Prob[X(t) ≤ x + dx|X(t0) = x0]

−Prob[X(t) ≤ x|X(t0) = x0] ,

in dx-precision, provided the density exists, including the case of generalized func-
tions (see Section B.12) as assumed in this book. In terms of the transition density,
the conditional expectation can be rewritten such that

u(x0, t0) = v(x0, t0; t) = E(t0,t][v(X(t))|X(t0) = x0]

=

∫ +∞

−∞

v(x)φX(t)(x, t; x0, t0)dx . (7.20)

Thus, if we let

v(x)
gen
= δ(x − ξ),

then
u(x0, t0) = v(x0, t0; t) = φX(t)(ξ, t; x0, t0)

by definition of the Dirac delta function, and so the transition density satisfies the
general backward Kolmogorov equation (7.13) in the backward or initial arguments
(x0, t0).

Corollary 7.4. Backward Kolmogorov Equation for Jump-Diffusion Tran-

sition Density:

Let φ̂(x0, t0) ≡ φX(t)(x, t; x0, t0), suppressing the parametric dependence on the for-
ward coordinates (x, t), where the process satisfies the jump-diffusion SDE (7.1)
under the specified conditions. Then

0 =
∂φ̂

∂t0
(x0, t0) + Bx0 [φ̂](x0, t0) (7.21)

=
∂φ̂

∂t0
(x0, t0) + f(x0, t0)

∂φ̂

∂x0
(x0, t0) +

1

2
g2(x0, t0)

∂2φ̂

∂x2
0

(x0, t0) (7.22)

+λ̂(x0, t0)

∫

Q

∆h

[
φ̂
]
(x0, t0, q)φQ(q; x0, t0)dq ,

subject to the final condition,

lim
t0↑t

φ̂(x0, t0) = δ(x0 − x) . (7.23)

The final condition (7.23) follows from the alternate, differential definition
(7.19) of the transition probability density.
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7.3. Forward Kolmogorov Equations 201

Often the transition density backward equation (7.21) is referred to as the
backward Kolmogorov equation. It is useful for problems in which the final
state is known, such as an exit time problem or a stopping time problem where a
state boundary is reached, in the case of finite state domains. For some stochastic
researchers, the backward equation is considered more basic than the forward equa-
tion, since in the backward equation some final goal may be reached as in stochastic
dynamic programming, or some significant event may occur, such as the extinction
time for a species. The evolution of the moments or expectations of powers of the
state are governed by transition probability density.

7.3 Forward Kolmogorov Equations

In contrast to the backward time problems of the previous section, the forward
equation will be needed to find the evolution of the transition density forward in
time given an initial state. The basic idea is that the forward operator Fx and the
backward operator are (formal) adjoint operators, i.e., under suitable conditions
on the transition density

φ(x, t) = φX(t)(x, t; x0, t0),

with truncated arguments to focus on forward variables, and a well-behaved test
function v(x), well-behaved particularly at infinity. Then the operators are related
through an inner product equality,

(Bx[v], φ) = (Fx[φ], v) , (7.24)

which is derived in Theorem 7.5 below. The conditional expectations in Dynkin’s
formula can be considered an inner product over a continuous state space with the
transition density such that

(v, φ) = E[v(X(t))|X(t0) = x0] =

∫ +∞

−∞

v(x)φ(x, t)dx ,

emphasizing forward variables (x, t).

Theorem 7.5. Forward Kolmogorov Equation or Fokker-Planck Equation

for the Transition Density φ(x, t;x0, t0):
Let φ(x, t; x0, t0) be the transition probability density for the jump-diffusion process
X(t) that is symbolically represented by the SDE (7.1) along with the coefficient
conditions specified in Dynkin’s Formula Theorem 7.1. Let v(x) be a bounded and
twice differentiable but otherwise arbitrary test function such that the integrated
conjunct vanishes, i.e.,

[(
(fφ)(x, t) −

1

2

∂(g2φ)

∂x
(x, t)

)
v(x) +

1

2
(g2φ)(x, t)v′(x)

]+∞

−∞

= 0 , (7.25)

where (fφ)(x, t) ≡ f(x, t)φ(x, t), g2(x, t) ≡ (g(x, t))2 and v′(x) ≡ (dv/dx)(x).
Then, in the weak sense, φ satisfies the forward Kolmogorov equation in forward
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202 Chapter 7. Kolmogorov Equations

space-time variables (x, t),

∂φ

∂t
(x, t) =

1

2

∂2(g2φ)

∂x2
(x, t) −

∂(fφ)

∂x
(x; t) − (λ̂φ)(x, t) (7.26)

+

∫

Q

(λ̂φ)(x − η, t)|1 − ηx|φQ(q; x − η, t)dq ,

where η = η(x; t, q) is related to the inverse jump amplitude such that

x = ξ + h(ξ, t, q)

is the new state value corresponding to the old state value ξ, such that

η(x; t, q) = h(ξ, t, q),

assuming h is monotonic in ξ so that h is invertible with respect to ξ, that the
Jacobian

(1 − ηx) =

(
1 −

∂η

∂x
(x; t, q)

)
,

is non-vanishing, and that the inverse transformation from ξ to x maps (−∞, +∞)
onto (−∞, +∞).

The transition probability density satisfies the delta function intial condition,

φ(x, t+0 ) = φX(t+0 )(x, t+0 ; x0, t0) = δ(x − x0) . (7.27)

Proof. The main idea of this proof is to perform several integrations by parts to
move the partial differentiation from the backward operator on the arbitrary test
function v(x) to differentiation of the jump-diffusion transition probability φ(x, t) =
φX(t)(x, t; x0, t0), deriving the adjoint backward-forward operator relation (7.24) in
principle. Differentiating Dynkin’s formula (7.2) in forward time t for fixed initial
conditions (x0, t0) and for some well-behaved test function v(x),

∂v

∂t
(x0, t0; t) = E

[
∂

∂t

∫ t

t0

Bx[v](X(s))ds

∣∣∣∣X(t0) = x0

]

= E [Bx[v](X(t))|X(t0) = x0] (7.28)

assuming that differentiation and expectation can be interchanged, where the back-
ward operator B is given in (7.3). However, the conditional expectation of B on the
RHS of (7.28) can be written in terms of the transition probability φ (7.20),

E[Bx[v](X(t))|X(t0) = x0] =

∫ +∞

−∞

Bx[v](x)φ(x, t)dx . (7.29)

Combining (7.28) and (7.29) , substituting for B using (7.3), and using two integra-
tion by parts on the spatial derivatives to move the spatial derivatives from v to φ,
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then

∂v

∂t
(x0, t0; t) =

∫ +∞

−∞

v(x)
∂φ

∂t
(x, t)dx =

∫ +∞

−∞

Bx[v](x)φ(x, t)dx

=

∫ +∞

−∞

(
f(x, t)v′(x) +

1

2
g2(x, t)v′′(x)

+ λ̂(x, t)

∫

Q

∆h[v](x, t, q)φQ(q; x, t)dq

)
φ(x, t)dx

=

∫ +∞

−∞

(
−v(x)

∂(fφ)

∂x
(x, t) −

1

2

∂(g2φ)

∂x
(x, t)v′(x)

+ (λ̂φ)(x, t)

∫

Q

∆h[v](x, t, q)φQ(q; x, t)dq

)
dx

+

[
(fφ)(x, t)v(x) +

1

2
(g2φ)(x, t)v′(x)

]+∞

−∞

=

∫ +∞

−∞

(
v(x)

(
1

2

∂2(g2φ)

∂x2
(x, t) −

∂(fφ)

∂x
(x, t)

)

+ (λ̂φ)(x, t)

∫

Q

∆h[v](x, t, q)φQ(q; x, t)dq

)
dx

+

[(
fφ −

1

2

∂(g2φ)

∂x

)
(x, t)v(x) +

1

2
(g2φ)(x, t)v′(x)

]+∞

−∞

.

The last term is the integrated conjunct from two integrations by parts. By the
hypothesis in (7.25), this conjunct is required to be zero, so that the forward and
backward operators will be genuine adjoint operators. Otherwise, the forward and
backward operators would be called formal adjoints.

So far only the adjoint diffusion part of the forward operator has been formed
with respect to the test function v as an integration weight. There still remains
more work to form the corresponding adjoint jump part and this is done inverting
the jump amplitude function h(x, t, q) with respect to x, assuming that h(x, t, q)
is monotonic x. Let the post-jump state value be y = x + h(x, t, q) for each fixed
(t, q) with inverse written as x = y − η(y; t, q) relating the pre-jump state to the
post-jump state. Technically, with fixed (t, q), if y = (I+h)(x) where here I denotes
the identity function so I(x) = x, then the inverse argument is x = (I + h)−1(y) =

(I − η)(y) for convenience and η
op
= I − (I + h)−1. Thus, dx = (1 − ηy(y; t, q))dy,

where (1 − ηy(y; t, q)) is the Jacobian of the inverse transformation. Further, it is
assumed that the state domain (−∞, +∞) is transformed back onto itself, modulo
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204 Chapter 7. Kolmogorov Equations

the sign of the Jacobian. Consequently, we have
∫ +∞

−∞

v(x)
∂φ

∂t
(x, t)dx =

∫ +∞

−∞

v(x)

(
1

2

∂2(g2φ)

∂x2
(x, t) −

∂(fφ)

∂x
(x, t) − (λ̂φ)(x, t)

+

∫

Q

(λ̂φ)(x − η(x; t, q), t)|1 − ηx(x; t, q, t)|

·φQ(q; x − η(x; t, q), t)dq

)
dx ,

upon replacing y as a dummy variable in the state integral back to x so a common
factor of the test function v(x) can be collected. Finally, since the test function
is assumed to be arbitrary, then the coefficients of v(x) must be equivalent on the
left and right sides of the equation in the weak sense. The argument is that of the
Fundamental Lemma of the Calculus of Variations [40, 15, 163]. This leads to the
forward Kolmogorov equation for the transition density φ(x, t) = φX(t)(x, t; x0, t0)
given in the concluding equation (7.26) of Theorem 7.5,

∂φ

∂t
(x, t) = Fx[φ](x, t)

≡
1

2

∂2(g2φ)

∂x2
(x, t) −

∂(fφ)

∂x
(x; t) − (λ̂φ)(x, t) (7.30)

+

∫

Q

(λ̂φ)(x − η(x; t, q), t)|1 − ηx(x; t, q)|φQ(q; x − η(x; t, q), t)dq.

Note that the subscript x on the forward operator Fx only denotes that the operator
operates with respect to the forward variable x for jump-diffusions and only denotes
partial differentiation in the pure-diffusion (h(x, t, q) ≡ 0) case.

The initial condition (7.27), φX(t+0 )(x, t+0 ; x0, t0) = δ(x − x0), is very obvious

for the continuous pure diffusion process, but the jump-diffusion processes undergo
jumps triggered by the Poisson process P (t; Q, X(t), t) and so X(t) can be discon-
tinuous. However, a jump is very unlikely in a small time interval since by (1.42)
modified by replacing λ(t) by the composite time dependence λ(t; X(t), t) ,

Prob[dP (t; Q, X(t), t) = 0] = p0(λ(t; X(t), t)dt) = e−λ(t;X(t),t)dt = 1 + O(dt) ∼ 1 ,

as dt → 0+, so the initial state is certain with probability one by conditioning, i.e.,

φ(x, t) = φX(t)(x, t; x0, t0) → δ(x − x0) as t → t+0 .

Remarks 7.6.

• Another applied approach to derive the forward equation for pure diffusions
is to use the diffusion approximation as given by Feller [84], but this requires
strong assumptions about truncating a Taylor expansion just for diffusion pro-
cesses alone. This approach does not apply to jump-diffusions, since the jump
difference term Dh[φ] would require an infinite expansion.
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• For the jump amplitude, a good illustration could be the affine model that is
the sum of a state-independent term plus a term purely linear in the state,
i.e., h(x, t, q) = ν0(t, q) + ν1(t, q)x for suitable time-mark coefficients, so the
inverse of y = x + h(x, t, q) is x = (y − ν0(t, q))/(1 + ν1(t, q)) = y − η(y; t, q)
and η(y; t, q) = (ν0(t, q) + ν1(t, q)y)/(1 + ν1(t, q)). For comparison, different
cases of this model are tabulated in Table 7.1.

Table 7.1. Some Simple jump amplitude models and inverses.

State Direct Forward Arg. Inverse

Dependence h(x, t, q) x=y − η(y; t, q) η(y; t, q)

constant ν0(t, q) y − ν0(t, q) ν0(t, q)

pure linear ν1(t, q)x
y

1 + ν1(t, q)
ν1(t, q)y

1 + ν1(t, q)

affine ν0(t, q) + ν1(t, q)x
y − ν0(t, q)
1 + ν1(t, q)

ν0(t, q) + ν1(t, q)y
1 + ν1(t, q)

A mistake is sometimes made by incorrectly generalizing the inverse of the
linear jump case x+ν1(t, q)x = y, so that (1−ν1(t, q))y is incorrectly used for
the forward argument (x) in the linear case instead of the correct argument,
which is x = y/(1 + ν1(t, q)).

• The difference in the jump argument between the backward and forward equa-
tion is that in the backward case the post-jump or forward value y = x +
h(x, t, q) is used, while in the forward case the pre-jump or backward value
x = y − h(x, t, q) = y − η(y; t, q) is used.

7.4 Multi-dimensional Backward and Forward
Equations

For many applications, there can be multiple state variables and multiple sources
of random disturbances. In biological problems there can be several interacting
species each suffering from species specific and common random changes, that can
be detrimental or beneficial in effect and range in magnitude from small to large
fluctuations. Such effects may be due to the weather, diseases, natural disasters or
inter-species predation. In finance, there are the usual background fluctuations in
market values, and then there is the occasional market crash or buying frenzy. In
manufacturing systems, there may be a large number of machines which randomly
fail with the time to repair being randomly distributed due to the many causes of
failure.

Consider again the multi-dimensional SDE from Chapter 5 for the nx-dimensional
state process X(t) = [Xi(t)]nx×1 ,

dX(t)
sym
= f(X(t), t)dt + g(X(t), t)dW(t) + h(X(t), t,Q)dP(t; Q,X(t), t) , (7.31)
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where

W(t) = [Wi(t)]nw×1

is an nw-dimensional vector diffusion process and

P(t; Q,X(t), t) = [Pi(t; Qi,X(t), t)]np×1

is an np-dimensional vector state-dependent Poisson jump process. The state-
dependent coefficient functions are dimensionally specified by

f = [fi(X(t), t)]nx×1 ,

g(X(t), t) = [gi,j(X(t), t)]nx×nw
,

h(X(t), t,Q) = [hi,j(X(t), t, Qj)]nx×np

and have dimensions that are commensurate in multiplication. The mark vector,
Q = [Qi)]np×1, in the last coefficient function is assumed to have components corre-
sponding to all Poisson vector process components. The coefficient h(X(t), t,Q) of
dP(t; Q,X(t), t) is merely the mark Q dependent symbolic form of the jump ampli-
tude operator-coefficient h(X(t), t,q), using similar notation, in the corresponding
Poisson random mark integral (5.83), i.e.,

h(X(t), t,Q)dP(t; Q,X(t), t)
sym
=

∫

Q

h(X(t), t,q)P(dt,dq;X(t), t).

Dynkin’s formula remains unchanged, except for converting the state variable X(t)
to a vector X(t) and making the corresponding change in the backward operator
Bx[v] using the multi-dimensional stochastic chain rule (5.98),

v(x0, t0; t) ≡ E[v(X(t))|X(t0) = x0]

= v(x0) + E

[∫ t

t0

Bx[v](X(s);X(s), s)ds

∣∣∣∣X(t0) = x0

]
, (7.32)

where the backward operator is given below. The multi-dimensional backward and
forward Kolmogorov equations are summarized in the following theorem, with the
justification left as an exercise for the reader.

Theorem 7.7. Kolmogorov Equations for Jump-Diffusions in Multi-

dimensions on [t0, t]:
Let

u(x0, t0) = v(x0, t0; t) = E[v(X(t))|X(t0) = x0].

Then u(x0, t0) satisfies the following multi-dimensional backward Kolmogorov PDE
with backward arguments,

0 =
∂u

∂t0
(x0, t0) + Bx0 [u](x0, t0;x0, t0) , (7.33)
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where the backward Kolmogorov operator is defined as

Bx0 [u](x0, t0;x0, t0) ≡ f⊤(x0, t0)∇x0 [u](x0, t0)

+
1

2

(
gR′g⊤

)
:∇x0

[
∇⊤

x0
[u]
]
(x0, t0) (7.34)

+

np∑

j=1

λ̂j(x0, t0)

∫

Q

∆j [u](x0, t0, qj)φQj
(qj ;x0, t0)dqj,

where R′ is a correlation matrix defined in (5.95), A : B is the double dot product
(5.99),

∆j [u](x0, t0, qj) ≡ u(x0 + ĥj(x0, t0, qj), t0) − u(x0, t0)

is the jump of u corresponding to the jump amplitude

ĥj(x, t, qj) ≡ [hi,j(x, t, qj)]nx×1

of the jth Poisson process Pj at the jth mark for j = 1 : np and with final condition

u(x0, t
−) = v(x0, t

−; t) = v(x0) .

Similarly, the forward Kolmogorov PDE in the multi-dimensional transition
density φ(x, t;x0, t0) as the adjoint of the backward equation is

∂φ

∂t
(x, t) = Fx[φ](x, t) , (7.35)

where the forward Kolmogorov operator is defined as

Fx[φ](x, t) ≡
1

2
∇x

[
∇⊤

x :
[
gR′g⊤φ

]]
(x, t)

−∇⊤
x [fφ](x; t) −

np∑

j=1

(λ̂jφ)(x, t) (7.36)

+

np∑

j=1

∫

Q

(λ̂jφ)(x − ηj(x; t, qj), t)

∣∣∣∣1 −
∂(ηj(x; t, qj))

∂(x)

∣∣∣∣

· φQj
(qj ;x − ηj(x; t, qj), t)dqj ,

where the backward to forward transformation and its Jacobian are

x − x0 = ηj′ (x, t, qj′ ) = ĥj′(x0, t, qj′ ) ;

∂(ηj′(x; t, qj′ ))

∂(x)
= Det

[[
∂ηj′,i(x; t, qj′)

∂xj

]

nx×nx

]
= Det

[(
∇x

[
η⊤

j′

])⊤]

for j′ = 1 : np.
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7.5 Chapman-Kolmogorov Equation for Markov
Processes in Continuous Time

Alternate methods for deriving the Kolmogorov equations are based upon a funda-
mental functional equation of Chapman and Kolmogorov (see Bharucha-Reid [31]
or other references at the end of this chapter). Let X(t) be a nx × 1 Markov pro-
cess in continuous time, i.e., a jump-diffusion, on the state space Ω. The transition
probability distribution function is given by

Φ(x, t;x0, t0) = Prob[X(t) < x | X(t0) = x0] , (7.37)

provided t > t0, X(t) < x means Xi(t) < xi for i = 1 : nx, and assuming the
probability density exists even if in the generalized sense,

φ(x, t;x0, t0) =

(
nx∏

i=1

∂φ

∂xi

)
(x, t;x0, t0) . (7.38)

Expressed as a Markov property for distributions, the Chapman-Kolmogorov
equation for the transition between the start (x0, t0) and the current position (x, t)
through all possible intermediate positions (y, s) is

Φ(x, t;x0, t0) =

∫

Ω

Φ(y, s;x0, t0)Φ(x, t; dy, s)

=

∫

Ω

Φ(y, s;x0, t0)φ(x, t;y, s)dy , (7.39)

where t0 < s < t. Alternately, the Chapman-Kolmogorov equation solely in terms
of transition probability densities is

φ(x, t;x0, t0) =

∫

Ω

φ(y, s;x0, t0)φ(x, t;y, s)dy , (7.40)

upon differentiating (7.39) according to (7.38), again with t0 < s < t. See Bharucha-
Reid [31] or other references at the end of this chapter for applications.

7.6 Jump-Diffusion Boundary Conditions

Many boundary value problems for stochastic diffusion processes are similar to their
deterministic counterparts, but the stochastic justifications are different. When
jump processes are included, then the situation is even more complicated. Since
jump processes are discontinuous, jumps may over shoot the boundary making it
more difficult to construct an auxiliary process that will implement the boundary
with proper probability law.

7.6.1 Absorbing Boundary Condition

If the boundary is absorbing, i.e., the process that hits the boundary stays there
[84, 98, 244, 162], it is quite easy to specify since the process can not reenter the
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interior and the transition probability for the process initially at X(0) = x0 on the
boundary Γ = ∂Ω can not reach X(t) = y in the interior of the domain Ω. Thus,
for pure-diffusions

φX(t)(x, t;x0, t0) = Prob[X(t) = x ∈ Ω|X(t0) = x0 ∈ Γ, t > 0] = 0, (7.41)

whereas for jump-diffusions

φX(t)(x, t;x0, t0) = Prob[X(t) = x ∈ Ω|X(0) = x0 /∈ Interior[Ω], t > 0] = 0, (7.42)

since it is assumed that a jump over-shoot into the boundary or exterior of the region
is absorbed. Kushner and Dupuis [179] have a more elaborate treatment of the
absorbing boundary by stopping the process once it hits the boundary, assumed to
be smooth and reachable in finite time (also called attainable or accessible). These
are boundary conditions for the transition probability density backward equations,
since they are specified on the backward variable x0.

7.6.2 Reflecting Boundary Conditions

The reflecting boundary is much more complicated and the smoothness of the
boundary, i.e., the boundary is continuously differentiable, is important for defining
the reflection. Since a simple reflection at a boundary point, xb, will be in the
plane of the nearby incoming trajectory at x0 and the normal vector Nb to the
tangent plane of the boundary at xb. Let δx = x0−xb be the distance vector to the
point of contact and let Tb a tangent vector in the intersection of the tangent plane
and the trajectory-normal plane. Using stochastic reflection principle, similar to
the reflection principle used in PDEs, a stochastic reflection process is constructed
such that δxr = xr − xb is its current increment at the same time as δx. The only
difference is the opposite sign of its normal component, i.e., δxr = −δnNb + δtTb

if δx0 = +δnNb + δtTb, for sufficiently small and positive components dn and δt.
Since the reflected process at xr by its construction must have the same probability
as the original process at x0, then

N⊤
b∇x0

[
φX(t)

]
(x, txb, t0) = N⊤

b∇x0

[
φ̂
]
(xb, t0) = 0 , (7.43)

upon expanding the difference between the two probability densities

φ̂(x0, t
′
0) − φ̂(xr, t

′
0) = φ̂(xb + δnNb + δtTb, t

′
0) − φ̂(xb − δnNb + δtTb, t

′
0) = 0,

in simplified backward notation at pre-hit time t′0 here, to order δn. The order δt

cancels out.
See Kushner and Dupuis [179] about more reflecting boundary conditions and

systematically constructing reflecting jump-diffusion processes. Also, see Karlin
and Taylor [162] for a thorough discussion of other boundary conditions such as
sticky and elastic, as well as an extensive boundary classification for pure diffusion
problems.
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7.7 Stopping Times: Expected Exit and First
Passage Times

In many problems, an exit time, also called a stopping time or a first passage time,
is of interest. For instance when a population falls to the zero level and thus ceases
to exist, it is said to be extinct and the time of extinction is of interest. If it is
a stochastic population, then the expected extinction time is of interest (Hanson
and Tuckwell [119, 121]). For a neuron, stochastic fluctuations can be important
and then the time to reach a threshold to fire a nerve pulse is of interest and in
particular the expected firing time can be calculated (Stein [257], Tuckwell [269],
Hanson and Tuckwell [120]). In cancer growth studies, the expected doubling time
for the size of a tumor is often calculated (Hanson and Tier [117]). There are
many other example of stopping times. First deterministic exit time problems are
introduced as examples and as a basic reference.

Examples 7.8. Deterministic Exit Time Problems

• Forward Exit Time Formulation:

Let X(t) be the state of the system at time t and be governed by the ODE

dX

dt
(t) = f(X(t)), X(0) = x0 ∈ (a, b), (7.44)

where f(x) is strictly positive or strictly negative, f(x) is continuous and
1/f(x) is integrable on [a, b]. Thus inverting 7.44, the forward running time
is

dt = dTF (x) = dx/f(x), TF (x0) = 0,

so

TF (x) =

∫ x

x0

dy/f(y),

and the forward exit time is

TF (b) if f(x) > 0 or TF (a) if f(x) < 0.

• More Relevant Backward Exit Time Formulation:

Since the stochastic exit time problem is more conveniently formulated as a
backward time problem, let x = c be the point of exit, so when x0 = c then we
know the state X(t) is already at the exit and the final condition is TB(c) ≡
0. Consequently, the backward exit time TB(x) problem is formulated with
TB(x) = TF (c) − TF (x) or T ′

B(x) = −T ′
F (x) as

dTB(x) = −dx/f(x), TB(c) = 0

or in the more conventional backward form,

f(x)T ′
B(x) = −1, TB(c) = 0, (7.45)
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so

TB(x) = −

∫ x

c

dy/f(y)

or the backward exit time ending at x = c is

TB(x0) =

∫ c

x0

dy/f(y)

where c = b if f(x) > 0 or c = a if f(x) < 0.

7.7.1 Expected Stochastic Exit Time

First, the exit time is analytically defined, relevant for the piece-wise continuous
jump-diffusion. For continuous, pure diffusion processes, it is sufficient to consider
when the process hits a boundary. However, when the stochastic process also in-
cludes jumps, then it is possible that the process overshoots the boundary and ends
up in the exterior of the domain. Here the domain will simply be an open interval
in one state dimension.

Again let X(t) be a jump-diffusion process satisfying the SDE,

dX(t)
sym
= f(X(t), t)dt + g(X(t), t)dW (t) + h(X(t), t, Q)dP (t; Q, X(t), t) ,(7.46)

with smooth (continuously differentiable) coefficients {f, g, h} with bounded spatial
gradients.

Definition 7.9. In one state dimension, the exit time for the Markov process X(t)
in continuous time (7.46) from the open interval (a, b) is

τe(x0, t0) ≡ inf
t

[ t |X(t) /∈ (a, b); X(t0) = x0 ∈ (a, b)] , (7.47)

if it exists.

Before considering a more general formulation using probability theory, some
applications of Dynkin’s formula will be used to compute the expected extinction
time and some higher moments.

Examples 7.10. Expected Exit Time Applications of Dynkin’s Formula:

• Small modification of Dynkin’s formula for exit times:

Consider the following boundary value problem of inhomogeneous backward
Kolmogorov equation,

∂v

∂t0
(x0, t0) + Bx0 [v](x0, t0) = α(x0, t0), x0 ∈ (a, b) , (7.48)

v(x0, t0) = β(x0, t0), x0 /∈ (a, b) , (7.49)
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where Bx0 [v](x0, t0) (7.14) is the jump-diffusion backward operator, α(x0, t0)
is a given general state-independent homogeneous term and β(x0, t0) is a given
general exit boundary value. Both α(x0, t0) and β(x0, t0) depend on the ap-
plication. Sometimes (7.48) is called Dynkin’s equation due to its relationship
with Dynkin’s formula.

Prior to taking expectations, the integral form (7.9) of the stochastic chain
rule was

v(X(t), t) = v(x0, t0) +

∫ t

t0

((
∂v

∂t
+ f

∂v

∂x
+

1

2
g2 ∂2v

∂x2

)
(X(s), s)ds

+

(
g
∂v

∂x

)
(X(s), s)dW (s) (7.50)

+

∫

Q

∆h[v](X(s), s, q)P(ds,dq; X(s), s)

)
,

but now make the random exit time substitution t = τe(x0, t0) for the deter-
ministic time variable which is simply abbreviated as t = τe and then take
expectations getting an exit time version of Dynkin’s formula,

E [v(X(τe), τe)|X(t0) = x0] = v(x0, t0) (7.51)

+E

[∫ τe

t0

(
∂v

∂t
+ Bx[v]

)
(X(s), s)ds

]
.

Upon substituting Dynkin’s equation (7.48) into Dynkin’ Formula, it reduces
to

E [β(X(τe), τe)|X(t0) = x0] = v(x0, t0) + E

[∫ τe

t0

α(X(s), s)ds

]
. (7.52)

• Ultimate Exit Time Distribution:

Let α(x0, t0) = 0, while β(X(τe), τe) = 1 since if x0 starts at an exit, i.e., x0 /∈
(a, b), then exit is certain and the distribution function is 1. Hence, due to
the jump-diffusion v(x0, t0) = 1 = Φτe(x0,t0)(+∞) on (a, b) under reasonable
conditions for the existence of an exit.

• Expected Exit Time:

Assuming that exit is certain, Φτe(x0,t0)(+∞) = 1, let α(x0, t0) = −1 =
−Φτe(x0,t0)(+∞) and β(X(τe), τe) = 0, corresponding to x0 /∈ (a, b) imply-
ing zero exit time, then

E[τe(x0, t0)] = t0 + v(1)(x0, t0) , (7.53)

where v(1)(x0, t0) is the solution to the problem (7.48-7.49) with α(x0, t0) = 0
and β(X(τe), τe) = 0.

• Second Moment of Exit Time:

Assuming that exit is certain, let α(x0, t0) = −2t0 and β(X(τe), τe) = 0 again,
then

E[τ2
e (x0, t0)] = t20 + v(2)(x0, t0) , (7.54)
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where v(2)(x0, t0) is the solution to the problem (7.48-7.49) with α(x0, t0) =
−2t0 and β(X(τe), τe) = 0. Hence, the variance of the exit time on (a, b) is

Var[τe(x0, t0)] = E[τ2
e (x0, t0)] − E2[τe(x0, t0)]

= v(2)(x0, t0) − 2t0v
(1)(x0, t0) − (v(1))2(x0, t0)

and the coefficient of variation (CV) of the exit time is

CV[τe(x0, t0)] =

√
Var[τe(x0, t0)]

E[τe(x0, t0)]

=

√
v(2)(x0, t0) − 2t0v(1)(x0, t0) − (v(1))2(x0, t0)

v(1)(x0, t0) + t0
.

• Higher Moments of Exit Time:

Assuming that exit is certain, let α(x0, t0) = −ntn−1
0 and again β(X(τe), τe) =

0, then

E[τn
e (x0, t0)] = tn0 + v(n)(x0, t0) , (7.55)

where v(n)(x0, t0) is the solution to the problem (7.48-7.49) with α(x0, t0) =
−ntn−1

0 and β(X(τe), τe) = 0.

Often conditional exit time moments are of interest, but then the inhomo-
geneous term α(x0, t0) genuinely depends on the state x0 which makes the (7.51)
form of Dynkin’s formula not too useful since then the α(X(s), s) in the integrand
genuinely depends on the stochastic process X(s) and the integral is no longer
simple. Hence, for more conditional and more general problems a more general
form is needed. This more general form is based upon a generalization of the time-
homogeneous derivations in Schuss [244] and in the appendix of Hanson and Tier
[117] to the time dependent coefficient case, obtaining a hybrid backward or Dynkin
equation for the exit time density φτe(x0,t0)(t).

Lemma 7.11. Exit Time Distribution and Density:

Given the exit time τe(x0, t0) (7.47), then its probability distribution can be related
to the distribution for X(t) by

Φτe(x0,t0)(t) = 1 −

∫ b

a

φX(t)(x, t; x0, t0)dx, (7.56)

where φX(t)(x, t; x0, t0) is the transition probability density for the Markov process
X(t) = x in continuous time conditionally starting at X(t0) = x0, as given in
(7.18). The density φX(t)(x, t; x0, t0) is assumed to exist.

Assuming the exit time distribution and the transition density are differentiable
even in a generalized sense, the exit time probability density is

φτe(x0,t0)(t) =
∂Φτe(x0,t0)

∂t
(t) .
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214 Chapter 7. Kolmogorov Equations

The φX(t) transition density is assumed to be twice differentiable in x0 and once
in t, leading to the Kolmogorov equation in the forward time but with the backward
operator Bx0 ,

∂φτe(x0,t0)

∂t
(t) = Bx0

[
φτe(x0,t0)(t)

]
(7.57)

= f(x0, t0)
∂φτe(x0,t0)

∂x0
(t) +

1

2
g2(x0, t0)

∂2φτe(x0,t0)

∂x2
0

(t)

+λ̂(x0, t0)

∫

Q

∆h[φτe(x0,t0)(t)](x0, t0, q)φQ(q; x0, t0)dq,

where the jump function ∆h is given in (7.4).

Proof. The Eq. (7.56) for the exit time distribution follows from the probability
definitions

Φτe(x0,t0)(t) = Prob[τe(x0, t0) < t] = Prob[X(t) /∈ (a, b)|X(t0) = x0]

= 1 − Prob[X(t) ∈ (a, b)|X(t0) = x0]

= 1 −

∫ b

a

φX(t)(x, t; x0, t0)dx,

i.e., the fact that the exit time probability is the complement of the probability
that the process X(t) is in the interval (a, b) and thus yields the right-hand side of
(7.56).

Under differentiability assumptions, the exit time density can be related to an
integral of the forward operator Fx using the forward Kolomogorov

φτe(x0,t0)(t) =
∂Φτe(x0,t0)

∂t
(t) = −

∫ b

a

φX(t),t(x, t; x0, t0)dx

= −

∫ b

a

Fx[φ](x, t; x0, t0)dx .

Manipulating partial derivatives, first in forward form,

φX(t),t(x, t; x0, t0)) = φX(t),t−t0(x, t; x0, t0) = −φX(t),t0−t(x, t; x0, t0)

and then in backward form,

φX(t),t0(x, t; x0, t0) = φX(t),t0−t(x, t; x0, t0) ,

leads to

φτe(x0,t0)(t) = +

∫ b

a

φX(t),t0(x, t; x0, t0)dx = −

∫ b

a

Bx0 [φ](x, t; x0, t0)dx .

Again assuming sufficient differentiability along with the interchange of integral and
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differential operators,

φτe(x0,t0),t(t) = −

∫ b

a

B[φX(t),t(x, t; x0, t0)]dx

= −

∫ b

a

Bx0 [F [φX(t)]](x, t; x0, t0)dx

= −Bx0

[∫ b

a

F [φX(t)](x, t; x0, t0)dx

]
= +Bx0

[
φτe(x0,t0)(t)

]
.

This is a hybrid Kolmogorov equation (7.57), since it is in forward time t on
the left and the backward operator is on the far right.

Examples 7.12. Conditionally Expected Exit Time Applications:

• Ultimate Probability of Exit:

The ultimate probability of exit is

Φe(x0, t0) ≡ Φτe(x0,t0)(+∞) =

∫ ∞

0

φτe(x0,t0)(t)dt , (7.58)

assuming that the distribution is bounded for all t. Also under the same con-
ditions, ∫ ∞

0

φτe(x0,t0),t(t)dt = φτe(x0,t0)(t)

∣∣∣∣
+∞

0

= 0

and then from the exit time density equation (7.57), integration-operator in-
terchange and (7.58) for Φe(x0, t0),

∫ ∞

0

B[φτe(x0,t0)(t)]dt = B[Φe(x0, t0)] = 0 . (7.59)

For certain exit at both endpoints a and b, the obvious boundary conditions
are Φe(a, t0) = 1 and Φe(b, t0) = 1 for continuous diffusion processes, but
[Φe(x0, t0)] =1 for x0 /∈ (a, b) for jump-diffusions. Presuming uniqueness,
then the solution to the boundary value problem is Φe(x0, t0) = 1.

• Conditional Exit on the Right of (a, b): Now suppose the statistics of
ultimate exit on one side of (a, b), say x0 ∈ [b, +∞), i.e., on the right. The
corresponding random exit time variable is

τ (b)
e (x0, t0) = inf

t
[ t |X(t) ≥ b, X(s) ∈ (a, b), t0 ≤ s < t, X(t0) = x0] ,

and the exit time distribution function is

Φ
τ
(b)
e (x0,t0)

(t) ≡ Prob[τ (b)
e (x0, t0) < t]
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216 Chapter 7. Kolmogorov Equations

and the corresponding density is φ
τ
(b)
e (x0,t0)

(t). Thus, the ultimate conditional

distribution,

Φ(b)
e (x0, t0) ≡

∫ +∞

0

φ
τ
(b)
e (x0,t0)

(t)dt,

for counting only exits on the right, has boundary conditions Φ
(b)
e (x0, t0) = 1

if x0 ∈ [b, +∞), but Φ
(b)
e (x0, t0) = 0 if x0 ∈ (−∞, a]. (For counting only

exits at the left, (−∞, a], then the boundary conditions are interchanged for

Φ
(a)
e (x0, t0).) In general, the conditional distribution Φ

(b)
e (x0, t0) will not be

one as in the certain ultimate probability in the prior item, so it is necessary to
work in exit time moments rather than expected exit times. Let the conditional
exit time first moment be

M (b)
e (x0, t0) ≡

∫ +∞

0

tφ
τ
(b)
e (x0,t0)

(t)dt (7.60)

and the expected conditional exit time is

T (b)
e (x0, t0) ≡ M (b)

e (x0, t0)/Φ(b)
e (x0, t0) (7.61)

if x0 > a. Upon integration of both sides of (7.57), making the reasonable
assumption

tφ
τ
(b)
e (x0,t0)

(t)

∣∣∣∣
+∞

0

= 0

when apply integration by parts on the left, then the conditional moment equa-
tion, interchanging left and right sides, is

Bx0

[
M (b)

e

]
(x0, t0) = −Φ(b)

e (x0, t0) (7.62)

with boundary condition M
(b)
e (x0, t0) = 0 if x0 /∈ (a, b). The conditions are

zero on either side of (a, b) for different reasons, due to instant exit for x0 ∈
[b, +∞) and due to excluded exit for x0 ∈ (−∞, a].

7.8 Diffusion Approximation Basis

Up until this point, stochastic diffusions have almost been taken as given. There
are many derivations for physical diffusions in physics and engineering, such as the
diffusion of a fluid concentration in a liquid or gas according to Fick’s law for the flux
or flow of concentration or the diffusion of heat in a conduction medium according
to Fourier’s law for the flux of heat. These types of physical diffusions lead to the
same or similar diffusion equations as seen in this chapter when the jump terms are
omitted. However, the stochastic diffusions are usually postulated on a different
basis.

A fundamental property that distinguishes the pure diffusion process from the
discontinuous jump process among Markov processes in continuous time is that the
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diffusion process is a continuous process. Let X(t) = [Xi(t)]nx×1 be a continuous
process, then it must satisfy the following continuity condition, given some δ > 0,

lim
∆t→0

Prob[|∆X(t)| > δ | X(t) = x]

∆t
= 0 , (7.63)

so jumps in the process are unlikely.
In addition, two basic moment properties are needed for the continuous process

to have a diffusion limit and these are that the conditional mean increment process
satisfy

E[∆X(t)|X(t) = x] =

∫

Ω

φX(t)(y, t + ∆t;x, t)dy) (7.64)

= µ(x, t)∆t + o(∆t) as ∆t → 0 ,

where µ(x, t) = [µi(x, t)]nx×1, and that the conditional variance increment process
satisfy

Cov[∆X(t), ∆X⊤(t)|X(t) = x] = σ(x, t)∆t + o(∆t) as ∆t → 0 , (7.65)

where σ(x, t) = [σi.j(x, t)]nx×nx
> 0, i.e., positive definite, and φX(t)(x, t;x0, x0)dy)

is the transition probability density for X(t). Alternatively, these two infinitesimal
moment conditions can be written

lim
∆t→0

E[∆X(t)|X(t) = x]

∆t
= µ(x, t)

and

lim
∆t→0

Cov[∆X(t), ∆X⊤(t)|X(t) = x]

∆t
= σ(x, t) .

There are other technical conditions that are needed and the reader should
consult references like Feller [84, Chapt. 10] or Karlin and Taylor [162, Chapt. 15] for
the history and variations in these conditions. Another technical condition implies
that higher order moments are negligible,

lim
∆t→0

E[|∆X(t)|m | X(t) = x]

∆t
= 0 , (7.66)

for m ≥ 3.

Remarks 7.13.

• Note that since the focus is on diffusion, the mth central moment could be used
here as in [84, 162], instead of the uncentered mth moment in (7.66), just as
the 2nd moment could have been used in (7.65) instead of the covariance. For
high moments, the central moment form may be easier to use since means of
deviation are trivially zero.



“bk07fkebk
2007/1/5
page 218

i

i

i

i

i

i

i

i

218 Chapter 7. Kolmogorov Equations

• Karlin and Taylor [162] show that from the Chebyshev inequality (Chapter 1,
Exercise 4),

Prob[|∆X(t)| > δ | X(t) = x]

∆t
≤

E[|∆X(t)|m | X(t) = x]

δm∆t
, (7.67)

that the high moment condition (7.66) for any m ≥ 3 can imply the continuity
condition (7.63) for δ > 0. Depending on the problem formulation, the high
moment condition may be easier to demonstrate than estimating the tail of
the probability distribution in the continuity condition.

In terms of the general multi-dimensional jump-diffusion model (7.31), the
corresponding infinitesimal parameters, in absence of the jump term (h = 0), are
the infinitesimal vector mean

µ(x, t) = f(x, t)

and the infinitesimal matrix covariance

σ(x, t) = (gg⊤)(x, t) .

These infinitesimal properties by themselves do not make a diffusion process,
since adding jump processes to diffusion process invalidates the continuity condition
(7.63). For instance, examining this continuity condition for the simplest case of a
simple Poisson process X(t) = P (t) but with a time-dependent jump rate λ(t) > 0,
yields

Prob[|∆P (t)| > δ | P (t) = j]

∆t
=

∞∑

k=1

e−∆Λ(t) (∆Λ)k(t)

k!∆t
=

1 − e−∆Λ(t)

∆t

assuming for continuity’s sake that 0 < δ < 1 and where

∆Λ(t) =

∫ t+∆t

t

λ(s)ds → λ(t)∆t as ∆t → 0+ .

Thus,

lim
∆t→0

Prob[|∆P (t)| > δ | P (t) = j]

∆t
= λ(t) > 0

invalidating the continuity condition as expected, although the two basic infinitesi-
mal moments can be calculated. In general, the higher moment criterion (7.66) will
not be valid either, since for example,

lim
∆t→0

E[|∆P (t)|3 | X(t) = x]

∆t
= lim

∆t→0

∞∑

k=1

e−∆Λ(t) (∆Λ)k(t)

k!∆t
k3

= lim
∆t→0

∆Λ(t)(1 + 3∆Λ(t) + (∆Λ)2(t))

∆t
= λ(t) > 0 ,
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where incremental moment Table 1.2 has been used. It is easy to guess that the
number of infinitesimal moments of the Poisson process will be infinite, extrapo-
lating from Table 1.2, unlike the limit of two infinitesimal moments for diffusion
processes. However, the table only can be used to confirm that cases m = 3:5 yield
the infinitesimal expectation of λ(t).

So far these conditions are merely general formulations of diffusion processes
for which similar properties have been derived in the earlier chapters of this book.
Where their power lies is when they are used to approximate other stochastic pro-
cesses, such as in the stochastic tumor application using a diffusion approximation
that can be solved for tumor doubling times in Subsection 11.2.1.

7.9 Exercises

1. Derivation of the Forward Kolmogorov Equation in the Generalized Sense.
Let the jump-diffusion process X(t) satisfy the SDE,

dX(t) = f(X(t), t)dt + g(X(t), t)dW (t) + h(X(t), t, Q)dP (t; Q, X(t), t)) ,(7.68)

X(t0) = x0, where the coefficient functions (f, g, h) are sufficiently well-
behaved, Q is the jump-amplitude random mark with density φQ(q; X(t), t)
and E[dP (t; Q, X(t), t)|X(t) = x] = λ(t; Q, x, t)dt.

(a) Show (easy) that, in the generalize sense,

φ(x, t)
gen
= E[δ(X(t) − x)|X(t0) = x0] , t0 < t ,

where φ(x, t) = φX(t)(x, t; x0, t0) is the transition probability density for
the process X(t) conditioned on the starting at X(t0) = x0 and δ(x) is
the Dirac delta function.

(b) Show that the Dirac delta function with composite argument satisfies
∫ +∞

−∞

F (y)δ(γ(y) − x)dy
gen
= F

(
γ−1(x)

) ∣∣(γ−1)′(x)
∣∣ ,

where γ(y) is a monotonic function with non-vanishing derivative and
inverse y = γ−1(z), such that (γ−1)′(z) = 1/γ′(y) and |γ−1(±∞)| = ∞.

(c) Apply the previous two results and other delta function properties from
Section B.12 to derive the forward Kolmogorov equation (7.26) in the
generalized sense.
Hint: Regarding the proof of (7.26), the diffusion part is much easier
given the delta function properties for the derivation, but the jump part
is similar and is facilitated by the fact that γ(y) = y + h(y; t, q) for fixed
(t, q).

2. Derivation of the Feynman-Kac (Dynkin with Integrating Factor) Formula
for Jump-Diffusions.
Consider the jump-diffusion process,

dX(t) = f(X(t), t)dt + g(X(t), t)dW (t) + h(X(t), t, Q)dP (t; Q, X(t), t),
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X(t0) = x0 ∈ Ω, t0 < t < tf and related backward Feynman-Kac (pronounced
Fineman-Katz) final value problem,

∂v

∂t0
(x0, t0) + B[v](x0, t0) + θ(x0, t0)v(x0, t0) = α(x0, t0) , (7.69)

x0 ∈ Ω, 0 ≤ t0 < tf , with final condition

v(x0, tf ) = γ(x0, tf ) , x0 ∈ Ω , 0 ≤ t0 < tf ,

where B[v](x0, t0) is the backward operator corresponding to the jump-diffusion
process (7.3). The given coefficients, θ(x0, t0), α(x, t) and γ(x, t) are bounded
and continuous. The solution v(x0, t0) is assumed to be twice continuously
differentiable in x0 while once in t.

(a) In preparation, apply the stochastic chain rule to the auxiliary function

w(X(t), t) = v(X(t), t) exp(Θ(t0, t))

to use an integrating factor technique to remove the non-Dynkin linear
source term θ(x0, t0)v(x0, t0) from (7.69) with integrating factor expo-
nent process

Θ(t0, t) =

∫ t

t0

θ(X(s), s)ds.

Then show (best done using the usual time-increment form of the stochas-
tic chain rule) that

dw(X(t), t)
dt
= eΘ(t0,t)

((
∂v

∂t
+ B[v] + θv

)
(X(t), t)dt (7.70)

+(gv
∂v

∂x
)(X(t), t)dW (t)

+

∫

Q

δh[v](X(t), t, q)P̂(dt,dq; X(t), t)

)
,

where δh[v] is defined in (7.4) and P̂ is defined in (7.8).

(b) Next integrate the SDE (7.70) on [t0, tf ], solve for v(x0, t0), then take
expectations and finally apply the final value problem to obtain the
Feynman-Kac formula corresponding to (7.69),

v(x0, t0) = E

[
e+Θ(t0,tf )γ(X(tf ), tf ) (7.71)

−

∫ tf

t0

e+Θ(t0,s)α(X(s), s)ds

∣∣∣∣X(t0) = x0

]
.

Hint: Follow the procedure in the derivation proof of Theorem 7.3 for
this Feynman-Kac formula. See Schuss [244] or Yong and Zhou [288]
for pure diffusion processes.
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3. Moments of Stochastic Dynamical Systems. Consider first the linear stochastic
dynamical system,

dX(t) = µ0X(t)dt + σ0X(t)dW (t) + ν0X(t)h(Q)dP (t; Q), X(t0) = x0 ,

where {µ0, σ0, ν0} is a set of constant coefficients, x0 is specified and h(q)
has finite moments with respect to a Poisson mark amplitude density φZ(z).
Starting with a Dynkin’s Formula (or the Forward Kolmogorov Equation if
you like deriving results the hard way),

(a) Show that the conditional first moment of the process

X(t) = E[X(t)|X(t0) = x0]

satisfies a first order ODE in X(t) only, (x0, t0) fixed, corresponding to
the mean (quasi-deterministic) analog of the SDE. Solve the ODE in
terms of the given initial conditions.

(b) Derive the ODE for second moment

X2(t) = E[X2(t)|X(t0) = x0]

for the more general SDE

dX(t) = f(X(t))dt + g(X(t))dW (t) + h(X(t), q)dP (t; Q) ,

X(t0) = x0, in terms of expected coefficient values over both state and
mark spaces.

(c) Use the general second moment ODE of part (b) to derive the corre-
sponding ODE for the state variance

Var[X(t)] = X2(t) − (X)2(t)

for the linear dynamical system in the part (a). Your result should
show that the ODE is linear in Var[X ](t) with an inhomogeneous term
depending on the X(t) first moment solution and constants, so the ODE
is closed in that it is independent of any higher moments beyond the
second. Solve the ODE.
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