
“bk0allfinal”
2007/1/7
page 1

i

i

i

i

i

i

i

i

Applied Stochastic Processes and Control for

Jump-Diffusions: Modeling, Analysis and

Computation

Floyd B. Hanson
University of Illinois

Chicago, Illinois, USA

Copyright c© 2007 by the Society for Industrial and Applied Mathematics.

January 7, 2007

“bk0allfinal”
2007/1/7
page 2

i

i

i

i

i

i

i

i

2

“bk0allfinal”
2007/1/7
page i

i

i

i

i

i

i

i

i

To five generations of women in my life,
Margaret Geiger, Violet Bliss, Ethel Hutchins, Lisa Hanson

and Chiara Hanson Whitehurst

“bk0allfinal”
2007/1/7
page ii

i

i

i

i

i

i

i

i

“bk0allfinal”
2007/1/7
page iii

i

i

i

i

i

i

i

i

Contents

Preface xvii

1 Stochastic Jump and Diffusion Processes 1
1.1 Poisson and Wiener Processes Basics 1
1.2 Wiener Process Basic Properties 3
1.3 More Wiener Process Moments 6
1.4 Wiener Process Non-Differentiability 9
1.5 Wiener Process Expectations Conditioned on Past 10
1.6 Poisson Process Basic Properties 11
1.7 Poisson Process Moments . 16
1.8 Poisson Poisson Zero-One Jump Law 18
1.9 Temporal, Non-Stationary Poisson Process 21
1.10 Poisson Process Expectations Conditioned on Past 24
1.11 Exercises . 26

2 Stochastic Integration for Diffusions 31
2.1 Ordinary or Riemann Integration 32
2.2 Stochastic Integration in W (t): The Foundations 35
2.3 Stratonovich and other Stochastic Integration Rules 56
2.4 Conclusion . 58
2.5 Exercises . 59

3 Stochastic Integration for Jumps 65
3.1 Stochastic Integration in P (t): The Foundations 65
3.2 Stochastic Jump Integration Rules and Expectations: 77
3.3 Conclusion . 80
3.4 Exercises . 80

4 Stochastic Calculus for Jump-Diffusions 83
4.1 Diffusion Process Calculus Rules 83

4.1.1 Functions of Diffusions Alone, G(W (t)) 84
4.1.2 Functions of Diffusions and Time 87
4.1.3 Itô Stochastic Natural Exponential Construction . . 90
4.1.4 Transformations of Linear Diffusion SDEs: 94

iii

“bk0allfinal”
2007/1/7
page iv

i

i

i

i

i

i

i

i

iv Contents

4.1.5 Functions of General Diffusion States and Time . . 100
4.2 Poisson Jump Process Calculus Rules 101

4.2.1 Jump Calculus Rule for h(dP (t)) 101
4.2.2 Jump Calculus Rule for H(P (t), t) 102
4.2.3 Jump Calculus Rule with General State 105
4.2.4 Transformations of Linear Jump with Drift SDEs . . 106

4.3 Jump-Diffusion Rules and SDEs 108
4.3.1 Jump-Diffusion Conditional Infinitesimal Moments . 109
4.3.2 Stochastic Jump-Diffusion Chain Rule 109
4.3.3 Linear Jump-Diffusion SDEs 111
4.3.4 SDE Models Exactly Transformable 121

4.4 Poisson Noise is White Noise Too! 123
4.5 Exercises . 125

5 Stochastic Calculus for General Markov SDEs 131
5.1 Space-Time Poisson Process . 132
5.2 State-Dependent Generalizations 141

5.2.1 State-Dependent Poisson Processes 141
5.2.2 State-Dependent Jump-Diffusion SDEs 143
5.2.3 Linear State-Dependent SDEs 144

5.3 Multi-Dimensional Markov SDE 162
5.3.1 Conditional Infinitesimal Moments 163
5.3.2 Stochastic Chain Rule in Multi-Dimensions 165

5.4 Distributed Jump SDE Models Exactly Transformable 166
5.4.1 Jump SDE Models Exactly Transformable 167
5.4.2 Vector Jump SDE Models Exactly Transformable . 167

5.5 Exercises . 168

6 Stochastic Dynamic Programming 171
6.1 Stochastic Optimal Control Problem 171
6.2 Bellman’s Principle of Optimality 174
6.3 HJB Equation of Stochastic Dynamic Programming 178
6.4 Linear Quadratic Jump-Diffusion (LQJD) Problem 182

6.4.1 LQJD in Control Only (LQJD/U) Problem 182
6.4.2 LLJD/U or the Case C2 ≡ 0: 185
6.4.3 Canonical LQJD Problem 186

6.5 Exercises . 191

7 Kolmogorov Equations 195
7.1 Dynkin’s Formula and the Backward Operator 195
7.2 Backward Kolmogorov Equations 198
7.3 Forward Kolmogorov Equations 201
7.4 Multi-dimensional Backward and Forward Equations 205
7.5 Chapman-Kolmogorov Equation for Markov Processes 208
7.6 Jump-Diffusion Boundary Conditions 208

7.6.1 Absorbing Boundary Condition 208

“bk0allfinal”
2007/1/7
page v

i

i

i

i

i

i

i

i

Contents v

7.6.2 Reflecting Boundary Conditions 209
7.7 Stopping Times: Expected Exit and First Passage Times 210

7.7.1 Expected Stochastic Exit Time 211
7.8 Diffusion Approximation Basis 216
7.9 Exercises . 219

8 Computational Stochastic Control Methods 223
8.1 Finite Difference PDE Methods of SDP 224

8.1.1 Linear Dynamics and Quadratic Control Costs . . . 225
8.1.2 Crank-Nicolson, Prediction-Correction for SDP . . . 226
8.1.3 Upwinding If Not Diffusion-Dominated 232
8.1.4 Multi-state Systems andCurse of Dimensionality . . 233

8.2 Markov Chain Approximation for SDP 235
8.2.1 The MCA Formulation for Stochastic Diffusions . . 236
8.2.2 MCA Local Diffusion Consistency Conditions 237
8.2.3 MCA Numerical Finite Differenced Derivatives . . . 238
8.2.4 MCA Extensions to Include Jump Processes 241

9 Stochastic Simulations 247
9.1 SDE Simulation Methods . 247

9.1.1 Convergence and Stability for Stochastic Simulations 248
9.1.2 Stochastic Diffusion Euler Simulations 250
9.1.3 Milstein’s Higher Order Diffusion Simulations 255
9.1.4 Convergence of Jump-Diffusion Simulations 256
9.1.5 Jump-Diffusion Simulation Procedures 262

9.2 Monte Carlo Methods . 265
9.2.1 Basic Monte Carlo Simulations 267
9.2.2 Inverse Generation for Non-Uniform Variates 275
9.2.3 Acceptance and Rejection Method of von Neumann 278
9.2.4 Importance Sampling 282
9.2.5 Stratified Sampling 284
9.2.6 Antithetic Variates 287
9.2.7 Control Variates . 289

10 Applications in Financial Engineering 295
10.1 Classical Black-Scholes Option Pricing Model 296
10.2 Merton’s Three Asset Option Pricing Model 300

10.2.1 PDE of Option Pricing 307
10.2.2 Final and Boundary Conditions for Option Pricing . 309
10.2.3 Transforming PDE to Standard Diffusion PDE . . . 312

10.3 Jump-Diffusion Option Pricing 317
10.3.1 Jump-Diffusions with Normal Jump-Amplitudes . . 319
10.3.2 Risk-Neutral Option Pricing for Jump-Diffusions . . 320

10.4 Optimal Portfolio and Consumption Models 326
10.4.1 Log-Uniform Jump-Diffusion for Log-Return 326
10.4.2 Log-Uniform Jump-Amplitude Model 328

“bk0allfinal”
2007/1/7
page vi

i

i

i

i

i

i

i

i

vi Contents

10.4.3 Optimal Portfolio and Consumption Policies 330
10.4.4 CRRA Utility and Canonical Solution Reduction: . 334

10.5 Important Financial Events Model: The Greenspan Process . . 337
10.5.1 Scheduled and Unscheduled Events Model 338
10.5.2 Properties of Scheduled Event Processes 339
10.5.3 Optimal Utility, Stock Fraction and Consumption . 340
10.5.4 Canonical CRRA Model Solution 343

10.6 Exercises . 345

11 Applications in Mathematical Biology and Medicine 349
11.1 Stochastic Bioeconomics: Optimal Harvesting Applications . . . 349

11.1.1 Optimal Harvesting of Jump-Logistic Population . . 350
11.1.2 Optimal Harvesting with Random Price Dynamics . 354

11.2 Stochastic Biomedical Applications 357
11.2.1 Tumor Doubling Time Diffusion Approximation . . 358
11.2.2 Optimal Drug Delivery to Brain PDE Model 363

12 Applied Guide to Abstract Stochastic Processes 373
12.1 Very Basic Probability Measure Background 374

12.1.1 Mathematical Measure Theory Basics 374
12.1.2 Change of Measure: Radon-Nikodým Derivative: . . 380
12.1.3 Probability Measure Basics 381
12.1.4 Stochastic Processes on Filtered Probability Spaces 383
12.1.5 Martingales in Continuous Time 385
12.1.6 Marked-Jump-Diffusion Martingale Representation . 388

12.2 Change in Probability Measure: Radon-Nikodým and Girsanov’s 390
12.2.1 Radon-Nikodým Change of Probability Measure . . 390
12.2.2 Girsanov Change in Probability Measure 395

12.3 Itô, Lévy and Jump-Diffusion Comparisons 403
12.3.1 Itô Processes and Jump-Diffusion Processes 403
12.3.2 Lévy Processes and Jump-Diffusion Processes 404

12.4 Exercises . 415

Bibliography 417

Index 438

A Appendix: Deterministic Optimal Control A1
A.1 Hamilton’s Equations . A2

A.1.1 Deterministic Computational Complexity A11
A.2 Optimum Principles: The Basic Principles Approach A12
A.3 Linear Quadratic (LQ) Canonical Models A23

A.3.1 Scalar, Linear Dynamics, Quadratic Costs (LQ) . . A23
A.3.2 Matrix, Linear Dynamics, Quadratic Costs (LQ) . . A25

A.4 Deterministic Dynamic Programming (DDP) A29
A.4.1 Deterministic Principle of Optimality A30

“bk0allfinal”
2007/1/7
page vii

i

i

i

i

i

i

i

i

Contents vii

A.4.2 Hamilton-Jacobi-Bellman (HJB) Equation of DDP . A31
A.4.3 Computational Complexity for DDP A32
A.4.4 Linear Quadratic (LQ) Problem by DDP A33

A.5 Control of PDE Driven Dynamics (DPS) A35
A.5.1 DPS Optimal Control Problem A35
A.5.2 DPS Hamiltonian Extended Space Formulation . . . A36
A.5.3 DPS Optimal State, Co-State and Control PDEs . . A38

A.6 Exercises . A40

B Appendix Online: Preliminaries in Probability and Analysis B1
B.1 Distributions for Continuous Random Variables B2

B.1.1 Probability Distribution and Density Functions . . . B2
B.1.2 Expectations and Higher Moments B4
B.1.3 Uniform Distribution B5
B.1.4 Normal Distribution and Gaussian Processes B8
B.1.5 Simple Gaussian Processes B10
B.1.6 Lognormal Distribution B11
B.1.7 Exponential Distribution B15

B.2 Distributions of Discrete Random Variables B18
B.2.1 Poisson Distribution and Poisson Process B19

B.3 Joint and Conditional Distribution Definitions B21
B.3.1 Conditional Distributions and Expectations B26
B.3.2 Law of Total Probability B29

B.4 Probability Distribution of a Sum: Convolutions B31
B.5 Characteristic Functions . B34
B.6 Sample Mean and Variance: Sums of IID Random Variables . . B37
B.7 Law of Large Numbers . B39

B.7.1 Weak Law of Large Numbers (WLLN) B39
B.7.2 Strong Law of Large Numbers (SLLN) B40

B.8 Central Limit Theorem . B40
B.9 Matrix Algebra and Analysis . B40
B.10 Some Multivariate Distributions B46

B.10.1 Multivariate Normal Distribution B46
B.10.2 Multinomial Distribution B48

B.11 Basic Asymptotic Notation and Results B51
B.12 Generalized Functions: Combined Continuous and Discrete . . . B53
B.13 Fundamental Properties of Stochastic and Markov Processes . . B61

B.13.1 Basic Classification of Stochastic Processes B61
B.13.2 Markov Processes and Markov Chains B61
B.13.3 Stationary Markov Processes and Markov Chains . . B62

B.14 Continuity, Jump Discontinuity and Non-Smoothness B63
B.14.1 Beyond Continuity Properties B63
B.14.2 Taylor Approximations of Composite Functions . . . B65

B.15 Extremal Principles . B69
B.16 Exercises . B71

“bk0allfinal”
2007/1/7
page viii

i

i

i

i

i

i

i

i

viii Contents

C Appendix Online: MATLAB Programs C1
C.1 Program: Uniform Distribution Simulation Histograms C1
C.2 Program: Normal Distribution Simulation Histograms C2
C.3 Program: Lognormal Distribution Simulation Histograms C4
C.4 Program: Exponential Distribution Simulation Histograms . . . C5
C.5 Program: Poisson Distribution versus Jump Counter k C6
C.6 Program: Binomial Distribution versus Binomial Frequency f1 . C7
C.7 Program: Simulated Diffusion W (t) Sample Paths C8
C.8 Program: Diffusion Sample Paths Time Step Variation C9
C.9 Program: Simulated Simple Poisson P (t) Sample Paths C11
C.10 Program: Simulated Incremental Poisson ∆P (t) Sample Paths . C12
C.11 Program: Simulated Diffusion Integrals

∫
!(dW)2 C14

C.12 Program: Simulated Diffusion Integrals
∫
g(W, t)dW C15

C.13 Program: Simulated Diffusion Integrals
∫
g(W, t)dW : Chain Rule C16

C.14 Program: Simulated Linear Jump-Diffusion Sample Paths . . . C18
C.15 Program: Simulated Linear Mark-Jump-Diffusion Sample Paths C21
C.16 Program: Euler-Maruyama Simulations for Linear Diffusion SDE C25
C.17 Program: Milstein Simulations for Linear Diffusion SDE C27
C.18 Program: Monte Carlo Simulation Comparing Uniform and Nor-

mal Errors . C29
C.19 Program: Monte Carlo Simulation Comparing Uniform and Nor-

mal Errors . C31
C.20 Program: Monte Carlo Acceptance-Rejection Technique C33
C.21 Program: Monte Carlo Multidimensional Integration C35

“bk0allfinal”
2007/1/7
page ix

i

i

i

i

i

i

i

i

List of Figures

1.1 In Figure 1.1(a), paths were simulated using MATLAB [210] with
N = 1000 sample points, four randn states and maximum time
T = 1.0. In Figure 1.1(b), paths were simulated using subsets of
the same random state of randn used for the finer grid 0.001. . . 6

1.2 In Figure 1.2(a), Simulated sample paths for the simple Poisson
Process P (t) versus the dimension-less time λt using four different
MATLAB [210] random states for four different sample paths and
the exponential distribution of the time between jumps. In Fig-
ure 1.2(b) is a similar illustration for the simple Poisson process
increment simulations versus t with λ = 1.0 and ∆t = 0.05, based
upon the zero-one jump law implemented with a uniform distribu-
tion paths were simulated using subsets of the same random state
of rand used for the finer grid 0.001. 15

2.1 Simulated sample path for the Itô forward integration approximating

sum of
R
(dW)2(t)

ims
= t ≃

P
i(∆Wi)

2 for n = 104 MATLAB randn sam-

ple size. 44

4.1 Example of a simulated Itô discrete approximation to the stochas-
tic diffusion integral In[g](ti+1) =

∑i
j=0 gj∆Wj for i = 0 : n,

using the MATLAB randn with sample size n = 10, 000 on 0 ≤
t ≤ 2.0. Presented are the simulated Itô partial sums Si+1, the
simulated noise Wi+1 and the error Ei+1 relative to the exact in-

tegral, I(ims)[g](ti+1)
ims
= exp(Wi+1 − ti+1/2) − 1, in the Itô mean

square sense. 95

4.2 Example of a simulated Itô discrete approximation to the stochas-
tic diffusion integral In[g](ti+1) =

∑i
j=0 gj∆Wj for i = 0 : n,

using the MATLAB randn with sample size n + 1 = 10, 001 on
0 ≤ t ≤ 2.0. Presented are the simulated Itô partial sums Si+1, the
simulated noise Wi+1 and the error Ei+1 relative to the stochastic
chain rule partially integrated form, Ii+1 given in the text (4.23). 96

ix

“bk0allfinal”
2007/1/7
page x

i

i

i

i

i

i

i

i

x List of Figures

4.3 Four linear jump-diffusion sample paths for constant coefficients
are simulated using MATLAB [210] with N = 1000 sample points,
maximum time T = 1.0 and four randn and four rand states.
Parameter values are µ0 = 0.5, σ0 = 0.10, ν0 = −0.10, λ0 =
3.0 and x0 = 1.0. In addition to the four simulated states, the
expected state E[X(t)] and two deviation measures E[X(t)] ∗ V (t)
and E[X(t)]/V (t), where the factor V (t) is based on the standard
deviation of the state exponent Y (t). 117

4.4 Four linear pure diffusion sample paths for constant coefficients
are simulated using MATLAB [210] with N = 1000 sample points,
maximum time T = 1.0 and four randn states. Parameter values
are µ0 = 0.5, σ0 = 0.10, ν0 = 0.0, and x0 = 1.0. In addition
to the four simulated states, the expected state E[X(t)] and two
deviation measures E[X(t)] ∗V (t) and E[X(t)]/V (t) are displayed,
where the factor V (t) is based on the standard deviation of the
state exponent Y (t). 118

4.5 Four linear pure jump with drift sample paths for constant coeffi-
cients are simulated using MATLAB [210] with N = 1000 sample
points, maximum time T = 1.0 and four randn states. Parame-
ter values are µ0 = 0.5, σ0 = 0.0, ν0 = −0.10, and x0 = 1.0. In
addition to the four simulated states, the expected state E[X(t)]
and two deviation measures E[X(t)] ∗ V (t) and E[X(t)]/V (t) are
displayed, where the factor V (t) is based on the standard deviation
of the state exponent Y (t). 118

5.1 Four linear mark-jump-diffusion sample paths for time-dependent
coefficients are simulated using MATLAB [210] with N = 1, 000
time-steps, maximum time T = 2.0 and four randn and four
rand states. Initially, x0 = 1.0. Parameter values are given in
vectorized functions using vector functions and dot-element op-
erations, µd(t) = 0.1 ∗ sin(t), σd(t) = 1.5 ∗ exp(−0.01 ∗ t) and
λ = 3.0 ∗ exp(−t. ∗ t). The marks are uniformly distributed on
[−2.0,+1.0]. In addition to the four simulated states, the expected
state E[X(t)] is presented using quasi-deterministic equivalence
(5.55) of Hanson and Ryan [114], but also the sample mean of
the four sample paths are presented. 161

6.1 Multibody Stochastic Dynamical System Under Feedback Control. 173

8.1 Estimate of the logarithm to the base 2 of the order of the growth
of memory and computing demands using 8 byte words to illustrate
the curse of dimensionality in the diagonal Hessian case for nx = 1:
10 dimensions and Nx = 1 :64 = 1 :26 nodes per dimension. Note
that 1KB or one kilobyte has a base 2 exponent of 10 = log2(2

10),
while the base 2 exponent is 20 for 1MB, 40 for 1GB and is 60 for
1TB. 236

“bk0allfinal”
2007/1/7
page xi

i

i

i

i

i

i

i

i

List of Figures xi

9.1 Code: Euler SDE simulations. 251
9.2 Comparison of coarse Euler-Maruyama and fine exact paths, sim-

ulated using MATLAB with Nt = 1024 fine sample points for the
exact path (9.15) and Nt/8 = 128 coarse points for the Euler path
(9.13), initial time t0 = 0, final time tf = 5 and initial state x0 =
1.0. Time-dependent parameter values are µ(t) = 0.5/(1 + 0.5t)2

and σ(t) = 0.5. 252
9.3 Error in coarse Euler-Maruyama and fine exact paths using the

coarse discrete time points. The simulations use MATLAB with
the same values and time-dependent coefficients as in Fig. 9.2. The
Euler maximal-absolute error for this example is 1.3 ≃ 34∆t/8,
while for Nt = 4096 the maximal error is better at 0.28 ≃ 29∆t/8. 253

9.4 Comparison of coarse Milstein and fine exact paths, simulated us-
ing MATLAB with Nt = 1024 fine sample points for the exact
path (9.15) and Nt/8 = 128 coarse points for the Milstein path
(9.23), initial time t0 = 0, final time tf = 5 and initial state
x0 = 1.0 as in Fig. 9.2. Time-dependent parameter values are
µ(t) = 0.5/(1 + 0.5t)2 and σ(t) = 0.5. 257

9.5 Error in coarse Milstein and fine exact paths using the coarse dis-
crete time points. The simulations use MATLAB with the same
values and time-dependent coefficients as in Fig. 9.2. The Milstein
maximal-absolute error for this example is 1.2, while for Nt = 4096
the maximal error is better at 0.95. 258

9.6 Difference in coarse Milstein and Euler paths using the coarse dis-
crete time points. The simulations use MATLAB with the same
values and time-dependent coefficients as in Fig. 9.2. The Milstein-
Euler maximal-absolute difference for this example is 0.19, while
for Nt = 4096 the maximal difference is comparable at 0.24. . . . 259

9.7 Code: Jump-adapted code fragment. 266
9.8 Monte Carlo simulations for testing use of the uniform distribution to

approximate the integral of the integrand F (x) =
√

1 − x2 on (a, b) =

(0, 1) using MATLAB code C.19 on p. C31 for n = 10k, k = 1:7. . . . 272
9.9 Code: Inverse Poisson method to generate jump counts using the

uniform distribution [96, Fig. 3.9]. 277
9.10 Monte Carlo simulations shown apply the acceptance and rejection tech-

nique and the normal distribution to compute the estimates for the mean

bµn and the magnified standard error 10 · bσn/
√

n for the integral of the

truncated normal distribution with F (x) = φn(x) on [a, b] = [−2, 2]

using MATLAB code C.20 on p. C33 for n = 10k, k = 1:7. 280
9.11 Monte Carlo simulations for estimating multi-dimensional integrals for

the nx-dimension normal integrand F (x) = φn(x) on [a,b] = [−2, 2]nx

using MATLAB code C.21 on p. C35 for n = 10k, k = 1 : 6. The

acceptance-rejection technique is used to handle the finite domain. . . 281

10.1 Optimal portfolio stock fraction policy u∗(t) on t ∈ [0, 12] subject

to the control constraint set [U
(min)
0 , U

(max)
0] = [−10, 10]. 336

“bk0allfinal”
2007/1/7
page xii

i

i

i

i

i

i

i

i

xii List of Figures

10.2 Optimal consumption policy c∗(t, w) for (t, w) ∈ [0, 12]× [0, 100]. 337

11.1 Optimal tumor density Y ∗
1 (x1, t) in the one-dimensional case with

time as a parameter rounded at quartile values {0, tq1 = tf/4, tmid =
tf/2, tq3 = 3tf/4, tf}, where tf = 5 days. The total tumor density
integral is reduced by 29% in the 5-day simulated drug treatment
trial. 369

A.1 Hamitonian and optimal solutions for regular control problem ex-
ample from (A.30) for X∗(t) and (A.31) for λ∗(t). Note that the
γ = 0.5 power utility is only for illustration purposes. A11

A.2 Hamiltonian and optimal solutions for bang control problem ex-
ample from (A.30) for X∗(t) and (A.31) for λ∗(t). Note that the
γ = 2.0 power utility is only for illustration purposes. A12

A.3 Optimal solutions for a simple, static optimal control problem rep-
resented by (A.35) and (A.36), respectively. A14

A.4 Optimal control, state and switch time multiplier sum are shown
for bang-bang control example with sample parameter values t0 =
0, tf = 2.0, a = 0.6, M = 2, K = 2.4 and x0 = 1.0. The computed
switch time ts is also indicated. A19

A.5 Optimal state solutions for singular control example leading to a
bang-singular-bang trajectory represented by (A.60). Subfigure
(a) yields a maximal bang trajectory from x0 using U (max), where
as Subfigure (b) yields a minimal bang trajectory from x0 using
U (min). A22

B.1 Histograms of simulations of uniform distribution on (0, 1) using MAT-

LAB [210] for two different sample sizes N B8

B.2 Histograms of simulations of the standard normal distribution with

mean 0 and variance 1 using MATLAB [210] with 50 bins for two sam-

ple sizes N . The histogram for the large sample size of N = 105 in

Fig. B.2(b) exhibits a better approximation to the theoretical normal

density φn(x; 0, 1). B10

B.3 Histograms of simulations of the lognormal distribution with mean µn =

0 and variance σn = 0.5 using MATLAB [210] normal distribution simu-

lations, x = exp(mu*ones(N,1) + sigma*randn(N,1)), with 150 bins for

two sample sizes. The histogram for the large sample size of N = 105 in

Fig. B.3(b) exhibits a better approximation to the theoretical lognormal

density φn(x; 0, 1) than the one in Fig. B.3(a). B15

B.4 Histograms of simulations of the standard exponential distribution, with

mean taken to be mu = 1, using MATLAB’s hist function [210] with

50 bins for two sample sizes N , generated by x = −mu ∗ log(rand(N, 1))
in MATLAB . The histogram for the large sample size of N = 105 in

Fig. B.4(b) exhibits a better approximation to the standard theoretical

exponential density φe(x; 1). B17

“bk0allfinal”
2007/1/7
page xiii

i

i

i

i

i

i

i

i

List of Figures xiii

B.5 Poisson distributions with respect to the Poisson counter variable k for

parameter values Λ = 0.2, 1.0, 2.0 and 5.0. These represent discrete

distributions, but discrete values are connected by dashed, dotted and

dash-dotted lines only to help visualize the distribution form for each

parameter value. B20
B.6 Binomial distributions with respect to the binomial frequency f1 with

N = 10 for values of the probability parameter, π1 = 0.25, 0.5 and 0.75.

These represent discrete distributions, but discrete values are connected

by dashed, dotted and dash-dotted lines only to help visualize the dis-

tribution form for each parameter value. B50

“bk0allfinal”
2007/1/7
page xiv

i

i

i

i

i

i

i

i

xiv List of Figures

“bk0allfinal”
2007/1/7
page xv

i

i

i

i

i

i

i

i

List of Tables

1.1 Some expected moments (powers) of absolute value of the Wiener
increments. 7

1.2 Some expected moments (powers) of Poisson increments and their
deviations. 18

2.1 Some Itô stochastic diffusion differentials with an accuracy with
error o(dt) as dt→ 0+. 55

3.1 Some stochastic jump integrals of powers with an accuracy with
error o(dt) as dt→ 0+. 70

3.2 Some Itô stochastic jump differentials with an accuracy with error
o(dt) as dt → 0+. 76

4.1 Table of Example Transforms Listing Original Coefficients in terms
of Target and Transform Coefficients: 122

7.1 Some Simple jump amplitude models and inverses. 205

A.1 Some final conditions for deterministic optimal control. A8

B.1 Some expected moments of bivariate normal distribution. B48

xv

“bk0allfinal”
2007/1/7
page xvi

i

i

i

i

i

i

i

i

xvi List of Tables

“bk0allfinal”
2007/1/7
page xvii

i

i

i

i

i

i

i

i

Preface

Everything should be as simple as it is,
but not simpler.
—Albert Einstein (1879-1955).

A mathematical theory is not to be considered complete
until you have made it so clear that you can explain it
to the first man whom you meet on the street.
—David Hilbert (1862-1943).

Always take a pragmatic view in applied mathematics:
the proof of the pudding is in the eating.
—N. H. Bingham and Rüdiger Kiesel (2004) [33].

Overview of This Book

The aim of this book is to be a self-contained, practical, entry level text on stochastic
processes and control for jump-diffusions in continuous time, technically Markov
processes in continuous time.

The book is intended for graduate students as well as a research monograph for
researchers in applied mathematics, computational science and engineering. Also,
the book may be useful for practicianers of financial engineering who need fast and
efficient answers to stochastic financial problems. Hence, the exposition is based
upon integrated basic principles of applied mathematics, applied probability and
computational science. The target audience includes mathematical modelers and
students in many areas of science and engineering seeking to construct models for
scientific applications subject to uncertain environments. The prime interest is in
modeling and problem solving. The utility of the exposition, based upon systematic
derivations along with essential proofs in the spirit of classical applied mathematics,
is more important to setting up a stochastic model of an application than abstract
theory. However, a lengthy last chapter is intended to bridge the gap between the
applied world and the abstract world in order to enable applied students and readers
to understand the more abstract literature.

xvii

“bk0allfinal”
2007/1/7
page xviii

i

i

i

i

i

i

i

i

xviii Preface

More rigorous theorem formulation and proving is not of immediate impor-
tance compared to modeling and solving an applied problem, although many proofs
are given here. Many research problems deal with new applications and often these
new applications require models beyond those in the existing literature. So, it is
important to have a reasonably understandable derivation for a nearby model that
can be perturbed to obtain a proper new model. The level of rigor here is embodied
in correct and systematic derivations, with many proofs and results not available
elsewhere, under reasonable conditions, not necessarily the tightest possible condi-
tions. In fact, much of this book and the theory of Markov processes in continuous
time is based upon modifying the formulations for continuous function in calculus to
extend them to the discontinuous and non-smooth functions of stochastic calculus.

Origin of the Book

The book is based upon the author’s courses Math 574 Applied Optimal Control,
Math 590 Special Topics: Applied Stochastic Control, MCS 507 Mathematical, Sta-
tistical and Scientific Software for Industry and partly on MCS 571 Numerical
Methods for Partial Differential Equations. In addition, the results from research
papers on computational stochastic dynamic programming are included. Courses
in asymptotic analysis and numerical analysis play a role as well. However, as
with lectures, every attempt is made to keep the book self-contained through an
integrated approach, without depending heavily on prerequisites, especially with a
diverse readership and interdisciplinary topics.

This book integrates many of the research and exposition advances made in
computational stochastic dynamic programming and stochastic modeling. They
exhibit the broader impact of the applications and the computationally oriented
approach. The stochastic applications are wide-ranging, including the optimal eco-
nomics of biological populations in uncertain and disastrous environments, bio-
medical applications in cancer modeling and optimal treatment, and financial engi-
neering with applications in option pricing and optimal portfolios.

How This Book is Organized and How to Use It

• A prependix rather than an appendix, Chapter B of preliminaries is intended
as a reference for topics in probabilIty, matrix algebra, analysis and other
topics that are too numerous to expect with a wide-ranging interdisciplinary
book such as this one. Over-specification of prerequisites tend to filter out
too many students who could benefit from this material. This prependix
is intended to bring all readers up to the same level by self-study, where
necessary, of the basic concepts and notations of probability and analysis
needed for jump-diffusion processes and their deviations from continuity. It
is not meant to be taught or read in sequence, but to include relevant results
when needed and to make the presentation as self-contained as possible.

• Simple jump-diffusion Chapters 1, 2, 3 and 4 cover the basics for simple jump-
diffusions, i.e., stochastic diffusion (Wiener of Brownian motion) and simple

“bk0allfinal”
2007/1/7
page xix

i

i

i

i

i

i

i

i

Preface xix

Poisson driven processes, including stochastic integration and stochastic cal-
culus for transformations of stochastic differential equations (SDEs). The
speed and depth of coverage for the student or reader will depend on their
level of knowledge, particularly with respect to prior knowledge of probability
and diffusion processes which are more well known. The presentation is more
elementary than that of later chapters to reduce the likelihood that readers
will get lost at the basic level.

• Advanced and special topics are found in Chapters 5 to 12 and can be selected
according to the instructor’s or reader’s interests. There are more chapters
than can be covered in any one course.

◦ Chapter 5 covers more advanced and general topics for SDEs. These
include jumps driven by compound Poisson or Poisson random mea-
sure processes that allow randomly distributed jump-amplitudes, state-
dependent jump-diffusions and multidimensional jump-diffusions.

◦ Chapters A and 6 can form a control theory component of a course with
either deterministic or stochastic optimal control chapters or both. Chap-
ter A gives a summary of deterministic optimal control results to provide
a background for comparison to the stochastic optimal control results,
but could be skipped if a deterministic control course is a prerequisite or
if only stochastic optimal control are of interest.

In Chapter 6 stochastic optimal control problems are introduced and the
equation of stochastic dynamic programming is systematically derived
from the basic principles of applied mathematics.

◦ Chapter 7 concerns partial differential equation (PDE) methods for solv-
ing stochastic problems using the forward and backward Kolmogorov
equations, Dynkin’s integral formulas (also Feynmann-Kac’s as Dynkin’s
with an integrating factor) that help provide PDE solutions without di-
rectly solving the PDE, boundary conditions and stopping time problems.
Knowledge of partial derivatives from advanced courses in calculus is all
that should be needed, a course in PDEs will be of little help, since a
course is not essential and only these integral formulas are used in this
chapter. PDE methods are an applied alternate to the abstract method
of using martingales to solve stochastic problems, such as those in finance
(see Chapter 12 for martingale and other abstract approaches.)

◦ Chapters 8 and 9 form a computational component of a course with ei-
ther computational stochastic dynamic programming or computational
simulations or both. Chapter 8 has treatments using either modified
finite difference methods for optimal control problem or the Markov
chain approximation methods. Computational methods are important
for stochastic optimal control problems because there are so few exact
analytical solutions.

Chapter 9 contains treatments for direct simulations of SDEs and general
simulations by the Monte Carlo method.

“bk0allfinal”
2007/1/7
page xx

i

i

i

i

i

i

i

i

xx Preface

◦ Chapter 10 on financial applications and Chapter 11 on biomedical ap-
plications provide substantial examples of application of the theory and
techniques treated in this book. Chapter 10 explains Merton’s math-
ematical justification and generalization of the classical Black-Scholes
option pricing problem in sufficient detail for those familiar with the
diffusion processes properties in Chapters 1-4 and is a good motivat-
ing application for Chapter 5. Also treated are option pricing models
for jump-diffusions, optimal portfolio and consumption models, and an
important events model that modifies the jump-diffusion model with a
quasi-deterministic jump model for scheduled announcements and ran-
dom responses.

Chapter 11 includes applications to stochastic optimal control or bio-
economic models, diffusion approximation models of tumor growth and
a deterministic optimal control model of PDE-driven drug delivery model
for the brain.

◦ Chapter 12 is an applied description of abstract probability methods, in-
cluding probability measure, probability space, martingales and change
in probability measure using either Radyn-Nikodým and Girsanov theo-
rems. The last section is a generalization of jump-diffusions called Lévy
processes that permit the jump-rate to be infinite. This chapter is meant
to be a bridge between the applied view of stochastic processes and the
abstract view to ease the transition to reading some of the more abstract
literature on stochastic processes. However, depending on the instructor
or reader, parts of this chapter can be woven into the coverage of the
earlier chapters. For instance, a colleague said that Girsanov’s measure
change transformation was needed in his financial applications course
and there are a pure diffusion version and a jump-diffusion version of the
Girsanov theorem in this chapter.

Distinct Features of This Book

The book is based upon a number of distinct features:

• Both analytical and computational methods are emphasized based on the util-
ity, with respect to the computational complexity, of the problems. Exercises
and examples in the elementary chapters include both computational and an-
alytic ones. Students need to have good analytic and computational skills to
do well, since diverse skills are needed for many jobs.

• The treatment of jump and diffusion processes is balanced as well, rather than
a stronger or nearly exclusive emphasis on diffusion processes. This is a unique
feature of this book. This treatment of jump-diffusions is important for train-
ing graduate students to do research on stochastic processes, since the analysis
of diffusion processes is so well-developed, there are many opportunities for
open problems on jump-diffusions.

“bk0allfinal”
2007/1/7
page xxi

i

i

i

i

i

i

i

i

Preface xxi

• It clearly shows the strong role that discontinuous as well as non-smooth
properties of stochastic processes play compared to the random properties
by emphasizing a concrete jump calculus, without much reliance on measure-
theoretic constructs.

• Basic principles of probability theory in the spirit of classical applied math-
ematics are used to set up the practical foundations through clear and sys-
tematic derivations, making the book accessible as a research monograph to
many who work with applications.

• It shows how analytical-canonical control problem models, such as the linear-
quadratic, jump-diffusion (LQJD) problem and financial risk-adverse power
utilities, can be used to reduce computational dimensional complexity of ap-
proximate solutions along with other computational techniques.

• Insightful and useful material are used so that the book can be readily used
to model realistic applications and even modify the derivations when new
applications do not quite fit the old stochastic model.

• Clear explanations for the entry level student are used. In particular, clear
and consistent notation is used, such that the notation is clearly identified
with the quantity it symbolizes, rather than arbitrarily selected. Sometimes
this has meant some compromise on some standard notation, for instance,
P is used for the Poisson process to be consistent with the W used for the
Wiener process. This means that P could not be used for probability, so Prob
is used in place of P (or Pr) and is clearer to a diverse audience. Similarly,
probability distributions are denoted by by Φ and densities by φ since P is
used for Poisson and F is used for transformation functions throughout the
book.

Target Audience

Colleagues and students have requested a more accessible, practical treatment of
these topics. They are interested in learning about stochastic calculus and optimal
stochastic control in continuous time, but reluctant to invest time to learn it from
more advanced treatments relying heavily on abstract concepts. Hence, this book
should be of interest to an interdisciplinary audience of applied mathematicians, ap-
plied probabilists, engineers (including control engineers dealing with deterministic
problems and financial engineers needing fast as well as useful methods for model-
ing rapidly changing market developments), statisticians and other scientists. After
this primary audience, a secondary audience would be mathematicians, engineers
and scientists, using this book as a research monograph, seeking more intuition to
more fully understand stochastic processes and how the more advanced analytical
approaches fit in with important applications like financial market modeling.

“bk0allfinal”
2007/1/7
page xxii

i

i

i

i

i

i

i

i

xxii Preface

Prerequisites

For optimal use of this book, it would be helpful to have had prior introduction
to applied probability theory including continuous random variables, mathematical
analysis at least at the level of advanced calculus. Ordinary differential equations,
partial differential equations and basic computational methods would be helpful but
the book does not rely on prior knowledge of these topics by using basic calculus
style motivations. In other words, the more or less usual preparation for students
of applied mathematics, science and engineering should be sufficient. However, the
author has strived to make this book as self-contained as practical, not strongly
relying on prior knowledge and explaining or reviewing the prerequisite knowledge
at the point it is needed to justify a step in the systematic derivation of some
mathematical result.

MATLAB Computation

As part of the theme of balancing computation and analysis, MATLABTM, the ma-
trix laboratory computation system is used for almost all computational examples
and figure illustrations. Simple MATLAB codes are described in class and the
code for all text figures are given in Appendix C. MATLAB greatly facilitates the
development of code and is ideally suited to stochastic processes and control prob-
lems. Also, MATLAB now comes with the MapleTM kernel built into the MATLAB
student package for including elementary symbolic computations with numeric com-
putations. Beyond the initial elementary assignments, the students are required to
submit their assignments with professionally done illustrations for which they can
find examples in Appendix C. Many students surveyed at the end of the class ac-
tually list MATLAB with the other topics that they were happy to learn. MATAB
is also helpful later for producing professional research papers and theses.

Acknowledgments

The author is grateful to a number of co-workers and students who helped as review-
ers or contributed to this applied stochastic book through research contributions, as
well as other authors and agencies giving grant support for computational stochastic
dynamic programming:

My research assistants and graduate students, Siddhartha Pratim Chakrabarty,
Zongwu Zhu, Guoqing Yan and Jinchun Ye have helped review drafts of this
book with the the keen eyes of applied mathematics and computer science
graduate students to make sure that it would be useful and understandable to
other graduate students. My wife Ethel did a major job at the final proof-read.

Over the years many have helped develop pieces of the underlying applied theory or
model applications: Abdul Majid Wazwaz, Dennis Ryan, Kumarss Naimipour,
Siu-Leung Chung, Huihuang (Howard) Xu, Dennis J. Jarvis, Christopher J.
Pratico, Michael S. Vetter, Raghib abu-Saris, and Daniel L. Kern.

“bk0allfinal”
2007/1/7
page xxiii

i

i

i

i

i

i

i

i

Preface xxiii

This work has been influenced, consciously and subconsciously, from books and
related works by many authors such as

Applebaum [12], Arnold [13], Bingham and Kiesel [33], Blis [40], Çinlar [55],
Clark [56], Cont and Tankov [59], Feller [83, 84], Fleming and Rishel [85],
Gihman and Skorohod [94, 95], Goel and Richter-Dyn [98], Glasserman [96],
Hammersley and Handscomb [104], D. Higham [139, 140], Hull [147], Itô [149],
Jäckel [150] Jazwinski [154], Karlin and Taylor [161, 162, 265] Kirk [163],
Kloeden and Platen [165], Kushner [173, 175], Kushner and Dupuis [179],
Ludwig [187], Merton [203], Mikosch [209], Øksendal [222], Øksendal and
Sulem, [223], Parzen [224], Protter [232], Runggaldier [239], Schuss [244], Sny-
der and Miller [252], Tuckwell [270], Steele [256], Wonham [285], and others.
Although this influence may not be directly apparent here, some have shown
how to make the presentation much simpler, while others have supplied the
motivation to simplify the presentation, making it more accessible to a more
general audience and other applications.

This material is based upon work supported by the National Science Foundation
under Grants No. 02-07081, 99-73231, 96-26692, 93-01107, 91-02343 and 88-
0699 in the Computational Mathematics Program entitled: Advanced Compu-
tational Stochastic Dynamic Programming for Continuous Time Problems at
the University of Illinois at Chicago. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation. In
addition, NSF supplied a Research Experience for Undergraduates support
for Mike Vetter to develop a portable object-oriented version of our multi-
dimensional computational control visualization system.

Argonne National Laboratory Advanced Computing Research Facility (ANL/ACRF)
supplied parallel processing training through summer and sabbatical support
that enabled the development of large scale computational stochastic appli-
cations from 1985-1988.

Many of our national supercomputing centers have provided supercomputing time
on the the currently most powerful supercomputers for continuing research
for solving large scale stochastic control problems in Advanced Computational
Stochastic Dynamic Programming and also for computational science educa-
tion. In addition to Argonne National Laboratory, these were National Cen-
ter for Supercomputing Applications (NCSA), Los Alamos National Labora-
tory’s Advanced Computing Laboratory (LANL/ACL), Cornell Theory Cen-
ter (CTC/CNSF), Pittsburgh Supercomputing Center (PSC) and the San
Diego Supercomputing Center (SDSC/NPACI) during 1987-2003.

At the University of Illinois Chicago, the Laboratory of Advanced Computing
(UIC/LAC) and associate centers have supplied us with cluster computing and
the Electronic Visualization Laboratory (UIC/EVL) supplied a most capable
master’s graduate student, Chris Pratico, and facilities for the developing a

“bk0allfinal”
2007/1/7
page xxiv

i

i

i

i

i

i

i

i

xxiv Preface

multi-dimensional computational control visualization system using a real-
time socket feed from our Los Alamos National Laboratory account.

“bk0allfinal”
2007/1/7
page 1

i

i

i

i

i

i

i

i

Chapter 1

Stochastic Jump and
Diffusion Processes:
Introduction

Life is good for only two things, discovering mathematics
and teaching mathematics.
—Siméon Denis Poisson (1781-1840).

I do not regret my attempts, for it is only by trying
problems that exceed his powers that the mathematician
can ever learn to use these powers to their full extent.
—Norbert Wiener (1894-1964) in Ex-Prodigy.

The generation of random numbers is too important to be left
to chance.
—Robert Coveyou at http://www.xs4all.nl/∼jcdverha/
scijokes/1 5.html#subindex.

1.1 Poisson and Wiener Processes Basics

This chapter introduces Wiener processes W (t) and simple Poisson jump processes
P (t) in differential and integral forms. The Wiener and Poisson processes form the
tools of a toolbox to create jump-diffusion process models. Wiener processes also
called diffusion or loosely Brownian motion.

The processes W (t) and P (t) are continuous-time stochastic processes
which basically means they are continuous time-dependent random variables1. They
are also a special form of stochastic processes called a Markov process that is without
memory of all but the prior state and can be simply defined [55], repeating the
essential definition given in the previous chapter, as

1In this book, the words stochastic and random have the same meaning, involving probability
or chance.

1

“bk0allfinal”
2007/1/7
page 2

i

i

i

i

i

i

i

i

2 Chapter 1. Stochastic Jump and Diffusion Processes

Definition 1.1. The stochastic process X(t) is a Markov process provided the
conditional probability satisfies

Prob[X(t+ ∆t) = x | X(s), 0 ≤ s ≤ t] = Prob[X(t+ ∆t) = x|X(t)] ,

for any t ≥ 0, any ∆t ≥ 0 and x is in the state space, Dx.

The stochastic processes serve as useful concepts for modeling random changes
in time with stochastic differential equations, similar to the use of ordinary differ-
ential equations to model deterministic (non-stochastic) problems. These standard
processes have basic infinitesimal moments

E[dW (t)] = 0 and Var[dW (t)] = dt (1.1)

for the differential Wiener process with initial condition W (0+) = 0 with
probability one (w.p.o.), while

5E[dP (t)] = λdt = Var[dP (t)] (1.2)

for the differential of the simple Poisson counting process with rate λ > 0
and initial condition P (0+) = 0 with probability one. The Wiener process is
a mathematical idealization of Brownian motion, but often the term Brownian
motion is used instead of the term Wiener process.

Remark 1.2. If the W and P processes started at a different initial time other than
zero, say at t = t0, then the initial conditions would be changed to W (t+0) = 0+ and
P (t+0) = 0+, respectively. There is not much special about the zero initial conditions,
just convenience and standardization.

The simplest and very useful view of these differential stochastic processes is
to consider them defined as increments, i.e.,

dW (t) ≡W (t+ dt) −W (t) (1.3)

and
dP (t) ≡ P (t+ dt) − P (t) , (1.4)

for infinitesimal increments in time dt. The property that

Var[dW (t)] = E[(dW (t))2] = dt (1.5)

is motivation for the non-differentiability of the W (t) process since the limit of

√
Var[dW (t)]/dt =

√
E[(dW (t))2]/dt =

1√
dt

→ +∞ (1.6)

as dt → 0+, i.e., the variance of the ratio of differentials Var[dW (t)/dt] → +∞ as
dt→ 0+. Hence, the differentiability of W (t) is inconsistent with the failure of the
variance of the quotient dW (t)/dt in the limit dt → 0+. Equation (1.6) says that
the root mean square (RMS) derivative becomes unbounded as dt→ 0+. This is not
a rigorous proof that W (t) is a non-smooth process, although W (t) is a continuous
process from (1.1). (For a proof that W (t) is non-differentiable see the theorem
below.)

“bk0allfinal”
2007/1/7
page 3

i

i

i

i

i

i

i

i

1.2. Wiener Process Basic Properties 3

1.2 Wiener Process Basic Properties

The assumptions for the Wiener process, including that of being normally dis-
tributed, are the properties:

Properties 1.3. The standard Wiener process W (t)

• W (t) is a continuous process, since

W (t+) = W (t) = W (t−), t > 0 .

• W (t) has independent increments, since the Wiener increments

∆W (ti) = W (ti + ∆ti) −W (ti)

are mutually independent for all ti on non-overlapping time intervals. The
non-overlapping time intervals are defined such that ti ≥ 0, ti+1 = ti+∆ti
and any ∆ti > 0 for 0 = 1 : n, so that

ti < ti+1 for i = 0:n.

Noting that W (ti) = W (0) +
∑i−1

j=0 ∆W (tj), so depends on all preceding in-
crements, recalling that W (0) = 0 with probability one at t0 = 0 i.e.,

Prob[∆W (ti)≤wi,∆W (tj)≤wj] = Prob[∆W (ti)≤wi] · Prob[∆W (tj)≤wj] ,

if j 6= i, such that there is no overlap in the time intervals [ti, ti+1) and
[tj , tj+1). Note that ∆W (ti), as a forward increment is independent (see Def-
inition B.35 for independent random variables) of W (ti) and that ∆W (ti) ≡
W (ti + ∆ti) −W (ti) is associated with the time interval [tj , tj + ∆tj), open
on the right to be compatible with right continuity of the Poisson process.

• W (t) is a stationary process, since the distribution of the increment ∆W (t) =
W (t+ ∆t) −W (t), with ∆t > 0, is independent of t.

• W (t) is a Markov process, since

Prob[W (t+ ∆t) = w | W (s), s ≤ t] = Prob[W (t+ ∆t) = w|W (t)] ,

for any t ≥ 0, any ∆t ≥ 0. (It is helpful to note that W (t) is synonymous
with the increment (W (t) −W (0)).)

• W (t) is normally distributed with mean µ = 0 and variance σ2 = t, t > 0,
i.e., the density of W (t) is

φW (t)(w) = φn(w; 0, t) =
1√
2πt

exp

(
−w

2

2t

)
, (1.7)

when −∞ < w < +∞ and t > 0. (The actual distribution function for W (t),
ΦW (t)(w), has been given already in (B.22).)

“bk0allfinal”
2007/1/7
page 4

i

i

i

i

i

i

i

i

4 Chapter 1. Stochastic Jump and Diffusion Processes

• W (0) = 0 with probability one, since φW (0+)(w) = δ(w) from (1.7), i.e.,
in the limit as t→ 0+ (see the Exercise 22 on p. B75 in Section B.16).

Thus, the increments ∆[W (t + i∆t)] ≡ W (t + (i + 1)∆t) −W (t + i∆t) for
i = 0, 1, . . . are stationary, independent and identically distributed (IID) as a normal
distribution given time step ∆t and t ≥ 0, i.e.,

φ∆W (t)(w) = φn(w; 0,∆t) =
1√

2π∆t
exp

(
− w2

2∆t

)
, (1.8)

when −∞ < w < +∞ and ∆t > 0. So the basic moments of the Wiener increments
are

E[∆W (t)] = 0, Var[∆W (t)] = ∆t. (1.9)

Similarly, by the stationarity property of the dW (t) = W (t + dt) − W (t)
differential process when dt > 0 has the same probability distribution as the process
W (dt) when t > 0 and that the distribution from (1.7) is normal with mean µ = 0
and variance σ2 = dt,

φdW (t)(w) = φn(w; 0, dt) =
1√
2πdt

exp

(
− w2

2dt

)
, (1.10)

when −∞ < w < +∞ and dt > 0.

Theorem 1.4. Covariance of W(t): If W (t) is a Wiener process, then

Cov[W (t),W (s)] = min[t, s] . (1.11)

Proof. This theorem is a very elementary application of the independent increment
and mean zero properties of Wiener or diffusion processes, also demonstrating how
application of independent increments rely on the zero mean property. The zero
mean property implies that E[W (t)] = 0 = E[W (s)]. First consider the case s < t
and write W (t) = W (s) + (W (t) − W (s)), i.e., as independent increments (see
Definition B.35 for expectations of products independent random variables) and
noting that the first increment is W (s) −W (0) = W (s) on [0, s) since W (0) = 0
and the second increment is on [s, t), then

Cov[W (t),W (s)] = E[W (t)W (s)] = E[W 2(s) +W (s)(W (t) −W (s))]

= E[W 2(s)] + E[W (s)(W (t) −W (s))]

= Var[W (s)] + E[W (s)]E[(W (t) −W (s))]

= s+ 0 · 0 = s ,

using the linearity of the expectation operator (B.9), the definition of the vari-
ance (B.10) together with the separability of expectations (B.80) for independent

“bk0allfinal”
2007/1/7
page 5

i

i

i

i

i

i

i

i

1.2. Wiener Process Basic Properties 5

increments W (s) and (W (t) −W (s)), and finally that W (s) denotes the indepen-
dent increment W (s) −W (0) with variance s (B.22, 1.7). In the case t < s, then
Cov[W (t),W (s)] = t by symmetry using the splittingW (s) = W (t)+(W (s)−W (t)),
and combining both cases produces the conclusion Cov[W (t),W (s)] = min[s, t],
where the function min[s, t] denotes the minimum of s and t.

When computing diffusion sample paths, i.e., the trajectory of W (t) in time
t, it is necessary to break up the time domain, say [0, T] into small increments
∆T = T/N where N is the number of random samples that will be used, so that
each corresponding Wiener increment ∆W (ti) will be independent. Since W (0) = 0
with probability one, let ti = i · ∆T for i = 0 : N , then

W (ti+1) =
i∑

j=0

∆W (tj) .

Using MATLABTM , for instance, an integer state , say 0, is selected with the
MATLAB command

randn(’state’,0);

where ’state’ is a literal script argument specified that this call is to set the
random state of the function randn. A row N -vector set of diffusion increments can
be computed wholesale by the formula,

DWv = sqrt(DT)*randn(1,N);

where randn(N,1) is the N × 1 standard zero-mean, unit-variance normal random
generator of MATLAB. The factor sqrt(DT) is the Wiener scaling for the square
root of the variance (1.9). Then the simulated trajectory can be computed by

tv = 0:DT:T; % time vector tv(1:N+1).

for i = 1:N

Wv(i+1) = sum((DWv(1:i)));

end

assuming Wv(1) = 0.0 in the MATLAB shifted subscript base at one, rather than
at zero. Finally, the diffusion sample path can be plotted with

plot(tv,Wv,’k-’);

and results for four sample paths are displayed in Fig. 1.1(a) using N = 1000,
T = 1.0 and k = 1 : 4 randn states. The MATLAB program used to generate this
part of the figure is given in Program C.7 given in Appendix C.

In Fig. 1.1(b), the variation of the fine structure of the sample path is dis-
played, with time step size using subsets of the same random sample state. The
sample paths in this case differ markedly since the sample subsets are quite different
in quantity, being N = 1000, 100 and 10 random sample points for ∆t = 10−3, 10−2

and 10−1, respectively, so the different cumulative set of random points leads to
quite different random trajectories.

“bk0allfinal”
2007/1/7
page 6

i

i

i

i

i

i

i

i

6 Chapter 1. Stochastic Jump and Diffusion Processes

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Diffusion Simulated Sample Paths (4)

W
(t

),
 W

ie
ne

r
S

ta
te

t, Time

State 1
State 2
State 3
State 4

(a) Diffusion sample paths using four ran-
dom states.

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5
Diffusion Simulations: ∆t Effects

W
(t

),
 W

ie
ne

r
S

ta
te

t, Time

∆t = 10−3, N = 1000

∆t = 10−2, N = 100

∆t = 10−1, N = 10

(b) Diffusion sample paths using three dif-
ferent time steps.

Figure 1.1. In Figure 1.1(a), paths were simulated using MATLAB [210]
with N = 1000 sample points, four randn states and maximum time T = 1.0.
In Figure 1.1(b), paths were simulated using subsets of the same random state of
randn used for the finer grid 0.001.

1.3 More Wiener Process Moments

The expectations for the integer powers of the Wiener increment follow from the
mean using the Wiener increment normal density (1.8). Only the even integer pow-
ers, m = 2k, need some calculation since the means will be zero for the odd integer
powers due to the even-ness of the density on (−∞,+∞), i.e., E[(∆W (t))2k+1] = 0
when k = 0, 1, 2, . . . ,

E [(∆W (t))m] = E
[
(∆W (t))2k

]
=

∫ +∞

−∞
φn(w; 0,∆t)w2kdw

=
2√

2π∆t

∫ +∞

0

exp

(
− w2

2∆t

)
w2kdw

=
(2∆t)k

√
π

∫ +∞

0

exp (−u)uk−1/2du

=
(2∆t)kΓ(k + 1/2)

Γ(1/2)
, (1.12)

for k = 0, 1, 2, . . . , where Γ is the gamma function [2] defined by

Γ(x) ≡
∫ ∞

0

e−uux−1du , x > 0 , (1.13)

with initial condition Γ(1) ≡ 1 and special value Γ(1/2) =
√
π. The gamma function

is like a generalized factorial function, due to the recursive form Γ(x + 1) = xΓ(x)
so that Γ(x+ 1) = x!. The final formula (1.12) satisfies the recursion

g2k+2(∆t) ≡ E[(∆W)2k+2(t)] = (k + 1/2)(2∆t)g2k(∆t).

“bk0allfinal”
2007/1/7
page 7

i

i

i

i

i

i

i

i

1.3. More Wiener Process Moments 7

Further, note that the final formula (1.12) holds for any integer m when the ∆W (t)
is replaced by the absolute value, i.e.,

E[|∆W (t)|m] = (2∆t)m/2Γ((m+ 1)/2)/Γ(1/2). (1.14)

The final formula (1.12) satisfies the recursion

gm+2(∆t) ≡ E[(∆W)m+2(t)] = (m+ 1)∆tgm(∆t) ,

for m = 0 : ∞, starting from g0(∆t) = 1 or g1(∆t) =
√

2∆t/π. The results for the
first few powers are summarized in Table 1.1:

Table 1.1. Some expected moments (powers) of absolute value of the
Wiener increments.

m E[|∆W (t)|m]

0 1

1
√

2∆t/π

2 ∆t

3 2∆t
√

2∆t/π

4 3(∆t)2

5 8(∆t)2
√

2∆t/π

6 15(∆t)3

...
...

2k (2k − 1)!!(∆t)k

2k+1 k!(2∆t)k
√

2∆t/π

In Table 1.1, the function (2k − 1)!! is defined below.

Definition 1.5. Double Factorial Function:

(2k − 1)!! = (2k − 1) · (2k − 3) · · · 1 , (1.15)

denotes the double factorial function, given here for odd arguments. For exam-
ple, 1!! = 1, 3!! = 3 and 5!! = 15.

For even arguments the double factorial function is proportional to the stan-
dard factorial function,

(2k)!! = 2kk! .

Example 1.6. These results can be applied to other expected moments, for example,

Var[(∆W)2(t)] = E[((∆W)2(t) − ∆t)2]

= E[(∆W)4(t)] − 2∆tE[(∆W)2(t)] + (∆t)2E[1]

= 2(∆t)2 , (1.16)

“bk0allfinal”
2007/1/7
page 8

i

i

i

i

i

i

i

i

8 Chapter 1. Stochastic Jump and Diffusion Processes

upon expanding the square and using the linear property of the expectation.

The moment calculation in (1.12) can be implemented directly by symbolic
computation, for example by Maple.

Example 1.7. Wiener Moments by Maple:

Maple Functions for Wiener Moments and Wiener Deviation Mo-
ments:

> restart : interface(showassumed = 0) : assume(s2 > 0) :

> fnormal := (x,m, s2)− > exp(−(x − m) ∗ (x − m)/(2 ∗ s2))/sqrt(2 ∗ Pi ∗ s2);

fnormal := (x,m, s2) → e

„
1/2 (x−m)2

s2

«

√
2πs2

> momentdw := (n,m, s2)− > simplify(int(xn ∗ fnormal(x,m, s2),
> x = −infinity..infinity));

momentdw := (n,m, s2)) → simplify

(∫ ∞

−∞
xnfnormal(x,m, s2)dx

)

> momentdevdw := (n,m, s2)− > simplify(int((x − m)nfnormal(x,m, s2),
> x = −infinity..infinity));

momentdevdw := (n,m, s2) → simplify

(∫ ∞

−∞
(x−m)nfnormal(x,m, s2)dx

)

Sample illustrations for moment functions:

> assume(dt > 0) : assume(sigma > 0) :

> mom6dw := collect(momentdw(6,mu ∗ dt, sigma2 ∗ dt), dt);

mom6dw :=µ6dt6 + 15µ4σ2dt5 + 45µ2σ4 + 15σ6dt3

> mom6devdw := momentdevdw(6,mu ∗ dt, sigma2 ∗ dt);

mom6dw :=15dt3

> mom5absdevdw := momentabsdevdw(5,mu ∗ dt, sigma2 ∗ dt);

mom6dw :=
8dt(5/2)

√
2√

π

Remarks 1.8.

“bk0allfinal”
2007/1/7
page 9

i

i

i

i

i

i

i

i

1.4. Wiener Process Non-Differentiability 9

• The results can also be applied to expected moments of Wiener differential
process, dW (t) = W (t + dt) −W (t), by replacing single appearances ∆t’s by
dt, i.e., ∆t → dt is assumed, and neglecting terms of O2(∆t) as ∆t → 0+

since they are treated as negligible compared to terms of ord(∆t) as ∆t→ 0+.

• Sometimes to keep the steps in a derivation simple, the infinitesimal dt will be
treated as being an infinitesimally small object such that as dt→ 0+, (dt)2 ≪ 1
or (dt)2 < ord(dt) and similarly for higher powers of dt. However, when there
are no order ∆t terms in the answer, then, as in (1.16), the proper leading
order (by definition nonzero) would be of interest. Expected moments of W (t)
also follow by replacing ∆t by t, except the higher powers of t would not be
negligible compared to the first power, unless t is small.

1.4 Wiener Process Non-Differentiability

Theorem 1.9. Non-differentiability of W(t):
For any fixed x > 0 and t > 0,

Prob

[
lim

∆t→0+

[∣∣∣∣
∆W (t)

∆t

∣∣∣∣ > x

]]
= 1. (1.17)

Proof. Let x > 0 be fixed, t > 0, 0 < ∆t ≪ 1, then interchanging limit with
probability operations since time is deterministic and using the normal distribution
of the increment ∆W (t) = W (t+ ∆t) −W (t) in (1.8),

Prob

[
lim

∆t→0+

[∣∣∣∣
∆W (t)

∆t

∣∣∣∣ > x

]]
= lim

∆t→0+

[
Prob

[∣∣∣∣
∆W (t)

∆t

∣∣∣∣ > x

]]

= lim
∆t→0+

[Prob [|∆W (t)| > x∆t]]

= lim
∆t→0+

[
2√

2π∆t

∫ ∞

x∆t

exp

(
− w2

2∆t

)
dw

]

= lim
∆t→0+

[
2√
2π

∫ ∞

x
√

∆t

exp

(
−v

2

2

)
dv

]

=
2√
2π

∫ ∞

0

exp

(
−v

2

2

)
dv = 1 ,

for any x > 0 and t > 0 fixed. Note that the error is

2√
2π

∫ x
√

∆t

0

exp

(
−v

2

2

)
dv ≤ 2√

2π

∫ x
√

∆t

0

1 dv =
2√
2π
x
√

∆t≪ 1 ,

since exp(−v2/2) ≤ 1. Further note that we can take x as large as we please, as long
as it is fixed, so that ∆W (t)/∆t must be unbounded as ∆t→ 0+ with probability
one for each t. Hence, the Wiener process W (t) is non-differentiable or non-smooth

“bk0allfinal”
2007/1/7
page 10

i

i

i

i

i

i

i

i

10 Chapter 1. Stochastic Jump and Diffusion Processes

with probability on for each t. (See also Mikosch [209, Sect. A3, p. 188], for a similar
proof using less direct methods; see Steele [256, Sect. 5.2, p. 63] for more precise
conditions.)

1.5 Wiener Process Expectations Conditioned on
Past

Example 1.10. Illustration of Independent Increments and Markov Proper-
ities for Wiener Process:

• E[W (t)|W (r), 0 ≤ r ≤ s] = W (min[s, t]).
Note that the conditioning set {W (r), 0 ≤ r ≤ s} denotes the past when
t > s ≥ 0, viewing W (t) as the sum of two independent increments (W (s) −
W (0)) + (W (t) − W (s)), noting that W (0) = 0. However, when 0 ≤ t ≤
s, then the increment W (t) ≡ (W (t) −W (0)) is a constant relative to the
conditioning set, so the result depends on the relation between t and s using
the rule E[f(X)|X] = f(X) given in Chapter B on Page B28. Hence,

E[W (t)|W (r), 0 ≤ r ≤ s] =

8
<
:

W (t), 0 ≤ t ≤ s
E[W (s) + (W (t) − W (s))|W (r), 0 ≤ r ≤ s],

0 ≤ s < t

9
=
;

=

8
<
:

W (t), 0 ≤ t ≤ s
E[W (s)|W (r),0 ≤ r ≤ s] + E[(W (t) − W (s))],

0 ≤ s < t

9
=
;

=

W (t), 0 ≤ t ≤ s
W (s) + 0, 0 ≤ s < t

ff
=

W (t), 0 ≤ t ≤ s
W (s), 0 ≤ s < t

ff

= W (min[s, t]) ,

where the independent increment property was used along with the zero mean
property of the increment, E[∆W (t)] = 0 and the completely conditioned rule
that E[f(X)|X] = f(X). The function min[s, t] denotes the minimum of s
and t. The linear property of the conditional expectation was also used.

When 0 ≤ s < t then the formula,

E[W (t)|W (r), 0 ≤ r ≤ s] = W (s) , (1.18)

signifies that the average information conditioned on the past data, {W (r), r ∈
[0, s]}, is given by the most recent past data W (s), which may imply a signif-
icant reduction in uncertainty for the present data, W (t).

The form of the expectation result (1.18) is the principal characteristic form
for a martingale X(t),

E[X(t)|X(r), 0 ≤ r ≤ s] = X(s) , (1.19)

where X(t) = f(W (t)) for instance. The martingale is an abstract model of a
fair game (see the beginning preliminary chapter of Mikosch [209] for a clear
description of martingales, but in an abstract presentation; martingales will
be described at the end of this book in Chapter 12 with full qualifications).

“bk0allfinal”
2007/1/7
page 11

i

i

i

i

i

i

i

i

1.6. Poisson Process Basic Properties 11

• E[W 2(t)|W (r), 0 ≤ r ≤ s] = W 2(min[s, t]) + (t− s)H(t− s),
where H(X) is the Heaviside step function (B.158). This result is derived
similarly to the prior result for the conditional mean, but much more algebra
is required, although many of the small details of the prior derivation are
omitted.

E[W 2(t)|W (r), 0 ≤ r ≤ s] =

8
<
:

W 2(t), 0 ≤ t ≤ s
E[(W (s) + (W (t) − W (s)))2|W (r), 0 ≤ r ≤ s],

0 ≤ s < t

9
=
;

=

8
<
:

W 2(t), 0 ≤ t ≤ s
W 2(s) + 2W (s)E[(W (t) − W (s))] + E[(W (t) − W (s))2],

0 ≤ s < t

9
=
;

=

W 2(t), 0 ≤ t ≤ s
W 2(s) + 2W (s) · 0 + (t − s), 0 ≤ s < t

ff

=

W 2(t), 0 ≤ t ≤ s
W 2(s) + (t − s), 0 ≤ s < t

ff

= W 2(min[s, t]) + (t − s)H(t − s).

Here, the increment variance Var[∆W (t)] = ∆t has been used.

The general technique for powers Wm(t) when s < t with conditioning on
W (s) is to use the decomposition into independent increments W (t) = W (s)+
(W (t) −W (s)) and then expand the power of m by the binomial expansion
(B.152)

(W (s) + (W (t) −W (s)))m =

m∑

k=0

(
m
k

)
W k(s)(W (t) −W (s))m−k,

and then use independence of the increments and conditioning to calculate for
each term,

E

» „
m
k

«
W k(s)(W (t) − W (s))m−k

˛̨
˛̨ W (r), 0 ≤ r ≤ s

–

=

„
m
k

«
W k(s)E

ˆ
(W (t) − W (s))m−k

˜
,

relying on Table 1.1 for the remaining expectation.

The term normal distribution is more often used in mathematics and statistics,
while the term Gaussian distribution may be used more often in other sciences and
engineering.

1.6 Poisson Process Basic Properties

Since the Poisson process suffers from positive jumps of integer magnitude the
Poisson process is also discontinuous, which makes the differentiability problems of
the Poisson process of secondary importance. For this reason, the Poisson process is
also called a counting process or point process. Thus, the analytical problems
are even more severe than for the Wiener process, since the singularities of the
Poisson process arise at the zeroth order with the value of P (t) jumping, while
those of W (t) arise at the first order derivative. However, the jumps of the Poisson

“bk0allfinal”
2007/1/7
page 12

i

i

i

i

i

i

i

i

12 Chapter 1. Stochastic Jump and Diffusion Processes

process have a modeling benefit over the Wiener process in that the Poisson process
is useful for applications with disasters or crashes and those with bonanzas or rallies.

In summary, Poisson process P (t) is a discontinuous process and satisfies
the following properties:

Properties 1.11. Simple Poisson Process P (t):

• P (t) has unit jumps, since if the value of P (t) jumps at time Tk > 0, then

P (T+
k) = P (T−

k) + 1 ,

where P (T+
k) denotes the limit from the right and P (T−

k) the limit from the
left, so P (t) is discontinuous, increasing and has instantaneous jumps.

• P (t) is right-continuous, since

P (t+) = P (t) ≥ P (t−), t > 0 . (1.20)

• P (t) has independent increments, since the Poisson increments

∆P (ti) ≡ P (ti + ∆ti) − P (ti)

are mutually independent for all ti on non-overlapping time intervals defined
such that ti ≥ 0, ti+1 = ti + ∆ti and any ∆ti > 0 for 0 = 1 : n so that

ti < ti+1 for i = 0 : n ,

noting that P (ti) = P (0) +
∑i−1

j=0 ∆P (tj), depending on all preceding incre-
ments, recalling that P (0) = 0 with probability one at t0 = 0, i.e.,

Prob[∆P (ti) ≤ pi,∆P (tj) ≤ pj] = Prob[∆P (ti) ≤ pi] · Prob[∆P (tj) ≤ pj] ,

if j 6= i, such that there is no overlap in the time intervals (ti, ti+1] and
(tj , tj+1]. Note that ∆P (ti), as a forward increment is independent (see Def-
inition B.35 for expectations of products independent random variables), of
P (ti) and recall that ∆P (ti) ≡ P (ti + ∆ti) − P (ti) is associated with the
time interval [tj , tj + ∆tj), open on the right since the process P (ti) is right
continuous.

• P (t) is a stationary process, since the distribution of the increment ∆P (t) =
P (t+ ∆t) − P (t) is independent of t.

• P (t) is a Markov process, since

Prob[P (t+ ∆t) = k |P (s), s ≤ t] = Prob[P (t+ ∆t) = k |P (t)] ,

for any t ≥ 0, any ∆t > 0. (It is helpful to note that P (t) is synonymous with
the increment (P (t) − P (0)).)

“bk0allfinal”
2007/1/7
page 13

i

i

i

i

i

i

i

i

1.6. Poisson Process Basic Properties 13

• P (t) is Poisson distributed with mean µ = λt and variance σ2 = λt, t > 0,
i.e.,

ΦP (t)(k;λt) = Prob[P (t) = k] ≡ pk(λt) = e−λt (λt)
k

k!
, (1.21)

for integer values k = 0, 1, 2, . . . , with constant λ > 0 and t ≥ 0.

• P (0+) = 0+ with probability one, since from (1.21), pk(0+) = δk,0, i.e., in
the limit as t→ 0+.

See also Çinlar [55] or Snyder and Miller [252] for a more essential list of as-
sumptions.

Thus, for P (t), the increments ∆[P (t+ i∆t)] ≡ P (t+ (i+ 1)∆t)− P (t+ i∆t)
for i = 0, 1, . . . are independent and identically distributed (IID) given time step
∆t > 0 and t ≥ 0.

By the stationarity property of the Poisson process increment ∆P (t) = P (t+
∆t)−P (t) has the same discrete distribution as P (∆t) in (1.21), so has the param-
eter λ∆t instead of the λt in (B.50), i.e.,

Φ∆P (t)(k;λ∆t) = Prob[∆P (t) = k] = pk(λ∆t) = e−λ∆t (λ∆t)
k

k!
, (1.22)

for k = 0, 1, 2, . . . , t ≥ 0 and ∆t ≥ 0.
Similarly, by the stationarity property of the differential, dP (t) = P (t+ dt)−

P (t), for Poisson process has the same discrete distribution as P (dt) in (1.21),
except that dP (t) has the parameter λdt instead of the λt in (B.50) for P (t). Thus
dP (t) has the distribution,

ΦdP (t)(k;λdt) = Prob[dP (t) = k] = pk(λdt) = e−λdt (λdt)
k

k!
, (1.23)

for k = 0, 1, 2, . . . , t ≥ 0 and dt ≥ 0. The distribution (1.23) might be considered
as a limiting version of the more basic and proper incremental version in (1.22).

The simulation of the simple Poisson process P (t) is usually based upon sim-
ulating the time between jumps, the inter-arrival time Tk+1 − Tk, since the inter-
arrival time can be shown to be exponentially distributed as sketched in Chapter B.

Lemma 1.12. Exponential Distribution of Time Between Jumps:
Let P (t) be a simple Poisson process with fixed jump frequency λ > 0 and let Tj

denote the jth jump time, then the distribution of the inter-jump time ∆Tj ≡
Tj+1 − Tj for j = 0, 1, 2, . . . , defining T0 ≡ 0, conditioned on Tj, is

Φ∆Tj
(∆t) = Prob[∆Tj ≤ ∆t | Tj] = 1 − e−λ∆t . (1.24)

Proof. The basic idea of this proof is that the probability of the time between
jumps ∆Tj = Tj+1 − Tj less than ∆t, conditioned on the prior jump time Tj, will

“bk0allfinal”
2007/1/7
page 14

i

i

i

i

i

i

i

i

14 Chapter 1. Stochastic Jump and Diffusion Processes

be the same as the probability that there be at least one jump in the time interval,
which is the same as one minus the probability that there are no jumps in the time
interval, i.e.,

Prob[∆Tj ≤ ∆t | Tj] = 1 − Prob[∆Tj > ∆t | Tj]

= 1 − Prob[∆P (Tj) = 0 | Tj] .

However, by the stationary property of the simple Poisson process P (t) the proba-
bility of the difference does not depend on the common time Tj , but on the difference
in time ∆Tj,

Prob[∆Tj ≤ ∆t | Tj] = 1 − Prob[P (∆t) − P (0) = 0]

= 1 − Prob[P (∆t) = 0] = 1 − p0(λ∆t)

= 1 − e−λ∆t = Φe(∆t; 1/λ) ,

where the fact that P (0) = 0 with probability one has been used, Poisson distribu-
tion pk(λ∆t) is given in (1.22) and the exponential distribution Φe(t;µ) is given in
(B.40).

Using MATLAB with the efficient and fundamental distribution transformation
from uniform to exponential distribution (B.42) , a uniformly distributed pseudo-
random number generator can be used. These numbers can be generated wholesale,
in vector form, for plotting or other applications, using a given K samples and the
Poisson parameter value lambda, by the following code fragment,

Uv = rand(1,K); T(1) = 0; kv(1) = 0;

for k = 1:K, kv(k+1) = k;

T(k+1) = T(k) - log(Uv(k))/lambda;

end

plot(kv,T,’k-’);

where log is the MATLAB natural logarithm notation. See the comments about
(B.44) explaining why the proper term log(Uv(k)) is used here rather than the less
efficient term log(1 − Uv(k)).

Since the natural time variable for Poisson is scaled as λ ∗ t, four sample
paths for P (t) are illustrated in Fig. 1.2(a) versus the dimensionless time λ ∗ t. The
variation with the jump rate λ can be deduced since higher frequencies (λ > 1)
compress the time axis and lower frequencies (λ < 1) expand the time axis. Note
that the exponentially distributed inter-jump or inter-arrival times must used for
simulating P (t) since the Poisson distribution is not useful in simulating the jump
times directly. The MATLAB source code for the left figure is given in Program C.9
in Appendix C.

In Fig. 1.2(b) are the corresponding sample paths for the Poisson process incre-
ment ∆P (t) when the time increments between jumps are sufficiently small so that
the zero-one jump law, discussed more extensively in Theorem 1.19 in Section 1.7,

“bk0allfinal”
2007/1/7
page 15

i

i

i

i

i

i

i

i

1.6. Poisson Process Basic Properties 15

0 5 10 15
0

2

4

6

8

10
Simulated Simple Jump Sample Paths

λ⋅t, Scaled Time

P
(t

),
 P

oi
ss

on
 S

ta
te

Sample 1
Sample 2
Sample 3
Sample 4

(a) Four Poisson jump P (t) sample paths.

0 5 10 15 20
0

2

4

6

8

10
Simulated Small ∆t Simple Jump Sample Paths

∆P
(t

),
 P

oi
ss

on
 S

ta
te

t, Time

Sample 1
Sample 2
Sample 3
Sample 4

(b) Incremental Poisson jump ∆P (t) sample
paths using different time steps.

Figure 1.2. In Figure 1.2(a), Simulated sample paths for the simple
Poisson Process P (t) versus the dimension-less time λt using four different MAT-
LAB [210] random states for four different sample paths and the exponential distri-
bution of the time between jumps. In Figure 1.2(b) is a similar illustration for the
simple Poisson process increment simulations versus t with λ = 1.0 and ∆t = 0.05,
based upon the zero-one jump law implemented with a uniform distribution paths
were simulated using subsets of the same random state of rand used for the finer
grid 0.001.

applies and the time between jumps is uniformly distributed with asymptotic prob-
ability λ∆t for the next jump and (1 − λ∆t) for zero jumps, since

Prob[Tk+1 − Tk ≤ ∆t | Tk] = 1 − e−λ∆t ∼ λ∆t ,

provided λ∆t ≪ 1, i.e., small, taking ∆t = 0.05 and λ = 1.0. The small time
increment process can be numerically simulated by a standard uniform number
generator like MATLAB’s rand and the method of acceptance-rejection
[230, 96] such that the open interval (0, 1) is partitioned into a centered interval
of length λ∆t and the complement of (0, 1). When a uniformly generated point
lands in the centered interval then a jump is counted, while there is no jump if it
lands in the complement. The centered interval, [(1 − λ∆t)/2, (1 + λ∆t)/2] is used
to avoid the bias of open interval property of pseudo-random number generators
where the neighborhood of the end points is excluded by a very small amount that
is the order of the machine epsilon (the smallest positive floating number that is
significant when added to one, theoretically, 2−53 in IEEE standard double preci-
sion). A sufficiently large sample should approximately satisfy the zero-one jump
law probabilities, since the rejection method is equivalent to the unit step function
applied U(Xu; (1 − λ∆t)/2, (1 + λ∆t)/2) to the uniform variate Xu approximately

“bk0allfinal”
2007/1/7
page 16

i

i

i

i

i

i

i

i

16 Chapter 1. Stochastic Jump and Diffusion Processes

generated by rand and the expectation is

E [U(Xu; (1 − λ∆t)/2, (1 + λ∆t)/2)] =

∫ 1

0

U(u; (1 − λ∆t)/2, (1 + λ∆t)/2)du

=

∫ (1+λ∆t)/2

(1−λ∆t)/2

du = λ∆t .

The MATLAB source code for the right figure is given in Program C.10 of Ap-
pendix C.

Theorem 1.13. Covariance of P(t): If P (t) is a Poisson process, then

Cov[P (t), P (s)] = λmin[t, s] . (1.25)

Proof. This theorem is a very elementary application of the independent increment
property of Poisson or Markov jump processes, also demonstrating how application
of independent increments rely on the zero mean properties. For the Poisson pro-
cess, unlike the standardized diffusion process, the zero mean property comes from
using the Poisson deviation or centered Poisson processes P̂ (t) = P (t) − λt where

E[P (t)] = λt, such that E[P̂ (t)] = 0 = E[P̂ (s)]. First consider the case s < t and
write

P̂ (t) = P̂ (s) + (P̂ (t) − P̂ (s)),

i.e., as independent increments noting the time increment ∆t = t − s, the first
increment is P̂ (s) − P̂ (0) = P̂ (s) since P̂ (0) = 0 and that subtracting the mean
terms λt and λs preserves the independent increment property since functions of
independent random variables are independent (B.80). Then

Cov[P (t), P (s)] = E[P̂ (t)P̂ (s)] = E[P̂ 2(s) + P̂ (s)(P̂ (t) − P̂ (s))]

= E[P̂ 2(s)] + E[P̂ (s)(P̂ (t) − P̂ (s))]

= Var[P (s)] + E[P̂ (s)]E[P̂ (t) − P̂ (s)]

= λs+ 0 · 0 = λs ,

using the linearity of the expectation operator (B.9), the definition of the variance
(B.10) together with the independence of the expectations (B.80) for independent

increments P̂ (s) and (P̂ (t) − P̂ (s)), and finally that P̂ (s), with P (s), has variance
λs (1.21). In the case t < s, then Cov[P (t), P (s)] = λt by symmetry, and both
cases together produce the conclusion Cov[P (t), P (s)] = λmin[s, t].

1.7 Poisson Process Moments

The expectations for the integer powers of the Poisson increment follow from the
mean over the Poisson distribution (1.22) and summed by differentiation of the
exponential series (B.53):

“bk0allfinal”
2007/1/7
page 17

i

i

i

i

i

i

i

i

1.7. Poisson Process Moments 17

Lemma 1.14. Poisson Sums by Differentiation:

E[(∆P)m(t)] = e−λ∆t
∞∑

k=0

(λ∆t)kkm

k!
(1.26a)

=

[
e−u

(
u
d

du

)m

eu

]∣∣∣∣
u=λ∆t

, (1.26b)

for m = 0, 1, 2,

The result (1.26b) can be shown by induction from the definition (1.26). Ei-
ther the direct summation form (1.26) or the differentiation form (1.26b) can be
implemented by symbolic computation, for example the summation definition form
can be coded in Maple as

Example 1.15. Poisson Moment Summations by Maple:

Maple Functions for Poisson Moments and Poisson Deviation Mo-
ments:

> fpoisson := (k, u)− > exp(−u) ∗ uk/k!;

fpoisson := (k, u) → e(−u)uk

k!

> momentdp := (n, u)− > simplify(sum(′knfpoisson(k, u)′,′ k′ = 0..infinity));

momentdp := (n, u) → simplify

∞∑

’k’=0

’knfpoisson(k, u)’

> momentdevdp := (n, u)− > simplify(sum(′(k − u)nfpoisson(k, u)′,
> ′k′ = 0..infinity));

momentdevdp := (n, u) → simplify

∞∑

’k’=0

’(k − u)nfpoisson(k, u)’

Sample illustrations for 5th moment of both moment functions:

> mom5dp := momentdp(5, lambda ∗ dt);

mom5dp :=λdt(1 + 15λdt+ 25λ2dt2 + 10λ3dt3 + λ4dt4)

> mom5devdp := momentdevdp(5, lambda ∗ dt);

mom5dp :=10λ2dt2 + λdt

“bk0allfinal”
2007/1/7
page 18

i

i

i

i

i

i

i

i

18 Chapter 1. Stochastic Jump and Diffusion Processes

Table 1.2. Some expected moments (powers) of Poisson increments and
their deviations.

m E[(∆P)m(t)] E[(∆P (t) − λ∆t)m]

0 1 —
1 λ∆t 0
2 λ∆t(1 + λ∆t) λ∆t
3 λ∆t(1 + 3λ∆t+ (λ∆t)2) λ∆t
4 λ∆t(1 + 7λ∆t+ 6(λ∆t)2 + (λ∆t)3) λ∆t(1 + 3λ∆t)
5 λ∆t(1 + 15λ∆t+ 25(λ∆t)2 + 10(λ∆t)3 + (λ∆t)4) λ∆t(1 + 10λ∆t)

The results for the first few powers are summarized in Table 1.2: The second
column of this table can be quickly calculated by recursion, since if u = λ∆t and
gm(u) = E[(∆P)m(t)], then it can be shown that gm+1(u) = u·(gm(u)+g′m(u)). See
Exercise 6 on Page 27 for the asymptotic form of E[(∆P)m(t)]. The expectation of
a general function, E[f(∆P (t))], in terms of an infinite series of the finite differences
of f(0), which terminates if f(∆P (t)) is an integer power of ∆P (t), is the topic of
Exercise 7 on Page 28.

These tabulated results can be applied to other expected moments, for exam-
ple,

Var[∆P (t)] = E[(∆P (t) − λ∆t)2]

= E[(∆P)2(t)] − 2λ∆tE[∆P (t)] + (λ∆t)2E[1] = λ∆t ,

upon expanding the square and using the linear property of the expectation. See
the third column of Table 1.2. The results can also be applied to expected moments
of Poisson differential process as an increment process, dP (t) = P (t+dt)−P (t), by
replacing ∆t by dt and neglecting terms of O2(dt) since they are treated as negligible
compared to term of ord(dt), dt being infinitesimally small. Expected moments of
P (t) also follow by replacing ∆t by t, except the higher powers of t would not be
negligible compared to the first power, unless t is small.

1.8 Poisson Poisson Zero-One Jump Law

Theorem 1.16. Zero-One Jump Law Order of Magnitude of Error for
∆P (t):
As ∆t→ 0+ and λ > 0 as well as bounded, then

Prob[∆P (t) = 0] = 1 − λ∆t+ O2(λ∆t) , (1.27)

Prob[∆P (t) = 1] = λ∆t+ O2(λ∆t) , (1.28)

Prob[∆P (t) > 1] = O2(λ∆t) , (1.29)

Prob[(∆P)m(t) = ∆P (t)] = 1 − 1

2
(λ∆t)2 + O3(λ∆t), m ≥ 2 . (1.30)

“bk0allfinal”
2007/1/7
page 19

i

i

i

i

i

i

i

i

1.8. Poisson Poisson Zero-One Jump Law 19

Proof. Taking the Poisson increment distribution (1.22) and expanding it asymp-
totically using primarily the exponential series expansion (B.53) for ∆t≪ 1 yields,

Prob[∆P (t) = 0] = e−λ∆t = 1 − λ∆t+
1

2
(λ∆t)2 + O3(λ∆t) ,

Prob[∆P (t) = 1] = e−λ∆tλ∆t = λ∆t− (λ∆t)2 + O3(λ∆t) ,

Prob[∆P (t) > 1] = 1 − Prob[∆P (t) = 0] − Prob[∆P (t) = 1]

=
1

2
(λ∆t)2 + O3(λ∆t) .

Since O2(λ∆t)+O3(λ∆t) = O2(λ∆t), the first three equations are proved. The last
equation (1.30) follows from the fact that xm = x is only true for m ≥ 2 if x = 0 or
x = 1, so

Prob[(∆P)m(t) = ∆P (t)] = Prob[∆P (t) = 0] + Prob[∆P (t) = 1]

= 1 − Prob[∆P (t) > 1] = 1 − 1

2
(λ∆t)2 + O3(λ∆t) .

The significance of this result is that if λ∆t is sufficiently small and terms of order
(λ∆t)2 can be neglected, then only jumps of zero or one are very likely, i.e., very
probable.

Remarks 1.17.

• In some other texts, the three small Poisson increment properties, Eqs. (1.27,
1.28, 1.29), are used as an elementary definition of the simple Poisson process.
Here, we have started at a higher level of definition to facilitate the use of the
Poisson process in applications.

• Combining the asymptotic probability relations (1.28) for ∆P (t) = 1 and
(1.29) for ∆P (t) > 1 leads to

Prob[∆P (t) > 1] ≪ Prob[∆P (t) = 1]

when λ∆t ≪ 1. This asymptotic relationship characterizes the orderliness
property of Poisson process (see Snyder and Miller [252]).

With this result, the corresponding results for differential Poisson processes
follow. First, a definition to specify that the square of a differential as been ne-
glected.

Definition 1.18. Equality to Precision-dt:
Let f(dt;x) and g(x) be bounded functions for dt ≥ 0 and parameter x. Write

f(dt;x)
dt
= g(x)dt (1.31)

“bk0allfinal”
2007/1/7
page 20

i

i

i

i

i

i

i

i

20 Chapter 1. Stochastic Jump and Diffusion Processes

if

f(dt;x) = g(x)dt+ o(dt)

as dt→ 0+ and fixed x.

Theorem 1.19. Zero-One Jump Law for dP (t):
Let dt > 0 and let λ be positive and bounded, then

Prob[dP (t) = 0]
dt
= 1 − λdt , (1.32)

Prob[dP (t) = 1]
dt
= λdt , (1.33)

Prob[dP (t) > 1]
dt
= 0 , (1.34)

Prob[(dP)2(t) = dP (t)]
dt
= 1 , (1.35)

Prob[(dP)m(t) = dP (t)]
dt
= 1 ,m > 0 . (1.36)

Proof. The proof follows easily from the increment approximate Theorem 1.16
upon neglecting all terms O2(λ∆t). The last equation in precision-dt (1.36) holds
for the same reason that the prior equation (1.35) holds as long as m > 0. Note
that (dP)m(t) = dP (t) is obviously valid for dP (t) = 0, but if dP (t) 6= 0 then
division by dP (t) is permissible so (dP)m−1(t) = 1 and we must have dP (t) = 1,
one being the only real root in this real problem. It is reasonable to assume that
λdt ≤ 1 to avoid nominally violating probability bounds Prob[dP (t) = 0] ≥ 0 and
Prob[dP (t) = 1] ≤ 1, even though the error is hidden in the order symbols. The
rules (1.32-1.36) will come in very handy for simplifying powers of dP (t) in the
Poisson jump calculus later in this text.

This zero-one jump law immediately leads to the following corollary for
Poisson differential distribution and expectations:

Corollary 1.20. Zero-One Distribution and Expectation for dP (t):

ΦdP (t)(k) = pk(λdt)
dt
= (1 − λdt)δk,0 + λdtδk,1 , (1.37)

is a generalized representation of the differential Poisson distribution and

E[f(dP (t))]
dt
= (1 − λdt)f(0) + λdtf(1) , (1.38)

is the expectation, provided f(p) is a bounded and continuous function.

The Poisson zero-one jump law is a special case of a Bernoulli distribution,
concerning Bernoulli trials which have only two outcomes, here with failure prob-
ability p = 1 − λdt for zero jump or success probability 1 − p = λdt for one jump,
provided λdt is small compared to unity.

“bk0allfinal”
2007/1/7
page 21

i

i

i

i

i

i

i

i

1.9. Temporal, Non-Stationary Poisson Process 21

1.9 Temporal, Non-Stationary Poisson Process

Properties 1.21. Temporal Poisson process:

• For the temporal or non-stationary Poisson process P (t) the jump rate
is time dependent, λ = λ(t), so that P (t) is no longer simple or stationary,
but non-stationary. First consider the differential process dP (t) replacing the
simple Poisson jump-count λdt by the time-dependent one,

dΛ(t) ≡ λ(t)dt . (1.39)

Letting Λ(0) = 0 initially, then

Λ(t) =

∫ t

0

λ(s)ds , (1.40)

with increment

∆Λ(t) ≡ Λ(t+ ∆t) − Λ(t) =

∫ t+∆t

t

λ(s)ds . (1.41)

Thus, ∆Λ(t) ∼ λ(t)∆t only when ∆t≪ 1, i.e., is small.

• The temporal Poisson distribution for the differential Poisson pro-
cess dP (t) remains unchanged from the fixed jump rate Poisson, except
for λ = λ(t) and

ΦdP (t)(k;λ(t)dt) = Prob[dP (t) = k]

= pk(λ(t)dt) = e−λ(t)dt (λ(t)dt)
k

k!
, (1.42)

for k = 0, 1, 2, . . . , with t ≥ 0 and temporal parameter λ(t) > 0.

However, the Poisson distribution property (1.21) of the Poisson process
needs to be changed for the temporal increment process ∆P (t) (1.22) using
the modified parameter ∆Λ(t),

Φ∆P (t)(k; ∆Λ(t)) = Prob[∆P (t) = k]

= pk(∆Λ(t)) = e−∆Λ(t) (∆Λ(t))k

k!
, (1.43)

for k = 0, 1, 2, . . . , with t ≥ 0, ∆t ≥ 0 and temporal parameter ∆Λ(t). Thus,
the temporal Poisson process is also a time-inhomogeneous process. The
Poisson increment distribution is fundamental for the temporal Poisson pro-
cess. Note that Λ(t) will be nondecreasing if λ(t) > 0 and continuous.

Finally, since the full temporal Poisson process P (t) is the increment P (t) −
P (0) = P (t), then it has the distribution

ΦP (t)(k; Λ(t)) = Prob[P (t) = k]

= pk(Λ(t)) = e−Λ(t) (Λ(t))k

k!
, (1.44)

inherited from (1.43).

“bk0allfinal”
2007/1/7
page 22

i

i

i

i

i

i

i

i

22 Chapter 1. Stochastic Jump and Diffusion Processes

• The non-stationary behavior follows from the fact that the distribution of
the increment (1.43) depends on t through the parameter ∆Λ(t) or more sim-
ply from the Poisson increment expectation given in (B.51) or Table 1.2
with ∆Λ(t) replacing the parameter λ∆t,

E[∆P (t)] = ∆Λ(t) , (1.45)

since it will be, in general, a function of time t. Thus,

E[P (t) − P (t0)] = Λ(t) − Λ(t0) =

∫ t

t0

λ(s)ds .

The Poisson increment variance must be the same as its expectation
(B.51B.51–B.52),

Var[∆P (t)] = ∆Λ(t). (1.46)

However, treating the increment as an integral leads to another form

Var[∆P (t)] = Var

[∫ t+∆t

t

dP (s)

]

= E

(∫ t+∆t

t

dP (s) − ∆Λ(t)

)2

= E

(∫ t+∆t

t

(dP (s) − λ(s)ds)

)2

= E

[∫ t+∆t

t

(dP (s1) − λ(s1)ds1)

∫ t+∆t

t

(dP (s2) − λ(s2)ds2)

]

=

∫ t+∆t

t

∫ t+∆t

t

E [(dP (s1) − λ(s1)ds1)(dP (s2) − λ(s2)ds2)]

=

∫ t+∆t

t

∫ t+∆t

t

Cov[dP (s1), dP (s2)] . (1.47)

Since

Var[∆P (t)] = ∆Λ(t) =

∫ t+∆t

t

λ(s)ds,

noting that dP (s1) and dP (s2) are independent increments as differentials as
long as s2 6= s1. Hence, Cov[dP (s1), dP (s2)] 6= 0 only if s2 = s1 when it has
the value Cov[dP (s1), dP (s1)] = Var[dP (s1)]. Consequently,

Cov[dP (s1), dP (s2)]
gen
= λ(s1)δ(s1 − s2)ds1ds2 (1.48)

for arbitrary ∆t, so the inner integral of (1.47) will be

∫ t+∆t

t

Cov[dP (s1), dP (s2)] = λ(s1)ds1 , (1.49)

“bk0allfinal”
2007/1/7
page 23

i

i

i

i

i

i

i

i

1.9. Temporal, Non-Stationary Poisson Process 23

and (1.47) yields the same answer as (1.46).

• The temporal Poisson differential process distribution for dP (t) to
precision-dt is

ΦdP (t)(k; dΛ(t)) = Prob[dP (t) = k]

= pk(dΛ(t))
dt
= (1 − λ(t)dt)δk,0 + λ(t)dtδk,1 , (1.50)

which simply follows from (1.43) for sufficiently small ∆t and the correspond-
ing simple process zero-one law result (1.37), if λ(t) > 0.

• The inter-jump times for the non-stationary Poisson process are
exponentially distributed. The increasing property of Λ(t) (dΛ(t) > 0)
means that it can be used as a substitute “clock” in place of t, but for Λ(t) to
be a full range clock it is necessary that Λ(t) be unbounded, i.e., Λ(t) → +∞ as
t→ +∞. Let Tj be the jth jump time of the temporal P (t) for j ≥ 1 (T0 ≡ 0
is the initial time) and ∆Tj−1 ≡ Tj −Tj−1 be the inter-jump time (also called
inter-arrival time) for j ≥ 1, so T1 = ∆T0. Slightly modifying the arguments
for the exponential distribution of ∆Tj for the stationary P (t) in (1.24), the
non-stationary distribution and its corresponding density conditioned on the
most recent jump time Tj−1 are given by:

Theorem 1.22. Provided that Λ(t) → ∞ as t→ ∞, then the non-stationary
distribution of the Poisson inter-jump time ∆Tj−1 for j = 1, 2, . . . inter-jump
times is

Φ∆Tj−1|Tj−1
(∆t) = 1 − exp

(
−
∫ Tj−1+∆t

Tj−1

λ(t)dt

)
(1.51)

with density

φ∆Tj−1|Tj−1
(∆t) = λ(Tj−1 + ∆t) exp

(
−
∫ Tj−1+∆t

Tj−1

λ(t)dt

)
(1.52)

or alternatively in terms of the jump times Tj for j ≥ 1,

φTj |Tj−1
(t) = λ(t) exp

(
−
∫ t

Tj−1

λ(s)ds

)
. (1.53)

“bk0allfinal”
2007/1/7
page 24

i

i

i

i

i

i

i

i

24 Chapter 1. Stochastic Jump and Diffusion Processes

Proof. The modified stationary proof is as follows:

Φ∆Tj−1|Tj−1
(∆t) ≡ Prob[∆Tj−1 ≤ ∆t | Tj−1]

= 1 − Prob[∆Tj−1 > ∆t | Tj−1]

= 1 − Prob[∆P (Tj−1) ≡ P (Tj−1 + ∆t) − P (Tj−1) = 0 | Tj−1]

= 1 − p0(Λ(Tj−1 + ∆t) − Λ(Tj−1)) = 1 − p0(∆Λ(Tj−1))

= 1 − e−∆Λ(Tj−1) = 1 − exp

(
−
∫ Tj−1+∆t

Tj−1

λ(t)dt

)

= Φe(∆Λ(Tj−1); 1) ,

where Φe(∆Λ(Tj−1); 1) is the exponential distribution (B.40) in ∆Λ(Tj−1)
with ∆Λ(Tj−1) ≡ Λ(Tj−1 + ∆t) − Λ(Tj−1) and mean µ = 1, i.e., still expo-
nentially distributed but the distribution depends on Tj−1.

Caution: if Λ(t) is finite, then Φ∆Tj−1|Tj−1
(∆t) as derived is not a proper

probability distribution since 1 − exp
(
−
∫ +∞

Tj−1
λ(t)dt

)
< 1 with Λ(+∞) <

+∞).

• For more general properties see Snyder and Miller [252] for extended infor-
mation or Çinlar [55].

1.10 Poisson Process Expectations Conditioned on
Past

Example 1.23. Illustration of Independent Increments and Markov
Properties for Poisson Process:

• E[P (t)|P (r), 0 ≤ r ≤ s] = P (min[s, t]) + λ(t− s)H(t− s),
where H(X) is the Heaviside step function (B.158). The techniques are sim-
ilar to those for the Wiener process, except that there is no zero mean, but
the mean increment is the same as the increment variance, i.e., E[∆P (t)] =
λ∆t = Var[∆P (t)]. Also, P (0) is zero by definition with probability one.

E[P (t)|P (r), 0 ≤ r ≤ s] =

8
<
:

P (t), 0 ≤ t ≤ s
E[(P (t) − P (s)) + (P (s) − P (0))|P (r), 0 ≤ r ≤ s],

0 ≤ s < t

9
=
;

=

P (t), 0 ≤ t ≤ s
λ(t − s) + P (s), 0 ≤ s < t

ff

= P (min[s, t]) + λ(t − s)H(t − s).

“bk0allfinal”
2007/1/7
page 25

i

i

i

i

i

i

i

i

1.10. Poisson Process Expectations Conditioned on Past 25

When 0 ≤ s < t then the above formula symmetrized using the Poisson devi-
ation process, (P (t)−λt), having zero mean, with H(t− s) = 1 for s < t, has
the form

E[P (t) − λt|P (r), 0 ≤ r ≤ s] = P (s) − λs, (1.54)

signifies that for the deviation the average information conditioned on the past
data, {P (r), r ∈ [0, s]}, is given by the most recent past deviation P (s) − λs,
which may imply a significant reduction in uncertainty for the present data,
P (t).

The form of the result (1.54) is again the principal characteristic form for
a martingale as was (1.18) with X(t) = f(P (t)) or (1.18) for W (t), i.e.,
an abstract model of a fair game (see the beginning preliminary chapter of
Mikosch [209] for a clear description of martingales, but in an elementary
abstract presentation; martingales will be described at the end of this book).

• E[P 2(t)|P (r), 0 ≤ r ≤ s] = P 2(min[s, t])+λ(t−s)(1+2P (s)+λ(t−s))H(t−s).
The derivation is similar to that for the conditional mean above.

E[P 2(t)|P (r), 0 ≤ r ≤ s] =

8
<
:

P 2(t), 0 ≤ t ≤ s
E[((P (t) − P (s)) + (P (s) − P (0)))2|P (r), 0 ≤ r ≤ s],

0 ≤ s < t

9
=
;

=

8
<
:

P 2(t), 0 ≤ t ≤ s
E[(P (t) − P (s))2] + 2P (s)E[(P (t) − P (s))] + P 2(s),

0 ≤ s < t

9
=
;

=

8
<
:

P 2(t), 0 ≤ t ≤ s
λ(t − s)(1 + λ(t − s)) + 2P (s) · λ(t − s) + P 2(s),

0 ≤ s < t

9
=
;

= P 2(min[s, t]) + λ(t − s)(1 + 2P (s) + λ(t − s))H(t − s).

Table 1.2 has to be used for E[(∆P)2(s)] with ∆t = (t− s)

Similar to the techniques used previously for the Wiener process with condi-
tioning on the past, the general technique for powers Pm(t), when s < t with
conditioning on P (s), is to use the decomposition into independent increments
P (t) = P (s) + (P (t)−P (s)) and then expand the power of m by the binomial
expansion (B.152)

(P (s) + (P (t) − P (s)))m =

m∑

k=0

(
m
k

)
P k(s)(P (t) − P (s))m−k,

and then use independence of the increments and conditioning to calculate for
each term,

E

[(
m
k

)
P k(s)(P (t) − P (s))m−k

∣∣∣∣P (r), 0 ≤ r ≤ s

]

=

(
m
k

)
P k(s)E

[
(P (t) − P (s))m−k

]
,

relying on Table 1.2 for the remaining expectations.

“bk0allfinal”
2007/1/7
page 26

i

i

i

i

i

i

i

i

26 Chapter 1. Stochastic Jump and Diffusion Processes

1.11 Exercises

1. Show formally that

φdW (t)(w)
dt
= δ(w) +

1

2
dtδ′′(w) , (1.55)

i.e., has a delta-density in the generalized sense, by showing that

E[f(dW (t))] =

∫ +∞

∞
φdW (t)(w)f(w)dw

dt
= f(0) +

1

2
dtf ′′(0) ,

i.e., to precision-dt, neglecting terms o(dt). Also, show that the integral of
the delta-density on the right hand side of (1.55) has the same effect as the
integral of the left hand side. Assume that f(w) is three times continuously
differentiable and with f(w) and its derivatives vanishing sufficiently at infin-
ity.
{Hint: Only a formal expansion of f(w) should be needed here. The exponen-
tial properties of φdW (t)(w) ensure uniformity to allow expansion inside the
integral, so that Laplace’s or higher order asymptotic method should not be
needed.}

2. Let {ti : ti+1 = ti + ∆ti, i = 0 : n, t0 = 0; tn+1 = T } be a variably-spaced par-
tition of the time interval [0, T] with ∆ti > 0. Show the following properties
and justify by giving a reason for every step, such as a property of the process
or a property of expectations.

(a) Let G(t) = µ0t+ σ0W (t) and ∆G(ti) ≡ G(ti + ∆ti) −G(ti) with µ and
σ0 > 0 constants, then show

Cov[∆G(ti),∆G(tj)] = σ2
0∆ti δi,j ,

for i, j = 0 : n, where δi,j is the Kronecker delta.

(b) Let H(t) = ν0P (t) and ∆H(ti) ≡ H(ti + ∆ti) −H(ti), with λ0 > 0 and
ν0 > −1 constants, then show

Cov[∆H(ti),∆H(tj)] = ν2
0λ0∆tiδi,j ,

for i, j = 0 : n.

(c) Let ∆W (ti) ≡W (ti+∆ti)−W (ti), but ∆θW (ti) ≡W (ti+θ∆ti)−W (ti)
with 0 ≤ θ ≤ 1, then show

Cov[∆W (ti),∆
θW (tj)] = θ∆ti δi,j ,

for i, j = 0 : n.

3. (a) Verify the m = 3 : 4 entries in Table 1.1 of the text for E[|∆W (t)|m].

(b) Verify the m = 3 : 4 entries in Table 1.2 of the text for E[(∆P (t))m] and
E[(∆P (t) − λ∆t)m].

“bk0allfinal”
2007/1/7
page 27

i

i

i

i

i

i

i

i

1.11. Exercises 27

4. (a) Show that when 0 ≤ s ≤ t,

E[W 3(t)|W (r), 0 ≤ r ≤ s] = W 3(s) + 3(t− s)W (s) ,

justifying every step with a reason, such as a property of the process or
a property of conditional expectations.

(b) Use this result to verify the martingale form (1.18)

E[W 3(t) − 3tW (t)|W (r), 0 ≤ r ≤ s] = W 3(s) − 3sW (s) .

{Hint: The general technique is to seek the expectation of mth power in the
separable form,

E[Mm(W (t), t)|W (r), 0 ≤ r ≤ s] = Mm(W (s), s) ,

where

Mm(W (t), t) = Wm(t) +

m−1∑

k=0

αk(t)W k(t) ,

satisfied for the sequence of coefficient functions {α0(t), . . . , αm−1(t)} for the
separable form, so that the conditional expectations of the lower order powers

E[W k(t)|W (r), 0 ≤ r ≤ s]

can be recursively obtained in the order k = 0 : m− 1.}

5. (a) Show that when 0 ≤ s ≤ t,

E[W 4(t)|W (r), 0 ≤ r ≤ s] = W 4(s) + 6(t− s)W 2(s) + 3(t− s)2 ,

justifying every step with a reason, such as a property of the process or
a property of conditional expectations.

(b) Use this result to verify the martingale form (1.18)

E[W 4(t) − 6tW 2(t) + 3t2|W (r), 0 ≤ r ≤ s] = W 4(s) − 6sW 2(s) + 3s2 ,

together with the form for similar conditional expectation of W 2(t) or
that for W 2(t) − t.

{See the Hint in Exercise 4 above.}

6. Show that

E[(∆P)m(t)] = λ∆t(1 + O(λ∆t)) (1.56)

for λ∆t≪ 1, by induction for m ≥ 1.

“bk0allfinal”
2007/1/7
page 28

i

i

i

i

i

i

i

i

28 Chapter 1. Stochastic Jump and Diffusion Processes

7. Show that for the Poisson increment process, ∆P (t), the expectation can be
expanded as

E[f(∆P (t))] =
∞∑

k=0

(λ∆t)k

k!
∆k[f(0)] ,

assuming that f(p) is a bounded function so that the sum converges. The kth
order finite difference is defined inductively such that

∆k+1[f(i)] ≡ ∆[∆k[f(i)]]

starting from ∆0[f(i)] = f(i) and ∆1[f(i)] = ∆[f(i)] ≡ f(i+ 1) − f(i).
{Hint: Use the zero-step I0[f(i)] ≡ f(i) and one-step I1[f(i)] ≡ f(i + 1)
operators, so that ∆ = I1 − I0 and ∆k = (I1 − I0)

k, for which the binomial
expansion can be used.}

8. Show that the temporal Poisson process increment distribution, pk(∆Λ(t)),
satisfies the following differential-difference equation (DDE),

d

dt
[pk(∆Λ(t))] = λ(t) (pk(∆Λ(t)) − pk−1(∆Λ(t))) , (1.57)

i.e., differential in t, but difference equation in k.

Show the following characteristic function (Fourier transform) formulas in
the constant coefficient case, (you need only assume that the imaginary unit
i ≡

√
−1 is a constant with i2 = −1 when integrating for the expectation or

that ζ = i · z can be treated the same as a real variable):

(a) for the Gaussian process with time-linear drift, G(t) = µ0t + σ0W (t),
where µ0 and σ0 > 0 are constants,

C[G](z) ≡ E[exp(izG(t))] = exp
(
izµ0t− z2σ2

0t/2
)

;

(b) for the Poisson process, ν0P , with constant jump rate λ0 > 0 and con-
stant jump amplitude ν0,

C[ν0P](z) ≡ E[exp(izν0P (t))] = exp (λ0t (exp(izν0) − 1)) ;

(c) and finally for the jump-diffusion process assuming that W (t) and P (t)
are independent processes,

C[X](z) ≡ E[exp(izX(t))] = exp
(
izµ0t− z2σ2

0t/2+λ0t (exp(izν0)−1)
)
.

9. (a) Show that when 0 ≤ s < t and constant jump rate λ0 (see the general
result in section 1.10, but verify independently this special result) that

E[P 2(t)|P (r), 0 ≤ r ≤ s] = P 2(s) + 2λ(t− s)P (s)

+λ0(t− s)(1 + λ0(t− s)) ,

justifying every step with a reason for its validity.

“bk0allfinal”
2007/1/7
page 29

i

i

i

i

i

i

i

i

1.11. Exercises 29

(b) Find the time polynomials α1(t) and α0(t) so that

MP2(t) = P 2(t) + α1(t)P (t) + α0(t)

is a martingale. Assume αk(0) = 0 for k = 0 : 1.
{Remarks: The primary martingale property is that E[X(t)|X(r), 0 ≤
r ≤ s] = X(s) for some process X(t) and in this case X(t) = f(P (t)),
but there are also additional technical conditions to define a martingale
form. Also, by a simple form of the principle of separation of variables,
if f(t) = g(s) for arbitrary values of t and s, then f(t) = C = g(s) where
C is a constant.}

10. (a) Show that when 0 ≤ s < t that

E[P 3(t)|P (r), 0 ≤ r ≤ s]

= P 3(s) + 3λ(t− s)P 2(s) + 3λ(t− s)(1 + λ(t− s))P (s)

+λ(t− s)(1 + 3λ(t− s) + λ2(t− s)2) ,

justifying every step with a reason, such as a property of the process or
a property of conditional expectations.

(b) Use this result to verify the martingale form (1.18)

E[P 3(t) − 3λtP 2(t) − 3λt(1 − λt)P (t) − λt(1 − 3λt + λ2t2)|P (r), 0 ≤ r ≤ s]

= P 3(s) − 3λsP 2(s) − 3λs(1 − λs)P (s)− λs(1 − 3λs + λ2s2).

{Hint: See the Hint in Exercise 4 in this section for W 3(t) conditional expec-
tation.}

Suggested References for Further Reading

• Arnold, 1974 [13].

• Çinlar, 1975 [55].

• Gard, 1988 [91].

• Jazwinski, 1970 [154].

• Karlin and Taylor, 1981 [162].

• Klebaner, 1998 [164].

• Mikosch, 1998 [209].

• Øksendal, 1998 [222].

• Schuss, 1980 [244].

• Snyder and Miller, 1991 [252].

“bk0allfinal”
2007/1/7
page 30

i

i

i

i

i

i

i

i

30 Chapter 1. Stochastic Jump and Diffusion Processes

• Steele, 2001 [256].

• Taylor and Karlin, 1998 [265].

• Tuckwell, 1995 [270].

“bk0allfinal”
2007/1/7
page 31

i

i

i

i

i

i

i

i

Chapter 2

Stochastic Integration for
Diffusions

My major aim in this was to find facts which would
guarantee as much as possible the existence of atoms
of definite finite size.
—Albert Einstein (1879-1955) in the first of four
“Annus Mirabilis” papers in the Annals der Physik
during 1905, concerning Brownian motion.

Brownian motion, as described by Bachelier in 1900 and
Einstein in 1905, was provided a rigorous mathematical
definition by Wiener (1984-1964) in Wiener (1923, 1930)
by proving the existence of an appropriate measure on a
space of functions-of-time.
—Harry M. Markowitz in the forward to [245].

Jump-diffusion stochastic differential equations (SDEs) with initial conditions
are of the form,

dX(t) = f(X(t), t)dt+ g(X(t), t)dW (t) + h(X(t), t)dP (t) , X(0) = x0 , (2.1)

where the Poisson process dP (t) supplies the jumps and the Wiener process dW (t)
supplies the diffusion. Initial value problem (2.1), unlike the ordinary differential
equations (ODEs) with initial conditions, are symbolic equations. They are not
fully defined until the method of integration for solving a stochastic differential
equation (SDE) is specified, given the coefficient functions {f(x, t), h(x, t), g(x, t)}.
More precisely, the SDE (2.1) is not fully specified until the methods of integration
for the three types of integrals in the formal integral solution,

X(t) = x0 +

∫ t

0

f(X(s), s)ds+

∫ t

0

g(X(s), s)dW (s) +

∫ t

0

h(X(s), s)dP (s) , (2.2)

31

“bk0allfinal”
2007/1/7
page 32

i

i

i

i

i

i

i

i

32 Chapter 2. Stochastic Integration for Diffusions

with respect to t, W (t) and P (t), respectively, have been defined. Until then, the
stochastic integral equation or SIE (2.2) is as symbolic as the SDE in (2.1), since the
evaluation of the second and third integrals in (2.2) is very sensitive to the method of
integration used due to the random and singular properties of dW (t) and dP (t). It
will be necessary to re-examine the foundations for ordinary or Riemann integration
to motivate the inclusion of integrands with randomness, non-smoothness and jump
discontinuities contributed by the stochastic processes W (t) and P (t) to the state
process X(t). This re-examination of integration will also be useful for subsequent
numerical approximations of the new definitions as well as providing a basis for new
types of integrals that will arise.

In this chapter, the integrals of the second type in (2.2), i.e.,

∫ t

0

g(X(s), s)dW (s) ,

where the integration is with respect to the diffusion process W (t), will be treated
primarily. However, the short treatment of ordinary integration will be sufficient
for integrals of the first type, i.e.,

∫ t

0

f(X(s), s)ds

where the integration is with respect to the time t and the stochastic process X(t) is
only in the integrand. The third type of integral will be treated in the next chapter.

When considering higher approximations or other difficult behavior in the
numerical solution of ordinary differential equations, it is often necessary to work
with the corresponding integral equation. Similarly, the proper form for solving
stochastic differential equations (which can be, in general, considered as a symbolic
concept anyway) is the exact and numerical analysis of the corresponding stochastic
integral equation.

Once the foundations for stochastic integrations have been made, as they
would be for ordinary integration in a good calculus course, and the definition is
illustrated for few simple examples, then some simpler formal chain rules will be
developed that will make calculations of integral, where possible, much easier. This
chapter on stochastic integration of diffusions, and a similar one on jumps that
follows, presents the basis for the stochastic differential equation models of this
book. Although the level of analysis is much higher than would be expected for
an applied text, it is important to have a good reference source when treating new
types of problems that do not fit the current models or theories to facilitate the
modification of the current theories.

2.1 Ordinary or Riemann Integration

The theory of ordinary or Riemann integration is quickly reviewed as an interme-
diate step to build up the treatment of stochastic integration. Let the ordinary

“bk0allfinal”
2007/1/7
page 33

i

i

i

i

i

i

i

i

2.1. Ordinary or Riemann Integration 33

integral be symbolically defined as

I[f](t) =

∫ t

0

f(s)ds , (2.3)

where f(t) is a continuous function on 0 ≤ t ≤ T , but continuity is really more than
what would be needed in general here. For general functions f , the integral interval
[0, t] is partitioned into n+ 1 subintervals, [ti, ti+1] of width ∆ti ≡ ti+1 − ti > 0 for
i = 0 : n, i.e., a grid of n+ 2 points such that

0 = t0 < t1 < t2 < · · · < tn < tn+1 = t . (2.4)

On each subinterval an approximation point t∗i ≡ ti+θi
≡ ti + θi∆ti is selected

with 0 ≤ θi ≤ 1 provided that the θis are chosen so that the tis are distinct as in
(2.4), and the area on the subinterval is approximated by the simplest geometry,
a rectangle of width ∆ti and height f∗

i ≡ fi+θi
≡ f(ti+θi

), with area f(ti+θi
)∆ti.

Next let the grid size be specified as δtn ≡ maxi=0:n[∆ti] such that δtn → 0+ as
n→ ∞ to insure that all subintervals shrink to zero in the limit as n→ ∞. Finally,
let

I(θ)
n [f](t) ≡

n∑

i=0

fi+θi
∆ti (2.5)

be the discrete approximation of the integral and define constructively the Rie-
mann integral as

I[f](t) = lim
n→∞
δtn→0

[
I(θ)
n [f](t)

]
, (2.6)

provided the limit exists. It is important to note that the limit is independent of
θi, 0 ≤ θi ≤ 1.

Usually, only a constant value of θi is used in practice, so let θi = θ. Also, for
simplicity, the grid partition will be assumed to be evenly spaced, so that ∆ti = ∆t,
with nodes starting at t0 and successive nodes at ti+1 = ti + ∆t, but integrand
approximation points at ti+θ = ti + θ∆t, for i = 0 : n. Also, ti = i ∗ ∆t for
i = 0 : (n+ 1). Since the step size is constant, then

δtn = ∆t = (tn+1 − t0)/(n+ 1) = t/(n+ 1) → 0+ ,

as n→ +∞, so the extra condition that δtn → 0+ is not needed.
Fortunately, the limiting definition (2.6) does not have to be used much in

ordinary calculus, but the Riemann sum (2.5) can be used for simply numerically
approximating integrals. When θ = 0 and ti+θ = ti, the left hand endpoint of the ith
subinterval, the numerical forward integration rule is called the left rectangular
rule or Euler’s explicit method or tangent-line method for ordinary differential
equations. When θ = 1 and ti+θ = ti+1, the right hand endpoint of the ith subinter-
val, the numerical backward integration rule is called the right rectangular rule
or implicit backward Euler’s method for ordinary differential equations. When
θ = 1/2 and ti+θ = (ti + ti+1)/2, the midpoint of the ith subinterval, the numerical

“bk0allfinal”
2007/1/7
page 34

i

i

i

i

i

i

i

i

34 Chapter 2. Stochastic Integration for Diffusions

integration rule is called the midpoint rectangular rule, more accurate by an
order of magnitude in δtn provided f(t) is sufficiently differentiable.

Since the process W (t) is continuous with probability one, then integrals of
composite functions f(W (t), t) with respect to t can be defined by Riemann inte-
gration, i.e., ∫ t

0

f(W (s), s)ds = lim
n→∞

[
n∑

i=0

f(W (ti), ti)∆ti

]
, (2.7)

choosing θ = 0 here, though other values would be suitable. Similarly, when the
integrand is for the composite processX(t) with implied dependence on the diffusion
W (t) and also the jump process P (t) through (2.2), the integral will be defined by
Riemann integration, i.e.,

∫ t

0

f(X(s), s)ds = lim
n→∞

[
n∑

i=0

f(X(ti), ti)∆ti

]
. (2.8)

The Poisson jump process, while discontinuous, is right continuous with left limits,
i.e., it is also a piece-wise continuous step function, so fits nicely in the framework
of the use of forward integration, which is effectively a sequence of step-function
approximations. However, the jumps are stochastic and not predictable, though
once a jump is generated through simulation or observation, it will be known.

Sometimes, a deterministic integration is needed with respect to the po-
sition on the path X(t). In this case, let the f(s)ds in (2.3) be replaced by
f(X(s), s)dX(s), which could also come from the form f(X(s), s)X ′(s)ds provided
the velocity v(s) = X ′(s) or dX(s) = X ′(s)ds exists, then this leads to the Stieltjes
integral, or Riemann-Stieltjes integral, constructive definition:

∫ t

0

f(X(s), s)dX(s) = lim
n→∞

[
n∑

i=0

f(X(ti+θ), ti+θ)(X(ti+1) −X(ti))

]
, (2.9)

provided X(t) is continuous and has bounded variation [168], i.e.,

n∑

i=0

|X(ti+1) −X(ti)| < B ,

for some constant B > 0 for all partitions (2.4) of [0, t] and f(X(t), t) is continuous.
(These conditions are stronger than needed and Mikosch [209] gives weaker but more
complicated conditions.) Another example is the Stieltjes form for the expectation
in terms of the probability distribution ΦX(x) in the random variable X ,

EX [f(X)] =

∫ ∞

−∞
f(x)dΦX(x) ,

sometimes used to permit the use of more general distributions than would be
possible under the usual Riemann integration conditions. The Stieltjes integration
form will be modified for the stochastic integration relative to W (t) in the next
section.

“bk0allfinal”
2007/1/7
page 35

i

i

i

i

i

i

i

i

2.2. Stochastic Integration in W (t): The Foundations 35

2.2 Stochastic Integration in W (t): The Foundations

As in elementary calculus, the presentation starts with a fairly simple example.
The integral that forms the basis for the formulation that follows is the stochastic
Stieltjes integral

I[W](t) =

∫ t

0

W (s)dW (s) , (2.10)

which have a stochastic correction for the simple deterministic calculus Stieltjes
integral,

I((det))[X](t) =

∫ t

0

X(s)dX(s) =
1

2

∫ t

0

d(X2)(s) =
1

2

(
X2(t) −X2(0)

)
. (2.11)

This follows from the ordinary calculus chain rule, d(X2)(s) = 2X(s)dX(s), for
differentials, to form an exact differential.

However, in the case of the stochastic integral (2.10),W (t) is a random process,
is nowhere differentiable and it can be shown to have unbounded variation. Note
that for even spacing δtn = ∆t = (t− 0)/(n+ 1) for i = 0 : n, so that the expected
variation, from Table 1.1, is

E

[
n∑

i=0

|∆Wi|
]

=

n∑

i=0

√
2∆t/π=(n+ 1)

√
2t/(π(n+1))=

√
2t(n+1)/π→ +∞ ,

as n→ +∞, so the variation must be unbounded since the expected variation must
not exceed the supremum of the variation and the supremum must be unbounded
as well. (See Mikosch [209] for another justification.)

In the first step in finding a constructive definition for the stochastic integral
(2.10), with K. Itô [149], a left endpoint rectangular or forward integration rule (θ =
0) is initially used to approximate the integral so that the independent increment
property of W (t) is preserved,

I(0)
n [W](t) =

n∑

i=0

W (ti)∆W (ti) =

n∑

i=0

Wi∆Wi , (2.12)

with Wi independent of ∆Wi as intended, where the simplifying numerical notations
Wi ≡ W (ti) and ∆Wi ≡ ∆W (ti) ≡ W (ti+1) −W (ti) have been used. The form
(2.12) is not too useful for summing or approximation, but the following two general
identities are very useful:

Lemma 2.1. Let {xi|i = 0 : n + 1} be any sequence of numbers, and let ∆xi =
xi+1 − xi for i = 0 : n, then

n∑

i=0

∆xi = xn+1 − x0 , (2.13)

n∑

i=0

xi∆xi =
1

2

(
x2

n+1 − x2
0 −

n∑

i=0

(∆xi)
2

)
. (2.14)

“bk0allfinal”
2007/1/7
page 36

i

i

i

i

i

i

i

i

36 Chapter 2. Stochastic Integration for Diffusions

Proof. The first identity (2.13) is trivial, since adding two successive increments
cancels the common value of those increments, i.e.,

∆xi + ∆xi+1 = (xi+1 − xi) + (xi+2 − xi+1) = xi+2 − xi .

Verifying the second and important identity is much easier by expanding the sum-
mand on the right hand side of (2.14) to obtain the left hand side, than vice versa:

1
2

(
x2

n+1 − x2
0 −

∑n
i=0(∆xi)

2
)

= 1
2

(
x2

n+1 − x2
0 −

∑n
i=0(xi+1 − xi)

2
)

= 1
2

(
x2

n+1 − x2
0 −

∑n
i=0(x

2
i+1 − 2xixi+1 + x2

i)
)

= 1
2

(
x2

n+1 − x2
0 −

∑n
i=0 x

2
i+1

+2
∑n

i=0 xixi+1 −
∑n

i=0 x
2
i

)

= 1
2

(
x2

n+1 − x2
0 −

(
x2

n+1 +
∑n

j=0 x
2
j − x2

0

)

+2
∑n

i=0 xixi+1 −
∑n

i=0 x
2
i

)

=
∑n

i=0 xi∆xi ,

(2.15)

where
n∑

i=0

x2
i+1 =

n+1∑

j=1

x2
j

has been transformed by change of index to combine with a similar sum.

The benefit of the form (2.14) when used as xi = Wi, then the end points are
explicitly given by Wn+1 = W (t) and W0 = 0 with probability one, so the discrete
approximation to stochastic integral of W (t) becomes

I(0)
n [W](t) =

1

2
(W 2(t) −

n∑

i=0

(∆Wi)
2) . (2.16)

Using Table 1.1 again, the expectation of I
(0)
n [W](t) is

E
[
I(0)
n [W](t)

]
=

1

2
(t−

n∑

i=0

∆ti) =
1

2
(t− t) = 0 ,

returning to more general spacing ∆ti, where the (2.13) identity
∑n

i=0 ∆ti = tn+1−
t0 = t has also been used. This result suggests that a reasonable form for the
stochastic integral (2.10) corresponds to (≈)

I[W](t) ≈ 1

2
(W 2(t) − t) , (2.17)

where the term (− 1
2 t) is the correction to the ordinary calculus or Riemann inte-

gration answer. However, since the proposed answer is not a true equality, another

“bk0allfinal”
2007/1/7
page 37

i

i

i

i

i

i

i

i

2.2. Stochastic Integration in W (t): The Foundations 37

condition is appropriate for the stochastic nature of the problem and that condition
is the mean square limit or mean square convergence:

Definition 2.2. Mean Square Limit or Convergence:

The random variable I
(0)
n (t) converges in the mean square to the random

variable I(t) if

E

[(
I(0)
n (t) − I(t)

)2
]
→ 0 (2.18)

as n→ ∞, assuming that both random variables have bounded mean squares, i.e.

E
[
(I(0)

n)2(t)
]
<∞ and E

[
I2(t)

]
<∞ .

If the limit (2.18) exists, then denote the mean square limit as

I(t) =
ms

lim
n→∞

[
I(0)
n (t)

]
.

As an abbreviation, sometimes “
ims
= ” will be used for “= limms

n→∞”, where “
ims
= ”

means “Itô mean square equals”.

Some related general stochastic convergence principles:

Definition 2.3. Convergence in Probability:

The random variable I
(0)
n (t) converges in probability to the random variable I(t)

if for every ǫ > 0,

Prob
[∣∣∣I(0)

n (t) − I(t)
∣∣∣ ≥ ǫ

]
→ 0 (2.19)

as n→ ∞. If the limit (2.19) exists, then denote the limit in probability as

I(t) =
prob

lim
n→∞

[I(0)
n (t)] .

Definition 2.4. Convergence in Mean:

The random variable I
(0)
n (t) converges in the mean to the random variable I(t)

if for every ǫ > 0,

E
[∣∣∣I(0)

n (t) − I(t)
∣∣∣
]
→ 0 (2.20)

as n→ ∞. If the limit (2.20) exists, then denote the limit in the mean as

I(t) =
mean

lim
n→∞

[I(0)
n (t)] .

“bk0allfinal”
2007/1/7
page 38

i

i

i

i

i

i

i

i

38 Chapter 2. Stochastic Integration for Diffusions

Theorem 2.5. Convergence in Mean Square =⇒ Convergence in Proba-
bility:

I(t) =
ms

lim
n→∞

[I(0)
n (t)] =⇒ I(t) =

prob

lim
n→∞

[I(0)
n (t)] . (2.21)

Similarly:
Convergence in Mean Square =⇒ Convergence in Mean:

I(t) =
ms

lim
n→∞

[I(0)
n (t)] =⇒ I(t) =

mean

lim
n→∞

[I(0)
n (t)] . (2.22)

Proof. Let ǫ > 0. Tacitly the mean square expectation of the limit I(t) and the
approximation is assumed as conditions for mean square convergence, which implies

that E[|I(t)−I(0)
n (t)|2] → 0+ as n→ ∞. The theorem follows from the Chebyshev

inequality (B.191) of Exercise 4 on Page B71 which is written in a simplified but
convenient form,

Prob[|X | ≥ ǫ] ≤ E[|X |2]/ǫ2 , (2.23)

where ǫ > 0. Let X = I(t) − I
(0)
n (t) and thus

E[|I(t) − I(0)
n (t)|2] ≥ ǫ2Prob[|I(t) − I(0)

n (t)| ≥ ǫ] .

Hence, as n → ∞, Prob[|I(t) − I
(0)
n (t)| ≥ ǫ] → 0+ by being squeezed from above

by the mean square deviation as it goes to zero, i.e., I
(0)
n (t) → I(t) in probability if

I
(0)
n (t) → I(t) in the mean square.

Similarly, the Schwartz (Cauchy-Schwartz) inequality (B.192) of Exercise 5 on
Page B72, truncated to one variable,

E2[X] ≤ E[X2]

can be used to show that convergence in the mean square implies convergence in

the mean, i.e., I
(0)
n (t) → I(t) in the mean if I

(0)
n (t) → I(t) in the mean square.

The expectation of the proposed random variable answer is

E [I[W](t)] = E

[
1

2
(W 2(t) − t)

]
=

1

2
(t− t) = 0 ,

the same as for the approximation.
In order to focus on the crucial term and to simplify the demonstration of the

mean square limit, which is conjectured to be t, consider the following lemma:

Lemma 2.6. Let

J (0)
n (t) ≡

n∑

i=0

(∆Wi)
2 , (2.24)

“bk0allfinal”
2007/1/7
page 39

i

i

i

i

i

i

i

i

2.2. Stochastic Integration in W (t): The Foundations 39

then

t =
ms

lim
n→∞

[J (0)
n (t)] . (2.25)

Proof. The mean t of J
(0)
n (t) is absorbed into the summation by (2.13) with xi = ti,

the square of the mean square argument leads to a double sum which is separated
into diagonal parts (j = i) and off-diagonal parts (j 6= i), allowing the splitting of
the expectations using the independent increment property, so

E

[(
J (0)

n (t) − t
)2
]

= Var
[
J (0)

n (t)
]

= E

(

n∑

i=0

(∆Wi)
2 − t

)2

= E

(

n∑

i=0

(
(∆Wi)

2 − ∆ti

))2

= E

n∑

i=0

(
(∆Wi)

2 − ∆ti

) n∑

j=0

(
(∆Wj)

2 − ∆tj

)

=
n∑

i=0

E

[(
(∆Wi)

2 − ∆ti

)2
]

+

n∑

i=0

E
[
(∆Wi)

2 − ∆ti

] n∑

j=0

j 6=i

E
[
(∆Wj)

2 − ∆tj

]

=
n∑

i=0

Var
[
(∆Wi)

2
]
+ 0 · 0 =

n∑

i=0

(
E
[
(∆Wi)

4
]
− E2

[
(∆Wi)

2
])

=

n∑

i=0

(
3(∆ti)

2 − (∆ti)
2
)

= 2

n∑

i=0

(∆ti)
2 ,

the last couple of steps relying on the results of Table 1.1. Since ∆ti ≤ δtn =
maxj[∆tj], then

E

[(
J (0)

n (t) − t
)2
]

= 2

n∑

i=0

(∆ti)
2 ≤ 2δtn

n∑

i=0

∆ti = 2tδtn → 0

as n→ ∞ showing that

t =
ms

lim
n→∞

[J (0)
n (t)] .

Clearly both J
(0)
n (t) and t have bounded mean squares for bounded t. Hence,

J
(0)
n (t) = I

(0)
n [dW](t), in our functional notation.

“bk0allfinal”
2007/1/7
page 40

i

i

i

i

i

i

i

i

40 Chapter 2. Stochastic Integration for Diffusions

Lemma 2.7.

1

2

(
W 2(t) − t

)
=

ms

lim
n→∞

[
I(0)
n [W](t)

]
(2.26)

where t <∞ and

I(0)
n [W](t) =

n∑

i=0

Wi∆Wi .

Proof. Note that

E[((W 2(t) − t)/2)2] = E[W 4(t) − 2tW 2(t) + t2]/4 = (3t2 − 2t2 + t2)/4 = t2/2 ,

again using the convenient Table 1.1, so (W 2(t)− t)/2 has a bounded mean square

so long at t is bounded. Similarly, one can show that I
(0)
n [W](t) has a bounded

mean square. The mean square convergence of I
(0)
n [W](t) is obvious since J

(0)
n (t)

converged in the mean square to t and J
(0)
n (t) is the only term that depends on the

grid variable n. In fact,

E

[(
I[W](t) − I(0)

n [W](t)
)2
]

=
1

4
E

[(
t− J (0)

n (t)
)2
]
→ 0+ ,

as n → ∞, so converges for the same reason that J
(0)
n (t) did in the mean square.

This mean square relation follows due to the affine difference in forms I
(0)
n [W](t) =

(W 2(t) − J
(0)
n (t))/2 in (2.16) with (2.24) and I[W](t)

ims
= (W 2(t) − t)/2 in (2.17),

no longer a proposed answer. In more general cases the decomposition of I
(0)
n [W](t)

will not be so simple as that between I
(0)
n [W](t) and the part J

(0)
n (t).

Definition 2.8. Denote the Itô mean square (ims) limit stochastic integral
corresponding to the stochastic integral form

I[g](t) =

∫ t

t0

g(W (s), s)dW (s)

with associated forward integration (left rectangular rule or Euler’s method) approx-
imation

I(0)
n [g](t) ≡

n∑

i=0

g(W (ti), ti)(W (ti+1) −W (ti))

by

I(ims)[g](t) =
ms

lim
n→∞

[
I(0)
n [g](t)

]
(2.27)

where 0 ≤ t0 ≤ t, assuming the integrand process g(W (t), t) has a bounded mean
integral of its square, i.e.,

E

[∫ t

t0

g2(W (s), s)ds

]
<∞ ,

“bk0allfinal”
2007/1/7
page 41

i

i

i

i

i

i

i

i

2.2. Stochastic Integration in W (t): The Foundations 41

and the grid partitioning satisfies

0 ≤ t0 < t1 < · · · < tn+1 = t (2.28)

with
δtn = max

i=0:n
[∆ti ≡ ti+1 − ti] ≪ 1

as n→ ∞.
Provided the Itô mean square limit (2.27) exists,

I[g](t)
ims
= I(ims)[g](t) . (2.29)

In addition, the definition holds, since the independent increments property
remains valid in a more general case, namely, if the function g depends on the past
and present history of the Wiener process,

W(t) = {W (r), 0 ≤ r ≤ t} ,

i.e., g = g(W(t), t), in which case, g is called non-anticipatory or adapted to
the process set W(t).

Remarks 2.9.

• For most of the sequel, general functions with dependence on W (t) and t, i.e.,
g(W (t), t), will be used in stochastic diffusion integrals, but the reader can
easily extend results to functions of the type g(W(t), t) adapted to W(t).

• If the Itô mean square limit (2.27),

I(0)
n [g](t) → I[g](t) = I(ims)[g](t)

in the mean square as n→ ∞, exists, then by Theorem 2.5

I(0)
n [g](t) → I[g](t)

in probability as n→ ∞.

• In our notation, I[g](t) = I(ims)[g](t) denotes the mean square limit of the

Itô forward integration approximation I
(0)
n [g](t) with θ = 0 meaning that the

integral g is evaluated at ti on the ith step. They denote particular evaluations
or approximations of the purely symbolic I[g](t) integral representation which
can also have other evaluations using other integration rules with values of θ
or using other rules relying on non-rectangular approximations.

Thus, summarizing the results for the crucial simple example when g(W (t), t) =
W (t) is the following theorem:

Theorem 2.10. Itô Fundamental Mean Square Stochastic Integrals:

∫ t

0

(dW)2(s)
ims
= t . (2.30)

“bk0allfinal”
2007/1/7
page 42

i

i

i

i

i

i

i

i

42 Chapter 2. Stochastic Integration for Diffusions

and

∫ t

0

W (s)dW (s)
ims
= I(ims)[W](t) =

1

2

(
W 2(t) − t

)
. (2.31)

Sketch of Proof. Some more heuristic justification is given here.

• In ordinary deterministic integral calculus, the symbol
∫ t

0
(dx)2(s) would be

considered nonsense, but in Itô stochastic integration the symbol

∫ t

0

(dW)2(s)
ims
=

ms

lim
n→∞

[
n∑

i=0

(∆W)2(ti)

]
= t ,

makes perfect sense, since the Itô mean square (IMS) limit is well defined and
leads to the Itô correction to the ordinary calculus rule for the differential of
x2(t), i.e., x(t)dx(t) = 1

2d(x
2)(t).

• In fact, this leads to a corresponding symbolic Itô mean square ”
ims
=

sym
” version

for differentials,

(dW)2(t)
dt
=
ms

dt . (2.32)

and

W (t)dW (t)
dt
=
ms

1

2
(d(W 2)(t) − dt). (2.33)

Formally, we might rewrite (2.33) with the symbol “
dt
=
ms

” for “equals in dt-

precision mean square”, or simply “
dt
=” for in “dt-precision”, denoting a com-

mutative operation,

d(W 2)(t)
dt
= 2W (t)dW (t) + dt . (2.34)

Using the formal increment definition of the differential (1.3), dW (t) ≡W (t+
dt) −W (t) or the alternate form W (t + dt) = W (t) + dW (t), then a quick
calculation leads to

d(W 2)(t) ≡ W 2(t+ dt) −W 2(t) = (W + dW)2(t) −W 2(t)

= (W 2 + 2WdW + (dW)2 −W 2)(t)
dt
=
ms

2WdW (t) + dt , (2.35)

using a little bit of algebra and the symbolic fact that (dW)2
dt
=
ms

dt, formally

justifying (2.34), demonstrating a fast technique that would be useful when
fast answers are needed.

“bk0allfinal”
2007/1/7
page 43

i

i

i

i

i

i

i

i

2.2. Stochastic Integration in W (t): The Foundations 43

Remarks 2.11.

• The Itô mean square result symbolized by (dW)2(t)
dt
=
ms

dt represents a re-

markable paradox, since the differential (dW)2(t) is deterministic because dt
is deterministic, but dW (t) is stochastic or random.

• In the deterministic continuously differential case, the corresponding quadratic
of a differential, (dx)2(t) would be negligible relative to terms of order dt.
If the integral of such a term were consider the limit of its finite difference
approximation would be zero:

∫ t

0

(dx)2(s) = lim
n→∞

[
n∑

0

(∆xi)
2

]

= lim
n→∞

[
n∑

0

(xi+1 − xi)∆xi

]

= lim
n→∞

[
n∑

0

xi+1∆xi

]
− lim

n→∞

[
n∑

0

xi∆xi

]

= lim
n→∞

[
I(1)
n [x](t)

]
− lim

n→∞

[
I(0)
n [x](t)

]

= I[x](t) − I[x](t) = 0,

since the regular integral of
∫ t

0
x(s)dx(s) is independent in the limit of the

particular approximation parameter used, whether θ = 1 or θ = 0 as in the
above final lines.

• See also Exercise 1 which is to demonstrate that the the density, φdW (t)(w),
for dW (t) is the sum of two delta functions in the generalized sense that
considerably constrains functions of dW (t).

• Computational confirmation of the Itô’s fundamental mean square stochastic
integrals is the subject of Exercise 3 for the (dW)2(t) integrand in (2.30) and
Exercise 4 for the (WdW)(t) integrand in (2.31). For example, Fig. 2.1 is an
illustration of the computational confirmation of the Itô fundamental forward
integration approximating sum

∫ t

0

(dW)2(s)
ims
= t ≃

n∑

i=0

(∆Wi)
2 ,

with n = 104. The confirmation is remarkable considering it is a pointwise
comparison of the approximating sum with the exact Itô answer t, and not a
demonstration of convergence in the Itô mean square limit. The sample size
has to be sufficiently large, else the approximating sum tends away from the

‘‘bk0allfinal’’

2007/1/7

page 44

i

i

i

i

i

i

i

i

44 Chapter 2. Stochastic Integration for Diffusions

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
∫(dW)2(t) Simulations versus t

∫(d
W

)2 (t
)

an
d

t,
S

ta
te

s

t, Time

∫(dW)2(t)
t

Figure 2.1. Simulated sample path for the Itô forward integration approximating

sum of
R

(dW)2(t)
ims
= t ≃Pi(∆Wi)

2 for n = 104 MATLAB randn sample size.

t answer due to the slope of the tangent line bias, that is also a feature of
deterministic ODE applications of Euler’s method.

• The general code for simulating the stochastic diffusion integral with integrand
g(W (t), t) by the Itô forward integration approximation

I[g](t) =

∫ t

t0

g(W (s), s)ds ≃
n∑

i=0

gi∆Wi ,

in an abbreviated MATLAB fragment might be

%%

function intdwdw

% Example MATLAB code for integral of (dW)^2.

clc % clear variables;

t0 = 0.0; tf = 1.0;

n = 1.0e+4; nf = n + 1; % set time grid: (n+1) subintervals

dt = (tf-t0)/nf; % and (n+2) points;

% replace these particular values according the application;

t(1) = t0; % set initial time at i = 1 for MATLAB;

W(1) = 0.0; % set initial diffusion noise condition;

sqrtdt = sqrt(dt); % dW(i) noise time scale so E[dW] = 0;

sumdw2(1) = 0.0; % set initial sum variable;

“bk0allfinal”
2007/1/7
page 45

i

i

i

i

i

i

i

i

2.2. Stochastic Integration in W (t): The Foundations 45

kstate = 1; randn(’state’,kstate); % Set randn state

% for repeatability;

dW = sqrtdt*randn(nf,1); % simulate (n+1)-dW(i)’s sample;

t = t0:dt:tf; % get time vector t;

for i = 1:nf % simulate integral sample path.

W(i+1) = W(i) + dW(i); % sum diffusion noise;

sumdw2(i+1) = sumdw2(i) + (dW(i))^2; % sum whole integrand;

end

plot(t,sumdw2,’k-’,t,t,’k--’,’LineWidth’,2); % plot sum;

title(’\int(dW)^2(t) Simulations versus t’);

ylabel(’\int(dW)^2(t) and t, States’);

xlabel(’t, Time’);

legend(’\int(dW)^2(t)’,’t’,0);

% End Code

%%

• The form for the simulation of the Wiener increment process ∆W (t) by a
standard normal distribution Z scaled by

√
∆t in the above code fragment is

based upon the following change of variables (or change of measure) result,
showing that both ∆W (t) and

√
∆tZ have the same distribution:

Theorem 2.12. Wiener Simulations by Standard Normal:
Let Z be a random variable with a standard normal distribution, ΦZ(z) =
Φn(z; 0, 1), then

Φ∆W (t)(w) = Φ√
∆tZ(w) , (2.36)

where ∆t > 0.

Proof. From properties of the normal distribution,

ΦZ(z) = Prob[Z ≤ z] =
1√
2π

∫ z

−∞
e−y2/2dy

and

Φ∆W (t)(w) = Prob[∆W (t) ≤ w] =
1√

2π∆t

∫ w

−∞
e−v2/(2∆t)dv

=
1√
2π

∫ w/
√

∆t

−∞
e−y2/2dy = Prob

[
z ≤ w/

√
∆t
]

= Prob
[√

∆tZ ≤ w
]

= Φ√
∆tZ(w) ,

since Prob[aZ ≤ w] = Prob[Z ≤ w/a] provided a > 0.

“bk0allfinal”
2007/1/7
page 46

i

i

i

i

i

i

i

i

46 Chapter 2. Stochastic Integration for Diffusions

• See also the full version of this MATLAB code in Section C.11 of the Ap-
pendix C for actual type-set figure.

• See also Fig. 4.1 in Chapter 4 illustrating the application to g(W (t), t) =
exp(W (t)− t/2) that yields an exact differential in the Itô mean square sense.

• Computational simulation is another way to get fast answers when they are
needed.

However, the Itô stochastic integration of exact differentials is easy as the
following theorem shows.

Theorem 2.13. Fundamental Theorem of Itô Stochastic Diffusion Cal-
culus:
Let g(w) be continuous and G(w) be continuously differentiable. Then

(a)

d

[∫ t

0

g(W (s))dW (s)

]
ims
= g(W (t))dW (t) (2.37)

and

(b)

∫ t

0

dG(W (s))
ims
= G(W (t)) −G(0) , (2.38)

for 0 ≤ t.

Proof. The first part of the fundamental theorem (a) benefits from the Itô forward
integration approximation and continuity of g, but mostly from the continuity of
W . Consider the increment version for sufficiently small increments ∆t,

∆

[∫ t

0

g(W (s))dW (s)

]
=

(∫ t+∆t

0

−
∫ t

0

)
g(W (s))dW (s)

=

∫ t+∆t

t

g(W (s))dW (s)

≃ g(W (t))∆W (t)

→ g(W (t))dW (t)

as ∆t→ 0+, using the continuity of both g and W .
For second part of the fundamental theorem (b), using the Itô stochastic

“bk0allfinal”
2007/1/7
page 47

i

i

i

i

i

i

i

i

2.2. Stochastic Integration in W (t): The Foundations 47

integration Definition 2.8,

∫ t

0

dG(W (s))
ims
=

ms

lim
n→∞

[
n∑

i=0

(G(W (ti+1)) −G(W (ti)))

]

=
ms

lim
n→∞

[
n∑

i=0

(∆G(W (ti)))

]
=

ms

lim
n→∞

[G(W (tn+1)) −G(W (t0))]

=
ms

lim
n→∞

[G(W (t)) −G(0)] = G(W (t)) −G(0) ,

upon using the facts that t0 = 0, tn+1 = t, and for any sum over all increments is
the total increment from (2.13) of Lemma 2.1. Assuming that G(W (t)) is bounded
on [0, t] should be all that is needed. Thus, for exact derivatives, Itô stochastic inte-
gration and ordinary deterministic or Riemann integration agree. See Kolmogorov
and Fomin [168] or Protter [232] about the importance of bounded variation as well,
but these details are beyond the scope of this book.

Remarks 2.14.

• The first part (a) relates the integral to the differential formulation and the
second part (b) is useful since it is one of the main ways of finding stochastic
integrals which are not often found in closed form. Usually, part (b) is used to
reduce a more complicated stochastic integral to a closed form plus a simpler,
perhaps Riemann, integral.

• Note that in the proof of part (a), there is a difference in the exact increment
of an integral and its approximate increment for small ∆t. Using a more
general form in some process X(t) for the integral, the exact increment has
the form

∆[I[G]](t) ≡ I[G](t+ ∆t) − I[G](t) =

∫ t+∆t

t

G(X(s), s)dX(s)

that holds for arbitrary ∆t as long as the integral can be defined, while the
approximate integral has the form

∆[I[G]](t) ≃ G(X(t), t)∆X(t) ,

for sufficiently small ∆t. So which form is used in an application depends on
the application and the size of the time increment ∆t.

When dealing with Itô stochastic integrals more general functions of Markov
stochastic processes such as g(W (t)), g(W (t), t) or g(X(t), t), where X(t) may itself
be a stochastic process that is a functional of W (t) and also P (t), some more
information may be needed. In particular, some more assumptions or some theorems
beyond the scope of this applied book may be be needed to demonstrate the mean

“bk0allfinal”
2007/1/7
page 48

i

i

i

i

i

i

i

i

48 Chapter 2. Stochastic Integration for Diffusions

square convergence of the stochastic integrals. Typically, the usual assumptions
[13, 165, 209, 232] require that the integrand function, say Y (t) = g(X(t), t), has
a piece-wise-constant, right-continuous approximation that is compatible with the
Itô forward summation approximation and that permits satisfaction of the mean
square limit criterion. Such assumptions are unnecessary when there is a explicit
function ofW (t) since, as will be seen, the mean square limit property can be verified
directly. However, when a general function is considered with little information then
this extra piece-wise constant assumption will be necessary.

Assumption 2.15. Piece-Wise-Constant Approximations (i-PWCA) in
the Itô Sense for General Mean Square Limits

1. Let Z(t) be a piece-wise-constant, right-continuous stochastic process
such that

Zn(s) = {ζi : τi ≤ s < τi+1; for i = 0 : n} , (2.39)

where the times τi belong to a partition of [0, t] such that τ0 = 0 and τn+1 = t,
so Zn(t) = ζn+1 if needed, but does not contribute to the integral. The ζi
are a sequence of discrete stochastic processes depending on the past Wiener
processes Wi = {W (s) | 0 ≤ s ≤ τi}, i.e., adapted to Wi for i = 0 : n+ 1,
in the Itô sense. Let W be the set of all Wi.

2. Let Y (t) be a stochastic process depending on W where Y (s) can be approxi-
mated in the Itô sense by the piece-wise-constant, right-continuous stochastic
process Zn(s) for 0 ≤ s ≤ t such that

lim
n→∞

E

[∫ t

0

(Y (s) − Zn(s))
2
ds

]
→ 0 (2.40)

as n→ +∞.

Remark 2.16. An example of an approximation by i-PWCA is the function on
[t0, t],

Gn(s) = {g(Wi, ti) : ti ≤ s < ti+1; for i = 0 : n} , (2.41)

where g(w, t) is a continuous function of (w, t), Wi = W (ti) and the set

{ti : ti+1 = ti + ∆ti, ∆ti > 0, for i = 0 : n; tn+1 = t} (2.42)

is the time partition of [t0, t].

Theorem 2.17. Mean of Itô Stochastic Integral:

E

[∫ t

t0

g(W (s), s)dW (s)

]
ims
= 0 , 0 ≤ t0 ≤ t , (2.43)

“bk0allfinal”
2007/1/7
page 49

i

i

i

i

i

i

i

i

2.2. Stochastic Integration in W (t): The Foundations 49

assuming the mean square integrability condition

E

[∫ t

t0

g2(W (s), s)ds

]
<∞ , (2.44)

and the i-PWCA Mean Square Limits Assumption 2.15 for Y (t) = g(W (t), t).

Proof. Only heuristic justification will be given here to keep this presentation sim-
ple. For more elaborate justification using sequences of approximate step function
sums, consult the works of Arnold [13], Schuss [244],Øksendal [222], Mikosch [209]
or Steele [256].

• Using the Itô mean square limit (2.27), then we have the formal finite sum
approximation using partition (2.42),

∫ t

t0

g(W (s), s)dW (s) ≃
n∑

i=0

g(W (ti), ti)(W (ti+1) −W (ti)) =

n∑

i=0

gi∆Wi ,

where gi = g(W (ti), ti) from Gn(s) (2.41) and ∆Wi = W (ti+1)−W (ti). Since
the right hand side sum is finite, the operations of expectation and summation
can be interchanged, so

E

[∫ t

t0

g(W (s), s)dW (s)

]
≃

n∑

i=0

E[gi∆Wi] =

n∑

i=0

E[gi]E[∆Wi]

=

n∑

i=0

E[gi] · 0 = 0 ,

the last line using the independent increments and zero mean properties.

Note that the forward integration rule of Itô is not used, then the mean zero
result of (2.43) will not be true in general (see Exercise 10 on page 62 for a
θ-rule counterexample).

• The final justification requires justifying the interchange of the expectation
operator, a Riemann integral, and the mean square limit operator. The under-
lying integrability assumption can be rewritten using Itô’s forward integration
choice leads to the approximation,

E

[∫ t

t0

g2(W (s), s)ds

]
=

∫ t

t0

E
[
g2(W (s), s)

]
ds ≃

n∑

i=0

E[g2
i]∆ti .

• This approximation can be compared with the expected absolute value of orig-
inal Itô approximated sum of interest followed by a one-component Schwarz’s

inequality

(
csi
≤
)

, to put it into a usable quadratic form and rearrangement

“bk0allfinal”
2007/1/7
page 50

i

i

i

i

i

i

i

i

50 Chapter 2. Stochastic Integration for Diffusions

into independent increments
(

ind
=
inc

)
,

E
h˛̨
˛
R t

t0
g(W (s), s)dW (s)

˛̨
˛
i
≃ E

ˆ˛̨Pn
i=0 gi∆Wi

˛̨˜

csi

≤
r

E
hPn

i=0 gi∆Wi ·
Pn

j=0 gj∆Wj

i

=

r
E
hPn

i=0 g2
i (∆Wi)2 +

Pn
i=0 gi∆Wi

“Pi−1
j=0 +

Pn
j=i+1

”
gj∆Wj

i

ind
=
inc

ˆPn
i=0 E

ˆ
g2

i

˜
E
ˆ
(∆Wi)

2
˜

+
Pn

i=0

“Pi−1
j=0 E [gigj∆Wj] E [∆Wi] +

Pn
j=i+1 E [gigj∆Wi] E [∆Wj]

”i0.5

=
pPn

i=0 E [g2
i]∆ti + 0 ,

where the zero mean and ∆ti variance properties of ∆Wi were used in the
last step. The expectation Schwarz (Cauchy-Schwarz) inequality

E[|XY |] ≤
√

E[X2] · E[Y 2] (2.45)

has been used with X =
∑n

i=0 gi∆Wi and Y = 1 to relate the magnitude
of the sum to the square root of the sum of squares. Hence, in the mean
square sense as n→ +∞, we formally have the expected absolute value of the
stochastic diffusion integral is majorized by the square root of the integral of
the expected square of the integrand,

E

[∣∣∣∣
∫ t

t0

g(W (s), s)dW (s)

∣∣∣∣
]
≤
√∫ t

t0

E [g2(W (s), s)] ds . (2.46)

It has been assumed that the sums are bounded on the bounded interval [t0, t],
so that, in absence of stochasticity, we can expect uniform convergence of the
sums and that the operations of expectation and mean square limit can be
interchanged.

• Note, that this mean zero (2.43) for the Itô stochastic integral result depends
heavily on the Itô forward or left endpoint integration choice, and as will be
seen later, the mean zero result will not hold for other rectangular integration
rule choice.

• Under similar conditions, a quadratic or “ims-covariance” version of this the-
orem holds for interchanging expectation and mean square limit.

Theorem 2.18. Itô-Covariance of Stochastic Integral

E
[∫ t

t0
f(W (s), s)dW (s)

∫ t

t0
g(W (r), r)dW (r)

]

ims
=
∫ t

t0
E [f(W (s), s)g(W (s), s)] ds ,

(2.47)

“bk0allfinal”
2007/1/7
page 51

i

i

i

i

i

i

i

i

2.2. Stochastic Integration in W (t): The Foundations 51

for 0 ≤ t0 ≤ t, assuming that f(W (t), t) and g(W (t), t) satisfy the mean square
integrability condition (2.44) and the i-PWCA Mean Square Limits Assumption 2.15
for Y (t) = g(W (t), t).

Proof. Again, heuristic justifications are presented here. Replacing the expectation
of the Itô integral product with that of the corresponding product of finite sum
approximations leads to

J2(t) = E

[∫ t

t0

f(W (s), s)dW (s)

∫ t

t0

g(W (r), r)dW (r)

]
≃

n∑

i=0

n∑

j=0

E[fi∆Wigj∆Wj] ,

but the independent increments are inter-mingled in the sums and the argument of
the expectation of fi∆Wigj∆Wj . However, if j < i then the increment ∆Wi will
be independent of fi, gj and ∆Wj , while if j > i then ∆Wj will be independent of
fi, gj and ∆Wi, and for i = j the usual independent increment form is obtained.
Thus, taking these independence properties to split the double sum three ways and
using independent increment properties leads to

J2(t) ≃
n∑

i=0

E[figi]E[(∆Wi)
2] +

n∑

i=0

i−1∑

j=0

E[figj∆Wj]E[∆Wi]

s+

n∑

i=0

n∑

j=i+1

E[figj∆Wi]E[∆Wj]

=

n∑

i=0

E[figi]∆ti

ims−→
∫ t

t0

E [f(W (s), s)g(W (s), s)] ds ,

giving the desired conclusion except for replacing the approximately equals (≃) by
the mean square limit as n→ ∞

Upon replacing the function f by g, leads to the immediate corollary for the
“ims-variance” of the Itô stochastic integral in the following.

Corollary 2.19. Itô-Variance of Stochastic Integral:

E

[(∫ t

t0

g(W (s), s)dW (s)

)2
]

ims
=

∫ t

t0

E
[
g2(W (s), s)

]
ds , (2.48)

for 0 ≤ t0 ≤ t, assuming that g(W (t), t) satisfies the mean square integrability
condition (2.44).

Result (2.48) is also called Itô isometry or martingale isometry.

“bk0allfinal”
2007/1/7
page 52

i

i

i

i

i

i

i

i

52 Chapter 2. Stochastic Integration for Diffusions

Theorem 2.20. Itô Stochastic Integral Simple Rules:
Let g, g1 and g2 satisfy the mean square integrability condition (2.44) on 0 ≤ t0 ≤ t
and the i-PWCA Mean Square Limits Assumption 2.15, while letting c1 and c2 be
constants.

• Operator Linearity:

∫ t

t0

[c1g1(W (s), s) + c2g2(W (s), s)]dW (s)

ims
= c1

∫ t

t0

g1(W (s), s)dW (s) + c2

∫ t

t0

g2(W (s), s)dW (s) .

• Additivity over Subintervals:

∫ t

t0

g(W (s), s)dW (s)
ims
=

∫ r

t0

g(W (s), s)dW (s) +

∫ t

r

g(W (s), s)dW (s)

for 0 ≤ t0 ≤ r ≤ t.

• Continuity of Sample Paths for

I[g](t) =

∫ t

t0

g(W (s), s)dW (s) ,

with probability one.

Proof. The first two are clearly true by examining the forward integration approx-
imation. For the last item note that

∆I[g](t) = I[g](t+∆t)−I[g](t) =

∫ t+∆t

t

g(W (s), s)dW (s)
ims
= g(W (t), t)∆W (t) → 0

with probability one as ∆t → 0+.

For later use in formal stochastic calculations, it will be helpful to know how
to handle powers of dW (t) greater than square powers. The critical problem is to
know when to truncate a differential expansion, such as that for exp(dW (t)), at a
power of dW (t) beyond which the higher powers are zero in the sense of the Itô
mean square limit. For example, exp(dW (t)) can be formally expanded by Taylor
series as

exp(dW (t)) = 1 + dW (t) + (dW)2(t)/2! + (dW)3(t)/3! + (dW)4(t)/4! + · · ·

and it turns out we can justify stopping at the quadratic term for the mean square
limit. The consequence will be the famous Itô stochastic chain rule discussed for
jump-diffusions in Chapter 4 and will lead to more rapid calculations. The main
purpose of the current chapter is setting up the foundational justification for this
chain rule.

“bk0allfinal”
2007/1/7
page 53

i

i

i

i

i

i

i

i

2.2. Stochastic Integration in W (t): The Foundations 53

Lemma 2.21. Powers of dW (t):
Let the integer m ≥ 3.

∫ t

0

(dW)m(s)
ims
= 0 (2.49)

or in symbolic differential notation

(dW)m(t)
dt
=
ms

0 . (2.50)

Proof. Let m ≥ 3 and

I[(dW)m−1](t) = I(t;m) ≡
∫ t

0

(dW)m(s) ≃ I(0)
n (t;m) =

n∑

i=0

(∆Wi)
m. (2.51)

The expectation of the Itô approximate sum I
(0)
n (t;m) yields different formulae for

odd values, m = 2k − 1 for k ≥ 2,

E[I(0)
n (t; 2k − 1)] =

n∑

i=0

E
[
(∆Wi)

2k−1
]

= 0 ,

while for even values, m = 2k for k ≥ 2,

E[I(0)
n (t; 2k)] =

n∑

i=0

E
[
(∆Wi)

2k
]

= (2k − 1)!!
n∑

i=0

(∆ti)
k

≤ (2k − 1)!!t(δtn)k−1 → 0 ,

as n→ ∞, where (2k− 1)!! is the double factorial function (1.15). Odd or even m,
m ≥ 3, the results suggest that the Itô mean square value is given by

I(t;m)
ims
= I(ims)(t;m) ≡ lim

n→∞
[I(0)

n (t;m)] = 0 .

The justification requires confirmation of mean square convergence,

lim
n→∞

E
[
(I(0)

n (t;m) − I(ims)(t;m))2
]

= lim
n→∞

E
[
(I(0)

n)2(t;m)
]
.

For odd values, m = 2k − 1, separating out the diagonal part of the quadratic to
separate the independent increments,

E
[
(I(0)

n)2(t; 2k − 1)
]

=
n∑

i=0

E

(∆Wi)

2(2k−1) +
∑

j 6=i

(∆Wi)
2k−1(∆Wj)

2k−1

= (4k − 3)!!
n∑

i=0

(∆ti)
2k−1

≤ (4k − 3)!!t(δtn)2k−2 → 0 ,

“bk0allfinal”
2007/1/7
page 54

i

i

i

i

i

i

i

i

54 Chapter 2. Stochastic Integration for Diffusions

as n → ∞, off-diagonal odd power terms do not contribute. Here (4k − 3)!! is the
double factorial function (1.15). For even values, m = 2k, the off-diagonal terms
contribute since they are products of even powers of increments in i and j, so upon
completing the double sum over j 6= i and subtracting the completed amount from
the single sum,

E
[
(I(0)

n)2(t; 2k)
]

=

n∑

i=0

E

(∆Wi)

4k +
∑

j 6=i

(∆Wi)
2k(∆Wj)

2k

= ((4k − 1)!! − ((2k − 1)!!)2)

n∑

i=0

(∆ti)
2k

+((2k − 1)!!)2
n∑

i=0

(∆ti)
k

n∑

j=0

(∆tj)
k

≤ (4k − 1)!!t(δtn)2k−1 + ((2k − 1)!!)2t(δtn)2k−2(t− δtn) → 0 ,

as n → ∞. Thus, denoting the conclusion symbolically, (dW)m(t)
dt
=
ms

0, provided

m ≥ 3 to an accuracy with error o(dt).

Another differential product whose Itô mean square limit will be useful is
dt dW (t) since it arises in the expansions of functions of stochastic differentials:

Lemma 2.22. Differential Product dt dW (t):

∫ t

0

ds dW (s)
ims
= 0 (2.52)

or in symbolic notation

dt dW (t)
dt
=
ms

0 . (2.53)

Proof. Let

I[dt](t) =

∫ t

0

ds dW (s) ≃ I(0)
n [dt](t) ≡

n∑

i=0

∆ti∆Wi, (2.54)

with some abuse of the notation by replacing functional argument g by dt. The

expectation of the sum I
(0)
n [dt](t) yields

E[I(0)
n [dt](t)] =

n∑

i=0

E [∆ti∆Wi] = 0 .

The result suggests that the Itô mean square value is given by

I[dt](t;m)
ims
= lim

n→∞
[I(0)

n [dt](t;m)] = 0 .

“bk0allfinal”
2007/1/7
page 55

i

i

i

i

i

i

i

i

2.2. Stochastic Integration in W (t): The Foundations 55

The justification requires confirmation of mean square convergence, separating out
the diagonal part of the quadratic to separate the independent increments,

E
[
(I(0)

n)2[dt](t)
]

=

n∑

i=0

E

(∆ti)

2(∆Wi)
2 +

∑

j 6=i

∆ti∆tj∆Wi∆Wj

=

n∑

i=0

(∆ti)
3 ≤ t(δtn)2 → 0 ,

as n→ ∞, off-diagonal do not contribute. Thus, dt dW (t)
dt
=
ms

0 to an accuracy with

error o(dt).

Remarks 2.23.

• Of the Itô differentiable forms that have zero limit in the mean square, dtdW (t)
is one of the most marginable to approximate due to the randomness of dW (t),
even though we know E[dtdW (t)] = 0 and E[|dW (t)|] =

√
2∆t/π from con-

venient Table 1.1. Hence, the justification of
∫ t

0 dsdW (s)
ims
= 0 by showing

the mean square limit is especially important. Note that for even spacing of
time increments, the root mean square of the bound of the mean square ap-
proximation above is

√
t(δtn)2 = t

√
t/(n + 1) → 0 as n → ∞. However, see

Exercise 2 for a more cutting-edge example.

• See Exercise 5 for how to computationally confirm the above Lemma 2.22.

The mean square limits to an accuracy with error o(dt) are summarized in the
following Table 2.1.

Table 2.1. Some Itô stochastic diffusion differentials with an accuracy with
error o(dt) as dt→ 0+.

Differential Itô Mean
Diffusion Form Square Limit

dW (t) dW (t)
dt dt

dt dW (t) 0
(dW)2(t) dt
(dW)m(t) 0, m ≥ 3

(dt)α(dW)m(t) 0, α > 0, m ≥ 1

The more general form,

(dt)p(dW)q(t)
dt
=
ms

δ2p+q,0 + dW (t)δ2p+q,1 + dt δ2p+q,2 , (2.55)

“bk0allfinal”
2007/1/7
page 56

i

i

i

i

i

i

i

i

56 Chapter 2. Stochastic Integration for Diffusions

when p and q are non-negative integers, is left as Exercise 1 on Page 59.

Remark 2.24. In using Table 2.1, the differential entries are just symbols of the
underlying integral basis and care should be taken when applying them to find the
mean square representation of differentials, especially when they appear in multi-
plicative combinations. For instance, one might be tempted to replace (dW)4(t) by

(dW)2(t)(dW)2(t), then replace those terms with (dW)2(t)
dt
=
ms

dt and getting to

(dt)2
dt
=
ms

0, which is the correct but crudely found answer for (dW)4(t). Note that

for finite increments, E[(∆Wi)
4] = 3(∆ti)

2 while E2[(∆Wi)
2] = (∆ti)

2, differing by
a factor of three.

2.3 Stratonovich and other Stochastic Integration
Rules

In this section, other definitions of stochastic integration rules, other than Itô’s
choice of the forward left endpoint rule, are explored for the purpose of comparison
and understanding Itô’s choice. This comparison will be illustrated by the simple
stochastic integral of W (t).

Let the integration θ-rule approximation point be

ti+θ ≡ ti + θ∆ti , (2.56)

where 0 ≤ θ ≤ 1, so the Itô’s rule is when θ = 0 with ∆ti ≡ ti+1 − ti. Let the
interval of integration be [0, t] with partition (2.4). Let the approximate integrand
be Wi+θ ≡W (ti+θ). The technique of splitting terms into independent increments
is similar to that for Itô’s rule, except that there are extra independent increments,

∆θWi ≡Wi+θ −Wi (2.57)

and its complement

∆θ
cWi ≡ ∆Wi − ∆θWi = Wi+1 −Wi+θ (2.58)

for intermediate approximation points when θ > 0, such that ∆θWi+∆θ
cWi = ∆Wi.

We also reuse (2.14) of the reduction Lemma 2.1 for the Itô case in the more general
case here:

I[W](t) =

∫ t

0

W (s)dW (s) ≃ I(θ)
n [W](t) ≡

n∑

i=0

Wi+θ∆Wi

=
n∑

i=0

(Wi + ∆θWi)(∆
θWi + ∆θ

cWi)

=

n∑

i=0

(
Wi∆Wi + (∆θWi)

2 + ∆θWi∆
θ
cWi

)

=
1

2

(
W 2

n+1 −
n∑

i=0

(∆Wi)
2

)
+

n∑

i=0

(∆θWi)
2 +

n∑

i=0

∆θWi∆
θ
cWi .

“bk0allfinal”
2007/1/7
page 57

i

i

i

i

i

i

i

i

2.3. Stratonovich and other Stochastic Integration Rules 57

SinceWn+1 = W (t) with this [0, t] partition and the mean square limit of
∑n

i=0(∆Wi)
2

has been shown to be t, similarly the mean square limit of
∑n

i=0(∆
θWi)

2 will be
the expected value θt, and the last sum will not contribute in the mean being the
product of independent increments, the mean square limit corresponding to the Itô
Lemma 2.7 can be stated:

Lemma 2.25.

∫ t

0

W (s)dW (s)
θ
=
ms

I(θ)[W](t) =
1

2
W 2(t) −

(
1

2
− θ

)
t (2.59)

=
ms

lim
n→∞

[
I(θ)
n [W](t)

]
,

Proof. The mean square limit justifications are quite lengthy and somewhat tan-
gent to our goals here, so only the general end result is given with the details left
to the reader:

E

[(
I(θ)
n [W](t) − I(θ)[W](t)

)2
]

= 2

∣∣∣∣
1

2
− θ

∣∣∣∣
n∑

i=0

(∆ti)
2

≤ 2

∣∣∣∣
1

2
− θ

∣∣∣∣ tδtn → 0 ,

where δtn = maxi=0:n[∆ti] → 0+ as n→ ∞.

Remark 2.26. Stratonovich and Other Stochastic Integration Rules:
The mean square limit is exact, no limit n→ ∞, required, in the case θ = 1/2 where
ti+0.5 = (ti +ti+1)/2 is the midpoint of [ti, ti+1] and the integration rule is called the
midpoint rule or Stratonovich stochastic integration [260]. For Stratonovich
integration, ∫ t

0

W (s)dW (s)
θ
=
ms

I(0,5)[W](t) = W 2(t)/2 ,

which is the deterministic integral answer, containing no correction as in the case of
Itô’s rule. This deterministic property might offer some benefit in some applications,
but at the expense of more complicated overlapping dependence of increments in
time.

Lemma 2.27.

E
[
I(θ)[W](t)

]
= E

[
1

2
W 2(t) −

(
1

2
− θ

)
t

]
= θt. (2.60)

Proof. The result is immediate since E[W 2(t)] = t from Table 1.1 when n = 2 with
|∆W |2(t) replaced by W 2(t) and ∆t by t.

“bk0allfinal”
2007/1/7
page 58

i

i

i

i

i

i

i

i

58 Chapter 2. Stochastic Integration for Diffusions

Remarks 2.28.

• When θ 6= 0, then the useful Itô expectation-integration interchange
property,

E

[∫ t

0

f(W (s), s)dW (s)

]
ims
=

∫ t

0

E[f(W (s), s)]E[dW (s)] = 0

is no longer valid as implied by (2.43). This is a quite nice concrete property,
but for abstract analysis it is more crucial since it means, with appropriate
qualification on f(W (t), t), that the Itô integral is a martingale.

• Decades ago, there was a larger controversy as to

whether Itô or Stratonovich stochastic integration

should be used. The question sometimes centered about what was more ap-
propriate for the application at hand (see for instance, Turelli [271] for a
discussion involving biological applications), but the benefits of Itô’s choice
of forward integration facilitating the use of independent increments of the
processes and the fact that many Stratonovich properties were derived by Itô
stochastic calculus have made the Itô calculus dominant.

2.4 Conclusion

In this chapter, the foundations have been laid for the integrals of the second type
in the integrated SDE (2.2), i.e., using the stochastic diffusion integral of Itô of
Definition 2.8 extended to the more general case:

Definition 2.29. Stochastic Diffusion Integration:

∫ t

0

g(X(s), s)dW (s)
ims
=

ms

lim
n→∞

[
n∑

i=0

g(X(ti), ti)dW (ti)

]
, (2.61)

where X(t) in the integrand function g has an implied dependence on the diffusion
process W (t), but also depends on the jump process P (t). The integrand process
g(X(t), t) is also assumed to have a bounded mean square,

E

[∫ t

0

g2(X(s), s)ds

]
<∞ ,

and satisfy the i-PWCA Mean Square Limits Assumption 2.15 for Y (t) = g(X(t), t).

However, as previously explained, the Poisson jump process fits within the
framework of Itô stochastic integration since it is piece-wise continuous. The stochas-
tic diffusion integration rule (2.61) has been motivated and illustrated by a number
of examples using functions and powers of the diffusion process W (t).

“bk0allfinal”
2007/1/7
page 59

i

i

i

i

i

i

i

i

2.5. Exercises 59

2.5 Exercises

In all computational exercises, Mathematica, MATLAB, Maple or other program-
ming may be used where appropriate, but both figures and codes should be sub-
mitted for evaluation.

1. Justify the general form (2.55) by mean square convergence,

(dt)p(dW)q(t)
dt
=
ms

δ2p+q,0 + dW (t)δ2p+q,1 + dt δ2p+q,2 ,

when p and q are non-negative integers.
{Remark: It may be assumed that the cases 2p+ q = 0 : 2 are well-known, so
need to show mean square convergence results for 2p+ q ≥ 3 in general.}

2. Show the limit in the mean square for

I [(dt)α] (t) ≡
∫ t

0

(ds)αdW (s)
ims
= 0 ,

provided α > 0 and is real.
{Hint: See Lemma 2.22 for the case α = 1.}

3. Computationally confirm the mean square limit for Itô’s most fundamental
stochastic integral given as

∫ t

0

(dW)2(s)
ims
= t ,

by demonstrating that the Itô forward integration approximating sum

I(0)
n [dW](t) =

n∑

i=0

(∆Wi)
2

gives a close approximation to t for sufficiently large n. Apply a modification
of the algorithm of Program C.7 in Appendix C, used in generating Figure 1.1,

to the approximation I
(0)
n [dW](t), submitting your modification of the code.

Use n1 = 1000 and n2 = 10000 sample sizes, plotting the I
(0)
n [dW](t) with the

limit t versus t for t ∈ [0, 2]. Plot separately the errors for each n between
the approximation sum and the exact IMS answer. Also report the standard
deviation (std in MATLAB) of the errors for each n. Characterize the con-
vergence on the average by assuming that the standard deviation satisfies the
simple rule stdj ≃ C/nβ

j as nj → ∞ for j = 1 : 2, and find the average
convergence rate β from the two sample step sizes nj for j = 1 : 2.
{Caution: In this problem and the next two, you are not asked to verify the
mean square limit, but to verify that the forward approximation comes close
in this example.}

“bk0allfinal”
2007/1/7
page 60

i

i

i

i

i

i

i

i

60 Chapter 2. Stochastic Integration for Diffusions

4. Computationally confirm the mean square limit for Itô’s other very funda-
mental stochastic integral given as

∫ t

0

W (s)dW (s)
ims
= I(ims)[W](t) =

1

2

(
W 2(t) − t

)

by demonstrating that the Itô forward integration approximating sum

I(0)
n [W](t) =

n∑

i=0

Wi∆Wi

gives a close approximation to W 2(t) − t)/2 for sufficiently large n. Apply a
modification of the algorithm of Program C.7 in Appendix C, used in gen-

erating Figure 1.1, to the approximation I
(0)
n [W](t). Use n1,k = 100 and

n2,k = 10000 sample sizes and for k = 1 : 4 different states or seeds. Plot

the approximation I
(0)
n [W](t) with (W 2(t) − t)/2 and the error En[W](t) =

I
(0)
n [W](t) − (W 2(t) − t)/2 versus t for t ∈ [0, 2]. Plot separately the errors

for each n between the approximation sum and the exact IMS answer. Also
report the standard deviation (std in MATLAB) of the errors for each nj, k
for j = 1 : 2 sample sizes and k = 1 : 4 states. From these values compute
the common rate βk for both j = 1 : 2 sizes and for each fixed state k = 1 : 4,
assuming stdj,k = Ck/n

βk

j,k for each j = 1 : 2 and k = 1 : 4, finally computing
the average βk over k = 1 : 4. Does the larger value of n make Itô’s stochastic
integration model more convincing than the smaller value?

5. Computationally confirm the mean square limit for another of Itô’s more
obvious fundamental stochastic integrals:

∫ t

0

dsdW (s)
ims
= I(ims)[dt](t) = 0

by demonstrating that the Itô forward integration approximating sum

I(0)
n [dt](t) =

n∑

i=0

∆ti∆Wi

gives a close approximation to 0 for sufficiently large n. Apply a modification
of the algorithm of Program C.7 in Appendix C , used in generating Figure 1.1,

to the approximation I
(0)
n [dt](t). Use n1 = 1000 and n2 = 10000 sample

sizes, plotting the common value of the approximation and error I
(0)
n [dt](t) =

En[dt](t) and the noise W (t) for t ∈ [0, 2]. Plot separately the errors for each
n between the approximation sum and the exact IMS answer. Also report the
standard deviation (std in MATLAB) of the errors for each nj, k for j = 1 : 2
sample sizes and k = 1 : 4 states. From these values compute the common
rate βk for both j = 1 : 2 sizes and for each fixed state k = 1 : 4, assuming
stdj,k = Ck/n

βk

j,k for each j = 1 : 2 and k = 1 : 4, finally computing the
average βk over k = 1 : 4. Does the larger value of n make Itô’s stochastic
integration model more convincing than the smaller value?

“bk0allfinal”
2007/1/7
page 61

i

i

i

i

i

i

i

i

2.5. Exercises 61

6. Computationally check the Itô mean square limit for convergence of the Itô
approximating sum of the stochastic integral of (dW)2(t) to the limit t by
directly computing the K-sample mean square

S
(K)
i,n =

1

K

K∑

k=1

i∑

j=1

((
∆W

(k)
j

)2

− ∆tj

)

2

,

where the identity t = tn+1 =
∑n

i=0 ∆ti has been used to merge t into the
approximating sum. Select K = 5 random states or seeds, n = 10m for
m = 2 : 5 sample sizes, constant ∆ti = ∆t, i = n and t = 1, as an example.

Plot log10(S
(K)
n,n) versus m = log10(n). What rate of convergence is suggested

by this graph?
{Hint: If ∆t = 10m and S ∼ C · (∆t)a then log10(S) ∼ a · m + log10(C).
In MATLAB for instance, recall that randn(’state’,k); sets the k normal
random number state.}

7. Show that the non-Itô, approximate backward integration rule (θ = 1) for the
stochastic integral

∫ t

t0

W (s)dW (s) ≃ I(1)
n (t) =

n∑

i=0

Wi+1∆Wi

differs from the Itô rule (θ = 0) by a deterministic factor of t in the mean
square limit, i.e.,

I(1)
n (t) − I(0)

n (t)
ims−→ t .

{Hint: The mean square limit is not needed if the approximate integral is
related to the Itô integral for (dW)2(t).}

8. Show that the non-Itô, approximate trapezoidal integration rule, a variant of
the Stratonovich integral, for the stochastic integral

∫ t

t0

W (s)dW (s) ≃ I(trap)
n (t) =

1

2

n∑

i=0

(Wi +Wi+1)∆Wi

differs from the Itô rule (θ = 0) by a deterministic factor of t/2 in the mean
square limit, i.e.,

I(trap)
n (t) − I(0)

n (t)
ims−→ 1

2
t .

{Hint: The mean square limit is not needed if the approximate integral is
related to the one for (dW)2(t).}

9. Demonstrate that the trapezoidal rule leads to Stratonovich or regular cal-
culus by approximating the stochastic integral example

∫ t

t0

W 2(s)dW (s)

“bk0allfinal”
2007/1/7
page 62

i

i

i

i

i

i

i

i

62 Chapter 2. Stochastic Integration for Diffusions

with

I(0)
n (t) =

1

2

n∑

i=0

(W 2
i +W 2

i+1)∆Wi .

In particular, show that

I(0)
n (t) =

1

3
(W 3(tn+1) −W 3(t0)) +

1

6

n∑

i=0

(∆Wi)
3 ,

by forming convenient powers of independent increments. Formally, justify
that mean square limit is just the first term using elementary mean square
properties for the powers of increments (∆W)p(ti). You are not required to
rigorously show mean square convergence, unless you want to show it.

Remark 2.30. In numerical integration of deterministic integrands, both
the midpoint rectangular rule and the trapezoidal rule yield the same order of
error estimate when the integrand is sufficiently continuous.

10. Formally show that the θ-rule expansion (no mean square convergence justi-
fication requested) leads to

E

[∫ t

0

g(W (s))dW (s)

]
θ
=
ms

E
[
I(θ)[g(W)](t)

]
= θ

∫ t

0

E [g′(W (s))] ds,

where 0 ≤ θ ≤ 1, assuming the basic θ-rule approximation for the stochastic
integral is

∫ t

0

g(W (s))dW (s) ≃ I(θ)
n [g(W)](t) ≡

n∑

i=0

gi+θ∆Wi,

where g has a bounded mean square expectation (2.44), bounded derivatives of
all orders, gi+θ = g(Wi+θ) = g(W (ti+θ)) = g(Wi+∆θWi) with ti+θ = ti+θ∆ti
from (2.56), and assuming that g satisfies the 2nd-order Taylor approximation
with 3rd-order error,

g(w0 + ∆W) = g(w0) + g′(w0)∆W +
1

2
g′′(w0)(∆W)2 + (∆W)3O(1),

sufficiently uniform with respect to the density φ∆W (t)(w) on (−∞,+∞)

to allow termwise expectations, provided you can show that E[(∆θWi)
m] =

O2(θ∆ti) for m ≥ 3 and sufficiently small ∆ti. See also the θ-decomposition
(2.57-2.58) of ∆Wi.

Remark 2.31. Thus, this demonstrates that the Itô sense Theorem 2.17 is
generally limited to θ = 0.

“bk0allfinal”
2007/1/7
page 63

i

i

i

i

i

i

i

i

2.5. Exercises 63

Suggested References for Further Reading

• Arnold, 1974 [13].

• Gard, 1988 [91].

• Itô, 1951 [149].

• Karlin and Taylor, 1981 [162].

• Kloeden and Platen, 1999 [165].

• Kolmogorov and Fomin, 1970 [168].

• Mikosch, 1998 [209].

• Øksendal, 1998 [222].

• Protter, 1990 [232].

• Schuss, 1980 [244].

• Taylor and Karlin, 1998 [265].

“bk0allfinal”
2007/1/7
page 64

i

i

i

i

i

i

i

i

64 Chapter 2. Stochastic Integration for Diffusions

“bk0allfinal”
2007/1/7
page 65

i

i

i

i

i

i

i

i

Chapter 3

Stochastic Integration for
Jumps

A unique feature of this chapter is the greater emphasis on the importance of the
lack of continuity that leads to deviations from the chain rule of regular calculus,
namely, the discontinuity of Poisson jumps in time and the non-smooth behavior of
Wiener. The Poisson jump processes are given in terms of special right-continuous
step and impulse functions. Unless otherwise stated, a fixed jump rate λ is assumed.
The Poisson jump calculus is also formulated in terms of finite difference algebraic
recursions.

3.1 Stochastic Integration in P (t): The Foundations

In this chapter, foundations will be laid for the integrals of the third type in the
integrated SDE (2.2), i.e., using the notion of Itô stochastic integral of Definition 2.8
(p. 40) by extending it to the jump case:

Definition 3.1. Poisson Jump Stochastic Integration:

∫ t

0

h(X(s), s)dP (s)
ims
=

ms

lim
n→∞

[
n∑

i=0

h(X(ti), ti)∆P (ti)

]
, (3.1)

where X(t) in the integrand function h has an implied dependence on the diffusion
process W (t), but also depends on the jump process P (t). The integrand process
h(X(t), t) is also assumed to have a bounded mean integral of squares,

E

[∫ t

0

h2(X(s), s)ds

]
<∞ , (3.2)

and to satisfy the Piece-Wise Constant Approximations (i-PWCA) Mean Square
Limits Assumption 2.15 (p. 48) for Y (t) = h(X(t), t), with the usual grid partition
specifications on [0, t].

For most problems encountered in practice, there will not be a need for this

65

“bk0allfinal”
2007/1/7
page 66

i

i

i

i

i

i

i

i

66 Chapter 3. Stochastic Integration for Jumps

elaborate but fundamental mean square definition. The definition may be needed
as a reference for unusual applications with stochastic jumps.

For instance, if an exact differential in P (t) can be formed, then as with
stochastic diffusion integration, i.e., when the variable of integration is the random
diffusion process W (t), there will be no need for mean square justification. Since
much of the work of stochastic integration was performed in the previous chapter,
with some very general results, it will be possible to move though this chapter faster.

Theorem 3.2. Fundamental Theorem of Poisson Jump Calculus:
Let h(p) be continuous and H(p) be continuously differentiable. Then

(a)

d

(∫ t

0

h(P (s))dP (s)

)
ims
= h(P (t))dP (t) (3.3)

and

(b)

∫ t

0

dH(P (s))
ims
= H(P (t)) −H(0) , 0 ≤ t . (3.4)

Proof. The proof is almost the same as for the analogous result (2.37, 2.38), except
for change in names from W (t) to P (t) and that the issue of unbounded variation
need not be considered.

However, the right continuity property of P (t) is essential to account for a
jump at t for part (a). Consider the increment version for sufficiently small incre-
ments ∆t,

∆

(∫ t

0

h(P (s))dP (s)

)
=

(∫ t+∆t

0

−
∫ t

0

)
h(P (s))dP (s)

=

∫ t+∆t

t

h(P (s))dP (s)

≃ h(P (t))∆P (t) = h(P (t))(P (t + ∆t) − P (t))

→ h(P (t))dP (t)

as ∆t → 0+, using the increment definition, subinterval additivity (see (3.23) later
in this chapter), the continuity h and piece-wise continuity of P , such that any last
minute jump is captured in ∆P (t) or dP (t).

See the proof of the diffusion part (b) (2.38) for the jump part (b).

First, consider the most basic jump integral, the integral of P (t) with respect
to P (t), namely,

I[P](t) =

∫ t

0

P (s)dP (s) ,

“bk0allfinal”
2007/1/7
page 67

i

i

i

i

i

i

i

i

3.1. Stochastic Integration in P (t): The Foundations 67

which will be evaluated directly through precision-dt calculus and indirectly by
showing that the defining mean square limit is satisfied.

Theorem 3.3. Jump Integral of
∫
PdP :

I[P](t) =

∫ t

0

P (s)dP (s)
ims
= I(ims)[P](t) ≡ 1

2
(P (P − 1))(t) , (3.5)

is mean square limit integral,

I(ims)[P](t)
ims
=

ms

lim
n→∞

[
I(0)
n [P](t)

]
, (3.6)

where the forward integration approximation is

I(0)
n [P](t) =

n∑

i=0

P (ti)∆P (ti) . (3.7)

Proof. Starting with the Poisson increment and the square P 2(t), as in the diffusion
case since d(x2) = 2xdx in smooth deterministic calculus,

∆(P 2) ≡ P 2(t+ ∆t) − P 2(t) =
(
(P + ∆P)2 − P 2

)
(t)

=
(
2P∆P + (∆P)2

)
(t) .

Taking the limit ∆t → 0+, replacing ∆P by dP , and using the zero-one jump law

(1.35) to let (dP)2
dt
= dP with probability one upon neglect of smaller order

terms, leads to

d(P 2)(t)
dt
= (2PdP + dP)(t)

in probability. Solving for the integrand-differential while forming an exact differ-
ential yields in probability

(PdP)(t)
dt
=

1

2
d
(
P 2 − P

)
(t) .

Therefore, integration by the fundamental theorem of stochastic jump integration
(3.3)

∫ t

0

(PdP)(s)
ims
=

1

2

∫ t

0

(d
(
P 2 − P

)
(t))(s) =

1

2

(
P 2 − P

)
(t) = I(ims)[P](t) ,

where the initial Poisson condition P (0) = 0 with probability one has been used
to eliminate the initial value of the integral. That takes care of the first part of the
proof, but the technique is general enough for other powers.

For the second part, the forward integration approximation can be simplified
by the useful finite difference identity (2.14),

I(0)
n [P](t) =

n∑

i=0

Pi∆Pi =
1

2

(
P 2(t) −

n∑

i=0

(∆Pi)
2

)

“bk0allfinal”
2007/1/7
page 68

i

i

i

i

i

i

i

i

68 Chapter 3. Stochastic Integration for Jumps

for the partition
0 = t0 < t1 < · · · < tn+1 = t

and using the fact (2.13) that

P (t) = Pn+1 =
n∑

i=0

∆Pi ,

the difference between the approximation and the limit reduces to

I(0)
n [P](t) − I(ims)[P](t) =

1

2

n∑

i=0

(
∆Pi − (∆Pi)

2
)
.

The mean square again is reduced by splitting up the sums due to the square into
independent increments prior to term-wise passing the mean over the sums,

E

»“
I(0)

n [P](t) − I(ims)[P](t)
”2
–

=
1

4
E

"
nX

i=0

`
∆Pi − (∆Pi)

2
´
!2#

=
1

4

nX

i=0

E
h`

∆Pi − (∆Pi)
2´2i

+
1

4

nX

i=0

X

j 6=i

E
ˆ`

∆Pi − (∆Pi)
2´ ·

`
∆Pj − (∆Pj)

2´˜

=
1

4

nX

i=0

E
ˆ
(∆Pi)

2 − 2(∆Pi)
3 + (∆Pi)

4
˜

+
1

4

nX

i=0

E
ˆ
∆Pi − (∆Pi)

2˜X

j 6=i

E
ˆ
∆Pj − (∆Pj)

2˜

=
1

4

nX

i=0

`
λ∆ti(1 + λ∆ti) − 2λ∆ti(1 + 3λ∆ti + (λ∆ti)

2)

+λ∆ti(1 + 7λ∆ti + 6(λ∆ti)
2 + (λ∆ti)

3)
´

+
1

4

nX

i=0

(λ∆ti − λ∆ti(1 + λ∆ti))

·
X

j 6=i

(λ∆tj − λ∆tj(1 + λ∆tj))

≤ 1

4

nX

i=0

(λ∆ti)
2 (2 + 4λ∆ti) +

nX

i=0

(λ∆ti)
2

nX

j=0

(λ∆tj)
2

!

≤ 1

4

`
λt(2λδtn + 4(λδtn)2) + (λt2)(λδtn)2

´
−→ 0

as n → ∞ and bounded t. For the evaluation of the expectations of powers of
Poisson increments, the convenient Table 1.2 has been frequently used. Therefore,
the mean square limit has been proven.

Remarks 3.4.

“bk0allfinal”
2007/1/7
page 69

i

i

i

i

i

i

i

i

3.1. Stochastic Integration in P (t): The Foundations 69

• The main result (3.5),

∫ t

0

P (s)dP (s)
ims
=

1

2
(P (P − 1))(t) ,

for this basic integral has an interesting mathematical interpretation. Since
P (t) is integer valued, the answer is the Pythagorean (P (t)−1)th triangular
number given by the successive sum of n = P (t) − 1 integers,

S(1)
n =

n∑

k=0

k = n(n+ 1)/2 . (3.8)

The interpretation is not a coincidence, since when P (t) jumps instanta-
neously by one unit and adds it to its count, dP (t) jumps by one only momen-
tarily so that the integral in (3.5) serves as a triangular number counter.
The forward integration approximation serves to keep the count short of the
last jump, e.g., the forward approximation is zero when P (t) = 1.

• The derivation of (3.8) by finite differences gives useful techniques for calcu-
lating and interpreting other Poisson jump integrals. The basic lemma for the
difference inversion (“discrete integration”) is given by

Lemma 3.5. If

∆[an] = ∆[bn] ,

for two sequences and any integer n, then

an = bn + C

where C is an arbitrary constant.

The proof is obvious since a constant sequence is the only sequence elements
that produces zero difference.

• Since ∆[S
(1)
n] = S

(1)
n+1 − S

(1)
n = (n + 1), ∆[n] = 1 and ∆[n2] = 2n + 1 =

2n+ ∆[n] or n = 1
2∆[n2 − n], then ∆[S

(1)
n] = ∆[(n2 − n)/2 + n] and S

(1)
n =

n(n+1)/2, upon elimination the constant of discrete integration by the initial

condition S
(1)
0 = 0. This proves the first triangular number sum (3.8) by finite

differences using Lemma 3.5.

The first few Poisson power integrals are listed with an accuracy with error
o(dt) in the Table 3.1:

Remarks 3.6.

“bk0allfinal”
2007/1/7
page 70

i

i

i

i

i

i

i

i

70 Chapter 3. Stochastic Integration for Jumps

Table 3.1. Some stochastic jump integrals of powers with an accuracy with
error o(dt) as dt→ 0+.

precision-dt:

m
∫ t

0
(PmdP)(s)

0 P (t)
1 (P (P − 1))(t)/2
2 (P (P − 1)(2P − 1))(t)/6
3 (P 2(P − 1)2)(t)/4

• The proofs of the formulas for m = 2 and m = 3 are left as an exercise for
the reader in Exercise 1 on Page 80.

• The integral results of Table 3.1 are all in the form of generalized or super-
triangular numbers of order m when n = P (t) − 1:

Definition 3.7. The super-triangular numbers of order m for the first
n+ 1 non-negative integers are defined as

S(m)
n =

n∑

k=0

km ,

for integers m ≥ 0 and n ≥ 0.

The summation form of a pure Poisson integral is generalized in the following
theorem:

Theorem 3.8. Pure Poisson Integral as Sum Form: Let h(p) be a continuous
function and let the process h(P (t)) have a bounded mean integral of squares (3.2).
Then,

∫ t

0

h(P (s))dP (s)
ims
=

P (t)−1∑

k=0

h(k) , (3.9)

with the usual summation convention for irregular forms that

−1∑

k=0

h(k) ≡ 0 (3.10)

for the case that P (t) = 0.

Proof. It is only necessary to confirm that both sides of Eq. (3.9) satisfy the same
differential. The tools used will be the Fundamental Theorem of Stochastic Calcu-
lus (3.3) and the idea of Zero-One Jump Power Law (1.36). By the fundamental

“bk0allfinal”
2007/1/7
page 71

i

i

i

i

i

i

i

i

3.1. Stochastic Integration in P (t): The Foundations 71

theorem, the differential of the left hand side of (3.9),

d

(∫ t

0

h(P (s))dP (s)

)
dt
= h(P (t))dP (t) .

Then, by using the incremental definition of the differential for the right hand side
of (3.9),

d

P (t)−1∑

k=0

h(k)

 =

P (t)+dP (t)−1∑

k=0

h(k) −
P (t)−1∑

k=0

h(k)
dt
= h(P (t))dP (t) ,

where the last step is due to the zero-one jump law since the difference in the two
sums in the first line is zero if dP (t) = 0, else there is only one extra term in the
first sum in the alternate case dP (t) = 1. Also dP (t) = 1 is used in the argument of
h. Hence, the differential of both sides of (3.9) are the same. The final result then
follows for the reasons:

1. both sides satisfy the same initial condition,

2. the vanishing of the jump integral in the limit,

lim
t→0+

∫ t

0

h(P (s))dP (s) = 0,

3. the vanishing of the Poisson sum in the limit.

lim
t→0+

P (t)−1∑

k=0

h(k) =

−1∑

k=0

h(k) ≡ 0 ,

4. P (0+) = 0 and

5. the irregular summation convention (3.10).

The argument is analogous to that of mathematical induction, since we have shown
that both sides of (3.9) satisfy the same initial condition and the same changes so
lead to the same result hypothesized in the theorem.

Remarks 3.9.

• Note that in this theorem the sum is over all P (t) jump amplitudes for k+1 =
1 : P (t) jumps, but that the jump amplitude h is evaluated at the pre-jump
value h(k) for k = 0 : P (t) − 1 by the definition of the Poisson jump with
amplitude determined by the function h. This jump amplitude evaluation is
consistent with the Itô forward integral approximation,

∆

∫ t

0

h(P (s))dP (s) ≃ h(P (t))∆P (t)

“bk0allfinal”
2007/1/7
page 72

i

i

i

i

i

i

i

i

72 Chapter 3. Stochastic Integration for Jumps

for a single, sufficiently small time step ∆t, picking the prior value of h at
P (t) in the case ∆P (t) > 0, though it is not that obvious for the simple jump
amplitude dependence h(P (t)), the picking of the pre-jump value is also a
consequence of the right continuity property of the Poisson process (1.20).

Corollary 3.10.

∫ t

t=0

Pm(s)dP (s)
ims
= S

(m)
P (t)−1 =

P (t)−1∑

k=0

km , (3.11)

for m ≥ 0 and the irregular summation convention (3.10) is applicable.

Remark 3.11. A simple consistency check on (3.11) is to verify the simplest case
when m = 0 and the integral of (PmdP)(t) = dP (t) on [0, t] must be P (t) by the
fundamental theorem. The right hand side of (3.11), with km = 1, is

P (t)−1∑

k=0

1 = (P (t) − 1 + 1) · 1 = P (t) .

Theorem 3.12. General Poisson Stochastic Integral:
Let h(x, t) be a continuous function and let the process h(X(t), t) have a bounded

mean integral of squares (3.2) and satisfy the i-PWCA Mean Square Limits As-
sumption 2.15 for Y (t) = h(X(t), t). Then,

∫ t

0

h(X(s), s)dP (s)
ims
=

P (t)∑

k=1

h(X(T−
k), T−

k) , (3.12)

where Tk is the kth jump of Poisson process P (t).

Proof. Here, we rely explicitly on both the Itô forward integration rule (θ = 0)
and the right-continuity property of P (t). It is sufficient to examine the processes
P (t), ∆P (t) and h(X(t), t) in the very neighborhood of the kth jump at time Tk,
such that ∆t is small enough that we can exclude the prior jump at Tk−1 and the
next jump at Tk+1 with Tk−1 < t < Tk+1. After all, the Poisson process is a rare
event process. Thus, the Poisson process has the simple, right-continuous form

P (t) =

{
k − 1, Tk−1 < t ≤ T−

k

k, Tk = T+
k ≤ t < Tk+1

}
,

where 1 ≤ k ≤ P (t). However, the increment ∆P (ti) = P (ti + ∆t) − P (ti) is a
function of both ti and ∆t for i = 1 : n , but we are interested in the limit as
∆t → 0+ with ti fixed in (Tk−1, Tk+1), so there are three case, both ti and ti + ∆t

“bk0allfinal”
2007/1/7
page 73

i

i

i

i

i

i

i

i

3.1. Stochastic Integration in P (t): The Foundations 73

to the left of Tk, Tk between ti and ti + ∆t and both on the right of Tk, i.e.,

h(X(ti), ti)∆P (ti)

=

0, Tk−1 < ti < ti + ∆t ≤ T−
k

h(X(ti), ti), Tk−1 < ti ≤ T−
k < Tk = T+

k ≤ ti + ∆t < Tk+1

0, Tk = T+
k ≤ ti < ti + ∆t < Tk+1

→

0, Tk−1 < ti < T−
k

h(X(T−
k), T−

k), Tk−1 < ti = T−
k

0, Tk = T+
k ≤ ti < Tk+1

 ,

as ∆t → 0+ with ti fixed in (Tk−1, Tk+1) and this is valid for 1 ≤ k ≤ P (t). Thus,
the Itô approximate sum is

∫ t

0

h(X(s), s)dP (s) ≃
n∑

i=0

h(X(ti), ti)∆P (ti)

→
P (t)∑

k=1

h(X(T−
k), T−

k) ,

as n → +∞ and δtn = maxj [∆tj] → 0+, since for large n the ∆P (ti) will be
mostly zero and only the time intervals that straddle a jump T−

k will be selected.
The state process, different from the simple jump Poisson process, will in general
undergo continuous changes between jumps of P (t), but the right-continuity causes
the immediate pre-jump value of the jump-amplitude at T−

k to be chosen for each
jump time Tk.

Remark 3.13. Obviously, if h(X(t), t) = 1, then
∑P (t)

k=1 1 = P (t). Another simple
consistency check on (3.12) is to verify the case when h(X(t), t) = P (t) and the
integral of (PdP)(t) on [0, t] must be (P (P − 1))(t)/2 by (3.5). The right hand side
of (3.11), with h(X(t), t) = P (t), P (T−

k) = k − 1, is

P (t)∑

k=1

P (T−
k) =

P (t)∑

k=1

(k − 1) = P (t)(P (t) − 1)/2 ,

using the standard triangular number summation. Hence, Eq. (3.12) is consistent
with Eq. (3.9).

Definition 3.14. Jump Function [X](t):
The jump value of the state X at the pre-jump time T−

k is defined as

[X](Tk) ≡ X(T+
k) −X(T−

k) , (3.13)

when the kth jump is at time Tk. For finite discontinuities, the jump function
includes all the change of the function, the zeroth change or discrete derivative
of the state X(t).

“bk0allfinal”
2007/1/7
page 74

i

i

i

i

i

i

i

i

74 Chapter 3. Stochastic Integration for Jumps

Example 3.15. Let

Y (t) =

∫ t

0

h(X(s), s)dP (s)

and

∆Y (t) =

∫ t+∆t

t

h(X(s), s)dP (s) ≃ h(X(t), t)∆P (t)

for 0 < ∆t ≪ 1, so

[Y](t) ≡ Y (t+) − Y (t−) =

∫ t+

t−
h(X(s), s)dP (s) = h(X(t−), t−)dP (t) , (3.14)

since dP (t) = dP (t−) with both being one when t = T−
k or t− = T−

k but otherwise
zero when Tk−1 < t < T−

k or Tk−1 < t− < T−
k .

In the non-Itô integration approximation, 0 < θ ≤ 1,

∆

∫ t

0

h(P (s))dP (s) ≃ h(P (t+ θ∆t))∆P (t) ,

so if the last jump is Tk and the next one is Tk+1, such that Tk < t < Tk+1 < t+∆t,
i.e., within the single time step, then P (t) = k and we get the jump amplitude is
h(k) if the jump is late, t + θ∆t < Tk+1 < t + ∆t, since P (t + θ∆t) = k, but
we get the amplitude h(k + 1) if the jump is early, t < Tk+1 < t + θ∆t, since
P (t + θ∆t) = k + 1. Thus, the Itô formulation has much less complexity and is
more straight-forward to implement.

Some other jump differential products whose mean square limits will be useful
are dt dP (t) and dP (t) dW (t), since they arise in the expansions of functions of
stochastic differentials:

Lemma 3.16. Differential Products dt dP (t) and dP (t) dW (t):

∫ t

0

ds dP (s)
ims
= 0, (3.15)

or in symbolic notation

dt dP (t)
dt
= 0 , (3.16)

and

∫ t

0

dP (s) dW (s)
ims
= 0, (3.17)

or in symbolic notation

dP (t) dW (t)
dt
= 0 , (3.18)

“bk0allfinal”
2007/1/7
page 75

i

i

i

i

i

i

i

i

3.1. Stochastic Integration in P (t): The Foundations 75

where W (t) and P (t) are independent random variables.

Proof. The proofs are similar to the proof for dt dW (t), with a minor change in
argument due to the non-zero incremental mean

E[∆P (ti)] = λ∆ti.

Let

I[dt](t) =

∫ t

0

ds dP (s) ≃ In[dt](t) ≡
n∑

i=0

∆ti∆P (ti). (3.19)

The expectation of the sum In[dt](t) yields

E[In[dt](t)] =
n∑

i=0

E [∆ti∆P (ti)] =
n∑

i=0

λ(∆ti)
2

≤ λtδtn → 0+ ,

as n→ +∞. The result suggests that the Itô mean square value is given by

I[dt](t)
ims
=

ms

lim
n→∞

In[dt](t) = 0 .

This can be verified in the mean square limit by showing that the mean square limit
is zero, while the splitting into independent increments is employed,

E

(

n∑

i=0

∆ti∆Pi − 0

)2

 =

n∑

i=0

(∆ti)
2E[(∆Pi)

2] +
∑

j 6=i

∆ti∆tjE[∆Pi]E[∆Pi]

=
n∑

i=0

λ(∆ti)3(1 + λ∆ti) +
∑

j 6=i

λ2(∆ti∆tj)
2

= O2(δtn) → 0 ,

as n→ +∞. So,

dt dP (t)
dt
= 0 .

The cross product of differentials dP (t)dW (t) works out similarly, except here
we have the benefit of independence of processes as well as independence of respec-
tive process increments. Let

J(t) =

∫ t

0

dP (s) dW (s) ≃ Jn(t) ≡
n∑

i=0

∆P (ti)∆W (ti). (3.20)

The expectation of the sum Jn(t) yields

E[Jn(t)] =

n∑

i=0

E [∆P (ti)∆W (ti)] =

n∑

i=0

λ(∆ti) · 0 = 0.

“bk0allfinal”
2007/1/7
page 76

i

i

i

i

i

i

i

i

76 Chapter 3. Stochastic Integration for Jumps

This result suggests that the Itô mean square value is given by

J(t)
ims
=

ms

lim
n→∞

[Jn(t)] = 0 ,

so that it is intuitively clear that the mean square limit will also behave like the
cases dt dW (t) and dt dP (t), but the verification of the mean square limit is still
needed and is left as Exercise 3 for the reader.

Theorem 3.17. Mean Square Limit Form of the Zero-One Law:
Let m be a non-neqative integer and E[dP (t)] = λ(t)dt with bounded maximum,
λ∗ = max

t
[λ(t)], then

∫ t

0

(dP)m(s)
ims
= P (t), (3.21)

or in symbolic notation

(dP)m(t)
dt
= dP (t) . (3.22)

Proof. The mean square limit proof is left as an exercise for the reader in Exercise 4.

The Itô mean square limits to an accuracy with error o(dt) in the case of the
Poisson jump process are summarized in the Table 3.2:

Table 3.2. Some Itô stochastic jump differentials with an accuracy with
error o(dt) as dt→ 0+.

Differential Itô Mean
Jump Form Square Limit

dP (t) dP (t)
dt dt

dt dP (t) 0
(dP)m(t) dP (t), m ≥ 1

dP (t) dW (t) 0

(dt)k(dP)m(t) 0, k ≥ 1, m ≥ 1
(dt)k(dP)m(t)(dW)n(t) 0, k ≥ 1, m ≥ 1, n ≥ 1

Remarks 3.18.

• In the use of Table 3.2, the differential entries are just symbols of the un-
derlying integral basis and care should be taken when applying them to find

“bk0allfinal”
2007/1/7
page 77

i

i

i

i

i

i

i

i

3.2. Stochastic Jump Integration Rules and Expectations: 77

the mean square representation of differentials, especially when they appear in
multiplicative combinations.

• The mean square limit justification of the power rule (dP)m(t)
dt
= dP (t) is left

as Exercise 4, along with Exercise 3 previously mentioned for dP (t)dW (t).

3.2 Stochastic Jump Integration Rules and
Expectations:

Theorem 3.19. Itô Stochastic Jump Integral Simple Rules:
Let h, h1 and h2 satisfy the mean square integrability condition (2.44) on 0 ≤ t0 ≤ t,
while letting X(t) be a Markov process, along with lettimg c1 and c2 be constants.

• Operator Linearity:
∫ t

t0

[c1h1(X(s), s) + c2h2(X(s), s)]dP (s)

ims
= c1

∫ t

t0

h1(X(s), s)dP (s) + c2

∫ t

t0

h2(X(s), s)dP (s) .

• Additivity over Subintervals:
∫ t

t0

h(X(s), s)dP (s)
ims
=

∫ r

t0

h(X(s), s)dP (s) +

∫ t

r

h(X(s), s)dP (s) (3.23)

for 0 ≤ t0 ≤ r ≤ t.

Proof. These are clearly true by examining the forward integration approximation.

Poisson jump processes may seem easier in terms of differentials, but they can
lead to more difficulties when more complicated integral properties are considered.

Theorem 3.20. Some Mean Stochastic Jump Integrals:
Let h(X(t), t) satisfy the mean square integrability condition on 0 ≤ t0 ≤ t and X(t)
be a Markov process,

E

[∫ t

t0

h2(X(s), s)ds

]
<∞ (3.24)

and the i-PWCA Mean Square Limits Assumption 2.15 for Y (t) = h(X(t), t), where
E[dP (t)] = λ(t)dt, then

1. E[
∫

h(X(s), s)dP (s)]:

E

[∫ t

t0

h(X(s), s)dP (s)

]
ims
=

∫ t

t0

E[h(X(s), s)]λ(s)ds. (3.25)

“bk0allfinal”
2007/1/7
page 78

i

i

i

i

i

i

i

i

78 Chapter 3. Stochastic Integration for Jumps

2. E[
∫

h(X(s), s)dP̂ (s)]: Letting

dP̂ (t) ≡ dP (t) − λ(t)dt (3.26)

be the simple mean-zero Poisson process,

E

[∫ t

t0

h(X(s), s)dP̂ (s)

]
ims
= 0 . (3.27)

3. E[|
∫

h(X(s), s)dP (s)|] Estimate:

E

[∣∣∣∣
∫

t

t0

h(X(s), s)dP (s)

∣∣∣∣
]

≤

∫
t

t0

E [|h(X(s), s)|] λ(s)ds , (3.28)

where the inequality is in the mean square sense.

4. E[
∫

h1(X(s), s)dP̂ (s)
∫

h2(X(r), r)dP̂ (r)]:
Let h1(X(t), t) and h2(X(t), t) satisfy the same mean square integrability
condition (2.44) as h(X(t), t) on 0 ≤ t0 ≤ t, then the Itô-Covariance for
jump stochastic integrals is

E
[∫

t

t0
h1(X(s), s)dP̂ (s)

∫
t

t0
h2(X(r), r)dP̂ (r)

]

ims
=
∫ t

t0
E [h1(X(s), s)h2(X(s), s)] λ(s)ds .

(3.29)

5. E[(
∫

h(X(s), s)dP̂ (s))2]:
The Itô-Variance for jump stochastic integrals is given by

E

[(∫ t

t0

h(X(s), s)dP̂ (s)

)2
]

ims
=

∫ t

t0

E[h2(X(s), s)]λ(s)ds . (3.30)

Sketch of Proof. Only fast heuristic or formal justification will be given here to
keep this presentation simple, since many of the techniques have been given earlier
for diffusion W (t) and our interests are in applications.

1. Using the Itô mean square limit (2.27), we have the formal finite sum approx-
imation using partition (2.28) with hi = h(X(ti), ti) for the expectation,

E

[∫ t

t0

h(X(s), s)dP (s)

]
≃

n∑

i=0

E[hi∆Pi] =

n∑

i=0

E[hi]E[∆Pi]

=

n∑

i=0

E[hi]λi∆ti ,

the last line using the independent increments and mean properties. Hence
(3.25) is formally justified.

“bk0allfinal”
2007/1/7
page 79

i

i

i

i

i

i

i

i

3.2. Stochastic Jump Integration Rules and Expectations: 79

2. The form (3.27) follows immediately by combining both sides of the mean
square equation in part (a).

3. Again using the forward integration approximation, but with the triangular
inequality, the expectation of the absolute value of the stochastic jump integral
formally follows,

E

[∣∣∣∣
∫ t

t0

h(X(s), s)dP (s)

∣∣∣∣
]

≃ E

[∣∣∣∣∣

n∑

i=0

hi∆Pi

∣∣∣∣∣

]
] ≤

n∑

i=0

E[|hi|∆Pi]

=

n∑

i=0

E[|hi|]E[∆Pi] =

n∑

i=0

E[|hi|]λi∆ti

ims−→
∫ t

t0

E[|h(X(s), s)|]λ(s)ds ,

as n → +∞, using the means square limit in the last step to get the desired
limiting estimate.

4. Due to the mean zero property (3.27) of the stochastic jump integral with

respect to the mean zero process dP̂ (t) (3.26), the Itô forward integration
approximation to the covariance of the stochastic jump integral follows. How-
ever, the use of the mean zero process is critical, otherwise the independent
increment property is not very helpful. As in the W (t) diffusion case, the ap-
proximate finite difference double sum is split up into three parts, the diagonal
(j = i), lower diagonal (j < i) and upper diagonal (j > i) parts,

E
hR t

t0
h1(X(s), s)d bP (s)

R t

t0
h2(X(r), r)d bP (r)

i

≃Pn
i=0

Pn
j=0 E[h1,i∆ bPih2,i∆ bPj]

≃Pn
i=0 E[h1,ih2,i]E[(∆ bPi)

2] +
Pn

i=0

Pi−1
j=0 E[h1,ih2,j∆ bPj]E[∆ bPi]

+
Pn

i=0

Pn
j=i+1 E[h1,ih2,j∆ bPi]E[∆ bPj]

=
Pn

i=0 E[h1,ih2,i]λi∆ti

ims−→
R t

t0
E [h1(X(s), s)h2(X(s), s)] λ(s)ds ,

giving the desired conclusion except for replacing the approximately equals
(≃) by the mean square limit as n→ ∞

5. The Itô-variance stochastic jump integral follows immediately from part (d)
for the Itô-covariance stochastic jump integral by replacing the functions h1

and h2 by h. This result (3.30) is also called Itô isometry or martingale

isometry since P̂ (t) is a martingale.

“bk0allfinal”
2007/1/7
page 80

i

i

i

i

i

i

i

i

80 Chapter 3. Stochastic Integration for Jumps

3.3 Conclusion

In this chapter, the foundations have been laid for the integrals of the third type
in the integrated SDE (2.2), i.e., using the stochastic jump integral of Itô of Defi-
nition 2.8 extended to the more general case and defined in Definition 3.1 at the
beginning of this chapter:

∫ t

0

h(X(s), s)dP (s)
ims
=

ms

lim
n→∞

[
n∑

i=0

h(X(ti), ti)dP (ti)

]
,

=

P (t)∑

k=1

h(X(T−
k), T−

k) (3.31)

where X(t) in the integrand function h has an implied dependence on the simple
Poisson jump process P (t), but also depends on the diffusion process W (t). The
integrand process h(X(t), t) is also assumed to have a bounded mean integral of
squares (3.2),

E

[∫ t

0

h2(X(s), s)ds

]
<∞ ,

with the usual grid partition specifications on [0, t]. However, as previously ex-
plained, the Poisson jump process fits within the framework of Itô stochastic inte-
gration since it is piece-wise continuous. The stochastic jump integration rule (3.31)
has been motivated and illustrated by a number of examples using functions and
powers of the jump process P (t).

3.4 Exercises

1. Show that the power rules for stochastic integration for Poisson noise can be
written as the recursions,

∫ t

0

Pm(s)dP (s) =
1

m+ 1

(
Pm+1(t) −

m+1∑

k=2

(
m+ 1
k

)∫ t

0

Pm+1−k(s)dP (s)

)
,

using the jump form of the stochastic chain rule and the binomial theorem.

(a) Illustrate the application of the formulae for P (t) to confirm the results
for m = 0:3 in Table 3.1.

(b) Alternatively, show the general result for m ≥ 1.

2. Show that the partial sums of the geometric series can be summed as

Sn(x) ≡
n∑

k=0

xk = Tn(x) ≡
{

1 − xn+1

1 − x , x 6= 1

n+ 1, x = 1

}
, (3.32)

for integers n ≥ 0 by showing that the difference of the defined summation,
∆Sn(x), and the difference of the summed answer, ∆Tn(x), to the far right
are the same and that the discrete initial conditions are the same at n = 0.

“bk0allfinal”
2007/1/7
page 81

i

i

i

i

i

i

i

i

3.4. Exercises 81

3. Show the mean square limit for the product of dP (t) and dW (t) in (3.17-3.18)
by proving that

Var

[
n∑

i=0

∆Pi∆Wi

]
→ 0 , (3.33)

as n→ +∞ and δtn → 0+.

4. Show the mean square limit for the Poisson differential power (dP)m(t) version
of the Zero-One jump law in Theorem 3.17 by showing that

(a) Let Mm(∆Λj) = E[(∆Pj)
m] be the mth power of the jth Poisson in-

crement for ∆Λj = M1(∆Λj) and bounded maximum jump rate λ∗ =
max

t
[λ(t)], with non-negative integers m and j, then Mm(u) satisfies the

recursion relation

Mm+1(u) = u · (Mm(u) +M ′
m(u) . (3.34)

(b) Let Mm(u) = u + Km(u)u2, then Km(u) ≥ 0, Km(u) = O(1) and
K ′

m(u) = O(1), both as u→ 0+.

(c) Finally,

E

(

n∑

i=0

((∆Pi)
m − ∆Pi)

)2

→ 0 , (3.35)

as n→ +∞ and the mesh δtn → 0+ for m ≥ 1. Hence,

(dP)m(t)
dt
= dP (t),

the symbolic version of the mean square limit form of the Zero-One law.

5. Show that

∫ t

0

eaP (s)dP (s) =

{
eaP (t) − 1
ea − 1

, ea 6= 1 or a 6= 0

P (t), ea = 1 or a = 0

}
, (3.36)

for real constant a, in two ways, showing that they give the same answers,

(a) Using the Poisson sum form
∑P (t)−1

k=0 h(k) of Theorem 3.8 and the geo-
metric series partial sum results in (3.32) of this Exercise section.

(b) Using the Zero-One Jump Law and the Fundamental Theorem of Jump
Calculus 3.4 (b) applied to d exp(aP (t)) to evaluate the integral.

“bk0allfinal”
2007/1/7
page 82

i

i

i

i

i

i

i

i

82 Chapter 3. Stochastic Integration for Jumps

Suggested References for Further Reading

• Çinlar, 1975 [55].

• Protter 1990, [232].

• Snyder and Miller, 1991 [252].

• Tuckwell, 1995 [270].

“bk0allfinal”
2007/1/7
page 83

i

i

i

i

i

i

i

i

Chapter 4

Stochastic Calculus for
Jump-Diffusions:
Elementary SDEs

In Chapter 2 for diffusions and Chapter 3 for jumps, the foundations of Itô stochastic
jump-diffusion integrals have been given. In Table 2.1 of Chapter 2, the mean square
differential forms for diffusions, powers of dW (t) and dt, were summarized, such that
higher order differential forms are zero symbolically in the Itô mean square sense
to dt-precision, for example

(dW)3(t)
dt
= 0.

In Table 3.2 of of Chapter 3, the mean square differential forms for Poisson jumps,
powers of dP (t) and dt, were summarized. Different from diffusion differential forms,
the powers of (dP)(t) are generally non-zero except when multiplied by a positive

power of dt, but have the Zero-One Jump law property that (dP)m(t)
dt
=
zol

dP (t) for

integers m > 0.
Similar rules apply in the algebra of deterministic differentials and in con-

structing deterministic models, e.g., terms with the factor (dt)2 are neglected com-
pared to terms with just the factor dt in both deterministic and stochastic differ-
ential models. For stochastic differentials, the non-differentiability of W (t) and the
jump discontinuities of P (t) produce notable exceptions from deterministic differ-
ential rules.

For the mean square limits of more general functions and their approximations
where there is insufficient information for a proof, the mean square integrability
assumption and the PWCA Mean Square Limits (2.44) Assumption 2.15 will be
assumed to be satisfied. This is applicable to both diffusion and jump integrals
and this will be an underlying assumption throughout this chapter. However, the
primary focus of this chapter will be faster, efficient formal stochastic calculations.

4.1 Diffusion Process Calculus Rules

The most basic rule (2.32) for diffusions in the Itô mean square sense is

(dW)2(t)
dt
= dt , (4.1)

83

“bk0allfinal”
2007/1/7
page 84

i

i

i

i

i

i

i

i

84 Chapter 4. Stochastic Calculus for Jump-Diffusions

symbolically, while the higher order differential forms are zero in the Itô mean square
sense, beginning with

(dW)3(t)
dt
= 0, dtdW (t)

dt
= 0 and (dt)2

dt
= 0 ,

using summary Table 2.1.
Another basic rule or principle is the use of increments both for increments

themselves in single steps of ∆t,

∆G(W (t), t) ≡ G(W (t+ ∆t), t+ ∆t) −G(W (t), t)

= G(W (t) + ∆W (t), t+ ∆t) −G(W (t), t) , (4.2)

with functions of the form G(w(t), t) and ∆W (t) ≡ W (t + ∆t) −W (t), as well as
for differentials as increments,

dG(W (t), t) ≡ G(W (t+ dt), t+ dt) −G(W (t), t)

= G(W (t) + dW (t), t+ dt) −G(W (t), t) , (4.3)

with dW (t) ≡W (t+ dt) −W (t).
The increment (4.2) and differential (4.3) rules can be used, with the rest of

Table 2.1, to develop a fast and efficient procedure for deriving stochastic formulas.
When there are problems it is best to go back and check the result by more precise
Itô stochastic integral procedures.

4.1.1 Functions of Diffusions Alone, G(W (t))

Some simple calculus-like examples are given below as an introduction. Although
we could just as well work with differentials at the start, we will start with the
increments at t and then get the differential form in the limit as ∆t→ 0+, but later
switch to starting with the differential forms as increment forms in dt.

Examples 4.1.

• Cubic Integral:

∆
[
W 3
]
(t) = (W+∆W)3(t)−W 3(t) =

(
3W 2∆W + 3W (∆W)2 + (∆W)3

)
(t),

using the cubic expansion. As ∆t → 0, (∆W)2(t) → (dW)2(t)
dt
= dt and

(∆W)3(t) → (dW)3(t)
dt
= 0, so the corresponding differential form is

d
[
W 3
]
(t)

dt
=
(
3W 2dW + 3Wdt

)
(t) .

The first term is the deterministic differential, since d(w3) = 3w2dw, but with
an Itô stochastic correction 3W (t)dt. Solving for W 2(t)dW (t), the Itô integral
of the square of W (t) yields

∫ t

t0

W 2(s)dW (s)
ims
=

1

3

(
W 3(t) −W 3(t0)

)
−
∫ t

t0

W (s)ds.

“bk0allfinal”
2007/1/7
page 85

i

i

i

i

i

i

i

i

4.1. Diffusion Process Calculus Rules 85

The Itô integral of w2 is reduced to a stochastic-Riemann integral and the
Itô correction to the Riemann integral of w2 and looks simple, but cannot be
Itô-integrated exactly and must be numerically simulated if needed.

• General Integer Power Integral:
By using the full binomial theorem (B.152),

∆
[
Wm+1

]
(t) = (W + ∆W)m+1(t) −Wm+1(t)

=

m∑

i=0

(
m+ 1
i

)
W i(t)∆Wm+1−i(t) ,

where the passage to the limit as ∆t→ 0 and the Itô mean square limit leading
to the integral form ∫ t

0

Wm(s)dW (s)

has been left as Exercise 5 on page 126 in Section 4.5.

• Exponential Integral:
Using laws of exponents and the first few terms of the exponential expansion
(B.53), going directly to the formal differential form and skipping the more
general increment form to expedite applied stochastic calculations,

d
[
eW
]
(t) =

(
eW+dW − eW

)
(t) =

(
eW
(
edW − 1

))
(t)

dt
=

(
eW

(
dW +

1

2
(dW)2

))
(t) ,

neglecting differential forms that are zero in the Itô mean square limit, such

as dW 3(t)
dt
= 0, dtdW (t)

dt
= 0, (dt)2

dt
= 0 and higher powers with this zero mean

square limit property.

Using the basic mean square limit differential form (4.1), (dW)2(t)
dt
= dt, so

d
[
eW
]
(t)

dt
=

(
eW

(
dW +

1

2
dt

))
(t) . (4.4)

This is almost like the deterministic differential, d(ew) = ewdw, but here with
an Itô stochastic correction eW (t)dt/2. Solving for eW (t)dW (t), the Itô integral
of the exponential of W (t) yields the implicit integration

∫ t

t0

eW (s)dW (s)
ims
= eW (t) − eW (t0) − 1

2

∫ t

t0

eW (s)ds. (4.5)

As with the integral of w2, the Itô integral of ew cannot be Itô-integrated exactly
and must be numerically simulated if needed. The simulations are presented
in Fig. 4.2 for the Itô partial sums form

Si+1 =
i∑

j=0

exp(Wi)∆Wi

“bk0allfinal”
2007/1/7
page 86

i

i

i

i

i

i

i

i

86 Chapter 4. Stochastic Calculus for Jump-Diffusions

for t = ti+1 = (i+ 1)∆t for t0 = 0 evenly spaced using ∆ti = ∆t where

Wi+1 =

i∑

j=0

∆Wj

and the error
Ei+1 = Si+1 −Ri+1

between the partial sums Si+1 and the difference approximation to the right
hand side

Ri+1 = exp(Wi+1) − 1 − 1

2

i∑

j=0

exp(Wj)∆t

of (4.5), noting that t0 = 0 so exp(W (t0)) = 1. Remember that the cumula-
tive noise Wi must always be approximated by sums of simulated independent
increments ∆Wj for j = 0 : i− 1.

In the differential (4.4) of the pure exponential there is a clue to an exact
differential in the Itô mean square sense, since the factor (dW+dt/2) suggests
subtracting t/2 from W (t). In fact,

d
[
eW (t)−t/2

]
dt
= eW (t)−t/2dW (t) . (4.6)

So

∫ t

0

eW (s)−s/2dW (s)
ims
= eW (t)−t/2 − 1 . (4.7)

In forthcoming Example 4.1.3 on p. 90, a method for systematically find-
ing general exact integrals is presented, provided they exist. The simulations
are presented in Fig. 4.1 on p. 95 for the Itô partial sums form Si+1 =∑i

j=0 exp(Wi − ti/2)∆Wi and the error between the partial sums and the dif-
ference approximation of (4.7).

More general rules can be derived by the same techniques.

Rule 4.2. Chain Rule for G(W (t)):
Let G(w) be twice continuously differentiable, then the differential form of the Itô
stochastic chain rule for G(W (t)) is

dG(W (t))
dt
= G′(W (t))dW (t) +

1

2
G′′(W (t))dt , (4.8)

corresponding to the integral form of the Itô stochastic chain rule for G(W (t)),

G(W (t))
ims
= G(W (t0)) +

∫ t

t0

G′(W (s))dW (s) +
1

2

∫ t

t0

G′′(W (s))ds , (4.9)

“bk0allfinal”
2007/1/7
page 87

i

i

i

i

i

i

i

i

4.1. Diffusion Process Calculus Rules 87

for 0 ≤ t0 ≤ t.

Sketch of Proof. Assuming G(w) is twice continuously differentiable in the argu-
ment w, then G(W (t)) has the differential:

dG(W (t)) = G(W (t) + dW (t)) −G(W (t))

dt
= G′(W (t))dW (t) +

1

2
G′′(W (t))(dW)2(t) ,

Taking the Itô mean square limit neglecting error terms that are zero in the mean

square limit, such as dW 3(t), dtdW (t) and (dt)2, then using (dW)2(t)
dt
= dt yields

the differential form (4.8) of the Itô stochastic chain rule for G(W (t)). The last
term in the second derivative is the Itô stochastic correction to the deterministic
chain rule. Immediately, we have Itô stochastic integral form (4.9), which provides
substantial meaning to the symbolic differential form.

Rewriting (4.9) yields the fundamental theorem of calculus according to
Itô [149] version:

Corollary 4.3. Itô’s Fundamental Theorem of Calculus for Stochastic
Diffusions
Let G(w) be twice continuously differentiable, then

∫ t

t0

G′(W (s))dW (s)
ims
= G(W (t)) −G(W (t0)) −

1

2

∫ t

t0

G′′(W (s))ds , (4.10)

Remark 4.4. Recall the more elementary integral of a differential form of the
Fundamental Theorem of Stochastic Diffusion Calculus in (2.38), which in fact
leads to the exact part of the Itô version, using G in (2.38),

∫ t

t0

dG(W (s))
ims
= G(W (t)) −G(W (t0)) .

4.1.2 Functions of Diffusions and Time, G(W (t), t)

Rule 4.5. Chain Rule for G(W (t), t):
Let G(w, t) be twice continuously differentiable in w and once continuously differ-
entiable in t, then the differential Itô stochastic chain rule for G(W (t), t) is

dG(W (t), t)
dt
=

(
Gt +

1

2
Gww

)
(W (t), t)dt +Gw(W (t), t)dW (t) , (4.11)

corresponding to the integral form of Itô stochastic chain rule for G(W (t), t),

G(W (t), t)
ims
= G(W (t0), t0) +

∫ t

t0

Gw(W (s), s)dW (s)

+

∫ t

t0

(
Gt +

1

2
Gww

)
(W (s), s)ds , (4.12)

“bk0allfinal”
2007/1/7
page 88

i

i

i

i

i

i

i

i

88 Chapter 4. Stochastic Calculus for Jump-Diffusions

for 0 ≤ t0 ≤ t.

Sketch of Proof. Assuming G(w, t) is twice continuously differentiable in the ar-
gument w and once continuously differentiable in t, then, using a mean square order
modification of the Taylor approximation in (B.183), G(W (t), t) has the differential:

dG(W (t), t) = G(W (t) + dW (t), t+ dt) −G(W (t), t)

dt
= Gt(W (t), t)dt+Gw(W (t), t)dW (t) +

1

2
Gww(W (t), t)(dW)2(t) ,

where the partial derivatives are denoted with subscripts, i.e.,

Gw(w, t) =
∂G

∂w
(w, t), Gt(w, t) =

∂G

∂t
(w, t), Gww(w, t) =

∂2G

∂w2
(w, t) .

Taking the Itô mean square limit with (dW)2(t)
dt
= dt and neglecting the higher

order differential forms that are zero in the Itô mean square sense, such as dW 3(t),
dtdW (t) and (dt)2 yields (4.11), which is called the Itô stochastic chain rule for
G(W (t), t). Again the last term in the second derivative is the Itô stochastic
correction to the deterministic chain rule. Translating the symbolic differential
form into the substantial Itô stochastic integral form gives (4.12).

Remarks 4.6. Functions, Values and Partial Derivatives:

• For readers without much PDE background, there are certain concepts that
are important and subtle differences in the function and its values G(w, t),
particularly when there are two or more independent variables, such as the
w = W (t) and t in G(W (t), t), that do not arise when there is just one
independent variable, such as x in y = f(x). Another complication is the
W (t) is a non-differentiable function so we never form its derivative, but only
compute its differential dW (t), and that is best done formally by the increment
form of the differential.

• The symbol G denotes a function specified by a set of rules for its calculation,
while G(w, t) is the value of that function with first argument evaluated at w
and with the second argument at time t. Similarly, G(W (t), t) is the value of
G specified at the random variable W (t) at time t in place of the realized or
dummy variable w. Further, X(t) = G(W (t), t) is the path of the state in time
and is non-differentiable along with W (t), i.e., X(t) is a composite function
in time through both arguments of G, implicitly through W (t) and explicitly
through the second argument t.

• Using limits of Newton’s quotient for derivatives, the partial derivatives of
G(w, t) are defined, also giving several alternate notations, at (w, t) as

Gw(w, t) =
∂G

∂w
(w, t) =

(
∂G

∂w

)∣∣∣∣ t
fixed

(w, t) = lim
∆w→0

G(w + ∆w, t) −G(w, t)

∆w

“bk0allfinal”
2007/1/7
page 89

i

i

i

i

i

i

i

i

4.1. Diffusion Process Calculus Rules 89

and

Gt(w, t) =
∂G

∂t
(w, t) =

(
∂G

∂t

)∣∣∣∣ w
fixed

(w, t) = lim
∆t→0

G(w, t + ∆t) −G(w, t)

∆t
,

provided the limits exist. Hence, partial derivatives with one of the variables
fixed are based on the definition of ordinary derivatives.

• The partial derivatives Gw and Gt are defined as rules based upon the target
function rule G. For the topics here, when the first argument is a random
variable w = W (t),

∂G

∂w
(W (t), t)

is just Gw evaluated at the first variable w = W (t) after differentiation. We
would never write GW (t) due to the non-differentiable properties of W (t).
Anyway, the partial derivative is calculated first then it is evaluated. For
example, Gw(1, 1) can be computed if we knew Gw and it had a unique value at
(1, 1), but (G(1, 1))w = 0 since G(1, 1) has a fixed, constant value, presumably
unique, at (1, 1), the order of partial differentiation and partial derivative
function evaluation are very important.

• Another more relevant example illustrating the difference, is the differential
to be multiplied by dt to avoid obtaining the singular derivative of W (t), is

dG(W (t), t)
dt
=

(
Gtdt+GwdW (t) +

1

2
Gwwdt

)
(W (t), t),

contains the partial derivative of the function G with respect to t evaluated at
(W (t), t),

∂G

∂t
(W (t), t)dt

rather than partial derivative with respect to t is written as the derivative of
the value G(W (t), t),

∂G(W (t), t)

∂t
dt,

which makes no sense since it would involve the derivative of the non-differentiable
W (t) in t with probability one (recall Theorem 1.9 on page 9).

Corollary 4.7. Let g(W (t), t) satisfy the conditions of Definition 2.8 for an Itô
stochastic integral and be once continuously differentiable in w. Let G(w, t) be the
anti-derivative of g(w, t) with respect to w, i.e., Gw(w, t) = g(w, t), and let G(w, t)
be twice continuously differentiable in w, but only once in t. Then,

∫ t

t0

g(W (s), s)dW (s)
ims
= G(W (t), t) −G(W (t0), t0)

−
∫ t

t0

(Gt + 0.5 ∗ gw)(W (s), s)ds , (4.13)

“bk0allfinal”
2007/1/7
page 90

i

i

i

i

i

i

i

i

90 Chapter 4. Stochastic Calculus for Jump-Diffusions

for 0 ≤ t0 ≤ t.

Proof. This follows directly from (4.12) by rearranging terms, since Gw = g and
Gww = gw.

Remark 4.8. Thus, the Itô stochastic diffusion integral of g(W (t), t) can be re-
duced to an exact integral G(W (t), t) −G(W (t0), t0) with respect to w less a quasi-
deterministic Riemann integral over the diffusion shifted drift function (Gt + 0.5 ∗
gw)(W (t), t). Thus, if the partial differential equation (Gt + 0.5 ∗ gw)(w, t) = 0 is
valid with gw(w, t) = Gww(w, t), then the integral of g(W (t), t) is equal to the ex-
actly integrated part G(W (t), t) −G(W (t0), t0) in the Itô mean square sense. This
idea can be the basis for constructing exact stochastic diffusion integrals.

Example 4.9. Merton’s Analysis of Black-Scholes Option Pricing Model:
At this point in the text, a good application in finance is the survey of Merton’s [201]
(Merton [203, Chapter 8]) analysis of the Black-Scholes [34] financial options pric-
ing model in Section 10.2 of Chapter 10. This survey follows the tone of this book,
although Merton’s model has several state dimensions, the bond, the stock and the
option. While multi-dimension SDEs will be covered in the next chapter, Chapter 5,
this treatment will serve as motivation for the next chapter, which contains details
not in Merton’s paper.

4.1.3 Itô Stochastic Natural Exponential Construction

From the differential of exp(W (t)) in (4.4) it is seen that the stochastic exponential
is not like the deterministic natural exponential, where the derivative is proportional
to the original function, e.g., the natural exponential ex in the natural base e has
the differential property:

d (ex) = exdx ,

returning the original function times dx, and has the following inverse relationship
to the natural logarithm

eln(x) = x

for x > 0, whereas when b > 0 and in particular b 6= e for the base b, then

d (bx) = d
(
ex ln(b)

)
= bx ln(b)dx ,

returning an additional factor ln(b).
For more generality, consider the deterministic model

d (eax) = aeaxdx ,

where the parameter a is a non-zero constant. The corresponding stochastic model
is the process X(t) = G(W (t), t) such that

dX(t) = dG(W (t), t)
dt
= aG(W (t), t)dW (t) = aX(t)dW (t) . (4.14)

“bk0allfinal”
2007/1/7
page 91

i

i

i

i

i

i

i

i

4.1. Diffusion Process Calculus Rules 91

The explicit t dependence is needed to avoid correction factors in dt. Applying the
appropriate stochastic chain rule (4.11) to illustrate a technique for inverting the
chain rule to get the desired model in terms of the composite function G,

aG(W (t), t)dW (t)
dt
= dG(W (t), t)

dt
=

(
Gt(W (t), t) +

1

2
Gww(W (t), t)

)
dt+Gw(W (t), t)dW (t) .

Since the differentials, dW (t) and dt, can be independently varied in this equation,
the coefficients of dW (t) and dt can be separately set equal to their values on both
sides of the equation (dropping the arguments of G for simplicity):

Gw = aG and Gt +
1

2
Gww = 0 . (4.15)

The solution of the first partial differential equation (PDE), Gw = aG, in (4.15),
being effectively an ordinary differential equation (ODE) with t held fixed, is

G(w, t) = A(t)eaw , (4.16)

since d(e−aw)/dw = −ae−aw (differentiation is allowable for a regular continuous,
i.e., non-stochastic, function) so

d
(
e−awG

)
w

= e−aw (Gw − aG) = 0 ,

which shows that (4.16) satisfies the first PDE by substitution, e−aw 6= 0. Here,
A(t) is a function of integration since the differential equation is only in w and
t is arbitrary, although held fixed in the equation. Given a differentiable function
F (w, t), the notation Fw(w, t) = 0 is short hand for the partial deriviative

(
∂F

∂w

)
t

fixed

(w, t) = 0.

This means that F (w, t) = A(t) for some function A of t, since t is held fixed in the
partial differentiation with respect to w.

Upon substituting this current functional form into the second partial differ-
ential equation, Gt + 0.5Gww = 0, using

(A(t)eaw)t = eaw(A(t))t = A′(t)eaw ,

(A(t)eaw)ww = A(t)(eaw)ww = a2A(t)eaw ,

then

A′(t)eaw +
a2

2
A(t)eaw = 0 .

Upon cancelling out the common nonzero factor eaw,

A′(t) +
a2

2
A(t) = 0 , (4.17)

“bk0allfinal”
2007/1/7
page 92

i

i

i

i

i

i

i

i

92 Chapter 4. Stochastic Calculus for Jump-Diffusions

and solving for the function of integration yields

A(t) = Ce−a2t/2 , (4.18)

where C is a genuine constant of integration.

Remark 4.10. Note that an ultimate test of a solution of a differential equation so-
lution is the substitution test, i.e., substituting the solution back into the equation
and verifying that the equation and any conditions are satisfied.

For (4.18), substitution into the ODE (4.17) leads to

A′(t) +
a2

2
A(t) = Ce−a2t/2 ·

(
−a

2

2
+
a2

2

)
= 0 .

Assembling the parts of the solution back together, we obtain the Itô general
stochastic form of the natural exponential (exponential in the natural base e),

X(t) = G(W (t), t) = CeaW (t)−a2t/2 , (4.19)

systematically deriving what previously was a guess in (4.6). The extra exponential
term (−a2t/2) is the special Itô correction that forces the simple linear growth
model dX(t) = aX(t)dt for the exponential growth in the diffusion W (t).

Since W (0+) = 0 with probability one, X(0+) = G(0, 0+) = C, with probabil-
ity one, is the initial value of the state X(t), while a is a rate of growth. The basic
moments of the state trajectory can be calculated by using the density φW (t)(w)
for W (t) in (1.7).

Some of the details are given to illustrate the use of the completing the
square technique when computing exponential moments with respect to normal
distributions. An illustration of the completing the square technique is presented
for the expectation of an exponential whose exponent is linear (or affine) in W (t),
i.e., exp(a(t)W (t) + b(t)).

Lemma 4.11. Completing the Square for E[K(t) exp(a(t)W (t) + b(t))]:
Let a(t) 6= 0, b(t) and K(t) 6= 0 be bounded deterministic functions of t, then

E
[
K(t)ea(t)W (t)+b(t)

]
= K(t)ea2(t)t/2+b(t) (4.20)

Proof. Since the Wiener process density,

φW (t)(w) =
1√
2πt

e−w2/(2t),

−∞ < w < +∞, from (1.7), is essentially a function of the sampled dummy variable
w and t is only a parameter that we can hold fixed during the integration, the
deterministic functions of time are treated as constants. By the laws of exponents,

“bk0allfinal”
2007/1/7
page 93

i

i

i

i

i

i

i

i

4.1. Diffusion Process Calculus Rules 93

the exponent of the density and the exponent of the argument of the expectation
with the dummy variable substitution W (t) = w are added together and combined
to obtain a complete square of all w terms,

−w2/(2t) + a(t)w + b(t) = −(w − a(t)t)2/(2t) + a2(t)t/2 + b(t).

Thus,

E
[
K(t)ea(t)W (t)+b(t)

]
= K(t)

1√
2πt

∫ +∞

−∞
e−(w−a(t)t)2/(2t)+a2(t)t/2+b(t)dw

= K(t)ea2(t)t/2+b(t) 1√
2πt

∫ +∞

−∞
e−v2/(2t)dv

= K(t)ea2(t)t/2+b(t)E[1] ,

= K(t)ea2(t)t/2+b(t) ,

where the fixed part of the integral with exponent (a2(t)t/2 + b(t)) has been sepa-
rated out and the change of variables v = w − a(t)t with dv = dw, t being fixed, in
the integral has been used to transform the completed square part of the expecta-
tion integral as one for conservation of probability E[1] = 1 for the standard Wiener
process.

The mean state X(t) using Lemma 4.11 is

E
[
CeaW (t)−a2t/2

]
= C = X(0+) , (4.21)

so the mean trajectory is a constant, at the initial level X(0+). However, the state
variance, again using Lemma 4.11 but with a(t) replaced by 2a following application
of the variance-expectation identity (B.188), V ar[X] = E[X2] − E2[X], to use the
expectation result (4.21), is

Var
[
CeaW (t)−a2t/2

]
= E

[(
CeaW (t)−a2t/2

)2
]
− E2

[
CeaW (t)−a2t/2

]

= C2E
[
e2aW (t)−a2t

]
− C2

= C2
(
ea2t − 1

)
.

Examining the standard deviation, or square root of the variance,

σX(t) =
√

Var[X(t)] = C
√
ea2t − 1 ∼ Cea2t/2

as t → ∞, it is seen that the root mean square (RMS) of stochastic fluctuations
grows exponentially with exponent a2t/2 starting initially at σX(0+) = 0+.

In Fig. 4.1 is an illustration of the simulation of the integral of this natural
exponential in the special case

I[g](t) =

∫ t

0

g(W (s), s)dW (s) =

∫ t

0

eW (s)−s/2dW (s)
ims
= eW (t)−t/2 − 1 , (4.22)

“bk0allfinal”
2007/1/7
page 94

i

i

i

i

i

i

i

i

94 Chapter 4. Stochastic Calculus for Jump-Diffusions

i.e., when a = 1 = C. Also, plotted is the diffusion process W (t) for comparison
and the error,

Ei+1 = Si+1 − Ii+1,

between the simulation of the integral by Itô finite difference partial sums,

Si+1 =

i∑

j=0

gj∆Wj ,

and the simulation of the exact mean square integral value in (4.22)

Ii+1 = gi+1 − 1 ,

for i = 0 : n, where the integrand is

gi = exp(Wi − ti/2) ,

with Wi =
∑i−1

j=0 ∆Wj and ti = i ∗ ∆t for i = 0 : n + 1. Observe that the
integral initially tracks the Wi simulated noise, but eventually diverges from it.
Also, the error slowly degrades as the time ti gets long (not shown) in this case for
n = 10, 000 (note that this is an approximate sample size since random sample size
is n + 1 = 10, 001 random increments) and t = 2.0. The MATLAB code for the
exactly integrable g(W (t), t) in the Itô mean square diffusion integral sense is given
in Program C.12 in Appendix C.

In Fig. 4.2, the chain rule formulation of the Itô diffusion integral of the simple
exponential g(W (t), t) = exp(W (t)) of Example 4.1 is compared to the Itô partial

sums Si+1 =
∑i

j=0 gj∆Wj . Unlike the stochastic natural exponential exp(W (t) −
t/2), the simple exponential is not exactly integrable in the Itô mean square sense
since the stochastic chain rule introduces a quasi-deterministic regular type integral
for the diffusion term

−0.5Gw(w, t) = −0.5g(w, t) = −0.5 exp(w) .

The partially integrated chain rule form is thus

Ii+1 = exp(Wi) − 1 − 0.5 ∗
i∑

j=0

exp(Wj)∆t , (4.23)

with Gt(w, t) = 0. In the figure the error Ei+1 = Si+1 − Ii+1 between the two
approximations of the integral and the underlying diffusive noise W (t). The error
is very small for a sample size of n = 10, 000. The integration significantly dampens
the fluctuations in the original noise W (t). The MATLAB code for this figure is
given in Program C.13 of Appendix C.

4.1.4 Transformations of Linear Diffusion SDEs:

Consider the diffusion SDE, linear in the state process X(t), with time-dependent
coefficients,

dX(t) = X(t) (µ(t)dt+ σ(t)dW (t)) , (4.24)

“bk0allfinal”
2007/1/7
page 95

i

i

i

i

i

i

i

i

4.1. Diffusion Process Calculus Rules 95

0 0.5 1 1.5 2
−1

−0.5

0

0.5
∫ g(W,t)dW(t) for g = exp(W(t)−t/2)

∫ g
(W

,t)
dW

(t
),

 W
(t

),
 g

(W
(t

),
t)

 −
 g

(0
,0

)

t, Time

∫ g(W,t)dW(t)
W(t)
Error(t)

Figure 4.1. Example of a simulated Itô discrete approximation to the
stochastic diffusion integral In[g](ti+1) =

∑i
j=0 gj∆Wj for i = 0 : n, using the

MATLAB randn with sample size n = 10, 000 on 0 ≤ t ≤ 2.0. Presented are
the simulated Itô partial sums Si+1, the simulated noise Wi+1 and the error Ei+1

relative to the exact integral, I(ims)[g](ti+1)
ims
= exp(Wi+1 − ti+1/2) − 1, in the Itô

mean square sense.

where the initial condition is X(t0) = x0 > 0 with probability one, µ(t) is called
the drift or deterministic coefficient and σ(t) is called the volatility or standard
deviation of the diffusion term. The diffusion coefficient is usually defined as
D = σ2(t)/2, so σ(t) =

√
2D. The linear form of (4.24) is sometimes called the

multiplicative noise case, the state X(t) multiplies the stochastic terms, and
the word noise referring to the randomness or stochastic properties here. In the
deterministic case, transforming the state variable to its logarithm makes the right
hand side independent of the transformed state variable, so let

Y (t) = F (X(t)) ≡ ln(X(t)) .

Since we have F depending on X(t) rather than W (t), we go back to the basic
treatment of the change as an increment and expand the increment to second order,

dY (t) = log(X(t) + dX(t)) − log(X(t))

dt
=

1

X(t)
dX(t) − 1

2X2(t)
(dX)2(t)

dt
= (µ(t)dt+ σ(t)dW (t)) − 0.5σ2(t)(dW)2(t)
dt
= (µ(t) − 0.5σ2(t))dt + σ(t)dW (t) , (4.25)

“bk0allfinal”
2007/1/7
page 96

i

i

i

i

i

i

i

i

96 Chapter 4. Stochastic Calculus for Jump-Diffusions

0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5
∫ g(X,t)dW(t) for g = exp(X), X = W

∫ g
(X

,t)
dW

(t
),

 X
 =

 W
(t

)
an

d
E

rr
or

(t
)

t, Time

∫ g(X,t)dW(t)
X = W(t)
Error(t)

Figure 4.2. Example of a simulated Itô discrete approximation to the
stochastic diffusion integral In[g](ti+1) =

∑i
j=0 gj∆Wj for i = 0 : n, using the

MATLAB randn with sample size n + 1 = 10, 001 on 0 ≤ t ≤ 2.0. Presented are
the simulated Itô partial sums Si+1, the simulated noise Wi+1 and the error Ei+1

relative to the stochastic chain rule partially integrated form, Ii+1 given in the text
(4.23).

where we again used (dW)2(t)
dt
= dt and dropped terms zero in the mean square.

Use has been made of the following partial derivatives,

Ft(X(t)) ≡ 0 , Fx(X(t)) = 1/X(t) , Fxx(X(t)) = −1/X2(t) .

The final line in (4.25) is also called additive noise since it just adds to the state
value and can be immediately integrated, as opposed to the multiplicative noise in
the original SDE in (4.24). In the above derivation, the Itô stochastic correction
on the drift µ(t) is the negative of the diffusion coefficient σ2(t)/2. The final
right hand side (4.25) defines a differential simple Gaussian process (B.24) with
infinitesimal mean (µ(t) − 0.5σ2(t))dt and infinitesimal variance of σ2(t)dt. The
infinitesimal mean here is defined as

E[dY (t)] (4.26)

and the infinitesimal variance is defined as

Var[dY (t)] , (4.27)

in each case neglecting orders smaller than ord(dt). An alternate method of deriving
(4.25) is to use the Itô stochastic chain rule for G(W (t)), but with W (t) replaced by

“bk0allfinal”
2007/1/7
page 97

i

i

i

i

i

i

i

i

4.1. Diffusion Process Calculus Rules 97

X(t), subsequently expanding the differentials dX(t) and (dX)2(t), then replacing
them by the SDE in (4.24) and neglecting any terms that are zero in the mean
square.

Since the right hand side of (4.25) does not depend on the state Y (t), we can
immediately integrate for Y (t) given the coefficient functions leading to

Y (t) = y0 +

∫ t

t0

(µ(s) − 0.5σ2(s))ds+

∫ t

t0

σ(s)dW (s) , (4.28)

where y0 = ln(x0). Exponentiation leads to the formal solution for the original
state,

X(t) = x0 exp

(∫ t

t0

(µ(s) − 0.5σ2(s))ds+

∫ t

t0

σ(s)dW (s)

)
. (4.29)

Linear Diffusion SDEs with Constant Coefficients:

If the SDE has constant coefficients, µ(t) = µ0 and σ(t) = σ0, while letting
t0 = 0, then the solution is simpler,

X(t) = x0 exp
(
(µ0 − 0.5σ2

0)t+ σ0W (t)
)
. (4.30)

Note that if X(0+) = x0 is initially positive as declared, then the solution X(t)
will never become negative by the property of the exponential for real arguments
and the transformation Y (t) = ln(X(t)) is proper with X(t) > 0. The state X(t)
positivity feature is very important in biological and financial applications. Aside
from time dependence, this is just a shift by the drift of the exponent, as in the Itô
stochastic exponential in (4.19).

In the additive noise case, borrowing the exponent form in (4.25), the rela-
tion between the new and old values of Y is computed by adding the noise,

Y (t+ ∆t) = Y (t) + (µ0 − 0.5σ2
0)∆t+ σ0∆W (t) , (4.31)

or recursively in the time-step ∆ti from ti to ti+1 and then summing the recursion,

Yi+1 = Yi + (µ0 − 0.5σ2
0)∆ti + σ0∆Wi

= y0 +

i∑

j=0

(
(µ0 − 0.5σ2

0)∆tj + σ0∆Wj

)
.

So taking the expectation,

E[Yi+1] = y0 +
i∑

j=0

(
µ0 − 0.5σ2

0

)
∆tj

= y0 + (µ0 − 0.5σ2
0)

i∑

j=0

∆tj .

(4.32)

“bk0allfinal”
2007/1/7
page 98

i

i

i

i

i

i

i

i

98 Chapter 4. Stochastic Calculus for Jump-Diffusions

This result should be compared to the corresponding deterministic additive or arith-
metic recursion with constant a,

zi+1 = zi + a, =⇒ zi+1 = z0 + (i+ 1) · a,

so the corresponding additive parameter to the mean in (4.32)

E[Yi+1] = y0 + (i+ 1)(µ0 − 0.5σ2
0)∆ti

(am)
, (4.33)

where

∆ti
(am)

=
1

i+ 1

i∑

j=0

∆tj

is the arithmetic mean of the first (i+ 1) time steps ∆tj for j = 0 : i.
Whereas, the multiplicative noise property can be seen by rewriting (4.30)

as a single step,

X(t+ ∆t) = X(t) exp
(
(µ0 − 0.5σ2

0)∆t+ σ0∆W (t)
)

(4.34)

so the new noise exponential contribution from ∆W (t) multiplies the current value
of the solution X(t) to produce the new value X(t + ∆t). The corresponding
recursive form in the time-step ∆ti from ti to ti+1, followed by a summing of the
recursion,

Xi+1 = Xi exp
(
(µ0 − 0.5σ2

0)∆ti + σ0∆Wi

)

= x0 exp

i∑

j=0

(
(µ0 − 0.5σ2

0)∆tj + σ0∆Wj

)

= x0

i∏

j=0

exp
(
(µ0 − 0.5σ2

0)∆tj + σ0∆Wj

)

using the laws of exponents to turn the exponential of a sum into a product of
exponentials. Thus, taking the expectation and using the completing the squares
Lemma 4.11,

E[Xi+1] = x0

i∏

j=0

exp (µ0∆tj) . (4.35)

This result should be compared to the corresponding deterministic multiplicative
recursion or geometric progression with constant r,

xi+1 = rxi = x0r
i+1 ,

so the corresponding additive parameter to the mean in (4.32)

E[Xi+1] = x0

(
ξi

(gm)
)i+1

,

“bk0allfinal”
2007/1/7
page 99

i

i

i

i

i

i

i

i

4.1. Diffusion Process Calculus Rules 99

where

ξi
(gm)

=

i∏

j=0

eµ0∆tj

1
i+1

is the geometric mean of the first (i+ 1) growth steps ξ = eµ0∆tj for j = 0 : i.
Applications include stochastic population growth where X(t) is the popula-

tion size, µ(t) is an intrinsic growth rate (rate of growth in absence of stochastic
or other effects in the environment) and the σ(t)X(t)dW (t) denote the stochas-
tic effects. The term σ(t)X(t)dW (t) is called demographic stochasticity [271],
since it looks like a stochastic perturbation from µ(t). Similarly, perturbations of
nonlinear saturation terms are called environmental stochasticity. In biology,
multiplicative or geometric noise is also called density independent noise, since
dX(t)/X(t) is independent of X(t). See also Chapter 11 on Biological Applica-
tions.

Another application is financial engineering, where X(t) is the investment
return, µ(t) is the mean appreciation rate and σ(t) is the investment volatility.
In stochastic finance, the process X(t) is called geometric Brownian motion
(GBM) due the linear scaling on the right hand side for the dX(t) and, in particu-
lar, due to the stochastic noise being multiplied by the state process X(t), i.e., the
multiplicative noise. In finance, one of the earliest stochastic stock models was from
the thesis of Bachelier [16], in which additive noise was used, but this work did not
attract much attention until Black-Scholes [34], Merton [203] and others began us-
ing multiplicative noise stock and options models. Multiplicative models are more
appropriate in finance as well as in biology, since random effects are more likely
to compound rather than add. See also Chapter 10 on Financial Engineering
Applications.

For the constant coefficient case of the linear stochastic diffusion SDE, the
solution can be shown to have a log-normal distribution.

Theorem 4.12. Solution of the Constant Coefficient, Linear Stochastic
Diffusion SDE is Log-Normally Distributed:
Let X(t) satisfy

dX(t) = X(t) (µ0dt+ σ0dW (t)) , (4.36)

X(0) = x0 > 0 w.p.o., where µ0 and σ0 > 0 are constants. Then, the distribution
of X(t),

ΦX(t)(x) = Φn

(
ln(x); ln(x0)µn(t), (σn)2(t)

)
, (4.37)

where Φn is the general normal distribution defined in (B.18),

µn(t) = ln(x0) +
(
µ0 − 0.5σ2

0

)
t

and

(σn)2(t) = σ2
0t .

“bk0allfinal”
2007/1/7
page 100

i

i

i

i

i

i

i

i

100 Chapter 4. Stochastic Calculus for Jump-Diffusions

Proof. Using the probability inversion Lemma B.19, the distribution for the
solution X(t) in (4.30) can be derived by reducing the distribution for X(t) to the
known one for the Wiener process W (t) by inverting X(t) in favor of W (t). It is
important here that x0 > 0, σ0 > 0 and that the natural logarithm ln(x) is an
increasing function to preserve the direction of an inequality.

ΦX(t)(x) = Prob[X(t) ≤ x]

= Prob
[
x0 exp

(
(µ0 − 0.5σ2

0)t+ σ0W (t)
)
≤ x

]

= Prob
[(
µ0 − 0.5σ2

0

)
t+ σ0W (t) ≤ ln(x/x0)

]

= Prob
[
W (t) ≤

(
ln(x/x0) − (µ0 − 0.5σ2

0)t
)
/σ0

]

= ΦW (t)

((
ln(x/x0) − (µ0 − 0.5σ2

0)t
)
/σ0; 0, t

)

= Φn

(
ln(x); ln(x0) +

(
µ0 − 0.5σ2

0

)
t, σ2

0t
)
.

The last step follows from the conversion identity from the standard Wiener dis-
tribution ΦW (t) in (B.22) to the general normal distribution Φn, given for Φn in
Exercise 9 on Page B72. Thus, the probability distribution of the solution X(t) is
the general lognormal distribution of Section B.1.6, where the exponent has the
normal distribution mean

µn(t) = ln(x0) +
(
µ0 − 0.5σ2

0

)
t

and normal variance
(σn)2(t) = σ2

0t ,

i.e., the logarithm of the solution X(t) has a general normal distribution, where the
lognormal moment formulas are given in the Properties B.20.

The probability density of X(t) is found using the regular calculus chain rule
by differentiating the distribution to yield,

φX(t)(x) = x−1φn

(
ln(x);µn(t), (σn)2(t)

)
. (4.38)

Although the differentiation of the ln(x) distribution argument leads to an algebraic
pole in φX(t)(x), φX(t)(0

+) ≡ 0, which is in fact the limit as x → 0+. The lead-

ing part of the exponentially small normal distribution term exp(− ln2(x)/(2σ2
0t))

dominates the simple algebraic pole 1/x = exp(− ln(x)) as x→ 0+ with the larger
logarithmic exponent in magnitude.

4.1.5 Functions of General Diffusion States and Time: F (X(t), t)

The derivation for the special chain rule for the linear SDE logarithm transformation
suggests that a more general chain rule for F (X(t), t) will be needed.

Rule 4.13. Chain Rule for Diffusion F (X(t), t): Let Y (t) = F (X(t), t), such
that function F (w, t) is twice continuously differentiable in x and once in t. Let the
X(t) process satisfy the diffusion SDE:

dX(t) = f(X(t), t)dt+ g(X(t), t)dW (t) , (4.39)

“bk0allfinal”
2007/1/7
page 101

i

i

i

i

i

i

i

i

4.2. Poisson Jump Process Calculus Rules 101

X(0) = x0 with probability one, while f(X(t), t) and g(X(t), t) satisfy the mean
square integrability conditions (2.44) with the W (t) argument replaced by the X(t)
arguments of f and g. Then

dY (t) = dF (X(t), t)

dt
=

(
Ft + fFx +

1

2
g2Fxx

)
(X(t), t)dt+ (gFx) (X(t), t)dW (t) , (4.40)

where wholesale arguments have been used for the coefficient functions multiplying
dt and dW (t), respectively.

Sketch of Proof. Formally, using the increment form of the differential,

dY (t) = Y (t+ dt) − Y (t)

= F (X(t+ dt), t+ dt) − F (X(t), t)

= F (X(t) + dX(t), t+ dt) − F (X(t), t) .

Next, mean square approximations are used with their implied precision-dt,

dY (t)
dt
= Ft(X(t), t)dt+ Fx(X(t), t)dX(t) +

1

2
Fxx(X(t), t)(dX)2(t)

dt
= Ft(X(t), t)dt+ Fx(X(t), t)(f(X(t), t)dt+ g(X(t), t)dW (t))

+
1

2
Fxx(X(t), t)g2(X(t), t)dt

dt
=

(
Ft(X(t), t) + (fFx) (X(t), t) +

1

2

(
g2Fxx

)
(X(t), t)

)
dt

+ (gFx) (X(t), t)dW (t)

where the diffusion SDE (4.39) has been substituted for dX(t) and its square, the

latter being truncated by the basic diffusion rule (dW)2(t)
dt
= dt and other rules to

neglect terms zero in the mean square, such as (dW)3(t), dtdW (t) and (dt)2, from
the useful Table 2.1.

4.2 Poisson Jump Process Calculus Rules

The Poisson process is quite different from the continuous diffusion process, primar-
ily because of the discontinuity property of the Poisson process and the property
that multiple jumps are highly unlikely during small increments in time, ∆t.

4.2.1 Jump Calculus Rule for h(dP (t))

Thus, the most basic rule is the zero-one law (ZOL) for jumps (1.36), in precision-dt
compact differential form,

(dP)m(t)
dt
=
zol

dP (t) , (4.41)

“bk0allfinal”
2007/1/7
page 102

i

i

i

i

i

i

i

i

102 Chapter 4. Stochastic Calculus for Jump-Diffusions

provided the integer m ≥ 1, the case m = 0 being trivial. An immediate general-
ization of this law is the following corollary:

Corollary 4.14. Zero-One Jump Law for h(dP (t)):

h(dP (t))
dt
=
zol

h(1)dP (t) + h(0)(1 − dP (t)) , (4.42)

with probability one, provided the function h(p) is right continuous, such that values
h(0) and h(1) exist and are bounded.

Proof. This follows by simple substitution of the zero-one jump law,

h(dP (t))
dt
=
zol

{
h(1), dP (t) = 1
h(0), dP (t) = 0

}
dt
=
zol

h(1)dP (t) + h(0)(1 − dP (t)) , (4.43)

dP (t) = 0 or dP (t) = 1 with probability one to precision-dt.

Formally, the differential dP (t) can be treated as a condition to test whether
or not there has been a jump. This form (4.42) of the zero-one law suggests another
extension of the jump function definitions (B.180, B.181). For example recall
in (B.187) for a jump at t1

[F](X(t1), t1) = F (X(t+1), t+1) − F (X(t−1), t−1) .

Definition 4.15. Jump Function [h](dP (t)):

[h](dP (t))
dt
=
zol

h(dP (t)) − h(0) , (4.44)

to precision-dt, provided h(p) be right continuous, such that values h(0) and h(dP (t))
exist and are bounded.

With this definition, version (4.42) of the zero-one law can immediately be
written,

Corollary 4.16. Zero-One Jump Law for h(dP (t)) with Jump function:

h(dP (t))
dt
=
zol

h(0) + [h](dP (t)) , (4.45)

in terms of the jump function [h](dP (t)). Alternatively, the jump function is written
as

[h](dP (t))
dt
=
zol

(h(1) − h(0))dP (t). (4.46)

4.2.2 Jump Calculus Rule for H(P (t), t)

Equations (4.45, 4.46) are a primitive differential chain rule for functions of the
Poisson differential dP (t) only. However, more complex rules will be needed, for

“bk0allfinal”
2007/1/7
page 103

i

i

i

i

i

i

i

i

4.2. Poisson Jump Process Calculus Rules 103

instance a chain rule for a combination of a simple Poisson jump process in P (t)
and a deterministic process with explicit dependence on t:

Rule 4.17. Chain Rule for H(P (t), t):
Let H(p, t) be once continuously differentiable in t and right continuous in p.

dH(P (t), t)
dt
=
zol

Ht(P (t), t)dt + [H](P (t), t) , (4.47)

where
[H](P (t), t)

dt
=
zol

(H(P (t) + 1, t) −H(P (t), t)) dP (t) , (4.48)

is the corresponding jump function definition for functions of P (t) and t.

Sketch of Proof. Proceeding formally with differential precision-dt, the differential
definition as an increment yields,

dH(P (t), t) = H(P (t+ dt), t+ dt) −H(P (t), t)

= H(P (t) + dP (t), t+ dt) −H(P (t), t) .

Next using the Zero-One Jump law (4.42) for h(dP (t)) on

H(P (t) + dP (t), t+ dt)

for fixed (P (t), t) to take dP (t) out of its first argument and then expanding the
second argument dt to two terms up to Ht,

dH(P (t), t)
dt
=
zol

H(P (t) + 1, t+ dt)dP (t)

+ H(P (t) + 0, t+ dt)(1 − dP (t)) −H(P (t), t)
dt
=
zol

(H(P (t), t) + Ht(P (t), t)dt)(1 − dP (t))

+ (H(P (t) + 1, t) + Ht(P (t) + 1, t)dt)dP (t) −H(P (t), t)
dt
=
zol

Ht(P (t), t)dt + (H(P (t) + 1, t) −H(P (t), t))dP (t)

dt
=
zol

Ht(P (t), t)dt + [H](P (t), t)) ,

the last line due to using the jump function definition (4.48). Also used was the
bilinear differential form

dt dP (t)
dt
=
zol

0 ,

that is mainly responsible for the elimination of combined continuous and jump
changes.

The precision-dt jump differential Table 3.2 was used to eliminate terms smaller
than precision-dt terms in the mean square sense. The dt factor Ht(p, t) is the par-
tial derivative of H with respect to t while p is held fixed. Note that the jump
function is defined for all t so that if there is no Poisson jump, then the jump
function is identically zero since dP (t) = 0, the zero jump case.

“bk0allfinal”
2007/1/7
page 104

i

i

i

i

i

i

i

i

104 Chapter 4. Stochastic Calculus for Jump-Diffusions

Remarks 4.18.

• The bilinear differential form dt dP (t)
dt
=
zol

0 is consistent with the fact that the

Poisson process has jump discontinuities and thus jumps must be instanta-
neous. Consequently, continuous changes and jump changes can be computed
independently, since there are zero continuous changes at each jump instant.

• This leads to the alternate form of Rule 4.17.

Rule 4.19. Alternate Chain Rule for H(P (t), t):
Let H(p, t) be once continuously differentiable in t and right continuous in p.

dH(P (t), t)
dt
=
zol

d(cont)H(P (t), t) + d(jump)H(P (t), t) , (4.49)

where

d(cont)H(P (t), t) ≡ Ht(P (t), t)dt (4.50)

and

d(jump)H(P (t), t) ≡ [H](P (t), t) . (4.51)

Example 4.20. Stochastic Jump Power: Let a 6= 0 and b > 0. Using the
stochastic jump chain rule (4.48) in differential form, then

d
[
baP (t)+ct

]
dt
=
zol

c ln(b)baP (t)+ctdt+
(
ba(P (t)+1)+ct − baP (t)+ct

)
dP (t)

= baP (t)+ct (c ln(b)dt+ (ba − 1)dP (t)) ,

where the calculus rule, d(bct) = d(ec ln(b)t) = c ln(b)bct, for an arbitrary positive
power base b with an exponential rule has been used.

The corresponding jump integral derived from this formula is

∫ t

0

baP (s)+csdP (s)
dt
=

1

ba − 1

((
baP (t)+ct − 1

)
− c ln(b)

∫ t

0

baP (s)+csds

)
,

provided ba 6= 1. This integral formula simplifies if b = e and c = 0 to

∫ t

0

exp(aP (s))dP (s)
dt
= (exp(aP (t)) − 1)/(exp(a) − 1) ,

but still different from the deterministic version,

∫ t

0

exp(as)ds = (exp(at) − 1)/a.

“bk0allfinal”
2007/1/7
page 105

i

i

i

i

i

i

i

i

4.2. Poisson Jump Process Calculus Rules 105

4.2.3 Jump Calculus Rule with General State
Y (t) = F (X(t), t):

The chain rule for F (P (t), t) is still too simple, so a chain rule for more general
jump processes X(t), such as for F (X(t), t), is needed. First, a definition of a jump
function for general transformations is needed.

Definition 4.21. [Y](t) for General Y (t) = F (X(t), t):
Let the process Y (t) = F (X(t), t) be a continuous transformation of the process
X(t) with jump function [X](t) at t. Then the jump function in Y (t) is defined as

[Y](t) = [F](X(t), t) = F (X(t) + [X](t), t) − F (X(t), t) . (4.52)

Lemma 4.22. [Y](t) for Y (t) = F (X(t), t) with [X](t) = h(X(t), t)dP (t):
Let the process Y (t) = F (X(t), t) be a continuous transformation of the process
X(t) with jump function

[X](t)h(X(t), t)dP (t)

at t, then

[Y](t) = [F](X(t), t) = (F (X(t) + h(X(t), t), t) − F (X(t), t)) dP (t) . (4.53)

Proof. This follows from the Zero-One-Jump Law (4.42) for h(dP (t)) upon sub-
stitution of the jump of [X](t) = h(X(t), t)dP (t) into the definition (4.52), so that

[Y](t) ≡ F (X(t) + [X](t), t) − F (X(t), t)

= F (X(t) + h(X(t), t)dP (t), t) − F (X(t), t)

= (F (X(t) + h(X(t), t), t) − F (X(t), t)) dP (t).

Rule 4.23. Chain Rule for Jump in Y (t) = F (X(t), t):
Let Y (t) = F (X(t), t), such that the function F (x, t) is once continuously differen-
tiable in x and once in t. Let the X(t) process satisfy the jump SDE:

dX(t) = f(X(t), t)dt+ h(X(t), t)dP (t) , (4.54)

X(0) = x0 with probability one, while f(X(t), t) and h(X(t), t) satisfy the mean
square integrability conditions (2.44) with the W (t) argument replaced by the X(t)
arguments of f and h. In (4.54), the jump in X(t) is [X](T−

k) ≡ X(T+
k)−X(T−

k) =
h(X(T−

k), T−
k) for each kth jump-time Tk of P (t). Then

dY (t) = dF (X(t), t)
dt
=
zol

(Ft + fFx) (X(t), t)dt+ [F](X(t), t) , (4.55)

“bk0allfinal”
2007/1/7
page 106

i

i

i

i

i

i

i

i

106 Chapter 4. Stochastic Calculus for Jump-Diffusions

where wholesale arguments have been used for the coefficient functions multiplying dt
and dP (t), respectively, and where the jump in Y (t) = F (X(t), t) is given in (4.53)
of Lemma 4.22.

Sketch of Proof. Formally, using the increment form of the differential,

dY (t) = Y (t+ dt) − Y (t)

= F (X(t+ dt), t+ dt) − F (X(t), t)

= F (X(t) + dX(t), t+ dt) − F (X(t), t) .

Next, as for (4.47,4.49) of the two prior rules, the instantaneous jump changes
(terms in dP (t) only, such that [X](t) = h(X(t), t)dP (t)) are treated separately
from the continuous and smooth deterministic changes (terms in dt only, such that
dX((det))(t) = f(X(t), t)dt), then the mean square approximations are used with
their implied precision-dt,

dY (t)
dt
=
zol

Ft(X(t), t)dt+ Fx(X(t), t)f(X(t), t)dt

+ (F (X(t) + [X](t), t) − F (X(t), t))
dt
=
zol

(Ft + fFx) (X(t), t)dt+ (F (X(t) + h(X(t), t)dP (t), t) − F (X(t), t))

dt
=
zol

(Ft + fFx) (X(t), t)dt+ (F (X(t) + h(X(t), t), t) − F (X(t), t)) dP (t) ,

where the zero-one jump law (4.46) has been used to take the dP (t) out of the
argument of F and let it multiply the jump change in F in the last line of the above
equation. Note that the jump change has been defined, so that if there is no Poisson
jump, then the jump function is zero.

4.2.4 Transformations of Linear Jump with Drift SDEs

Consider the jump SDE, linear in the state process X(t), with time-dependent
coefficients,

dX(t) = X(t) (µ(t)dt + ν(t)dP (t)) , (4.56)

where here the initial condition is X(t0) = x0 > 0 with probability one, µ(t) is
called the drift or deterministic coefficient and ν(t) is called the jump amplitude
coefficient of the Poisson jump term. The jump in state is [X](Tk) = ν(T−

k) for each
jump of P (t), i.e., [P](Tk) = 1 for each k. Assume that the rate coefficients, µ(t)
and ν(t) are bounded, while ν(t) > −1. In the deterministic and the linear diffusion
cases, transforming the state variable to its logarithm makes the right hand side
independent of the transformed state variable, so let

Y (t) = F (X(t)) ≡ ln(X(t)) .

The most recent jump chain rule (4.55, 4.53) is applicable in this case with

f(X(t), t) = X(t)µ(t)

“bk0allfinal”
2007/1/7
page 107

i

i

i

i

i

i

i

i

4.2. Poisson Jump Process Calculus Rules 107

and
h(X(t), t) = X(t)ν(t),

although the increment form of dF (X(t)) can be directly expanded to get the same
result. Since only the first partial derivative and the jump function of F are needed,
while F does not depend on t, then

Fx(X(t)) = 1/X(t) , Ft(X(t)) ≡ 0 ,

and from (4.53)

[F](X(t))
dt
=
zol

(ln(X(t) +X(t)ν(t)) − ln(X(t))) dP (t) = ln(1 + ν(t))dP (t) , (4.57)

where the logarithm subtraction rule ln(A)− ln(B) = ln(A/B), provided A > 0 and
B > 0, has been used to cancel out the linear state dependence in the jump term.
Note that the jump amplitude becomes singular as ν(t) → (−1)+, approaching a
massive disaster to the state. Thus,

dY (t) = dF (X(t)) = Fx(X(t))X(t)µ(t)dt+ [F](X(t))
dt
=
zol

µ(t)dt+ ln(1 + ν(t))dP (t) . (4.58)

The infinitesimal mean of Y (t), assuming the jump rate is time dependent E[dP (t)] =
λ(t)dt too, is

E[dY (t)] = (µ(t) + λ(t) ln(1 + ν(t))) dt (4.59)

and the infinitesimal variance is

Var[dY (t)]
dt
= λ(t) ln2(1 + ν(t))dt , (4.60)

noting that the jump amplitude has a power effect between the infinitesimal expec-
tation and the variance unlike the Poisson infinitesimal property that Var[dP (t)] =
E[dP (t)].

Since the final right hand side of (4.58) does not depend on the state Y (t), we
can easily integrate for Y (t) explicitly leading to

Y (t) = Y (t0) +

∫ t

t0

µ(s)ds+

∫ t

t0

ln(1 + ν(s))dP (s). (4.61)

Exponentiation leads to the formal solution for the original state,

X(t) = X(t0) exp

(∫ t

t0

µ(s)ds+

∫ t

t0

ln(1 + ν(s))dP (s)

)
. (4.62)

Linear Jump SDEs with Constant Coefficients:

If the SDE has constant coefficients, µ(t) = µ0, ν(t) = ν0 and λ(t) = λ0, then
the solution is simpler,

X(t)
ims
= X(t0) exp (µ0(t− t0) + ln(1 + ν0)(P (t) − P (t0)))

= X(t0) exp (µ0(t− t0)) (1 + ν0)
(P (t)−P (t0)) , (4.63)

“bk0allfinal”
2007/1/7
page 108

i

i

i

i

i

i

i

i

108 Chapter 4. Stochastic Calculus for Jump-Diffusions

where, in the last line, the exponential-logarithm inverse relation, exp(a ln(b)) = ba,
has been used to move the Poisson term out of the exponential.

In this pure jump with drift process, the moments are computed using the
Poisson distribution (1.21) coupled with the stationary property that the distribu-
tion depends only on the increment,

Prob[P (t) − P (t0) = k] = Prob[P (t− t0) = k] = pk(λ0(t− t0))

= e−λ0(t−t0)
(λ0(t− t0))

k

k!
.

Thus, the calculation of the mean of the process in (4.63) is

E[X(t)] = x0e
µ0(t−t0)e−λ0(t−t0)

∑

k=0

(λ0(t− t0))
k

k!
(1 + ν0)

k

= x0e
µ0(t−t0)−λ0(t−t0)eλ0(t−t0)(1+ν0)

= x0e
µ0+λ0ν0)(t−t0) ,

growing in time if µ0 + λ0ν0 > 0, but decaying if µ0 + λ0ν0 < 0. Note that λ0 > 0,
but both µ0 and ν0 can be of any sign. The corresponding calculation of the variance
of X(t) is

Var[X(t)] = E[X2(t)] − E2[X(t)]

= x2
0e

2µ0(t−t0)e−λ0(t−t0)
∑

k=0

(λ0(t− t0))
k

k!
(1 + ν0)

2k − E2[X(t)]

= x2
0e

2µ0(t−t0)−λ0(t−t0)eλ0(t−t0)(1+ν0)2 − x2
0e

2(µ0+λ0ν0)(t−t0)

= x2
0e

2(µ0+λ0ν0)(t−t0)
(
eλ0ν2

0)(t−t0) − 1
)

= E2[X(t)]
(
eλ0ν2

0)(t−t0) − 1
)
,

so the growth or decay is proportional to the mean squared, but amplified asymp-
totically by the growing term exp(λ0ν

2
0)(t − t0)). For the distribution, see the

Subsection 4.3.3 for the linear jump-diffusion SDE case.
Applications include stochastic population growth where X(t) is the popula-

tion size, such that the population grows exponentially at intrinsic growth rate µ(t)
in absence of stochastic disasters, but suffers from a random linear disaster if the
jump amplitude rate −1 < ν(t) < 0 or random linear bonanza if ν(t) > 0. See also
Ryan and Hanson [241] or Chapter 11 on Biological Applications.

4.3 Jump-Diffusion Rules and SDEs

Wiener diffusion and simple Poisson jump processes provide an introduction to
elementary stochastic differential equation (SDE) in continuous time for the simple
jump-diffusion state process X(t),

dX(t) = f(X(t), t)dt+ g(X(t), t)dW (t) + h(X(t), t)dP (t) , (4.64)

“bk0allfinal”
2007/1/7
page 109

i

i

i

i

i

i

i

i

4.3. Jump-Diffusion Rules and SDEs 109

where X(0) = x0, with a set of continuous coefficient functions {f, g, h}, possibly
nonlinear in the state X(t). However, in the process of introducing the component
Markov processes, too many rules have been accumulated and in this section most
of these rules will be combined into one rule or a few rules.

4.3.1 Jump-Diffusion Conditional Infinitesimal Moments

The conditional infinitesimal moments for the state process are useful for application
modeling and are given by

E[dX(t)|X(t) = x] = (f(x, t) + λ(t)h(x, t))dt , (4.65)

and
Var[dX(t)|X(t) = x] =

(
g2(x, t) + λ(t)h2(x, t)

)
dt , (4.66)

using (1.1,1.2,4.64), and assuming that the Poisson process is independent of the
Wiener process.

The jump in the state at jumps Tk in the Poisson process, i.e., [P](Tk) = 1,
is not an infinitesimal moment but serves as a simple property of the SDE and is
given by

[X](Tk) ≡ X(T+
k) −X(T−

k) = h(X(T−
k), T−

k) (4.67)

or
[X](t) = h(X(t), t)dP (t) , (4.68)

under the assumption that the jumps are instantaneous so there is no time continu-
ous changes and that in the interval (t, t+dt] there is only time for one jump, if any,
of the Poisson term by the zero-one jump rule (1.35). Note that no dP (t) appears
in (4.67) since a jump is assumed at t = Tk. The jump amplitude evaluation (4.67)
at the pre-jump time value T−

k follows from the Itô forward integration approxima-
tion and the right continuity of P (t), as discussed in the previous chapter and also
means that the jump amplitude depends only at the immediate pre-jump value of
h, but not on the post-jump value which in a sense is in the future.

The infinitesimal moment and jump properties are very useful for modeling
approximations of real applications, by providing a basis for estimating the coef-
ficient functions f , g, and h, as well as some of the process parameters, at least
in the first approximation, through comparison to the empirical values of the basic
probability corresponding of the stochastic integral equation.

4.3.2 Stochastic Jump-Diffusion Chain Rule

The corresponding stochastic chain rule for calculating the differential of a com-
posite process F (X(t), t) begins by interpreting the differential as an infinitesimal
increment and recognizing that since the Poisson jumps are instantaneous there is
no time for continuous changes. Thus, a critical concept in deriving the chain rule
is that the continuous changes and jump changes can be calculated independently.

The state process is decomposed into continuous changes,

d(cont)X(t) = f(X(t), t)dt+ g(X(t), t)dW (t) (4.69)

“bk0allfinal”
2007/1/7
page 110

i

i

i

i

i

i

i

i

110 Chapter 4. Stochastic Calculus for Jump-Diffusions

and discontinuous or jump changes,

d(jump)X(t) = [X](t) = h(X(t), t)dP (t) (4.70)

such that
dX(t) = d(cont)X(t) + d(jump)X(t) . (4.71)

Another critical concept is the transformation of the conditioning for the jump.
The differential Poisson dP (t) serves as the conditioning for the existence of a jump.
This jump conditioning follows from the probability distribution for the differential
Poisson process (1.23) which behaves asymptotically for small λdt as the zero-one
jump law,

ΦdP (t)(k;λdt) = Prob[dP (t) = k] =

1 − λdt, k = 0
λdt, k = 1
0, k > 1

+ O2(λdt) , (4.72)

so that dP (t) behaves as an indicator function of the jump counter k with
neglected error O2(dt) = o(dt), i.e., dP (t) = 0 with asymptotic probability (1−λdt)
if there is no jump and dP (t) = 1 with asymptotic probability (λdt) if there is a
jump, while multiple jumps are likely to be negligible.

Thus, the change of a composite function of the state processX(t), dF (X(t), t),
can be decomposed into the sum of continuous and discontinuous changes.

The function F (x, t) is assumed to be at least twice continuously differentiable
in x and once in t. Due to the non-smoothness (1.6), a two term Taylor approxima-
tion from continuous calculus yields, with subscripts denoting partial derivatives,
the continuous change,

d(cont)F (X(t), t) ≃ Ft(X(t), t)dt+ Fx(X(t), t)d(cont)X(t)

+
1

2
Fxx(X(t), t)(d(cont)X(t))2 ,

which would be the chain rule for the compound function F (X(t), t) of a deter-
ministic function X(t) with the non-smooth property in (1.6). The discontinuous
change follows from the transformation of the jump in X(t) at time t given in the
previous section to the jump in the composite function Y (t) = F (X(t), t),

d(jump)F (X(t), t) = (F (X(t) + h(X(t), t), t) − F (X(t), t)) dP (t) ,

using the jump
[X](t) = h(X(t), t), t)dP (t)

and the continuity of F in t, such that when there is a jump at time Tk in dP (t), the
jump in F is evaluated at the pre-jump time T−

k , else the discontinuous contribution
is zero. Combining the continuous and discontinuous process changes while keeping
at terms non-zero in the mean square limit sense yields

dF (X(t), t) = F (X(t) + dX(t), t+ dt) − F (X(t), t)

= Ft(X(t), t)dt+ Fx(X(t), t) · (f(X(t), t)dt+ g(X(t), t)dW (t))

+
1

2
Fxx(X(t), t) · g2(X(t), t)dt (4.73)

+(F (X(t) + h(X(t), t), t) − F (X(t), t))dP (t) .

“bk0allfinal”
2007/1/7
page 111

i

i

i

i

i

i

i

i

4.3. Jump-Diffusion Rules and SDEs 111

Rewriting (4.73) slightly leads to the final statement Itô stochastic chain rule for
jump-diffusions with simple Poisson jumps:

Rule 4.24. Let F (x, t) be twice continuously differentiable in x and once in t.

dF (X(t), t) = =

(
Ft + fFx +

1

2
g2Fxx

)
(X(t), t)dt+ (gFx) (X(t), t)dW (t)

+ (F (X(t) + h(X(t), t), t) − F (X(t), t)) dP (t) . (4.74)

Here, to summarize, it is assumed that the Wiener process is independent of
the Poisson processes and that the quadratic differential Wiener process (dW)2(t)
can be replaced by its mean square limiting value which is dt within precision-dt.
Thus, the part of the O(dt) change dF due to the Wiener process requires a second
derivative beyond the regular calculus first derivative Taylor approximation and
thus the non-smooth Wiener property plays a strong role compared to its stochastic
or random property. The second derivative term is a diffusion term and hence the
Wiener process is called a diffusion process. However, the motivations for stochastic
diffusions and physical diffusions are quite different, but they both lead to diffusion
equations. The jump term uses the zero-one jump indicator property of dP (t),
so

[F](X(t), t) = F (X(t) + [X](t), t) − F (X(t), t)

= F (X(t) + h(X(t), t)dP (t), t) − F (X(t), t)

= (F (X(t) + h(X(t), t), t) − F (X(t), t)) dP (t) ,

to pass the jump differential dP (t) from the state argument of F (x, t) to a multi-
plying factor of the potential jump difference F (x + h(x, t), t) − F (x, t). If there is
a jump at t = Tk then dP (t) produces a change in the arguments (X(t), t) of both
F and h to (x, t) = (X(T−

k), T−
k). However, if the F and h are continuous in the

explicit t-arguments, then (x, t) = (X(T−
k), Tk) can be used.

Remark 4.25. Several authors use artificial arguments like (X(t−), t−) when treat-
ing Markov jump process SDEs or their corresponding integral equations due to using
an incomplete Poisson or related process model.

4.3.3 Linear Jump-Diffusion SDEs

Let the linear diffusion and jump SDEs be combined into a single SDE:

dX(t) = X(t) (µ(t)dt+ σ(t)dW (t) + ν(t)dP (t)) , (4.75)

X(t0) = x0 > 0 with probability one (this is for specificity, but only x0 6= 0 is
sufficient), where the set of coefficients {µ(t), σ(t), ν(t), λ(t)} are assumed to be
bounded and integrable, with ν(t) > −1 (otherwise, positivity of X(t) cannot be
maintained) and σ(t) > 0 (for consistency with the interpretation as a standard
deviation coefficient of the process). The logarithmic transformation of the state

“bk0allfinal”
2007/1/7
page 112

i

i

i

i

i

i

i

i

112 Chapter 4. Stochastic Calculus for Jump-Diffusions

process Y (t) = ln(X(t)) transforms away the state from the right hand side of
the SDE using the jump-diffusion chain rule (4.74) and the first two logarithmic
derivatives, so

dY (t) = (µ(t) − σ2(t)/2)dt+ σ(t)dW (t) + ln(1 + ν(t))dP (t) . (4.76)

SDE (4.76) is a linear combination of the deterministic, diffusion and jump processes
with deterministic time dependent coefficients so can be immediately but formally
integrated to yield,

Y (t) = y0 +

∫ t

t0

(
(µ(s) − σ2(s)/2)ds+ σ(s)dW (s) + ln(1 + ν(s))dP (s)

)
, (4.77)

where y0 = ln(x0), recalling that it has been assumed that x0 > 0. Inverting
logarithmic state Y (t) back to the original state

X(t) = exp(Y (t))

leads to

X(t) = x0 exp

(∫ t

t0

(
(µ(s)−σ2(s)/2)ds+σ(s)dW (s)+ln(1+ν(s))dP (s)

))
. (4.78)

Linear Jump-Diffusion SDEs with Constant Coefficients:

For the special case of constant rate coefficients, µ(t) = µ0, σ(t) = σ0, ν(t) = ν0
and λ(t) = λ0, also setting t0 = 0, leads to the SDE:

dX(t) = X(t) (µ0dt+ σ0dW (t) + ν0dP (t)) , (4.79)

X(t0) = x0 > 0 with probability one with solution:

X(t) = x0 exp
(
(µ0 − σ2

0/2)t+ σ0W (t) + ln(1 + ν0)P (t)
)

= x0(1 + ν0)
P (t) exp

(
(µ0 − σ2

0/2)t+ σ0W (t)
)
, (4.80)

applying the logarithm-exponential inverse property.
Using the density φW (t)(w) for the diffusion W (t) in (1.7) and the discrete

distribution ΦP (t)(k) = pk(λ0t) for the jump process P (t), together with the pair-
wise independence of the two processes, then the state expectation can be found
directly as

E[X(t)] = x0e
(µ0−σ2

0/2)te−λ0t
∞∑

k=0

(λ0t)
k

k!
(1 + ν0)

k

· 1√
2πt

∫ +∞

−∞
e−w2/(2t)eσ0wdw

= x0e
(µ0 − σ2

0/2)te−λ0teλ0t(1 + ν0)eσ
2
0t/2

= x0e
(µ0 + λ0ν0)t , (4.81)

“bk0allfinal”
2007/1/7
page 113

i

i

i

i

i

i

i

i

4.3. Jump-Diffusion Rules and SDEs 113

where the exponential series and completing the square technique have been
used. It is interesting to note that the conditional infinitesimal expectation relative
to the X(t) for this constant coefficient case is

E[dX(t)|X(t)]/X(t) = (µ0 + λ0ν0)dt ,

provided that the given condition value X(t) 6= 0, which means that if the above
infinitesimal expected result is interpreted implying the expected rate then the state
expectation in (4.81) is the same result as for the equivalent deterministic process.
Note the above equation is equivalent to E[dX(t)|X(t) = x]/x = µ0 +λ0ν0)dt with
x 6= 0, but it is unnecessary to introduce the extra realized value x forX(t) and later
it will be seen that this extra introduction would be awkward in nested conditional
expectations for stochastic dynamic programming in Chapter 6. For more on this
quasi-deterministic equivalence for linear stochastic processes, see Hanson and
Ryan [114].

Using similar applications of the same techniques, the state variance is com-
puted to be

Var[X(t)] = E
[
(X(t) − E[X(t)])2

]
= E

[
X2(t)

]
− E2[X(t)]

= x2
0e

2(µ0−σ2
0/2)t

(
E
[
e2σ0W (t)(1 + ν0)

2P (t)
]

−E2
[
eσ0W (t)(1 + ν0)

P (t)
])

= x2
0e

2(µ0−σ2
0/2)t

(
e2σ

2
0teλ0t((1+ν0)2−1) − eσ

2
0te2λ0ν0t

)

= x2
0e

2(µ0+λ0ν0)t

(
e(σ

2
0 + λ0ν

2
0)t − 1

)

= E2[X(t)]

(
e(σ

2
0 + λ0ν

2
0)t − 1

)
. (4.82)

The conditional infinitesimal variance relative to the square of the state, in this
constant coefficient case, is

Var[dX(t)|X(t)]/X2(t) = (σ2
0 + λ0ν

2
0)dt ,

provided X(t) 6= 0, which in turn is the time integral of the exponent, (σ2
0 +

λ0ν
2
0)t, in the last line of (4.82) and since this exponent must be positive (λ0 > 0)

ensuring exponential amplification in time relative to the expectation exponential
with exponent ((µ0 +λ0ν0)t), which could be of any sign. The usual measure of the
relative changes of a random variable is called the coefficient of variation, which
here is

CV[X(t)] ≡
√

Var[X(t)]

E[X(t)]
=

√
e(σ

2
0 + λ0ν

2
0)t − 1 , (4.83)

provided X(t) 6= 0, which grows exponentially with time t. The CV[X(t)] is often
used in the sciences to represent results, due to its dimensionless form. The dimen-
sionless form makes it easier to pick out general trends or properties, especially if
the CV[X(t)] distills down to something very simple.

“bk0allfinal”
2007/1/7
page 114

i

i

i

i

i

i

i

i

114 Chapter 4. Stochastic Calculus for Jump-Diffusions

The probability density for the solution X(t) in (4.80) in the case of the con-
stant coefficient, linear jump-diffusion SDE can be found by application of the law
of total probability (B.92) and the probability inversion principle in Lemma B.19.
Thus, assuming x0 > 0 and σ0 > 0,

ΦX(t)(x) ≡ Prob[X(t) ≤ x]

=

∞∑

k=0

Prob
[
x0e

(µ0−0.5σ2
0)t+σ0W (t)(1 + ν0)

P (t) ≤ x
∣∣∣P (t) = k

]

· Prob [P (t) = k]

=

∞∑

k=0

pk (λ0t) Prob
[
x0e

(µ0−0.5σ2
0)t+σ0W (t)(1 + ν0)

k ≤ x
]

=
∞∑

k=0

pk (λ0t) Prob
[
W (t) ≤

(
ln(x/x0) − (µ0 − 0.5σ2

0)t− k ln(1 + ν0)
)
/σ0

]

=

∞∑

k=0

pk (λ0t)ΦW (t)

((
ln(x/x0) − (µ0 − 0.5σ2

0)t− k ln(1 + ν0)
)
/σ0

)

=

∞∑

k=0

pk (λ0t)Φn

((
ln(x/x0) − (µ0 − 0.5σ2

0)t− k ln(1 + ν0)
)
/σ0; 0, t

)

=

∞∑

k=0

pk (λ0t)Φn

(
ln(x); ln(x0) + (µ0 − 0.5σ2

0)t+ k ln(1 + ν0), σ
2
0t
)
,

where ΦW (t) is the distribution of W (t) (B.22) given in terms of the normal dis-
tribution Φn (B.18). The last step again follows from the conversion identity from
standard to general normal distribution, given in Exercise 9 on Page B72. Thus,
we have just proven the following jump-diffusion probability distribution theorem
for the linear constant coefficient SDE by elementary probability principles.

Theorem 4.26. Jump-Diffusion Probability Distribution for Linear
Constant-Coefficient SDE:
Let X(t) formally satisfy the scalar, linear, constant coefficient SDE (4.79) with
initial condition X(0) = x0 > 0, Then for each value of the jump counter k, the
distribution is a sequence of distributions,

ΦX(t)(x) =

∞∑

k=0

pk(λ0t)Φ
(k)
X(t)(x) ,

where each term of the sequence has the form,

Φ
(k)
X(t)(x) = Φn

(
ln(x);µ(k)

n (t), σ2
0t
)
,

i.e., is a lognormal distribution (B.30) with normal mean

µ(k)
n (t) = ln(x0) +

(
µ0 − 0.5σ2

0

)
t+ k ln(1 + ν0)

“bk0allfinal”
2007/1/7
page 115

i

i

i

i

i

i

i

i

4.3. Jump-Diffusion Rules and SDEs 115

and normal variance
(σn)2(t) = σ2

0t .

For each k the logarithm of the solution X(t) has a general normal distribution,
where the lognormal moment formulas are given in the Properties B.20. The proba-
bility density of X(t) is found by chain rule differentiating the distribution to yield,

φX(t)(x) =
∞∑

k=0

pk (λ0t)x
−1φn

(
ln(x);µ(k)

n (t), (σn)2(t)
)
, (4.84)

for x > 0, such that φX(t)(0) ≡ φX(t)(0
+) = 0.

Remarks 4.27.

• The fact φX(t)(0) ≡ φX(t)(0
+) = 0 is because for the limit as x → 0+, the

exponentially small normal distribution term dominates the simple algebraic
pole from 1/x.

• For each k, the normal mean is shifted by an amount ln(1+ν0) and is weighted
by the Poisson jump counting probability pk(λ0t) = exp(−λ0t)(λ0t)

k/k! so the
contributions decay like those of the exponential series.

Solution Simulations for Linear Jump-Diffusion SDEs with Constant Coefficients:

Upon merging and modifying the simulation algorithms for small time increments in
Fig. 1.1 using the cumulative sum of normal random generated Wiener increment
approximations together with the cumulative sum of uniform random generated
Poisson increment approximations with acceptance-rejection technique [230, 96] to
model the zero-one jump law, simulations of the linear jump diffusion process with
constant parameters solution (4.80) are shown in Fig. 4.3. The basic simulation is
performed on the approximate exponent increment

∆Yi ≃ (µ0 − σ2
0/2)∆t+ σ0∆Wi + ln(1 + ν0)∆Pi, (4.85)

corresponding to SDE (4.85), where ∆t = 0.001 for this MATLAB generated figure,

∆Wi ≃ DW (i) ,∆t = Dt , where DW = sqrt(Dt) ∗ randn(N, 1) ;

and
∆Pi ≃ DP (i) = U(DU(i);ul, ur) , where DU = rand(N, 1) ,

for i = 1 : N with X(0) = x0, U(u;ul, ur) is the unit step function on the centered
interval [ul = (1 − λ0∆t)/2, ur = (1 + λ0∆t)/2], approximating the zero-one jump
law through the acceptance-rejection method [230, 96]. The state exponent, Y S,
sample path, starting from a zero initial condition Y S(1) = 0 rather than ln(x0),
for i = 1 : N , is approximated by

Y S(i+ 1) = Y S(i) + (µ0 − σ2
0/2) ∗Dt+ σ0 ∗DW (i) + log(1 + ν0) ∗DP (i) ,

“bk0allfinal”
2007/1/7
page 116

i

i

i

i

i

i

i

i

116 Chapter 4. Stochastic Calculus for Jump-Diffusions

with t(i+ 1) = i ∗Dt. The desired state, XS, sample path is approximated by

X(t(i+ 1)) ≃ XS(i+ 1) = x0 ∗ exp(Y S(i+ 1)) .

The mean trajectory, XM ,

E[X(t(i+ 1))] ≃ XM(i+ 1) = x0 ∗ exp((µ0 + λ0 ∗ ν0)t(i+ 1))

is also displayed in the figure along with upper XT exponential standard deviation
estimate

E[X(t(i+ 1))] ∗ V (i+ 1) ≃ XT (i+ 1) = XM(i+ 1) ∗ V (i+ 1)

and lower XB exponential standard deviation estimate

E[X(t(i+ 1))]/V (i+ 1) ≃ XB(i+ 1) = XM(i+ 1)/V (i+ 1) ,

where the factor

V (i+ 1) = exp(
√

Var[Y (t(i+ 1))]) = exp

(√
(σ2

0 + λ0 ∗ log2(1 + ν0))t(i+ 1)

)

is the exponential of the standard deviation of the exponent process Y (t) in discrete
form. Alternatively, one plus or minus the coefficient of variation formula (4.83)
could be used to form a deviation factor, but the factor V (i + 1) above is more
appropriate since it corresponds better to the finite difference simulation approxi-
mation. Although the jump amplitude is only a 10 per cent decrement, the jumps
are very noticeable in the figure, while both the jump and diffusion component pro-
cesses result in excesses beyond the indicated upper and lower standard deviation
estimates. The estimates correspond to rough confidence intervals and not bounds.
See Program C.14 in the Appendix C for the MATLAB code used to produce this
figure.

The same code, in the case of constant parameters, can be used for the pure
diffusion model in the example (4.24) by setting ν0 = 0 for the diffusion as shown
in Fig. 4.4 or for the pure jump model in the example (4.56) by setting σ0 = 0 for
the jump process as shown in Fig. 4.5

Remarks 4.28.

• Simulation Caution: Note that the constant coefficient closed-form solution
(4.80) is not used directly, i.e.,

Xi = X0(1 + ν0)
Pi exp

(
(µ0 − σ2

0/2)ti + σ0Wi

)
,

for i = 0 : (n + 1), where tn+1 = T is the final time, by directly simulating
the random variables Pi and Wi, since they are not independent of either
earlier or later values Pj and Wj for j 6= i. So such a simulation would be
incorrectly approximated. However, simulating the increment set {∆Pi,∆Wi}

“bk0allfinal”
2007/1/7
page 117

i

i

i

i

i

i

i

i

4.3. Jump-Diffusion Rules and SDEs 117

0 0.2 0.4 0.6 0.8 1
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
Linear Jump−Diffusion Simulations

X
(t

),
 J

um
p−

D
iff

us
io

n
S

ta
te

t, Time

X(t) Sample 1
X(t) Sample 2
X(t) Sample 3
X(t) Sample 4
E[X](t)
(E[X]*V)(t)
(E[X]/V)(t)

Figure 4.3. Four linear jump-diffusion sample paths for constant coeffi-
cients are simulated using MATLAB [210] with N = 1000 sample points, maximum
time T = 1.0 and four randn and four rand states. Parameter values are µ0 = 0.5,
σ0 = 0.10, ν0 = −0.10, λ0 = 3.0 and x0 = 1.0. In addition to the four simulated
states, the expected state E[X(t)] and two deviation measures E[X(t)] ∗ V (t) and
E[X(t)]/V (t), where the factor V (t) is based on the standard deviation of the state
exponent Y (t).

for i = 0 : n would be an appropriate use of the approximate independence
property of the pseudo-random number generators of ∆Pi and ∆Wi, i.e.,

Xi+1 = Xi(1 + ν0)
∆Pi exp

(
(µ0 − σ2

0/2)∆ti + σ0∆Wi

)
,

for i = 0 : n, noting

∆Yi = (µ0 − σ2
0/2)∆ti + σ0∆Wi + ln(1 + ν0)∆Pi

and that exp(ln(1 + ν0)∆Pi) = (1 + ν0)
∆Pi using the exponential-logarithm

inverse relationship. Considering finite precision arithmetic, this would be
similar to using

Wi+1 =

i∑

j=0

∆Wj and Pi+1 =

i∑

j=0

∆Pj ,

for (i+ 1) = 1 : (n+ 1).

It is important to build simulations in independent increments.

“bk0allfinal”
2007/1/7
page 118

i

i

i

i

i

i

i

i

118 Chapter 4. Stochastic Calculus for Jump-Diffusions

0 0.2 0.4 0.6 0.8 1
0.8

1

1.2

1.4

1.6

1.8

2
Linear Diffusion Simulations

X
(t

),
 D

iff
us

io
n

S
ta

te

t, Time

X(t) Sample 1
X(t) Sample 2
X(t) Sample 3
X(t) Sample 4
E[X](t)
(E[X]*V)(t)
(E[X]/V)(t)

Figure 4.4. Four linear pure diffusion sample paths for constant coeffi-
cients are simulated using MATLAB [210] with N = 1000 sample points, maximum
time T = 1.0 and four randn states. Parameter values are µ0 = 0.5, σ0 = 0.10,
ν0 = 0.0, and x0 = 1.0. In addition to the four simulated states, the expected state
E[X(t)] and two deviation measures E[X(t)] ∗V (t) and E[X(t)]/V (t) are displayed,
where the factor V (t) is based on the standard deviation of the state exponent Y (t).

0 0.2 0.4 0.6 0.8 1
0.8

1

1.2

1.4

1.6

1.8
Linear Jump Simulations

X
(t

),
 J

um
p

S
ta

te

t, Time

X(t) Sample 1
X(t) Sample 2
X(t) Sample 3
X(t) Sample 4
E[X](t)
(E[X]*V)(t)
(E[X]/V)(t)

Figure 4.5. Four linear pure jump with drift sample paths for constant
coefficients are simulated using MATLAB [210] with N = 1000 sample points, max-
imum time T = 1.0 and four randn states. Parameter values are µ0 = 0.5, σ0 = 0.0,
ν0 = −0.10, and x0 = 1.0. In addition to the four simulated states, the expected
state E[X(t)] and two deviation measures E[X(t)] ∗ V (t) and E[X(t)]/V (t) are dis-
played, where the factor V (t) is based on the standard deviation of the state exponent
Y (t).

“bk0allfinal”
2007/1/7
page 119

i

i

i

i

i

i

i

i

4.3. Jump-Diffusion Rules and SDEs 119

• Other SDE codes can be found in the literature. MapleTM codes for jump-
diffusions can be found in the paper of Cyganowski, Grüne and Kloeden [64]
along with higher approximations. In the numerical SDE tutorial review,
D. Higham lists some very readable MATLABTM codes modeled on techniques
from the superb MATLABTM guide of D. and N. Higham. Both MapleTM and
MATLABTM codes for diffusion SDEs for finance can be found in D. Higham
and Kloeden [143] along with higher order approximations. See also the recent
probability and SDEs book of Cyganowski, Kloeden and Ombach [66] for more
on Maple codes for diffusions. For diffusion SDE codes in MathematicaTM the
reader can consult the computational finance oriented book of Stojanovic [259].
Higher order, but older, diffusion SDE codes are found in the computational
Kloeden, Platen and Schurz [166] and are also used for the illustrations in the
more theoretical treatise of Kloeden and Platen [165]. However these codes
are in Turbo-Pascal, not often used now.

• More computational SDE methods will be discussed in the compact Section 9.1
of Chapter 9. This section is a good introduction to SDE simulations for
readers and instructors interested in exploring the topic further. Since the
Itô forward integration uses the Euler’s or the tangent line method for purely
deterministic processes and Euler’s method is perhaps the crudest numerical
method for differential equations, higher order numerical methods are impor-
tant when accuracy is important. Some sample codes are given in Section 9.1
and in Appendix C. See also [64, 143, 66, 139]. However, Euler’s method is
the most genuine application of Itô’s stochastic integration for Markov pro-
cesses in continuous time, although the simulations sample size should be large
for reasonable representation of the stochastic processes.

Linear Jump-Diffusion SDEs with Time-Dependent Coefficients:

While linear constant coefficient SDEs often occur in applications such as elementary
finance, time-dependence of market parameters can play an important role. For
this reason, our attention returns to the time-dependent coefficients of the linear
SDE solution (4.78) and the expected state trajectory. However, the procedure is
more complex than in the simple constant coefficient case, since the expectations
of exponentials of integral are required. First the pure diffusion case is considered
then the pure jump case in the following two lemmas and related corollaries.

Lemma 4.29. Expectation of exp(
∫

σdW (s)):
Let σ(t) be square integrable on [t0, t], then

E

[
exp

(∫ t

t0

σ(s)dW (s)

)]
ims
= exp

(
1

2

∫ t

t0

σ2(s)ds

)
. (4.86)

Sketch of Proof. To keep the justification reasonably brief and maintain the
usefulness as an integration technique, the stochastic diffusion integral will first

“bk0allfinal”
2007/1/7
page 120

i

i

i

i

i

i

i

i

120 Chapter 4. Stochastic Calculus for Jump-Diffusions

be formally decomposed into a forward Itô sum, averaged and then recomposed
back into a deterministic integral. The justification of each step will be indicated
in short hand on the sign of the relation, but the more rigorous Itô limits will be
omitted. Let ti = t0 + i ∗ ∆t for i = 0 : n + 1 be a proper partition of [t0, t] with
∆t = (t− t0)/(n+ 1), ∆Wi = W (ti+1) −W (ti) and σi = σ(ti) for i = 0 : n.

E
[
exp

(∫ t

t0
σ(s)dW (s)

)]
ims≃ E [exp (

∑n
i=0 σi∆Wi)]

law
=

exp.
E [
∏n

i=0 exp (σi∆Wi)]
ind
=
inc

∏n
i=0 E∆Wi

[exp (σi∆Wi)]

norm.
=

dist.

∏n
i=0

∫ +∞
−∞

exp
“
− w2

2∆t
+σiw

”

√
2π∆t

dw
comp.

=
sq.

∏n
i=0 exp

(
σ2

i ∆t/2
)

ims≃ exp
(

1
2

∫ t

t0
σ2(s)ds

)
.

Lemma 4.30. Expectation of exp(
∫

ln(1 + ν)dP (s)):
Let λ(t)ν(t) be integrable on [t0, t], then

E

[
exp

(∫ t

t0

ln(1 + ν(s))dP (s)

)]
ims
= exp

(∫ t

t0

λ(s)ν(s)ds

)
. (4.87)

Sketch of Proof. Again, to keep the justification reasonably brief and maintain
the usefulness as an integration technique, the stochastic diffusion integral will first
be formally decomposed into a forward Itô sum, averaged and then recomposed
back into a deterministic integral. The justification of each step will be indicated
in short hand on the sign of the relation, but the more rigorous Itô limits will be
omitted. Again, let ti = t0 + i ∗ ∆t for i = 0 : n+ 1 be a proper partition of [t0, t]
with ∆t = (t − t0)/(n + 1), ∆Pi = P (ti+1) − P (ti) , λi = λ(ti) and νi = ν(ti) for
i = 0 : n.

E
[
exp

(∫ t

t0
ln(1 + ν(s))dP (s)

)]
ims≃ E [exp (

∑n
i=0 ln(1 + νi)∆Pi)]

law
=

exp.
E [
∏n

i=0 exp (ln(1 + νi)∆Pi)]
ind
=
inc

∏n
i=0 E∆Pi

[exp (ln(1 + νi)∆Pi)]

pois.
=

dist.

∏n
i=0

∑∞
k=0 e

−λi∆t λi∆t
k! (1 + νi)

k exp.
=

sum.

∏n
i=0 e

−λi∆t+λi∆t(1+νi)

ims≃ exp
(∫ t

t0
λ(s)ν(s)ds

)
.

Using diffusion and jump Lemmas 4.29-4.30, the expectation of the state tra-
jectory X(t) (4.78) for the linear SDE with time-dependent coefficients (4.75) can
be readily calculated:

Theorem 4.31. Expectation of X(t) in the Linear Jump-Diffusion SDE
with Time-Dependent Coefficients Case:

“bk0allfinal”
2007/1/7
page 121

i

i

i

i

i

i

i

i

4.3. Jump-Diffusion Rules and SDEs 121

Let µ(t), σ2(t) and λ(t)ν(t) be integrable on [t0, t], then

E[X(t)] = E

»
x0 exp

„Z t

t0

`
(µ(s) − σ2(s)/2)ds + σ(s)dW (s) + ln(1 + ν(s))dP (s)

´«–

ims
= x0 exp

„Z t

t0

(µ(s) + λ(s)ν(s)) ds

«
. (4.88)

Proof. The proof is left as an algebraic exercise for the reader, using Lemmas 4.29-
4.30.

For the corresponding variance Var[X(t)], see Exercise 16 on page 128. Note
that the expectation and the variance reduce to the linear SDE, constant coefficients
results given in (4.81) for the expectation and (4.82) for the variance in the case of
constant coefficients.

4.3.4 SDE Models Exactly Transformable To Purely
Time-Varying Coefficients

In this section, a catalog of exactly transformable jump-diffusion SDE models are
given and first the notational correlations are listed for ease of interpreting the list
of models and their transformations, where conditions are applicable:

List of SDE Models and Their Transformations

• Original SDE (4.64):

dX(t) = f(X(t), t)dt+ g(X(t), t)dW (t) + h(X(t), t)dP (t)).

• Transformed Process: Y (t) = F (X(t), t).

• Transformed SDE: dY (t) = (Ft+Fxf+ 1
2Fxxg

2)dt+FxgdW (t)+[F]dP (t).

• Target Explicit SDE: dY (t) = C1(t)dt+ C2(t)dW (t) + C3(t)dP (t).

• Original-Target Coefficient Equations:

Ft + Fxf + 1
2Fxxg

2 = C1(t);

Fxg = C2(t);

[F] ≡ F (x+ h(x, t), t) − F (x, t) = C3(t).

• Original Coefficients:

f(x, t) = (C1(t) − Ft(x, t) − 1
2Fxx(x, t)C2

2 (t)/F 2
x (x, t))/Fx(x, t);

g(x, t) = C2(t)/Fx(x, t);

h(x, t) = −x+ F−1(F (x, t) + C3(t)).

See Table 4.1 for examples.
In their theoretical and numerical treatise on stochastic differential equations,

Kloeden and Platen [165, Section 4.4] list many exact solutions for diffusion SDEs.

“bk0allfinal”
2007/1/7
page 122

i

i

i

i

i

i

i

i

122 Chapter 4. Stochastic Calculus for Jump-Diffusions

Table 4.1. Table of Example Transforms Listing Original Coefficients in
terms of Target and Transform Coefficients:

Transform Plant Gaussian Poisson

Y → Coefficient Coefficient Coefficient

F (x, t) f(x, t) g(x, t) h(x, t)

x C1(t) C2(t) C3(t)

a(t)x + b(t) C1(t)−a′(t)x−b′(t)
a(t)

C2(t)
a(t)

C3(t)
a(t)

a(t)x2
C1(t)−a′(t)x2−

C2
2(t)

4a(t)x2

2a(t)x
C2(t)
2a(t)x

−x ±
q

x2 + C3(t)
a(t)

a(t)
x+b(t)

C2
2

a2 (x + b)3 − C1
a

(x + b)2 −C2
a

(x + b)2 − C3(x+b)2

C3(x+b)+a

+ a′

a
(x + b) − b′

1
b−c

“
C2

2
a2(b−c)

(x + b)

C1
a

(x + b)2

a(t)x+c(t)
x+b(t)

, + b′

a
(x + c) − c′(x + b)

”
− C2

a(b−c)
(x + b)2 − C3(x+b)2

C3(x+b)−a(b−c)

{b 6= c} − a′

a
(x + b)(x + c)

+ b′

a
(x + c) − c′(x + b)

”

a(t)eb(t)x −(a′

ab
+ b′

b
) + C1

ab
e−bx C2

ab
e−bx 1

b
ln
`

C3
a

e−bx + 1
´

− 1
2

C2
2

a2b
e−2bx

a(t) ln(x) + b(t)
“

C1
a

+
C2

2
2a2

C2
a

x
“
eC3/a − 1

”
x

− a′

a
ln(x) − b′

a

”
x

They also give a comprehensive treatment of convergence and stability of numerical
approximations to solutions of SDEs that are well beyond this text.

“bk0allfinal”
2007/1/7
page 123

i

i

i

i

i

i

i

i

4.4. Poisson Noise is White Noise Too! 123

4.4 Poisson Noise is White Noise Too!

Noise can be rapid fluctuations or disturbances, so stochastic processes are some-
times called noise as well. Another typical feature of noise is that it contains many
frequencies, so such noise can also be called colored noise. If the noise contains
all frequencies then it is called white noise, in analogy with white light containing
all colors of the light spectrum.

There are two principal kinds of white noise in stochastic processes, Gaussian
white noise if the noise is normally distributed or Poisson white noise if the noise
is Poisson distributed. The white-ness of the noise relies heavily on the independent
increment property.

However, many use the term white noise without qualification to refer to
Gaussian white noise, perhaps because of the lack of familiarity with the other main
Markov process in continuous time that also is white noise, the Poisson process. An
exception is Arnold [13], who treats mainly Gaussian white noise, but properly
mentions that Poisson noise is also white noise as well.

Consider the Gaussian case first. It is necessary to look at the covariance of
the Wiener increments at different times relative to the time increment,

C∆W (t)(h) ≡ Cov[∆W (t)/∆t,∆W (t+ h)/∆t]

= E[∆W (t)∆W (t+ h)]/(∆t)2 , (4.89)

where ∆W (t) ≡W (t+ ∆t)−W (t), the time increment ∆t > 0 as usual, but h 6= 0.
The covariance in (4.89) is also related to the correlation coefficient (B.142) between
∆W (t) and ∆W (t+h), noting that the reciprocal 1/∆t scales out of the correlation
coefficient, by

ρ∆W (t)(h) = ∆t · C∆W (t)(h) , (4.90)

using
√

Var[∆W (t)] =
√

Var[∆W (t+ h)] =
√

∆t. Since W (t) is not differentiable,
the finite difference approximation ∆W (t)/∆t is used in place of its rate or velocity
so we can eventually let ∆t → 0+. Using the independent increments property
and the zero-mean property E[∆W (t)] = 0, separating ∆W (t) and ∆W (t+ h) into
independent and common increments,

C∆W (t)(h) =
1

(∆t)2

0, h ≤ −∆t
∆t+ h, −∆t ≤ h ≤ 0
∆t− h, 0 ≤ h ≤ ∆t
0, h ≥ +∆t

=
(∆t− |h|)

(∆t)2
U(h;−∆t,+∆t) , (4.91)

where U(x; a, b) is the unit step function on [a, b] and is used to give C∆W (t)(h) a
more compact form.

Next, we seek the limiting generalized behavior of C∆W (t)(h) as ∆t → 0+ by
considering the integral of a sufficiently well-behaved “test” function, F (h) and by

“bk0allfinal”
2007/1/7
page 124

i

i

i

i

i

i

i

i

124 Chapter 4. Stochastic Calculus for Jump-Diffusions

using the step function representation in (4.91),
∫ +∞

−∞
C∆W (t)(h)F (h)dh =

∫ +∆t

−∆t

(∆t− |h|)
(∆t)2

F (h)dh

=

∫ +1

−1

(1 − |u|)F (u∆t)du

→ F (0)

∫ +1

−1

(1 − |u|)du = F (0) , (4.92)

where the change of variables h = u∆t moved all ∆t’s into the argument of f
and subsequently an expansion retained the leading term and neglected errors of
order ∆t. Thus, we have the generalized form corresponding to the covariance of
differential dW (t),

CdW (t)(h) = δ(h) , (4.93)

where δ(h) is the Dirac delta function. Thus, Gaussian noise is also called delta-
correlated and delta-correlation is closely connected with the notion of white noise,
but note that the actual correlation coefficient (4.90) goes to zero as ∆t→ 0+.

Finally, to examine the frequency spectrum of CdW (t)(h), consider the power
density spectrum using the Fourier transform,

F [CdW (t)](k) =
1

π

∫ +∞

−∞
e−ikhCdW (t)(h)dh

gen
=

1

π

∫ +∞

−∞
e−ikhδ(h)dh =

1

π
, (4.94)

which is certainly constant, so CdW (t)(h) has a flat frequency spectrum and thus
represents an approximation to Gaussian white noise, dW (t) being normally dis-
tributed.

Similarly, for the simple Poisson process, which we consider in the zero-mean
form,

∆P̂ (t) ≡ ∆P (t) − λ0∆t

where λ0 > 0 is a constant jump rate, then the covariance of the time-separated
finite difference velocities is

C∆P (t)(h) ≡ Cov[∆P̂ (t)/∆t,∆P̂ (t+ h)/∆t]

= E[∆P̂ (t)∆P̂ (t+ h)]/(∆t)2

=
λ0(∆t− |h|)

(∆t)2
U(h;−∆t,+∆t)

gen−→ λ0δ(h)
gen
= CdP (t)(h) , (4.95)

taking a similar limit as ∆t→ 0+ as with C∆W (t)(h) above. Hence, Poisson noise is
also delta-correlated. For the Poisson increment process, recalling Var[∆P (t)] =

Var[∆P̂ (t)] = λ0∆t, so the corresponding correlation coefficient is

ρ∆P (t)(h) = ∆t · C∆P (t)(h)/λ0 . (4.96)

“bk0allfinal”
2007/1/7
page 125

i

i

i

i

i

i

i

i

4.5. Exercises 125

Finally, taking the Fourier transform of CdP (t)(h),

F [CdP (t)](k) =
1

π

∫ +∞

−∞
e−ikhCdP (t)(h)dh

gen
= λ0

1

π

∫ +∞

−∞
e−ikhδ(h)dh = λ0

1

π
, (4.97)

which is also a constant so that Poisson noise is also white noise.

4.5 Exercises

1. Derive the Itô stochastic integral formulas for

∫ t

0

cos(aW (s))dW (s) and

∫ t

0

sin(aW (s))dW (s) ,

where a 6= 0 and is a real constant. Also, derive the results when a = 0.

2. Find X(t) if ∫ t

0

X(s)dP (s) = bP (t) ln(aP (t) + c) ,

where a > 0, b > 0 and c > 0 are real constants.

3. Derive the following using stochastic calculus:

(a)
∫ t

0 sin(πP (s))dP (s)
dt
= − 1

2 sin(πP (t)).

(b)
∫ t

0
cos(πP (s))dP (s)

dt
= 1

2 (1 − cos(πP (t))).

{Hint: You may need some elementary trigonometric identities.}

4. Consider the simple linear jump-diffusion SDE,

dX(t) = (µddt+ σddW (t) + JdP (t))X(t) ,

where the {µd, σd, µj , σj , λ0} are constants and λ0 is the Poisson jump rate,
while µj is the mean of the jump amplitude J and σ2

j is the jump amplitude
variance. The diffusion process W (t) is independent of the jump process P (t)
and the jump amplitude J independent of P (t) conditioned on a jump of P (t).
Show that the conditional infinitesimal mean is given by

E[dX(t)|X(t) = x] = (µd + λ0µj)xdt

and the conditional infinitesimal variance is given by

Var[dX(t)|X(t) = x]
dt
= (σ2

d + λ0(σ
2
j + µ2

j))x
2dt,

explaining why equality in dt-precision (see Chapter 1 for a definition) is
required in the latter but not in the former conditional moment.

“bk0allfinal”
2007/1/7
page 126

i

i

i

i

i

i

i

i

126 Chapter 4. Stochastic Calculus for Jump-Diffusions

5. Show that the power rules for (Itô) stochastic integration for Wiener noise
can be written as the recursions,

∫ t

0

Wm(s)dW (s) =
1

m+ 1
Wm+1(t) − m

2

∫ t

0

Wm−1(s)ds, (4.98)

(a) Illustrate the application of the formulas to find the results for the cases
m = 2 and m = 3.

(b) Alternatively, using the (Itô) stochastic chain rule and mathematical
induction, show the general result.

6. Solve the following (Itô) diffusion SDE for X(t), E[X(t)], and Var[X(t)],

dX(t) =
(
a
√
X(t) + b2/4

)
dt+ b

√
X(t)dW (t) ,

where a and b are real constants, and X(0) = x0 > 0, with probability one.
{Hint: Seek a transformation Y (t) = f(X(t)) for some f such that Y (t)
satisfies a constant coefficient SDE.}

7. Solve the following (Itô) diffusion SDE for X(t), E[X(t)], and Var[X(t)],

dX(t) =
(
aX2(t) + b2X3(t)

)
dt+ bX2(t)dW (t) ,

where a and b are real constants, and X(0) = x0 > 0, with probability one.
{Hint: Seek a transformation Y (t) = f(X(t)) for some f such that Y (t)
satisfies a constant coefficient SDE.}

8. Solve the following diffusion SDE for X(t) and E[X(t)],

dX(t) =

(
aX3/4(t) +

3

8
b2X1/2(t)

)
dt+ bX3/4(t)dW (t) ,

where a and b are real constants, and X(0) = x0 > 0, with probability
one. {Hint: Find a power transformation to convert the SDE to a constant
coefficient SDE.}

9. Solve the following (Itô) jump SDE for X(t), E[X(t)], and Var[X(t)],

dX(t) = −aX2(t)dt− cX2(t)

1 + cX(t)
dP (t) ,

where E[P (t)] = λ0t and X(0) = x0 > 0, with probability one, while a > 0,
b > 0 and λ0 > 0 are constants. The answer may be left as a sum over the
Poisson distribution.
{Hint: Seek a transformation Y (t) = f(X(t)) for some f such that Y (t)
satisfies a constant coefficient SDE. }

“bk0allfinal”
2007/1/7
page 127

i

i

i

i

i

i

i

i

4.5. Exercises 127

10. Solve the following Poisson jump SDE for X(t) and E[X(t)],

dX(t) = a
√
X(t)dt+ b

(
b+ 2

√
X(t)

)
dP (t) ,

where E[P (t)] = λ0t and X(0) = x0 > 0, with probability one, while λ0, a
and b are real constants. {Hint: Find a power transformation to convert the
SDE to a constant coefficient SDE.}

11. Show that the (Itô) jump-diffusion SDE for X(t),

dX(t) = f(X(t))dt+ bXr(t)dW (t) + h(X(t))dP (t) ,

can be transformed by Y (t) = F (X(t)) to a constant coefficient SDE,where
E[P (t)] = λ0t and X(0) = x0 > 0, with probability one, while λ0, b and r 6= 0
are real constants. In a proper answer, the power forms of f(X(t)) and h(X(t))
must be derived from the constant coefficient SDE condition.

12. Martingales: A martingale in continuous time satisfies the essential prop-
erty that

E[M(t)|M(s)] = M(s), (4.99)

for all 0 ≤ s < t] provided its absolute value has finite expectation, E[|M(t)|] <
∞ for all t ≥ 0 plus some other technical properties (see Mikosch [209], for
instance).

Driftless Log-Linear Process =⇒ Martingale?
Show directly that

M1(t) = ln(X(t)) − E[ln(X(t))] (4.100)

is a martingale using that Y (t) = ln(X(t)) symbolically satisfies the solution
to general linear SDE transformed to state-lindependent, time-dependent form
(4.76).

Remark 4.32. This type of problem is applicable to many financial problem
where the return on a linear financial asset X(t) is transformed to a log-
return form ln(X(t)), forming an SDE with state-independent coefficients, so
the driftless deviation M1(t) form in (4.100) is a martingale, a log-martingale.
However, readers must be aware of all the assumptions involved. See the next
exercise.

13. Driftless =⇒ Martingale?
Prove the following theorem, explicitly justifying every step where an under-
lined theorem assumption or expectation property is needed.

“bk0allfinal”
2007/1/7
page 128

i

i

i

i

i

i

i

i

128 Chapter 4. Stochastic Calculus for Jump-Diffusions

Theorem 4.33. If the Markov process X(t) is driftless (i.e., E[X(t)] = 0)
and has independent increments (along with the boundedness and technical
condition cited with (4.99), then X(t) is a martingale.

Remark 4.34. Readers must aware of the direction of the implication. For
example, Hull [147, p. 507] states “A martingale is a zero-drift stochastic pro-
cess.”, while Baxter and Rennie [22, p. 79] state “X is a martingale ⇐⇒ X is
driftless (µt ≡ 0).”, yet all of the assumptions are not apparent. For example,
the state-independence of the SDE for the log-return is in the background.

14. Exponential-Martingale Counterexample to Driftless Martingale Re-
quirement?

(a) Derive the nonrandom function β(t) that makes

M2(t) = β(t)X(t)

a martingale if X(t) symbolically satisfies the linear SDE (4.75).

(b) Show that M2(t) is not driftless, i.e.,

E[M2(t)] 6= 0,

in absence of trivial initial conditions, i.e., x0 6= 0.

Remark 4.35. This is a counterexample showing that if M(t) is a martingale
then it in not necessarily a driftless process.

15. General Exponential-Expectation Interchange Formula for Linear
Jump-Diffusions:
Formally show that

E

[
exp

(∫ t

0

d ln(X)(s)

)]
= exp

(
E

[∫ t

0

(
dX

X

)
(s)

])
, (4.101)

if X(t) is a linear jump-diffusion process (4.75), verifying that both sides
of (4.101) are equivalent. Assume all integrals of process coefficients are
bounded.

16. For the solution X(t) (4.78) of the linear SDE (4.75) with time-dependent
coefficients, assuming all integrals of process coefficients are bounded,

(a) Calculate the expectation of the quadratic of the exponential of the dif-
fusion integral in Lemma 4.29 transforming the results of the lemma, or
using the same techniques as in the lemma.

(b) Calculate the expectation of the quadratic of the exponential of the jump
integral in Lemma 4.30 transforming the results of the lemma.

“bk0allfinal”
2007/1/7
page 129

i

i

i

i

i

i

i

i

4.5. Exercises 129

(c) Using the result of the first two parts of this exericise and the expectation
Theorem 4.31 to show

Theorem 4.36. Variance of X(t) in the Linear SDE with Time-
Dependent Coefficients Case:

Let µ(t), σ2(t) and λ(t)νj(t) for j = 1 : 2 be integrable on [t0, t], then

Var[X(t)]
ims
= x2

0 exp

(
2

∫ t

t0

(µ(s) + λ(s)ν(s)) ds

)

·
(

exp

(∫ t

t0

(
σ2(s) + λ(s)ν2(s)

)
ds

)
− 1

)
,

(4.102)

for the state trajectory X(t) given in (4.78).

Suggested References for Further Reading

• Cyganowski, Grüne and Kloeden, 2002 [64].

• Cyganowski, Kloeden and Ombach, 2002 [66].

• Gard, 1988 [91].

• Glasserman, 2003 [96].

• D. Higham and Kloeden, 2002 [143] and 2005 [144].

• Jazwinski, 1970 [154].

• Karlin and Taylor, 1981 [162].

• Klebaner, 1998 [164].

• Kloeden and Platen, 1992 [165].

• Kloeden, Platen and Schurz, 1994 [166].

• Mikosch, 1998 [209].

• Øksendal, 1998 [222].

• Schuss, 1980 [244].

• Shreve, 2004 [248].

• Snyder and Miller, 1991 [252].

• Taylor and Karlin, 1998 [265].

• Tuckwell, 1995 [270].

• Wonham, 1970 [285].

“bk0allfinal”
2007/1/7
page 130

i

i

i

i

i

i

i

i

130 Chapter 4. Stochastic Calculus for Jump-Diffusions

“bk0allfinal”
2007/1/7
page 131

i

i

i

i

i

i

i

i

Chapter 5

Stochastic Calculus for
General Markov SDEs:
Space-Time Poisson,
State-Dependent Noise
and Multi-Dimensions

Not everything that counts can be counted,
and not everything that can be counted counts.
—Albert Einstein (1879-1955).

The only reason time is so that everything does not happen
at once
—Albert Einstein (1879-1955),
http://en.wikiquote.org/wiki/Time .

Time is what prevents everything from happening at once.
Space is what prevents everything from happening to me.
—attributed to John Archibald Wheeler (1911–),
http://en.wikiquote.org/wiki/Time .

What about stochastic effects?
—Don Ludwig, University of British Columbia, printed on
his tee-shirt to save having to ask it at each seminar.

We are born by accident into a purely random universe.
Our lives are determined by entirely fortuitous combinations
of genes. Whatever happens happens by chance. The
concepts of cause and effect are fallacies. There is only
seeming causes leading to apparent effects. Since nothing
truly follows from anything else, we swim each day through
seas of chaos, and nothing is predictable, not even the events
of the very next instant.

Do you believe that?

If you do, I pity you, because yours must be a bleak and
terrifying and comfortless life.
—Robert Silverberg in The Stochastic Man, 1975.

131

“bk0allfinal”
2007/1/7
page 132

i

i

i

i

i

i

i

i

132 Chapter 5. Stochastic Calculus for General Markov SDEs

This chapter completes the generalization of Markov noise in continuous time
for this book, by including space-time Poisson noise, state-dependent SDEs and
multi-dimensional SDEs.

5.1 Space-Time Poisson Process

Space-time Poisson processes are also called general compound Poisson processes,
marked Poisson point processes and Poisson noise with randomly distributed jump-
amplitudes conditioned on a Poisson jump in time. The marks denote the underlying
stochastic process for the Poisson jump-amplitude or the space component of the
space-time Poisson process, whereas the jump-amplitudes of the simple Poisson
process are deterministic or fixed with unit magnitude. The space-time Poisson
process is a generalization of the Poisson process. The space-time Poisson process
formulation helps in understanding the mechanism for applying it to more general
jump applications and generalization of the chain rules of stochastic calculus.

Properties 5.1.

• Space-Time Poisson Differential Process: The basic space-time or mark-
time Poisson differential process denoted as

dΠ(t) =

∫

Q
h(t, q)P(dt,dq) (5.1)

on the Poisson mark space Q can be defined using the Poisson random
measure P(dt,dq), which is shorthand measure notation for the measure-set
equivalence P(dt,dq) = P((t, t+ dt], (q, q + dq]). The jump-amplitude h(t, q)
is assumed to be continuous and bounded in its arguments.

• Poisson mark Q: The space Poisson mark Q is the underlying IID ran-
dom variable for the mark-dependent jump-amplitude coefficient denoted by
h(t, Q)=1, i.e., the space part of the space-time Poisson process. The realized
variable Q = q is used in expectations or conditional expectations, as well as
in definition of the type (5.1).

• Time-integrated, Space-Time Poisson Process:

Π(t) =

∫ t

0

∫

Q
h(t, q)P(dt,dq)dt . (5.2)

• Unit Jumps: However, if the jumps have unit amplitudes, h(t, Q) ≡ 1, then
the space time process in (5.1) must be the same result as the simple differential
Poisson process dP (t;Q) modified with a mark parameter argument to allow
for generating mark realizations, and we must have the equivalence,

∫

Q
P(dt,dq) ≡ dP (t;Q) , (5.3)

“bk0allfinal”
2007/1/7
page 133

i

i

i

i

i

i

i

i

5.1. Space-Time Poisson Process 133

giving the jump number count on (t, t+ dt]. Integrating both sides of (5.3) on
[0, t], gives the jump-count up to time t,

∫ t

0

∫

Q
P(dt,dq) =

∫ t

0

dP (s;Q) = P (t;Q) . (5.4)

Further, in terms of Poisson random measure P(dt, {1}) on the fixed set
Q = {1}, purely the number of jumps in (t, t+ dt] is obtained,

∫

Q
P(dt,dq) = P(dt, {1}) = P (dt) = dP (t; 1) ≡ dP (t)

and the marks are irrelevant.

• Purely, Time-Dependent Jumps: If h(t, Q) = h1(t), then

∫

Q
h1(t)P(dt,dq) ≡ h1(t)dP (t;Q) . (5.5)

• Compound Poisson Process Form: An alternate form of the space-time
Poisson process (5.2), that many may find more comprehensible, is the marked
generalization of the simple Poisson process P (t;Q), with IID random
mark generation, that is the counting sum called the compound Poisson
process or marked point process,

Π(t) =

P (t;Q)∑

k=1

h(T−
k , Qk) , (5.6)

where h(T−
k , Qk) is the kth jump-amplitude, T−

k is the pre-jump value of the
kth random jump-time, Qk is the corresponding random jump-amplitude mark
realization and for the special case that P (t;Q) is zero the following reverse-
sum convention is used,

0∑

k=1

h(T−
k , Qk) ≡ 0 , (5.7)

for any h. The corresponding differential process has the expectation,

E[dP (t;Q)] = λ(t)dt,

although it is possible that the jump-rate is mark-dependent (see [223], for
example) so that

E[dP (t;Q)] = EQ[λ(t;Q)]dt.

However, it will be assumed here that the jump-rate is mark-independent to
avoid complexities with iterated expectations later.

“bk0allfinal”
2007/1/7
page 134

i

i

i

i

i

i

i

i

134 Chapter 5. Stochastic Calculus for General Markov SDEs

• Zero-One Law Compound Poisson Differential Process Form: Given
the Poisson compound process form in (5.6), then the corresponding zero-one
jump law for the compound Poisson differential process is

dΠ(t) = h(t, Q)dP (t;Q) , (5.8)

such that the jump in Π(t) at t = Tk is given by

[Π](Tk) ≡ Π(T+
k) − Π(T−

k) = h(T−
k , Qk) . (5.9)

For consistency with the Poisson random measure and compound Poisson pro-
cess forms, it is necessary that

∫ t

0

h(s,Q)dP (s;Q) =

∫ t

0

∫

Q
h(s, q)P(ds,dq) =

P (t;Q)∑

k=1

h(T−
k , Qk) ,

so ∫ t

0

dP (s;Q) =

∫ t

0

∫

Q
P(ds,dq) = P (t;Q)

and

dP (t;Q) =

∫

Q
P(dt,dq).

Note that the selection of the random marks depends on the existence of the
Poisson jumps and the mechanism is embedded in dP (t;Q), in the formulation
of this book.

• In the Poisson random measure notation P(dt,dq), the arguments dt
and dq are semi-closed subintervals when these arguments are expanded

P(dt,dq) = P((t, t+ dt], (q, q + dq])

and these subintervals are closed on the left and open on the right due to the
definition of the increment, leaving no overlap between differential increments
and correspondings to the simple Poisson right continuity property that

∆P (t;Q) → P (t+;Q) − P (t;Q) as ∆t→ 0+

so we can write ∆P (t;Q) = P ((t, t+ ∆t];Q) and dP (t;Q) = P ((t, t+ dt];Q).
When tn = t and ti+1 = ti + ∆ti, the covering set of intervals is {[ti, ti +
∆ti) for i = 0 : n} plus t. If the marks Q are continuously distributed then
closed subintervals can also be used in q argument. For the one-dimensional
mark space Q, Q can be a finite interval such as Q = [a, b] or an infinite
interval such as Q = (−∞,+∞). Also, these subintervals are convenient in
partitioning continuous intervals since they avoid overlap at the nodes.

• P has independent increments on non-overlapping intervals in time t and
marks q, i.e., Pi,k = P((ti, ti + ∆ti], (qk, qk + ∆qk]) is independent of Pj,ℓ =
P((tj , tj + ∆tj], (qℓ, qℓ + ∆qℓ]), provided that the time interval (tj , tj + ∆tj]

“bk0allfinal”
2007/1/7
page 135

i

i

i

i

i

i

i

i

5.1. Space-Time Poisson Process 135

has no overlap with (ti, ti + ∆ti] and the mark interval (qk, qk + ∆qk] has no
overlap with (qℓ, qℓ + ∆qℓ]. Recall that ∆P (ti;Q) ≡ P (ti + ∆ti;Q) − P (ti;Q)
is associated with the time interval (ti, ti + ∆tj], open on the left since the
process P (ti;Q) has been subtracted to form the increment.

• The expectation of P(dt,dq) is

E[P(dt,dq)] = ΦQ(dq)λ(t)dt
gen
= φQ(q)dqλ(t)dt , (5.10)

where, in detail,

ΦQ(dq) = ΦQ((q, q + dq]) = ΦQ(q + dq) − ΦQ(q)

= Prob[Q ≤ q + dq] − Prob[Q ≤ q] = Prob[q < Q ≤ q + dq]
gen
= φQ(q)dq

is the probability distribution measure of the Poisson amplitude mark in mea-
sure-theoretic notation corresponding to the mark distribution function ΦQ(q)
and where dq is short hand for the arguments (q, q + dq], just as the dt in
P(dt,dq) is short hand for (t, t+dt]. The corresponding mark density will be
equal to φQ(q) if Q is continuously distributed with continuously distributed

distribution function and also if equal in the generalized sense (symbol
gen
=), for

instance, if Q is discretely distributed. Generalized densities will be assumed
for almost all distributions encountered in applications. It is also assumed
that ΦQ is a proper distribution,

∫

Q
ΦQ(dq) =

∫

Q
φQ(q)dq = 1 .

• Poisson random measure P(∆ti,∆qj) is Poisson distributed, i.e.,

Prob[P(∆ti,∆qj) = k] = e−Pi,j
(
Pi,j

)k
/k! , (5.11)

where

P i,j = E[P(∆ti,∆qj)] = ΦQ(∆qj)

∫

∆ti

λ(t)dt = ΦQ(∆qj)Λ(∆ti) ,

for sets ∆ti ≡ [ti, ti + ∆ti) in time and ∆qj ≡ [qj , qj + ∆qj) in marks.

Thus, as ∆ti and ∆qj approach 0+, then they can be replaced by dt and dq,
respectively, so

Prob[P(dt,dq) = k] = e−P (P
)k
/k! , (5.12)

where
P = E[P(dt,dq)] = φQ(q)dqλ(t)dt ,

so by the zero-one jump law,

Prob[P(dt,dq) = k]
dt
=
zol

(1 − P)δk,0 + Pδk,1 .

“bk0allfinal”
2007/1/7
page 136

i

i

i

i

i

i

i

i

136 Chapter 5. Stochastic Calculus for General Markov SDEs

• The expectation of dP (t;Q) =
∫
Q P(dt,dq) is

E

[∫

Q
P(dt,dq)

]
= λ(t)dt

∫

Q
φQ(q)dq = λ(t)dt = E[dP (t;Q)] , (5.13)

corresponding to the earlier Poisson equivalence (5.3) and using the above
proper distribution property. Similarly,

E

[∫ t

0

∫

Q
P(ds,dq)

]
= E[P (t;Q)] =

∫ t

0

λ(s)ds = Λ(t).

• The variance of
∫
Q P(dt,dq) ≡ dP (t;Q) is by definition

Var

[∫

Q
P(dt,dq)

]
= Var[dP (t;Q)] = λ(t)dt. (5.14)

Since

Var

[∫

Q
P(dt,dq)

]
=

∫

Q

∫

Q
Cov[P(dt,dq1),P(dt,dq2)] ,

then

Cov[P(dt,dq1),P(dt,dq2)]
gen
= λ(t)dtφQ(q1)δ(q1 − q2)dq1dq2 , (5.15)

analogous to (1.48) for Cov[dP (s1), dP (s2)]. Similarly, since

Var

[∫ t+∆t

t

∫

Q
P(ds,dq)

]
= Var[∆P (t;Q)] = ∆Λ(t)

and

Var

[∫ t+∆t

t

∫

Q
P(ds,dq)

]
=

∫ t+∆t

t

∫ t+∆t

t

∫

Q

∫

Q
Cov[P(ds1,dq1),P(ds2,dq2)] ,

then

Cov[P(ds1,dq1),P(ds2,dq2)]
gen
= λ(s1)δ(s2 − s1)ds1ds2

·φQ(q1)δ(q1 − q2)dq1dq2 , (5.16)

embodying the independent increment properties in both time and mark argu-
ments of the space-time or mark-time Poisson process in differential form.

• It is assumed that jump-amplitude function h has finite second order mo-
ments, i.e.,

∫

Q
|h(t, q)|2φQ(q)dq <∞ , (5.17)

for all t ≥ 0, and in particular,
∫ t

0

∫

Q
|h(s, q)|2φQ(q)dqλ(s)ds <∞ . (5.18)

“bk0allfinal”
2007/1/7
page 137

i

i

i

i

i

i

i

i

5.1. Space-Time Poisson Process 137

• From Theorem 3.12 (p. 72) and Eq. (3.12), a generalization of the standard
compound Poisson process is obtained,

∫ t

0

∫

Q
h(s, q)P(ds,dq) =

P (t;Q)∑

k=1

h(T−
k , Qk) , (5.19)

i.e., the jump-amplitude counting version of the space-time integral, where
Tk is the kth jump-time of a Poisson process P (t;Q) and provided comparable
assumptions are satisfied. This is also consistent for the infinitesimal counting
sum form in (5.6) and the convention (5.7) applies for (5.19). This form is
a special case of the filtered compound Poisson process considered in Snyder
and Miller [252, Chapter 5]. The form (5.19) is somewhat awkward due to
the presence of three random variables, P (t;Q), Tk and Qk, requiring multiple
iterated expectations.

• For compound Poisson process with time-independent
jump-amplitude, h(t, q) = h2(q) (the simplest case being h(t, q) = q), then

Π2(t) =

∫ t

0

∫

Q
h2(q)P(ds,dq) =

∫

Q
h2(q)P([0, t),dq) =

P (t;Q)∑

k=1

h2(Qk), (5.20)

where the sum is zero when P (t;Q) = 0, the jump-amplitudes h2(Qk) form
a set of IID random variables independent of the jump-times of the Poisson
process P (t;Q), see [55] and Snyder and Miller [252, Chapter 4]. The mean
can be computed by double iterated expectations, since the jump-rate is mark-
independent,

E[Π2(t)] = EP (t;Q)

P (t;Q)∑

k=1

EQ[h2(Qk)|P (t;Q)]

= EP (t;Q) [P (t;Q)EQ[h2(Q)]] = EQ[h2(Q)]Λ(t) ,

where the IID property and more have been used, e.g., Λ(t) =
∫ t

0
λ(s)ds.

“bk0allfinal”
2007/1/7
page 138

i

i

i

i

i

i

i

i

138 Chapter 5. Stochastic Calculus for General Markov SDEs

Similarly, the variance is calculated, letting h2 ≡ EQ[h2(Q)],

Var[Π2(t)] = E

2
4
0
@

P (t;Q)X

k=1

h2(Qk) − h2Λ(t)

1
A

23
5

= E

2
4
0
@

P (t;Q)X

k=1

`
h2(Qk) − h2

´
+ h2(P (t;Q) − Λ(t))

1
A

23
5

= EP (t;Q)

2
4

P (t;Q)X

k1=1

P (t;Q)X

k2=1

EQ

ˆ`
h2(Qk1) − h2

´ `
h2(Qk2) − h2

´˜

+2h2(P (t;Q) − Λ(t))

P (t;Q)X

k=1

EQ

ˆ
h2(Qk) − h2

˜
+ h

2
2(P (t;Q) − Λ(t))2

3
5

= EP (t;Q)

ˆ
P (t; Q)VarQ[h2(Q)] + 2h2(P (t;Q) − Λ(t))P (t;Q) · 0

+h
2
2(P (t;Q) − Λ(t))2

i

=
“
VarQ[h2(Q)] + h

2
2

”
Λ(t) = EQ

ˆ
h2

2(Q)
˜
Λ(t) ,

using the IID property, separation into mean-zero forms and the variance-
expectation identity (B.188).

• For compound Poisson process with both time- and mark-dependence,
h(t, q) and λ(t; q), then

Π(t) =

∫ t

0

∫

Q
h(s, q)P(ds,dq) =

P (t;Q)∑

k=1

h(T−
k , Qk), (5.21)

however, the iterated expectations technique is not too useful for the compound
Poisson form, due to the additional dependence introduced by the jump-time,
Tk and the jump-rate λ(t; q), but the Poisson random measure form is more
flexible,

E[Π(t)] = E

[∫ t

0

∫

Q
h(s, q)P(ds,dq)

]
=

∫ t

0

∫

Q
λ(s, q)h(s, q)φQ(q)dq ds

=

∫ t

0

EQ[λ(s,Q)h(s,Q)]ds.

• Consider the generalization of mean square limits to include mark space
integrals. For ease of integration in mean square limits, let the mean-zero
Poisson random measure be denoted by

P̃(dt,dq) ≡ P(dt,dq) − E[P(dt,dq)] = P(dt,dq) − φQ(q)dqλ(t)dt (5.22)

and corresponding space-time integral be

Ĩ ≡
∫

Q
h(t, q)P̃(dt,dq) . (5.23)

“bk0allfinal”
2007/1/7
page 139

i

i

i

i

i

i

i

i

5.1. Space-Time Poisson Process 139

Let Tn = {ti|ti+1 = ti + ∆ti for i = 0 : n, t0 = 0, tn+1 = t,maxi[∆ti] →
0 as n → +∞} be a proper partition of [0, t). Let Qm = {∆Qj for j = 1 :
m| ∪m

j=1 ∆Qj = Q} be a proper partition of the mark space Q, noting that the
subsets ∆Qj are disjoint is implicit. Let h(t, q) be a continuous function in
time and marks. Let the corresponding partially discrete approximation

Ĩm,n ≡
n∑

i=0

m∑

j=1

h(ti, q
∗
j)

∫

Qj

P̃([ti, ti + ∆T), dqj) , (5.24)

for some q∗j ∈ ∆Qj. Note that if Q is a finite interval [a, b], then Qj =
[qj , qj + ∆q] using even spacing with q1 = a, qm+1 = b and ∆q = (b − a)/m.

Then Ĩm,n converges in the mean square limit to Ĩ if

E[(Ĩ − Ĩm,n)2] → 0 , (5.25)

as m and n → +∞.

For more advanced and abstract treatments of Poisson random measure, see
Gihman and Skorohod [94, Part 2, Chapter 2], Snyder and Miller [252, Chapter 4
and 5], Cont and Tankov [59], Øksendal and Sulem [223] or the applied to abstract
bridge Chapter 12.

Theorem 5.2. Basic infinitesimal moments of the space-time Poisson
process:

E[dΠ(t)] = λ(t)dt

∫

Q
h(t, q)φQ(q)dq ≡ λ(t)dtEQ[h(t, Q)] ≡ λ(t)dth(t) (5.26)

and

Var[dΠ(t)] = λ(t)dt

∫

Q
h2(t, q)φQ(q)dq = λ(t)dtEQ[h2(t;Q)] ≡ λ(t)dth2(t). (5.27)

Proof. The jump-amplitude function h(t, Q) is independently distributed, through
the mark process Q, from the underlying Poisson counting process here, except that
this jump in space is conditional on the occurrence of the jump-time or count of
the underlying Poisson process. However, the function h(t, q) is deterministic since
it depends on the realization q in the space-time Poisson definition, rather than the
random variable Q. The infinitesimal mean (5.26) is straightforward,

E[dΠ(t)] = E

[∫

Q
h(t, q)P(dt,dq)

]
=

∫

Q
h(t, q)E[P(dt,dq)]

= λ(t)dt

∫

Q
h(t, q)φQ(q)dq = λ(t)dtEQ[h(t, Q)] ≡ λ(t)dth(t)

noting that the expectation operator applied to the mark integral can be moved to
apply just to the Poisson random measure P(dt,dq).

“bk0allfinal”
2007/1/7
page 140

i

i

i

i

i

i

i

i

140 Chapter 5. Stochastic Calculus for General Markov SDEs

However, the result for the variance in (5.27) is not so obvious, but the co-
variance formula for two Poisson random measures with differing mark variables
Cov[P(dt,dq1),P(dt,dq2)] (5.15) will be useful by converting to the mean-zero

Poisson random measure P̃(dt,dq) in (5.22),

Var[dΠ(t)] = E

[(∫

Q
h(t, q)P(dt,dq) − h(t)λ(t)dt

)2
]

= E

[(∫

Q
(h(t, q)P(dt,dq) − h(t, q)φQ(q)λ(t)dt)

)2
]

= E

[(∫

Q
h(t, q)P̃(dt,dq)

)2
]

= E

[∫

Q
h(t, q1)

∫

Q
h(t, q2)P̃(dt,dq1)P̃(dt,dq1)

]

=

∫

Q
h(t, q1)

∫

Q
h(t, q2)Cov

[
P̃(dt,dq1), P̃(dt,dq1)

]

= λ(t)dt

∫

Q
h2(t, q1)φQ(q1)dq1 = λ(t)dtEQ

[
h2(t, Q)

]
≡ λ(t)dth2(t) .

Examples 5.3.

• Uniformly Distributed Jump Amplitudes:
As an example of a continuous distribution, consider the uniform density for
the jump-amplitude mark Q be given by

φQ(q) =
1

b− a
U(q; a, b), a < b , (5.28)

where U(q; a, b) = 1q∈[a,b] is the step or indicator function for the interval
[a, b], i.e., U(q; a, b) is one when a ≤ q ≤ b and zero otherwise. The first few
moments are

EQ[1] =
1

b− a

∫ b

a

dq = 1 ,

EQ[Q] =
1

b− a

∫ b

a

qdq =
b+ a

2
,

VarQ[Q] =
1

b− a

∫ b

a

(q − (b+ a)/2)2dq =
(b− a)2

12
.

In the case of the log-uniform amplitude letting Q = ln(1+h(Q)) be the mark-
amplitude relationship using the log-transformation form from the linear SDE
problem (4.76), then

h(Q) = eQ − 1

“bk0allfinal”
2007/1/7
page 141

i

i

i

i

i

i

i

i

5.2. State-Dependent Generalizations 141

and the expected jump-amplitude is

EQ[h(Q)] =
1

b− a

∫ b

a

(eq − 1)dq =
eb − ea

b− a
− 1 .

• Poisson Distributed Jump Amplitudes:
As an example of a discrete distribution of jump-amplitudes, consider

ΦQ(k) = pk(u) = e−uu
k

k!
,

for k = 0 : ∞. Thus, the jump process is a Poisson-Poisson process or a
Poisson-mark Poisson process. The mean and variance are

EQ[Q] = u ,

VarQ[Q] = u .

Remark 5.4. For the general discrete distribution,

ΦQ(k) = pk ,

∞∑

k=0

pk = 1 ,

the comparable continuized form is

ΦQ(q)
gen
=

∞∑

k=0

HR(q − k)pk =

⌊q⌋∑

k=0

pk ,

where HR(q) is again the right-continuous Heaviside step function and ⌊q⌋ is
the maximum integer not exceeding q. The corresponding generalized density
is

φQ(q)
gen
=

∞∑

k=0

δR(q − k)pk .

The reader should verify that this density yields the correct expectation and
variance forms.

5.2 State-Dependent Generalization of
Jump-Diffusion SDEs

5.2.1 State-Dependent Generalization for Space-Time Poisson
Processes

The space-time Poisson process is generalized to include state-dependence withX(t)
in both the jump-amplitude and the Poisson measure, such that

dΠ(t;X(t), t) =

∫

Q
h(X(t), t, q)P(dt,dq;X(t), t) (5.29)

“bk0allfinal”
2007/1/7
page 142

i

i

i

i

i

i

i

i

142 Chapter 5. Stochastic Calculus for General Markov SDEs

on the Poisson mark space Q with Poisson random measure P(dt,dq;X(t), t),
which helps to describe the space-time Poisson mechanism and related calculus. The
space-time state-dependent Poisson mark, Q = q is again the underlying random
variable for the state-dependent and mark-dependent jump-amplitude coefficient
h(x, t, q). The double time t arguments of dΠ, dP and P are not considered redun-
dant for applications, since the first time t or time set dt is the usual Poisson jump
process implicit time dependence, while the second to the right of the semi-colon de-
notes explicit or parametric time dependence paired with explicit state dependence
that is known in advance and is appropriate for the application model.

Alternatively, the Poisson zero-one law form may be used, i.e.,

dΠ(t;X(t), t)
dt
=
zol

h(X(t), t, Q)dP (t;Q,X(t), t) , (5.30)

with the jump of Π(t;X(t), t) being

[Π](Tk) = h(X(T−
k), T−

k , Qk)

at jump-time Tk and jump-mark Qk. The multitude of random variables in this sum
means that expectations or other Poisson integrals will be very difficult to calculate
even by conditional expectation iterations.

Definition 5.5. The conditional expectation of P(dt,dq;X(t), t) is

E[P(dt,dq;X(t), t)|X(t) = x] = φQ(q;x, t)dqλ(t;x, t)dt , (5.31)

where φQ(q;x, t)dq is the probability density of the now state-dependent Poisson
amplitude mark and the jump rate λ(t;x, t) now has state-time dependence. In this
notation, the relationship to the simple counting process is given by

∫

Q
P(dt,dq;X(t), t) = dP (t;Q,X(t), t) .

Hence, when h(x, t, q) = h̃(x, t), i.e., independent of the mark q, the space-time
Poisson is the simple jump process with mark-independent amplitude,

dΠ(t;X(t), t) = h̃(X(t), t)dP (t;Q,X(t), t) ,

but with non-unit jumps in general. Effectively the same form is obtained when
there is a single discrete mark, e.g., φQ(q) = δ(q−1), so h(x, t, q) = h(x, t, 1) always.

Theorem 5.6. Basic conditional infinitesimal moments of the state-
dependent Poisson process:

E[dΠ(t;X(t), t)|X(t) = x] =

∫

Q
h(x, t, q)φQ(q;x, t)dqλ(t;x, t)dt

≡ EQ[h(x, t,Q)]λ(t;x, t)dt (5.32)

“bk0allfinal”
2007/1/7
page 143

i

i

i

i

i

i

i

i

5.2. State-Dependent Generalizations 143

and

Var[dΠ(t;X(t), t)|X(t) = x] =

∫

Q
h2(x, t, q)φQ(q;x, t)dqλ(t;x, t)dt

≡ EQ[h2(x, t;Q)]λ(t;x, t)dt . (5.33)

Proof. The justification is the same justification as for Eqs. (5.27-5.27). It is
assumed that the jump-amplitude h(x, t,Q) is independently distributed due to Q
from the underlying Poisson counting process here, except that this jump in space
is conditional on the occurrence of the jump-time of the underlying Poisson process.

5.2.2 State-Dependent Jump-Diffusion SDEs

The general, scalar stochastic differential equation (SDE) takes the form

dX(t) = f(X(t), t)dt+ g(X(t), t)dW (t) +

∫

Q
h(X(t), t, q)P(dt,dq;X(t), t)

dt
= f(X(t), t)dt+ g(X(t), t)dW (t) + h(X(t), t, Q)dP (t;Q,X(t), t) ,

(5.34)

for the state process X(t) with a set of continuous coefficient functions {f, g, h}.
However, the SDE model is just a useful symbolic model for many applied situations,
but the more basic model relies on specifying the method of integration. So

X(t) = X(t0) +

∫ t

t0

(f(X(s), s)ds+ g(X(s), s)dW (s)

+h(X(t), s, Q)dP (s;Q,X(s), s))

ims
= X(t0) +

ms

lim
n→∞

[
n∑

i=0

(
fi∆ti + gi∆Wi +

∆Pi∑

k=0

hi,k

)]
,

(5.35)

where fi = f(Xi, ti), gi = g(Xi, ti), hi,k = h(Xi, Tk, Qk), ∆ti = ti+1 − ti, ∆Pi,k =
∆P (ti;Q,Xi, ti) and ∆Wi = ∆W (ti). Here, Tk is the kth jump-time and {Q,Qk}
are the corresponding random marks.

The conditional infinitesimal moments for the state process are

E[dX(t)|X(t) = x] = f(x, t)dt+ h(x, t)λ(t;x, t)dt , (5.36)

h(x, t)λ(t;x, t)dt ≡ EQ[h(x, t,Q)]λ(t;x, t)dt , (5.37)

and

Var[dX(t)|X(t) = x] = g2(x, t)dt+ h2(x, t)λ(t;x, t)dt , (5.38)

h2(x, t)λ(t;x, t)dt ≡ EQ[h2(x, t,Q)]λ(t;x, t)dt , (5.39)

“bk0allfinal”
2007/1/7
page 144

i

i

i

i

i

i

i

i

144 Chapter 5. Stochastic Calculus for General Markov SDEs

using (1.1,5.32,5.33,5.34) and assuming that the Poisson process is independent of
the Wiener process. The jump in the state at jump time Tk in the underlying
Poisson process is

[X](Tk) ≡ X(T+
k) −X(T−

k) = h(X(T−
k), T−

k , Qk) , (5.40)

for k = 1, 2, . . . , now depending on the kth mark Qk at the pre-jump-time T−
k at

the kth jump.

Rule 5.7. Stochastic Chain Rule for State-Dependent SDEs:
The stochastic chain rule for a sufficiently differentiable function Y (t) = F (X(t), t)
has the form

dY (t) = dF (X(t), t)
sym
= F (X(t) + dX(t), t+ dt) − F (X(t), t)

= d(cont)F (X(t), t) + d(jump)F (X(t), t)

dt
= Ft(X(t), t)dt+ Fx(X(t), t)(f(X(t), t)dt+ g(X(t), t)dW (t))

+
1

2
Fxx(X(t), t)g2(X(t), t)dt (5.41)

+

∫

Q
(F (X(t) + h(X(t), t, q), t) − F (X(t), t))P(dt,dq;X(t), t) ,

to precision-dt. It is sufficient that F be twice continuously differentiable in x and
once in t.

5.2.3 Linear State-Dependent SDEs

Let the state-dependent jump-diffusion process satisfy a SDE linear in the state
process X(t) with time-dependent rate coefficients,

dX(t)
dt
= X(t) (µd(t)dt+ σd(t)dW (t) + ν(t, Q)dP (t;Q)) , (5.42)

for t > t0, with X(t0) = X0 and E[dP (t;Q)] = λ(t)dt, where µd(t) denotes the
mean and σ2

d(t) denotes the variance of the diffusion process, while Qk denotes the
kth mark and Tk denotes the kth time of the jump process.

Again, using the log-transformation Y (t) = ln(X(t)) and the stochastic chain
rule (5.41),

dY (t)
dt
= (µd(t) − σ2

d(t)/2)dt+ σd(t)dW (t) + ln (1 + ν(t, Q) dP (t;Q), (5.43)

with immediate integrals

Y (t) = ln(x0) +

∫ t

t0

dY (s) (5.44)

and

X(t) = x0 exp

(∫ t

t0

dY (s)

)
, (5.45)

“bk0allfinal”
2007/1/7
page 145

i

i

i

i

i

i

i

i

5.2. State-Dependent Generalizations 145

or in recursive form,

X(t+ ∆t) = X(t) exp

(∫ t+∆t

t

dY (s)

)
. (5.46)

Linear Mark-Jump-Diffusion Simulation Forms

For simulations, a small time-step, ∆ti ≪ 1, approximation of the recursive form
(5.46) would be more useful, with Xi = X(ti), µi = µd(ti), σi = σd(ti), ∆Wi =
∆W (ti), ∆Pi = ∆P (ti;Q) and the convenient jump-amplitude coefficient approxi-
maton, ν(t, Q) ≃ ν0(Q) ≡ exp(Q) − 1, i.e.,

Xi+1 ≃ Xi exp
(
(µi − σ2

i /2)∆ti + σi∆Wi

)
(1 + ν0(Q))∆Pi , (5.47)

for i = 1 : N time-steps, where a zero-one jump law approximation has been used.
For the diffusion part, it has been shown that

E
[
eσi∆Wi

]
= eσ2

i ∆ti/2,

using the completing the square technique. In addition, there is the following lemma
for the jump part of (5.47):

Lemma 5.8. Jump Term Expectation

E
[
(1 + ν0(Q))∆Pi

]
= eλi∆tiE[ν0(Q)], (5.48)

where E[∆Pi] = λi∆ti and ν0(Q) = exp(Q) − 1.

Proof. Using given forms, iterated expectations, the Poisson distribution and the
IID property of the marks Qk, then

E
[
(1 + ν0(Q))∆Pi

]
= E

[
eQ∆Pi

]

= e−λi∆ti
∞∑

k=0

(λi∆ti)
kEQ

[
ekQ
]

= e−λi∆ti
∞∑

k=0

(λi∆ti)
k
(
EQ

[
eQ
])k

= e−λi∆tieλi∆tiEQ

[
eQ
]

= eλi∆tiEQ[ν0(Q)].

An immediate consequence of this result is the following corollary:

Corollary 5.9. Discrete State Expectations:

E[Xi+1|Xi] ≃ Xi exp((µi + λiEQ[ν0(Q)])∆ti) (5.49)

“bk0allfinal”
2007/1/7
page 146

i

i

i

i

i

i

i

i

146 Chapter 5. Stochastic Calculus for General Markov SDEs

and

E[Xi+1] ≃ x0 exp

i∑

j=0

(µj + λjEQ[ν0(Q)])∆tj

 . (5.50)

Further, as ∆ti and δtn → 0+, the continuous form of the expectation follows
and is given later in Corollary 5.13 on page 148 using other justification.

Example 5.10. Linear, Time-Independent, Constant-Rate Coefficient
Case:
In the linear, time-independent rate-coefficient case with µd(t) = µ0, σd(t) = σ0,
λ(t) = λ0 and ν(t, Q) = ν0(Q) = eQ − 1,

X(t) = x0 exp

(µ0 − σ2

0/2)(t− t0)+ σ0(W (t) −W (t0))+

P (t;Q)−P (t0;Q)∑

k=1

ν0Qk

, (5.51)

where the Poisson counting sum form is now more manageable since the marks do
not depend on the pre-jump-times T−

k .
Using the independence of the three underlying stochastic processes, (W (t) −

W (t0)), (P (t;Q) − P (t0;Q)) and Qi, as well as the stationarity of the first two
and the law of exponential to separate exponentials, leads to partial reduction of the
expected state process:

E[X(t)] = x0e
(µ0−σ2

0/2)(t−t0) · EW

[
eσ0W (t−t0)

]
·

∞∑

k=0

E[P (t− t0;Q) = k]E
[
e

Pk
ℓ=1 Qℓ

]

= x0e
(µ0−σ2

0/2)(t−t0)

∫ +∞

−∞

e−w2/(2(t−t0))

√
2π(t− t0)

eσ0wdw

·e−λ0(t−t0)
∞∑

k=0

(λ0(t− t0))
k

k!

k∏

i=1

EQ

[
eQ
]

= x0e
µ0(t−t0)e−λ0(t−t0)

∞∑

k=0

(λ0(t− t0))
k

k!
Ek

Q

[
eQ
]

= x0e
(µ0+λ0(EQ[eQ]−1))(t−t0) (5.52)

where λ0(t− t0) is the Poisson parameter and Q = (−∞,+∞) is taken as the mark
space for specificity with

EQ

[
eQ
]

=

∫

Q
eqφQ(q)dq .

Little more useful simplification can be obtained analytically, except for infinite ex-
pansions or equivalent special functions, when the mark density φQ(q) is specified.
Numerical procedures may be more useful for practical purposes. The state expecta-
tion in this distributed mark case (5.52) should be compared to pure constant linear
coefficient case (4.81) of Chapter 4.

“bk0allfinal”
2007/1/7
page 147

i

i

i

i

i

i

i

i

5.2. State-Dependent Generalizations 147

Exponential Expectations:

Sometimes it is necessary to get the expectation of an exponential of the integral of
a jump-diffusion process. The procedure is much more complicated for distributed
amplitude Poisson jump processes than for diffusions since the mark-time process is
a product process, the product of the mark process and the Poisson process. For the
time-independent coefficient case, as in a prior example, the exponential processes
are easily separable by the law of exponents. However, for the time-dependent case,
it is necessary to return to use the space-time process P and the decomposition
approximation used in the mean square limit. The h in the following theorem
might be the amplitude coefficient in (5.43) or h(s, q) = q = ln(1 + ν(s, q)), for
instance.

Theorem 5.11. Expectation for the Exponential of Space-Time Counting
Integrals:
Assuming finite second order moments for h(t, q) and convergence in the mean
square limit,

E

[
exp

(∫ t

t0

∫

Q
h(s, q)P(ds,dq)

)]
= exp

(∫ t

t0

∫

Q

(
eh(s,q) − 1

)
φQ(q, s)dqλ(s)ds

)

≡ exp

(∫ t

t0

(eh − 1)(s)λ(s)ds

)
. (5.53)

Proof. Let the proper partition of the mark space over disjoint subsets be

Qm = {∆Qj for j = 1:m| ∪m
j=1 ∆Qj = Q}

Since Poisson measure is Poisson distributed,

ΦPj
(k) = Prob[P(dt,∆Qj) = k] = e−Pj

(Pj)
k

k!

with Poisson parameter

Pj ≡ E[P(dt,∆Qj)] = λ(t)dtΦQ(∆Qj , ti) .

for each subset {∆Qj}.
Similarly, let the proper partition over the time interval be

Tn = {ti|ti+1 = ti + ∆ti for i = 0:n, t0 = 0, tn+1 = t,max
i

[∆ti] → 0 as n→ +∞} .

The disjoint property over subsets and time intervals means P([ti, ti + ∆ti),∆Qj)
and P([ti, ti+∆ti),∆Q′

j) will be pairwise independent provided j′ 6= j for fixed i cor-
responding to the Property (5.15) for infinitesimals, while the P([ti, ti +∆ti),∆Qj)
and P([ti, ti + ∆t′i),∆Q′

j) will be pairwise independent provided i′ 6= i and j′ 6= j,
corresponding to the Property (5.16) for infinitesimals.

“bk0allfinal”
2007/1/7
page 148

i

i

i

i

i

i

i

i

148 Chapter 5. Stochastic Calculus for General Markov SDEs

For brevity, let hi,j ≡ h(ti, q
∗
j) where q∗j ∈ ∆Qj , Pi,j ≡ Pi([ti, ti + ∆ti),∆Qj)

and P i,j ≡ λi∆tiΦQ(∆Qj).
Using mean square limits, Pi,j playing the dual roles of the two increments

(∆ti,∆Qj), the law of exponents and independence (symbol
ind
=
inc

),

E

[
exp

(∫ t

t0

∫

Q
hP
)]

ims
=

ms

lim
m,n→∞

E

exp

n∑

i=0

m∑

j=1

hi,jPi,j

ind
=
inc

ms

lim
m,n→∞

Πn
i=0Π

m
j=1E [exp (hi,jPi,j)]

=
ms

lim
m,n→∞

Πn
i=0Π

m
j=1 exp

(
−Pi,j

) ∞∑

ki,j=0

Pi,j
ki,j

ki,j !
exp (hi,jki,j)

=
ms

lim
m,n→∞

Πn
i=0Π

m
j=1 exp

(
Pi,j (exp(hi,j) − 1)

)

=
ms

lim
m,n→∞

exp

n∑

i=0

m∑

j=1

(exp(hi,j) − 1)λi∆tiΦQ(∆Qi, ti)

ims
= exp

(∫ t

t0

∫

Q
(exp(h(s, q)) − 1)φQ(q, s)dqλ(s)ds

)

≡ exp

(∫ t

t0

(exp(h(s,Q)) − 1)λ(s)ds

)
.

Thus, the main technique is to unassemble the mean square limit discrete approx-
imation to get at the independent random part, take its expectation and then re-
assemble the mean square limit back again, justifying the interchange of expectation
and exponentiation-integration.

Remarks 5.12.

• Note that the mark space subset ∆Qj is never used directly as a discrete
element of integration, since the subset would be infinite if the mark space
were infinite. The mark space element is only used through the distribution
which would be bounded. This is quite unlike the time domain where we can
select t to be finite. If the mark space were finite, say Q = [a, b], then a
concrete partition of [a, b] similar to the time-partition can be used.

• Also note that the dependence on (X(t), t) was not used, but could be consid-
ered suppressed but absorbed into the existing t dependence of h and P.

Corollary 5.13. Expectation of X(t) for Linear SDE:

“bk0allfinal”
2007/1/7
page 149

i

i

i

i

i

i

i

i

5.2. State-Dependent Generalizations 149

Let X(t) be the solution (5.45) with ν(t) ≡ E[ν(t, Q)] of (5.42), then

E[X(t)] = x0 exp

(∫ t

t0

(µd(s) + λ(s)ν(s)) ds

)
(5.54)

= x0 exp

(∫ t

t0

E[dX(s)/X(s)]ds

)
. (5.55)

Proof. The jump part, the main part, follows from exponential Theorem 5.11
Eq. (5.53) and the lesser part for the diffusion is left as an exercise for the reader.

However, note that the exponent is the time integral of E[dX(t)/X(t)], the
relative conditional infinitesimal mean, which is independent of X(s) and is valid
only for the linear mark-jump-diffusion SDE.

Remark 5.14. The relationship in (5.55) is a quasi-deterministic equivalence
for linear mark-jump-diffusion SDEs and was shown by Hanson and Ryan [114]
in 1989. They also produced a nonlinear jump counter example that has a formal
closed form solution in terms of the gamma function, for which the result does not
hold and a very similar example is given in Exercise 9 in Chapter 4.

Moments of Log-Jump-Diffusion Process:

For the log-jump-diffusion process dY (t) in (5.43), suppose that the jump-amplitude
is time-independent and that the mark variable was conveniently chosen as

Q = ln(1 + ν(t, Q))

so that the SDE has the form

dY (t)
dt
= µld(t)dt+ σd(t)dW (t) +QdP (t;Q) , (5.56)

or in the case of applications for which the time step ∆t is an increment that is not
infinitesimal like dt there is some probability of more than one jump,

∆Y (t) = µld(t)∆t+ σd(t)∆W (t) +

∆P (t;Q)∑

k=1

Qk . (5.57)

The results for the infinitesimal case (5.56) are contained in the incremental case
(5.57).

The first few moments can found in general for (5.57), and if up to the fourth
moment, then the skew and kurtosis coefficients can be calculated. These calcula-
tions can be expedited by the following lemma concerning sums of zero-mean IID
random variables:

Lemma 5.15. Zero-mean IID random variable sums:
Let {Xi|i = 1:n} be a set of zero-mean IID random variables, i.e., E[Xi] = 0. Let

“bk0allfinal”
2007/1/7
page 150

i

i

i

i

i

i

i

i

150 Chapter 5. Stochastic Calculus for General Markov SDEs

M (m) ≡ E[Xm
i] be the mth moment and

S(m)
n ≡

n∑

i=1

Xm
i ,

with S
(1)
n = Sn being the usual partial sum over the set and

E[S(m)
n] = nM (m) , (5.58)

then the expectation of powers of Sn for m = 1:4 are

E [(Sn)m] =

0, m = 1
nM (2), m = 2

nM (3), m = 3

nM (4) + 3n(n− 1)
(
M (2)

)2
, m = 4

. (5.59)

Proof. First by the linear property of the expectation and the IID properties of
the Xi,

E
[
S(m)

n

]
=

n∑

i=1

E[Xm
i] =

n∑

i=1

M (m) = nM (m) . (5.60)

The m = 1 case is trivial due to the zero mean property of the Xi’s and the
linearity of the expectation operator, E[Sn] =

∑n
i=1 E[Xi] = 0.

For m = 2, the induction hypothesis from (5.59) is

E
[
S2

n

]
≡ E

[(
n∑

i=1

X2
i

)]
= nM (2)

with initial condition at n = 1 is E[S2
1] = E[X2

1] = M (2) by definition. The hypoth-
esis can be easily proved by partial sum recursion Sn+1 = Sn +Xn+1, application
of the binomial theorem, expectation linearity and the zero-mean IID property:

E
[
S2

n+1

]
= E

[
(Sn +Xn+1)

2
]

= E
[
S2

n + 2Xn+1Sn +X2
n+1

]

= nM (2) + 2 · 0 · 0 +M (2) = (n+ 1)M (2) . (5.61)

QED for m = 2.
Similarly for the power m = 3, again beginning with the induction hypothesis

E
[
S3

n

]
≡ E

(

n∑

i=1

Xi

)3

 = nM (3)

with initial condition at n = 1 is E[S3
1] = E[X3

1] = M (3) by definition. Using the
same techniques as in (5.61),

E
[
S3

n+1

]
= E

[
(Sn +Xn+1)

3
]

= E
[
S3

n + 3Xn+1S
2
n + 3X2

n+1S
2
n +X3

n+1

]

= nM (3) + 3 · 0 · nM (2) + 3 ·M (2) · 0 +M (3) = (n+ 1)M (3) . (5.62)

“bk0allfinal”
2007/1/7
page 151

i

i

i

i

i

i

i

i

5.2. State-Dependent Generalizations 151

QED for m = 3.
Finally, the case for the power m = 4 is a little different since an additional

nontrivial term arises from the product of the squares of two independent variables.
The induction hypothesis is

E
[
S4

n

]
≡ E

(

n∑

i=1

Xi

)4

 = nM (4) + 3n(n− 1)(M (2))2

with initial condition at n = 1 is E[S4
1] = E[X4

1] = M (4) by definition. Using the
same techniques as in (5.61),

E
[
S4

n+1

]
= E

[
(Sn +Xn+1)

4
]

= E
[
S4

n + 4Xn+1S
3
n + 6X2

n+1S
2
n + 4X3

n+1S
1
n +X4

n+1

]

= nM (4) + 3n(n− 1)(M (2))2 + 4 · 0 · nM (3) + 6 ·M (2) · nM(2)

+4 ·M (3) · 0 +M (4)

= (n+ 1)M (4) + 3(n+ 1)((n+ 1) − 1)(M (2))2 . (5.63)

QED for m = 4.

Remark 5.16. The results here depend on the IID and zero-mean properties, but
do not otherwise depend on the particular distribution of the random variables. The
results are used in the following theorem:

Theorem 5.17. Some Moments of the Log-jump-diffusion (ljd) Process
∆Y (t):
Let ∆Y (t) satisfy the stochastic difference equation (5.57), the marks Qk be IID
with mean µj ≡ EQ[Qk] and variance σ2

j ≡ VarQ[Qk], then the first four moments,
m = 1:4, are

µljd (t) ≡ E[∆Y (t)] = (µld (t) + λ(t)µj)∆t ; (5.64)

σljd (t) ≡ Var[∆Y (t)] =
(
σ2

d(t) +
(
σ2

j + µ2
j

)
λ(t)

)
∆t ; (5.65)

M
(3)
ljd (t) ≡ E

[
(∆Y (t) − E[∆Y (t)])3

]
=
(
M

(3)
j + µj

(
3σ2

j + µ2
j

))
λ(t)∆t , (5.66)

where M
(3)
j ≡ EQ[(Qi − µj)

3];

M
(4)
ljd (t) ≡ E

[
(∆Y (t) − E[∆Y (t)])4

]

=
(
M

(4)
j + 4µjM

(3)
j + 6µ2

jσ
2
j + µ4

j

)
λ(t)∆t

+3
(
σ2

d(t) +
(
σ2

j + µ2
j

)
λ(t)

)2
(∆t)2 , (5.67)

where M
(4)
j ≡ EQ[(Qi − µj)

4].

“bk0allfinal”
2007/1/7
page 152

i

i

i

i

i

i

i

i

152 Chapter 5. Stochastic Calculus for General Markov SDEs

Proof. One general technique for calculating moments of the log-jump-diffusion
process is iterated expectations, so

µljd (t) = E[∆Y (t)] = µld(t)∆t+ σd(t) · 0 + E∆P (t;Q)

EQ

∆P (t;Q)∑

i=1

Qi

∣∣∣∣∣∣
∆P (t;Q)

= µld(t)∆t + E∆P (t;Q)

∆P (t;Q)∑

i=1

EQ[Qi]

= µld(t)∆t + E∆P (t;Q)[∆P (t;Q)EQ[Qi]] = (µld(t) + µjλ(t)) ∆t ,

proving the first moment formula.
For the higher moments, the main key technique for efficient calculation of the

moments is decomposing the log-jump-diffusion process deviation into zero-mean
deviation factors, i.e.,

∆Y (t) − µljd (t) = σd(t)∆W (t) +

∆P (t;Q)∑

i=1

(Qi − µj) + µj(∆P (t;Q) − λ(t)∆t).

In addition, the multiple applications of the binomial theorem and the convenient
increment power Tables 1.1 for ∆W (t) and 1.2 for ∆P (t;Q) are used.

The incremental process variance is found by

σljd(t) ≡ Var[∆Y (t)]

= E

»“
σd(t)∆W (t) +

P∆P (t;Q)
i=1 (Qi − µj) + µj(∆P (t;Q) − λ(t)∆t)

”2
–

= σ2
d(t)E∆W (t)[(∆W)2(t)]+2σd ·0

+E

»“P∆P (t;Q)
i=1 (Qi−µj) + µj(∆P (t; Q)−λ(t)∆t)

”2
–

= σ2
d(t)∆t + E∆P (t;Q)

hP∆P (t;Q)
i=1

P∆P (t;Q)
k=1 EQ[(Qi − µj)(Qk − µj)]

+2µj(∆P (t;Q) − λ(t)∆t)
P∆P (t;Q)

i=1 EQ[(Qi − µj)]

+µ2
j (∆P (t;Q) − λ(t)∆t)2

˜

= σ2
d(t)∆t + E∆P (t;Q)

ˆ
∆P (t;Q)σ2

j + 0 + µ2
j (∆P (t;Q) − λ(t)∆t)2

˜

=
`
σ2

d(t) +
`
σ2

j + µ2
j

´
λ(t)

´
∆t .

“bk0allfinal”
2007/1/7
page 153

i

i

i

i

i

i

i

i

5.2. State-Dependent Generalizations 153

The case of the third central moment is similarly calculated,

M
(3)
ljd (t) ≡ E

ˆ
(∆Y (t) − µljd (t))3

˜

= E

»“
σd(t)∆W (t) +

P∆P (t;Q)
i=1 (Qi − µj) + µj(∆P (t;Q) − λ(t)∆t)

”3
–

= σ3
d(t)E∆W (t)

ˆ
(∆W)3(t)

˜

+3σ2
dE∆W (t)

ˆ
(∆W)2(t)

˜
E
hP∆P (t;Q)

i=1 (Qi − µj) + µj(∆P (t;Q) − λ(t)∆t)
i

+3σd · 0 + E

»“P∆P (t;Q)
i=1 (Qi − µj) + µj(∆P (t;Q) − λ(t)∆t)

”3
–

= σ3
d(t) · 0 + 3σ2

d(t)∆t · 0
+E∆P (t;Q)

hP∆P (t;Q)
i=1

P∆P (t;Q)
k=1

P∆P (t;Q)
ℓ=1 EQ[(Qi − µj)(Qk − µj)(Qℓ − µj)]

+3µj(∆P (t;Q) − λ(t)∆t)
P∆P (t;Q)

i=1

P∆P (t;Q)
k=1 EQ[(Qi − µj)(Qk − µj)]

+3µ2
j (∆P (t;Q) − λ(t)∆t)2 · 0 + µ3

j(∆P (t; Q) − λ(t)∆t)3
˜

= E∆P (t;Q)

h
∆P (t; Q)M

(3)
j + 3µj(∆P (t;Q) − λ(t)∆t)∆P (t;Q)σ2

j

+µ3
j(∆P (t; Q) − λ(t)∆t)3

˜

=
“
M

(3)
j + µj

`
3σ2

j + µ2
j

´”
λ(t)∆t .,

depending only on the jump component of the jump-diffusion.

“bk0allfinal”
2007/1/7
page 154

i

i

i

i

i

i

i

i

154 Chapter 5. Stochastic Calculus for General Markov SDEs

The case of the fourth central moment is similarly calculated,

M
(4)
ljd (t) ≡ E

ˆ
(∆Y (t) − µljd (t))4

˜

= E

»“
σd(t)∆W (t) +

P∆P (t;Q)
i=1 (Qi − µj) + µj(∆P (t;Q) − λ(t)∆t)

”4
–

= σ4
d(t)E∆W (t)

ˆ
(∆W)4(t)

˜
+ 4σ3

d · 0 + 6σ2
dE∆W (t)

ˆ
(∆W)2(t)

˜

E

»“P∆P (t;Q)
i=1 (Qi − µj) + µj(∆P (t;Q) − λ(t)∆t)

”2
–

+4σd · 0 + E

»“P∆P (t;Q)
i=1 (Qi − µj) + µj(∆P (t;Q) − λ(t)∆t)

”4
–

= 3σ4
d(t)(∆t)2 + 6σ2

d(t)∆tE∆P (t;Q)

hP∆P (t;Q)
i=1

P∆P (t;Q)
k=1

EQ[(Qi − µj)(Qk − µj)]

+2µj(∆P (t; Q) − λ(t)∆t) · 0 + µ2
j (∆P (t; Q) − λ(t)∆t)2

˜

+E∆P (t;Q)

hP∆P (t;Q)
i=1

P∆P (t;Q)
k=1

P∆P (t;Q)
ℓ=1

P∆P (t;Q)
m=1

EQ[(Qi − µj)(Qk − µj)(Qℓ − µj)(Qm − µj)]

+4µj(∆P (t; Q) − λ(t)∆t)
P∆P (t;Q)

i=1

P∆P (t;Q)
k=1

P∆P (t;Q)
ℓ=1

EQ[(Qi − µj)(Qk − µj)(Qℓ − µj)]

+6µ2
j (∆P (t; Q) − λ(t)∆t)2

P∆P (t;Q)
i=1

P∆P (t;Q)
k=1 EQ[(Qi − µj)(Qk − µj)]

+4µ3
j (∆P (t; Q) − λ(t)∆t)3 · 0 + µ4

j (∆P (t;Q) − λ(t)∆t)4
˜

= 3σ4
d(t)(∆t)2 + 6σ2

d(t)∆tE∆P (t;Q)

ˆ
∆P (t; Q)σ2

j + µ2
j (∆P (t;Q) − λ(t)∆t)2

˜

+E∆P (t;Q)

h
∆P (t;Q)M

(4)
j +3∆P (t;Q)(∆P (t;Q)−1)σ4

j

+4µj(∆P (t;Q)−λ(t)∆t)∆P (t;Q)M
(3)
j

+6µ2
j (∆P (t;Q) − λ(t)∆t)2∆P (t;Q)σ2

j + µ4
j(∆P (t; Q) − λ(t)∆t)4

˜

=
“
M

(4)
j + 4µjM

(3)
j + 6µ2

jσ
2
j + µ4

j

”
λ(t)∆t

+3
`
σ2

d(t) +
`
σ2

j + µ2
j

´
λ(t)

´2
(∆t)2 ,

completing the proofs for moments m = 1:4.
Also, used throughout, the expectations of odd powers of ∆W (t), the single

powers of (Qi −µj) and the single powers of (∆P (t;Q)−λ(t)∆t) were immediately
set to zero. In addition, the evaluation of the mark deviation sums of the form
E[(
∑k

i=1(Qi − µj)
m] for m = 1 : 4 is based upon general formulas of Lemma 5.15.

Remarks 5.18.

• Recall that the third and fourth moments are measures of skewness and peaked-
ness (kurtosis), respectively. The normalized representations in the current
notation are the coefficient of skewness,

η3[∆Y (t)] ≡M
(3)
ljd (t)/σ3

ljd (t), (5.68)

from (B.11), and the coefficient of kurtosis,

η4[∆Y (t)] ≡M
(4)
ljd (t)/σ4

ljd (t) . (5.69)

“bk0allfinal”
2007/1/7
page 155

i

i

i

i

i

i

i

i

5.2. State-Dependent Generalizations 155

from (B.12).

• For example, if the marks are normally or uniformly distributed, then

M
(3)
j = 0,

since the normal and uniform distributions are both symmetric about the mean,
so they lack skew and

η3[∆Y (t)] =
µj

(
3σ2

j + µ2
j

)
λ(t)∆t

σ3
ljd (t)

=
µj

(
3σ2

j + µ2
j

)
λ(t)

(
σ2

d(t) +
(
σ2

j + µ2
j

)
λ(t)

)3
(∆t)2

,

using σljd (t) given by (5.65). For the uniform distribution, the mean µj is
given explicitly in terms of the uniform interval [a, b] by (B.15) and the vari-
ance σ2

j by (B.16), while for the normal distribution, µj and σ2
j are the normal

model parameters. In general, the normal and unform distribution versions
of the log-jump-diffusion process will have skew although the component incre-
mental diffusion and mark processes are skew-less.

In the normal and uniform mark cases, the fourth moment of the jump marks
are

M
(4)
j /σ4

j =

{
3, normal Qi

1.8, uniform Qi

}
,

which are in fact the coefficients of kurtosis for the normal and uniform dis-
tributions, respectively, so

η4[∆Y (t)] =

({
3, normal Qi

1.8, uniform Qi

}
σ4

j + 6µ2
jσ

2
j + µ4

j

)
λ(t)∆t/σ4

ljd (t)

+3
(
σ2

d(t) +
(
σ2

j + µ2
j

)
λ(t)

)2
(∆t)2/σ4

ljd (t) .

• The moment formulas for the differential log-jump-diffusion process dY (t) fol-
low immediately from Theorem 5.17 by dropping terms O((∆t)2) and replacing
∆t by dt.

Distribution of Increment Log-Process:

Theorem 5.19. Distribution of the State Increment Logarithm Process
for Linear Marked Jump-Diffusion SDE:
Let logarithm-transform jump-amplitude be ln(1 + ν(t, q)) = q, then the increment

of the logarithm process Y (t) = ln(X(t)), assuming X(t0) = x0 > 0, approximately
satisfies,

∆Y (t) ≃ µld(t)∆t+ σd(t)∆W (t) +

∆P (t;Q)∑

j

Q̂j , (5.70)

“bk0allfinal”
2007/1/7
page 156

i

i

i

i

i

i

i

i

156 Chapter 5. Stochastic Calculus for General Markov SDEs

where µld(t) ≡ µd(t)−σ2
d(t)/2 is the log-diffusion drift, σd > 0 and the Q̂j are pair-

wise IID jump marks for P (s;Q) for s ∈ (t, t+ ∆t], counting only jumps associated

with ∆P (t;Q) given P (t;Q), with common density φQ(q). The Q̂j are independent
of both ∆P (t;Q) and ∆W (t).

Then the distribution of the log-process Y (t) is the Poisson sum of nested
convolutions

Φ∆Y (t)(x) ≃
∞∑

k=1

pk(λ(t)∆t)
(
Φ∆G(t) (∗φQ)

k
)

(x) , (5.71)

where ∆G(t) ≡ µld (t)∆t + σd(t)∆W (t) is the infinitesimal Gaussian process and
(Φ∆G(t)(∗φQ)k)(x) denotes a convolution of one distribution with k identical densi-
ties φQ. The corresponding log-process density is

φ∆Y (t)(x) ≃
∞∑

k=1

pk(λ(t)∆t)
(
φ∆G(t) (∗φQ)

k
)

(x) , (5.72)

Proof. By the law of total probability (B.92), the distribution of the log-jump-

diffusion ∆Y (t) ≃ ∆G(t) +
∑∆P (t;Q)

j Q̂j is

Φ∆Y (t)(x) = Prob[∆Y (t) ≤ x] = Prob

∆G(t) +

∆P (t;Q)∑

j=1

Q̂j ≤ x

=

∞∑

k=0

Prob

∆G(t) +

∆P (t;Q)∑

j=1

Q̂j ≤ x|∆P (t;Q) = k

Prob[∆P (t;Q) = k]

=

∞∑

k=0

pk(λ(t)∆t)Φ(k)(x) , (5.73)

where pk(λ(t)∆t) is the Poisson distribution with parameter λ(t)∆t and letting

Φ(k)(x) ≡ Prob

∆G(t) +

k∑

j=1

Q̂j ≤ x

 .

For each discrete condition ∆P (t;Q) = k, ∆Y (t) is the sum of k + 1 terms,
the normally distributed Gaussian diffusion part ∆G(t) = µld(t)∆t + σd(t)∆W (t)

and the Poisson counting sum
∑k

j=1 Q̂j where the marks Q̂j are assumed to be IID
but otherwise distributed with density φQ(q), while independent of the diffusion
and the Poisson counting differential process ∆P (t;Q). Using the fact that ∆W (t)
is normally distributed with zero-mean and ∆t-variance,

Φ∆G(t)(x) = Prob[∆G(t) ≤ x] = Prob[µld (t)∆t+ σd(t)∆W (t) ≤ x]

= Prob[∆W (t) ≤ (x− µld (t)∆t)/σd(t)] = Φ∆W (t)((x− µld (t)∆t)/σd(t))

= Φn((x− µld(t)∆t)/σd(t); 0,∆t) = Φn(x;µld (t)∆t, σ2
d(t)∆t) ,

“bk0allfinal”
2007/1/7
page 157

i

i

i

i

i

i

i

i

5.2. State-Dependent Generalizations 157

provided σd(t) > 0, while also using identities for normal distributions, where
Φn(x;µ, σ2) denotes the normal distribution with mean µ and variance σ2.

Since Φ(k) is the distribution for the sum of k+1 independent random variables,
one normally distibuted and k IID jump marks Q̂j for each k, Φ(k) will be the nested
convolutions as given in (B.100). Upon expanding in convolutions starting from the
distribution for the random variable ∆G(t) and the kth Poisson counting sum

Jk ≡
k∑

j=1

Q̂j,

Φ(k)(x) =
(
Φ∆G(t) ∗ φJk

)
(x) =

(
Φ∆G(t)

k∏

i=1

(∗φQi
)

)
(x) =

(
Φ∆G(t) (∗φQ)

k
)

(x) ,

using the identically distributed property of the Qi’s and the compact convolution
operator notation

(
Φ∆G(t)

k∏

i=1

(∗φQi
)

)
(x) = ((· · · ((Φ∆G(t) ∗ φQ1) ∗ φQ2) · · · ∗ φQk−1

) ∗ φQk
)(x) ,

which collapses to the operator power form for IID marks since
∏k

i=1 c = ck for
some constant c. Substituting the distribution into the law total probability form
(5.73), the desired result (5.71), which when differentiated with respect to x yields
the kth density φ∆Y (t)(x) in (5.72).

Remark 5.20. Several specialized variations of this theorem are found in Hanson
and Westman [123, 125], but corrections to these papers are made here.

Corollary 5.21. Density of Linear Jump-Diffusion with Log-Normally
Distributed Jump Amplitudes:
Let X(t) be a linear jump-diffusion satisfying the SDE (5.70) and let the jump-
amplitude mark Q be normally distributed such that

φQ(x; t) = φn(x;µj(t), σ
2
j (t)) (5.74)

with jump mean µj(t) = E[Q] and jump variance σ2
j (t) = Var[Q]. Then the jump-

diffusion density of the log-process Y (t) is

φ∆Y (t)(x) =
∞∑

k=1

pk(λ(t)∆t)φn(x;µld (t)∆t+ kµj(t), σ
2
d(t)∆t+ kσ2

j (t)) . (5.75)

Proof. By (B.101) the convolution of two normal densities is a normal distribution
with a mean that is the sum of means and a variance that is the sum of the variances.

“bk0allfinal”
2007/1/7
page 158

i

i

i

i

i

i

i

i

158 Chapter 5. Stochastic Calculus for General Markov SDEs

Similarly, by the induction exercise result in (B.198) the pairwise convolution of one
normally distributed diffusion process ∆G(t) = µld (t)∆t+σd(t)∆W (t) density and
k random mark Qi density φQ for i = 1:k will be a normal density whose mean is
the sum of the k + 1 means and whose variance is the sum of the k + 1 variances.
Thus starting with the result (5.73) and then applying (B.198),

φ∆Y (t)(x) =

∞∑

k=1

pk(λ(t)∆t)
(
φ∆G(t) (∗φQ)

k
)

(x)

=
∞∑

k=1

pk(λ(t)∆t)φn

(
x;µld (t)∆t+

k∑

i=1

µj(t), σ
2
d(t)∆t+

k∑

i=1

σ2
j (t)

)

=

∞∑

k=1

pk(λ(t)∆t)φn(x;µld (t)∆t+ kµj(t), σ
2
d(t)∆t+ kσ2

j (t)) .

Remark 5.22. The normal jump-amplitude jump-diffusion distribution has been
used in financial applications, initially by Merton [202] and then by others such as
Düvelmeyer [75], Andersen et al. [6] and Hanson and Westman [123].

Corollary 5.23. Density of Linear Jump-Diffusion with Log-Uniformly
Distributed Jump Amplitudes:
Let X(t) be a linear jump-diffusion satisfying the SDE (5.70), and let the jump-
amplitude mark Q be uniformly distributed (5.28). i.e.,

φQ(q) =
1

b− a
U(q; a, b) ,

where U(q; a, b) is the unit step function on [a, b] with a < b. The jump mean is
µj(t) = (b+ a)/2 and jump variance is σ2

j (t) = (b − a)2/12.
Then the jump-diffusion density of the increment log-process ∆Y (t) satisfies

the general convolution form (5.72), i.e.,

φ∆Y (t)(x) =
∞∑

k=1

pk(λ(t)∆t)
(
φ∆G(t) (∗φQ)k

)
(x) =

∞∑

k=1

pk(λ(t)∆t)φ
(k)
ujd(x) , (5.76)

where pk(λ(t)∆t) is the Poisson distribution with parameter λ(t). The ∆G(t) =
µld(t)∆t + σd(t)∆W (t) is the diffusion term and Q is the uniformly distributed
jump-amplitude mark. The first few coefficients of pk(λ(t)∆t) for the uniform jump-
distribution (ujd) are

φ
(0)
ujd(x) = φ∆G(t)(x) = φn(x;µld (t)∆t, σ2

d(t)∆t) , (5.77)

where φn(x;µld (t)∆t, σ2
d(t)∆t) denotes the normal density with mean µld (t) and

variance σd(t)∆t,

φ
(1)
ujd(x) =

(
φ∆G(t) ∗ φQ

)
(x) = φsn(x − b, x− a;µld(t)∆t, σ2

d(t)∆t) , (5.78)

“bk0allfinal”
2007/1/7
page 159

i

i

i

i

i

i

i

i

5.2. State-Dependent Generalizations 159

where φsn is the secant-normal density

φsn(x1, x2;µ, σ
2) ≡ 1

(x2 − x1)
Φn(x1, x2;µ, σ

2) (5.79)

≡ Φn(x2;µ, σ
2) − Φn(x1;µ, σ

2)

x2 − x1

with normal distribution Φn(x1, x2;µ, σ
2) such that

Φn(xi;µ, σ
2) ≡ Φn(−∞, xi;µ, σ

2)

for i = 1 : 2, and

φ
(2)
ujd(x) =

(
φ∆G(t)(∗φQ)2

)
(x) (5.80)

=
2b− x+ µld (t)∆t

b− a
φsn(x− 2b, x− a− b;µld(t)∆t, σ2(t)∆t)

+
x− 2a− µld(t)∆t

b− a
φsn(x− a− b, x− 2a;µld(t)∆t, σ2

d(t)∆t)

+
σ2

d(t)∆t

(b− a)2
(
φn(x − 2b;µld(t)∆t, σ2

d(t)∆t)

−2φn(x− a− b;µld(t)∆t, σ2
d(t)∆t) + φn(x − 2a;µld(t)∆t, σ2

d(t)∆t)
)
.

Proof. First the finite range of the jump-amplitude uniform density is used to
truncate the convolution integrals for each k using existing results for the mark

convolutions like φ
(2)
uq (x) = (φQ ∗ φQ)(x) = φQ1+Q2(x) for IID marks when k = 2.

The case for k = 0 is trivial since it is given in the theorem equations (5.77).
For k = 1 jump,

φ
(1)
ujd(x) = (φ∆G(t) ∗ φQ)(x) =

∫ +∞

−∞
φ∆G(t)(x− y)φQ(y)dy

=
1

b− a

∫ b

a

φn(x− y;µld(t)∆t, σ2
d(t)∆t)dy

=
1

b− a

∫ x−a

x−b

φn(z;µld(t)∆t, σ2
d(t)∆t)dz

=
1

b− a
Φn(x − b, x− a;µld(t)∆t, σ2

d(t)∆t)

= φsn(x− b, x− a;µld(t)∆t, σ2
d(t)∆t) ,

−∞ < x < +∞, upon change of variables and use of identities.
For k = 2 jumps, the triangular distribution exercise result (B.199) is

φ(2)
uq (x) = (φQ ∗ φQ)(x) =

1

(b− a)2

x− 2a, 2a ≤ x < a+ b
2b− x, a+ b ≤ x ≤ 2b
0, otherwise

 . (5.81)

“bk0allfinal”
2007/1/7
page 160

i

i

i

i

i

i

i

i

160 Chapter 5. Stochastic Calculus for General Markov SDEs

Hence,

φ
(2)
ujd(x) = (φ∆G(t) ∗ (φQ ∗ φQ))(x) =

∫ +∞

−∞
φ∆G(t)(x− y)(φQ ∗ φQ)(y)dy

=
1

(b− a)2

(∫ a+b

2a

(y − 2a)φ∆G(t)(x − y)dy +

∫ 2b

a+b

(2b− y)φ∆G(t)(x− y)dy

)

=
1

(b− a)2

(∫ x−2a

x−a−b

(x − z − 2a)φ∆G(t)(z)dz

+

∫ x−a−b

x−2b

(2b− x+ z)φ∆G(t)(z)dz

)

=
2b− x+ µld (t)∆t

b− a
φsn(x− 2b, x− a− b;µld(t)∆t, σ2

d(t)∆t)

+
x− 2a− µld (t)∆t

b− a
φsn(x − a− b, x− 2a;µld(t)∆t, σ2

d(t)∆t)

+
σ2

d(t)∆t

(b− a)2
(
φn(x− 2b;µld(t)∆t, σ2

d(t)∆t)

−2φn(x− a− b;µld(t)∆t, σ2
d(t)∆t) + φn(x− 2a;µld(t)∆t, σ2

d(t)∆t)
)
,

where the exact integral for the normal density has been used .

Remarks 5.24.

• This density form φsn in (5.79) is called a secant-normal density since the
numerator is an increment of the normal distribution and the denominator is
the corresponding increment in its state arguments, i.e., a secant approxima-
tion, which here has the form ∆Φn/∆x.

• The uniform jump-amplitude jump-diffusion distribution has been used in fi-
nancial applications, initially by the authors in [125] as a simple, but appro-
priate, representation of jump component of market distributions, and some
errors have been corrected here.

Example 5.25. Linear SDE Simulator for Log-Uniformly Distributed
Jump Amplitudes:The linear SDE jump-diffusion simulator in Appendix MAT-
LAB code C.14 can be converted from the simple discrete jump process to the dis-
tributed jump process here. The primary change is the generation of the another set
of random numbers for the mark process Q, e.g.,

Q = a+ (b − a) ∗ rand(1, n+ 1)

for a set of n+ 1 uniformly distributed marks on (a, b) so that the jump amplitudes
of X(t) are log-uniformly distributed.

“bk0allfinal”
2007/1/7
page 161

i

i

i

i

i

i

i

i

5.2. State-Dependent Generalizations 161

An example is demonstrated in Fig. 5.1 for uniformly distributed marks Q on
(a, b) = (−2,+1) and time-dependent coefficients {µd(t), σd(t), λ(t)}. The MAT-
LAB linear mark-jump-diffusion code C.15 is a modification of the linear jump-
diffusion SDE simulator code C.14 illustrated in Fig. 4.3 for constant coefficients
and discrete mark-independent jumps. The state exponent Y (t) is simulated as

Y S(i+ 1) = Y S(i) + (µd(i) − σ2
d(i)/2) ∗ ∆t+ σd(i) ∗DW (i) +Q(i) ∗DP (i) ,

with t(i + 1) = t0 + i ∗ ∆t for i = 0 : n with n = 1, 000, t0 = 0, 0 ≤ t(i) ≤ 2.
The incremental Poisson jump term ∆P (i) = P (ti + ∆t) − P (ti) is simulated by a
uniform random number generator on (0, 1) using the acceptance-rejection technique
[230, 96] to implement the zero-one jump law to obtain the probability of λ(i)∆t that
there a jump is accepted. The same random state is used to obtain the simulations
of uniformly distributed Q on (a, b) conditional on a jump event.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5
Linear Mark−Jump−Diffusion Simulations

X
(t

),
 J

um
p−

D
iff

us
io

n
S

ta
te

t, Time

X(t), State 1
X(t), State 5
X(t), State 9
X(t), State 10
XM(t), th. Mean=E[X(t)]
XSM(t), Sample Mean

Figure 5.1. Four linear mark-jump-diffusion sample paths for time-
dependent coefficients are simulated using MATLAB [210] with N = 1, 000 time-
steps, maximum time T = 2.0 and four randn and four rand states. Initially,
x0 = 1.0. Parameter values are given in vectorized functions using vector functions
and dot-element operations, µd(t) = 0.1 ∗ sin(t), σd(t) = 1.5 ∗ exp(−0.01 ∗ t) and
λ = 3.0 ∗ exp(−t. ∗ t). The marks are uniformly distributed on [−2.0,+1.0]. In
addition to the four simulated states, the expected state E[X(t)] is presented us-
ing quasi-deterministic equivalence (5.55) of Hanson and Ryan [114], but also the
sample mean of the four sample paths are presented.

“bk0allfinal”
2007/1/7
page 162

i

i

i

i

i

i

i

i

162 Chapter 5. Stochastic Calculus for General Markov SDEs

5.3 Multi-Dimensional Markov SDE

The general, multi-dimensional Markov SDE is presented here, along with the cor-
responding chain rule, establishing proper matrix-vector notation, or extensions
where the standard linear algebra is inadequate, for the sequel. In the case of the
vector1state process X(t) = [Xi(t)]nx×1 on some nx-dimensional state space Dx,
the multi-dimensional SDE can be of the form,

dX(t)
sym
= f(X(t), t)dt + g(X(t), t)dW(t) + h(X(t), t,Q)dP(t;Q,X(t), t) , (5.82)

where

h(X(t), t,Q)dP(t;Q,X(t), t)
dt
= dΠ(t;X(t), t)

=

∫

Q
h(X(t), t,q)P(dt,dq;X(t), t) (5.83)

is compact symbolic notation for the space-time Poisson terms, W(t) = [Wi(t)]nw×1

is an nw-dimensional vector Wiener process, P(t;Q,X(t), t) = [Pi(t;X(t), t)]np×1

is an np-dimensional vector state-dependent Poisson process, the coefficient f has
the same dimension at X, and the coefficients in the set {g, h} have dimensions
commensurate in multiplication with the set of vectors {W,P}, respectively. Here,
P = [Pi]np×1 is a vector form of the Poisson random measure with mark random
vector Q = [Qi]np×1 and dq = [[qi, qi + dqi)]np×1 is the symbolic vector version of
the mark measure notation. The dP(t;X(t), t) jump-amplitude coefficient has the
component form

h(X(t), t;Q) = [hi,j(X(t), t;Qj)]nx×np
,

such that the jth Poisson component only depends on the jth mark Qj since simul-
taneous jumps are unlikely.

In component and jump counter form, the SDE is

dXi(t)
dt
= fi(X(t), t)dt +

nw∑

j=1

gi,j(X(t), t)dWj(t)

+

np∑

j=1

hi,j(X(t), t,Q)dPj(t;Q,X(t), t) , (5.84)

for i = 1 :nx state components. The jump of the ith state due to the jth Poisson
process

[Xi](Tj,k) = hi,j(X(T−
j,k), T−

j,k, Qj,k),

where T−
j,k is the pre-jump-time and its k realization with jump-amplitude mark

Qj,k. The diffusion noise components have zero mean,

E[dWi(t)] = 0 (5.85)

1Boldface variables or processes denote column vector variables or processes, respectively. The
subscript i usually denotes a row index in this notation, while j denotes a column index. For
example, X(t) = [Xi(t)]nx×1 denotes that Xi is the ith component for i = 1 : nx of the single-
column vector X(t).

“bk0allfinal”
2007/1/7
page 163

i

i

i

i

i

i

i

i

5.3. Multi-Dimensional Markov SDE 163

for i = 1:nw, while correlations are allowed between components,

Cov[dWi(t), dWj(t)] = ρi,jdt = [δi,j + ρi,j(1 − δi,j)]dt, (5.86)

for i, j = 1:nx, where ρi,j is the correlation coefficient between i and j components.
The jump noise components, conditioned on X(t) = x, are Poisson distributed

with P mean assumed to be of the form

E[Pj(dt,dqj ;X(t), t)|X(t) = x] = φ
(j)
Qj

(qj ;x, t)dqjλj(t;x, t)dt , (5.87)

for each jump component j = 1:np with jth density φ
(j)
Q (qj ;x, t) depending only on

qj assuming independence of the marks for different Poisson components but IID
for the same component, so that the Poisson mark integral is

E[dPj(t;Q,X(t), t)|X(t) = x] = E

[∫

Qj

Pj(dt,dqj;x(t), t)

]

=

∫

Qj

E
[
Pj(dt,dqj ;x(t), t)

]

=

∫

Qj

φ
(j)
Q (qj ;x, t)dqiλj(t;x, t)dt

= λj(t;x, t)dt (5.88)

for i = 1 : np, while the components are assumed to be uncorrelated, with condi-
tioning X(t) = x pre-assumed for brevity,

Cov[Pj(dt,dqj ;x, t)Pk(dt,dqk;x, t)] = φ
(j)
Q (qj ;x, t)δ(qk − qj)dqkdqjλj(t;x, t)dt ,

(5.89)

generalizing the scalar form (5.15) to vector form, and

Cov[dPj(t;Qj,x, t), dPk(t;Qk,x, t)] =

∫

Qj

∫

Qk

Cov[Pj(dt,dqj ;x, t)Pk(dt,dqk;x, t)]

= λj(t;x, t)dt δj,k (5.90)

for j, k = 1 :np, there being enough complexity for most applications. In addition,
it is assumed that, as vectors, the diffusion noise dW, Poisson noise dP and mark
random variable Q are pairwise independent, but the mark random variable depends
on the existence of a jump.

This Poisson formulation is somewhat different from others, such as [94, Part
2, Chapter 2]. The linear combination form has been found to be convenient for
both jumps and diffusion when there several sources of noise in the application.

5.3.1 Conditional Infinitesimal Moments in Multi-Dimensions

The conditional infinitesimal moments for the vector state process X(t) are more
easily calculated by component first, using the noise infinitesimal moments (5.85-

“bk0allfinal”
2007/1/7
page 164

i

i

i

i

i

i

i

i

164 Chapter 5. Stochastic Calculus for General Markov SDEs

5.90). The conditional infinitesimal mean is

E[dXi(t)|X(t) = x] = fi(x, t)dt+

nw∑

j=1

gi,j(x, t)E[dWj(t)]

+

np∑

j=1

∫

Qj

hi,j(x, t, qj)E[Pj(dt,dqj ;x, t)]

= fi(x, t)dt+

np∑

j=1

∫

Qj

hi,j(x, t, qj)φ
(j)
Q (qj ;x, t)dqjλj(t;x, t)dt

=

fi(x, t) +

np∑

j=1

hi,j(x, t)λj(t;x, t)

 dt (5.91)

where hi,j(x, t) ≡ EQ[hi,j(x, t, Qj)]. Thus, in vector form

E[dX(t)|X(t) = x] =
[
f(x, t)dt + h(x, t)λ(t;x, t)

]
dt , (5.92)

where λ(t;x, t) = [λi(t;x, t)]np×1.
For the conditional infinitesimal covariance, again with pre-assuming condi-

tioning on X(t) = x for brevity,

Cov[dXi(t), dXj(t)] =

nw∑

k=1

nw∑

ℓ=1

gi,k(x, t)gj,ℓ(x, t)Cov[dWk(t), dWℓ(t)]

+

np∑

k=1

np∑

ℓ=1

∫

Qk

∫

Qℓ

hi,k(x, t; qk)hj,ℓ(x, t; qℓ)

Cov[Pk(dt,dqk;x, t),Pℓ(dt,dqℓ;x, t)]

=

nw∑

k=1

(
gi,k(x, t)gj,k(x, t) +

∑

ℓ 6=k

ρk,ℓgi,k(x, t)gj,ℓ(x, t)

 dt

+

np∑

k=1

(hi,khj,k)(x, t)φ
(k)
Q (qk;x, t)λk(t;x, t)dt

=

nw∑

k=1

(
gi,k(x, t)gj,k(x, t) +

∑

ℓ 6=k

ρk,ℓgi,k(x, t)gj,ℓ(x, t)

 dt

+

np∑

k=1

(hi,khj,k)(x, t)λk(t;x, t)dt , (5.93)

for i = 1 :nx and j = 1 :nx, in precision-dt, where the infinitesimal jump-diffusion
covariance formulas (5.86) and (5.89) have been used. Hence, the matrix-vector
form of this covariance is

Cov[dX(t), dX⊤(t)|X(t) = x]
dt
=
[
g(x, t)R′g⊤(x, t)

+ hΛh⊤(x, t)
]
dt , (5.94)

“bk0allfinal”
2007/1/7
page 165

i

i

i

i

i

i

i

i

5.3. Multi-Dimensional Markov SDE 165

where

R′ ≡ [ρi,j]nw×nw
= [δi,j + ρi,j(1 − δi,j)]nw×nw

, (5.95)

Λ = Λ(t;x, t)) = [λi(t;x, t)δi,j]np×np
. (5.96)

The jump in the ith component of the state at jump-time Tj,k in the underlying
jth component of the vector Poisson process is

[Xi](Tj,k) ≡ Xi(T
+
j,k) −Xi(T

−
j,k) = hi,j(X(T−

j,k), T−
j,k;Qj,k) , (5.97)

for k = 1 : ∞ jumps and i = 1 : nx state components, now depending on the jth
mark’s kth realization Qj,k at the pre-jump-time T−

j,k at the kth jump of the jth
component Poisson process.

5.3.2 Stochastic Chain Rule in Multi-Dimensions

The stochastic chain rule for a scalar function Y(t) = F(X(t), t), twice continuously
differentiable in x and once in t, comes from the expansion,

dY(t) = dF(X(t), t) = F(X(t) + dX(t), t+ dt) − F(X(t), t) (5.98)

= Ft(X(t), t) +

nx∑

i=1

∂F

∂xi
(X(t), t)

(
fi(X(t), t)dt +

nw∑

k=1

gi,k(X(t), t)dWk(t)

)

+
1

2

nx∑

i=1

nx∑

j=1

nw∑

k=1

nw∑

ℓ=1

(
∂2F

∂xi∂xj
gi,kgj,ℓ

)
(X(t), t)dWk(t)dWℓ(t)

+

np∑

j=1

∫

Q

(
F
(
X(t) + ĥj(X(t), t, qj), t

)
− F(X(t), t)

)

·Pj(dt,dqj ;X(t), t) ,

dt
=
(
Ft(X(t), t) + f⊤(X(t), t)∇x[F](X(t), t)

)
dt

+
1

2

nx∑

i=1

nx∑

j=1

∂2F

∂xi∂xj

nw∑

k=1

gi,kgj,k +

nw∑

ℓ 6=k

ρk,ℓgi,kgj,ℓ

 (X(t), t)dt

+

np∑

j=1

∫

Qj

∆j [F]Pj

=

[
Ft + f⊤∇x[F] +

1

2

(
gR′g⊤

)
: ∇x

[
∇⊤

x [F]
]]

(X(t), t)dt

+

∫

Q
∆⊤[F]P

to precision-dt. Here, the

∇x[F] ≡
[
∂F

∂xi
(x, t)

]

nx×1

“bk0allfinal”
2007/1/7
page 166

i

i

i

i

i

i

i

i

166 Chapter 5. Stochastic Calculus for General Markov SDEs

is the state space gradient (a column nx-vector),

∇⊤
x [F] ≡

[
∂F

∂xj
(x, t)

]

1×nx

is the transpose of the state space gradient (a row nx-vector),

∇x

[
∇⊤

x [F]
]
≡
[

∂2F

∂xi∂xj
(x, t)

]

nx×nx

is the Hessian matrix for F, R′ is a correlation matrix defined in (5.95),

A : B ≡
n∑

i=1

n∑

j=1

Ai,jBi,j = Trace[AB⊤] (5.99)

is the double-dot product of two n× n matrices, related to the trace,

ĥj(x, t, qj) ≡ [hi,j(x, t, qj)]nx×1 (5.100)

is the jth jump-amplitude vector corresponding to the jth Poisson process,

∆⊤[F] = [∆j [F](X(t), t, qj)]1×np

≡
[
F(X(t) + ĥj(X(t), t, qj), t) − F(X(t), t)

]

1×np

(5.101)

is the general jump-amplitude change vector for any t and

P = [Pi(dt,dqi;X(t), t)]np×1

is the Poisson random measure vector condition. The corresponding jump in Y(t)
due to the jth Poisson component and its kth realization is

[Y]
(
T−

j,k

)
= F

(
X
(
T−

j,k

)
+ ĥj

(
X
(
T−

j,k

)
, T−

j,k, Qj,k

)
, T−

j,k

)
− F

(
X
(
T−

j,k

)
, T−

j,k

)
.

Example 5.26. Merton’s Analysis of Black-Scholes Option Pricing Model:
A good application of multi-dimensional SDEs in finance is the survey of Merton’s
[201] (Merton [203, Chapter 8]) analysis of the Black-Scholes [34] financial options
pricing model in Section 10.2 of Chapter 10. This treatment will serve as motivation
for the study of SDEs and contains details not in Merton’s paper.

5.4 Distributed Jump SDE Models Exactly
Transformable

Here, exactly transformable distributed jump-diffusion SDE models are listed, both
in the scalar and vector cases, where conditions are applicable.

“bk0allfinal”
2007/1/7
page 167

i

i

i

i

i

i

i

i

5.4. Distributed Jump SDE Models Exactly Transformable 167

5.4.1 Distributed Jump SDE Models Exactly Transformable

• Distributed Scalar Jump SDE:

dX(t) = f(X(t), t)dt+ g(X(t), t)dW (t) +

∫

Q
h(X(t), t, q)P(dt,dq).

• Transformed Scalar Process: Y (t) = F (X(t), t).

• Transformed Scalar SDE:

dY (t) = (Ft + Fxf +
1

2
Fxxg

2)dt+ FxgdW (t)

+

∫

Q
(F (X(t) + h(X(t), t, q), t) − F (X(t), t))P(dt,dq).

• Target Explicit Scalar SDE:

dY (t) = C1(t)dt+ C2(t)dW (t) +

∫

Q
C3(t, q)P(dt,dq).

5.4.2 Vector Distributed Jump SDE Models Exactly
Transformable

• Vector Distributed Jump SDE:

dX(t) = f(X(t), t)dt + g(X(t), t)dW(t) +

∫

Q
h(X(t), t,q)P(dt,dq).

• Vector Transformed Process: Y(t) = F(X(t), t).

• Transformed Component SDE:

dYi(t) = (Fi,t +
∑

j

Fi,jfj +
1

2

∑

j

∑

k

∑

l

Fi,jkgjlgkl)dt

+
∑

j

Fi,j

∑

l

gjldWl(t)

+
∑

ℓ

∫

Q
(yi(X + hℓ, t) − Fi(X, t))Pℓ(dt,dqℓ),

hℓ(x, t,qℓ) ≡ [hi,ℓ(x, t, qℓ)]m×1

• Transformed Vector SDE:

dY(t) = (Ft + (fT∇x)F +
1

2
(ggT : ∇x∇x)F)dt+ ((gdW(t))T∇x)F

+
∑

ℓ

∫

Q
(F(X + hℓ, t) − F(X, t))Pℓ(dt,dqℓ).

“bk0allfinal”
2007/1/7
page 168

i

i

i

i

i

i

i

i

168 Chapter 5. Stochastic Calculus for General Markov SDEs

• Vector Target Explicit SDE:

dY(t) = C1(t)dt+ C2(t)dW(t) +
∑

ℓ

∫

Q
C3,ℓ(t, qℓ)Pℓ(dt,dqℓ).

• Original Coefficients:

f(x, t) = (∇xF
T)−T (C1(t) − yt

−1

2
(∇xF

T)−TC2C
T
2 (∇xF

T)−1 : ∇x∇T
x F);

g(x, t) = (∇xF
T)−TC2(t),

F(x + hℓ, t) = F(x, t) + C3,ℓ(t, qℓ) {note: left in implicit form}.
• Vector Affine Transformation Example:

F = A(t)x + B(t),

Ft = A′x + B′,

(∇xF
T)T = A,

f(x, t) = A−1(C1(t) −A′x − B′),

g(x, t) = A−1C2(t),

hℓ(x, t, qℓ) = A−1C3,ℓ(t, qℓ).

5.5 Exercises

1. Simulate X(t) for the log-normally distributed jump-amplitude case with
mean µj = E[Q] = 0.28 and variance σ2

j = Var[Q] = 0.15 for the linear
jump-diffusion SDE model (5.42) using µd(t) = 0.82 sin(2πt− 0.75π), σd(t) =
0.88− 0.44 sin(2πt− 0.75π) and λ(t) = 8.0− 1.82 sin(2πt− 0.75π), N = 10000
time-steps, t0 = 0, tf = 1.0, X(0) − x0, for k = 4 random states, i.e.,
ν(t, Q) = ν0(Q) = exp(Q)−1, with Q normally distributed. Plot the k sample
states Xj(ti) for j = 1 : k, along with theoretical mean state path, E[X(ti)]

(5.49), and the sample mean state path, i.e., Mx(ti) =
∑k

j=1Xj(ti)/k, all for
i = 1 : N + 1.

{Hint: Modify the linear mark-jump-diffusion SDE simulator Example 5.25
with Appendix A MATLAB code C.15 and Corollary 5.9 for the discrete ex-
ponential expectation. }

2. For the log-double-uniform jump distribution,

φQ(q; t) ≡

0, −∞ < q < a(t)
p1(t)/|a|(t), a(t) ≤ q < 0
p2(t)/b(t), 0 ≤ q ≤ b(t)
0, b(t) < q < +∞

, (5.102)

“bk0allfinal”
2007/1/7
page 169

i

i

i

i

i

i

i

i

5.5. Exercises 169

where p1(t) is the probability of a negative jump and p2(t) is the probability
of a posative jump on a(t) < 0 ≤ b(t), show that

(a) EQ[Q] = µj(t) = (p1(t)a(t) + p2(t)b(t))/2;

(b) VarQ[Q] = σ2
j (t) = (p1(t)a

2(t) + p2(t)b
2(t))/3 − µ2

j(t);

(c) EQ

[
(Q− µj(t))

3
]
=(p1(t)a

3(t)+p2(t)b
3(t))/4 − µj(t)(3σ

2
j (t)+µ2

j(t));

(d) E[ν(Q)] = E[exp(Q) − 1], where the answer needs to be derived.

3. Show that the Itô mean square limit for the integral of the product of two
correlated mean-zero, dt-variance, differential diffusion processes, dW1(t) and
dW2(t), symbolically satisfying the SDE,

dW1(t)dW2(t)
dt
= ρ(t)dt , (5.103)

where

Cov[∆W1(ti),∆W2(ti)] ≃ ρ(ti)∆ti

for sufficiently small ∆ti. Are there any modified considerations required if ρ =
0 or ρ = ±1? You may use the bivariate normal density in (B.146), bounded-
ness Theorem B.59, Table B.1 of selected moments and nearby material of the
Preliminaries Appendix B.

4. Finish the proof of Corollary 5.13 by showing the diffusion part using the
techniques of Theorem 5.11 Eq. (5.53).

5. Prove the corresponding corollary for the variance of X(t) from the solution
of the linear SDE:

Corollary 5.27. Variance of X(t) for Linear SDE:

Let X(t) be the solution (5.45) with ν2(t) ≡ E[ν2(t, Q)] of (5.42), then

Var[dX(t)/X(t)]
dt
= σ2

d(t) + ν2(t)

and

Var[X(t)] = E2[X(t)]

(
exp

(∫ t

t0

Var[dX(s)/X(s)]ds

)
− 1

)
. (5.104)

Be sure to state what extra conditions on processes and precision are needed
that were not needed for proving Corollary 5.13 on E[X(t)].

6. Justify (5.94) for the covariance in multi-dimensions by giving the reasons for
each step in the derivation. See the proof for (5.27).

“bk0allfinal”
2007/1/7
page 170

i

i

i

i

i

i

i

i

170 Chapter 5. Stochastic Calculus for General Markov SDEs

Suggested References for Further Reading

• Çinlar, 1975 [55].

• Cont and Tankov, 2004 [59].

• Gihman and Skorohod, 1972 [94, Part 2, Chapter 2].

• Hanson, 1996 [108].

• Itô, 1951 [149].

• Kushner and Dupuis, 2001 [179].

• Øksendal and A. Sulem, 2005 [223].

• Snyder and Miller, 1991 [252, Chapter 4 and 5].

• Westman and Hanson, 1999 [276].

• Westman and Hanson, 2000 [277].

• Zhu and Hanson, 2006 [291].

“bk0allfinal”
2007/1/7
page 171

i

i

i

i

i

i

i

i

Chapter 6

Stochastic Optimal
Control - Stochastic
Dynamic Programming

It was the owl that shriek’d, the fatal bellman,
Which gives the stern’st good-night.
—William Shakespeare (1564-1616) in Macbeth.

But the principal failing occurred in the sailing,
And the Bellman, perplexed and distressed,+
Said he had hoped, at least, when the wind blew due East,
That the ship would not travel due West!
—Lewis Carroll (1832-1898) in The Bellman’s Speech.

6.1 Stochastic Optimal Control Problem

This main chapter introduces the optimal stochastic control problem. For many ap-
plication systems, solving a SDE, or for that matter an ODE, to obtain its behavior
is only part of the problem. The SDE is, in fact, a stochastic ordinary differential
equation (SODE). Another, very significant part is finding out how to control the
SDE or ODE as a model for controlling the application system.

Thus, the general jump-diffusion SDE (5.82) is reformulated with an additional
process, the vector control process U(t) = [Ui(t)]nu×1 on some nu-dimensional
control space Du,

dX(t)
sym
= f(X(t),U(t), t)dt + g(X(t),U(t), t)dW(t)

+

∫

Q
h(X(t),U(t), t,q)P (dt,dq;X(t),U(t), t) , (6.1)

when t0 ≤ t ≤ tf subject to a given initial state X(t0) = x0, where again X(t) =
[Xi(t)]nx×1 is the vector state process on some nx-dimensional state space Dx.
The stochastic processes are the nw-dimensional vector Wiener process or diffu-

171

“bk0allfinal”
2007/1/7
page 172

i

i

i

i

i

i

i

i

172 Chapter 6. Stochastic Dynamic Programming

sion process W(t) = [Wi(t)]nw×1 and the np-dimensional vector Poisson process or
jump process P(t;Q,X(t),U(t), t) = [Pi(t;Qi,X(t),U(t), t)]np×1, with IID jump-
amplitude mark random vector Q = [Qi]np×1 and Poisson random measure

P(dt,dq;X(t),U(t), t) = [Pi(dt,dq;X(t),U(t), t)]np×1.

The np-dimensional vector state-dependent compound Poisson process can
also be defined as in Chapt. 5 in a zero-one law form,

Z

Q

h(X(t),U(t), t,q)P(dt,dq;X(t),U(t), t)

dt
=
zol

" npX

j=1

hi,j(X(t),U(t), t,Q)dPj(t; QjX(t),U(t), t)

#

nx×1

,

with

E[dP(t;Q,X(t),U(t), t)|X(t) = x,U(t) = u] = λ(t;x,u, t)dt,

and jump in the ith state component

[Xi](Tj,k) = hi,j(X(T−
j,k),U(T−

j,k), T−
j,k, Qj,k),

where λ(t;x,u, t) is the jump rate vector and T−
j,k is the kth jump time of the jth

differential Poisson process and Qj,k is the corresponding mark.
The coefficient functions are the nx × 1 plant function f(x,u, t), having the

same dimension as the state x, the nx × nw volatility function g(x,u, t) or square
root of the variance of the diffusion term, and the nx × np jump amplitude of the
jump term h(x,u, t,Q), where Q is the underlying jump amplitude random mark
process, the space part of the space-time Poisson process.

The optimization objective functional for a control formulation may be the
combination of a final cost at time tf and cumulative instantaneous costs, given the
initial data (x0, t0). For instance,

V [X,U, tf](x0, t0) =

∫ tf

t0

C(X(s),U(s), s)ds + S(X(tf), tf) (6.2)

is a functional of the processes X(t) and U(t), where C(x,u, t) is the scalar instan-
taneous or running cost function on the time horizon (t0, tf] give the state at
t0 and S(x, t) is the final cost function; both are assumed continuous. This is the
Bolza form of the objective. The objective V [X,U, tf](x0, t0) is a functional of the
state X and control process U, i.e., a function of functions, while also dependent
on the values of the initial data (x0, t0). The optimal control objective, in this
case, is to minimize the expected total costs with respect to the control process on
(t0, tf]. The feedback control of the multibody stochastic dynamical system (6.1)
is illustrated in the block diagram displayed in Figure 6.1.

Prior to the optimization step, an averaging step, taking the conditional expec-
tation, conditioned on some initial state, is essential to avoid the ill-posed problem

“bk0allfinal”
2007/1/7
page 173

i

i

i

i

i

i

i

i

6.1. Stochastic Optimal Control Problem 173

CONTROLS
[Ui(X(t), t)]nu×1

STATES
[Xi(t)]nx×1

ENVIRONMENT

[fi(X,U, t)dt]nx×1 Controlled Nonlinear Plant

[gi,j(X,U, t)]nx×nw [dWi(t)]nw×1 Diffusion Noise

[hi,j(X,U, t,Q)]nx×np [dPi(t;Q,X,U, t)]np×1

Jump Noise

��

-

Feedback update in time dt ր
Figure 6.1. Multibody Stochastic Dynamical System Under Feedback Control.

of trying to optimize an uncertain, fluctuating objective. It is further assumed here
that the running and terminal cost functions permit a unique minimum, subject to
stochastic differential dynamics in the multi-dimensional jump-diffusion case (6.1).
Hence, the optimal, expected cost for (6.2) is

v∗(x0, t0) ≡ min
U(t0,tf]

[
E

(W ,P)(t0,tf]

[
V [X,U, tf](x0, t0)

∣∣∣∣X(t0) = x0,U(t0) = u0

]]
, (6.3)

with the expectation preceding the minimization so that the minimization prob-
lem is better-posed by smoothing random fluctuations through averaging. In the
optimization in (6.4), it is implicit that the stochastic dynamical system (6.1) is
a constraint. The minimization over U(t0, tf] denotes the minimization over the
control path U(t) for t ∈ (t0, tf] and similarly the expectation over {W,P}(t0, tf]
denotes expectation over the joint stochastic pair {W (t), P (t)} for t ∈ (t0, tf].

Recall that the maximum problem, as in the maximization of profits, portfolio
returns or utility, is an equivalent problem since

max
U

[V [X,U, tf](x0, t0)] = −min
U

[−V [X,U, tf](x0, t0)] ,

upon reversing the value. However, switching theoretical results from those for a
minimum to get those of a maximum, basically requires just replacing the minimum
function min for the maximum function max, along with replacing positive definite-
ness conditions for negative definite conditions, in the case of regular optima. For
software optimization packages that are designed for minimizations, then the user

“bk0allfinal”
2007/1/7
page 174

i

i

i

i

i

i

i

i

174 Chapter 6. Stochastic Dynamic Programming

needs to use the negative of the function to be maximized and to take the negative
of the final minimum output, for example, MATLAB’s fminsearch.

In order to implement the dynamic part of dynamic programming, the fixed
initial condition X(t0) = x0 for the SDE (6.1) needs to be replaced by a more
arbitrary start, X(t) = x, so that the start can be analytically manipulated. This
is a small but important step to produce a time-varying objective amenable to
analysis. Hence, the optimal expected value as

v∗(x, t) ≡ min
U(t,tf]

[
E

(W ,P)(t,tf]

[
V [X,U, tf](x, t)

∣∣∣∣X(t) = x ,U(t) = u

]]
. (6.4)

Since the running cost integral vanishes when t = tf , leaving only the terminal cost
term conditioned on X(tf) = x and U(tf) = u, a simple final condition for the
optimal expected cost follows:

v∗(x, tf) = S(x, tf) , (6.5)

for any x in the state domain Dx, assuming that the terminal cost function S(x, tf) is
a deterministic function. This final condition is the first clue meaning that dynamic
programming will use a backward program in time.

6.2 Bellman’s Principle of Optimality

The basic assumption is that the optimization and expectation can be decomposed
over increments in time. Bellman’s Principle of Optimality can be systematically de-
rived from optimization in time step proceeding backward from the final increment
to the initial increment. Also, in the Markov processes case here, the independent
increment properties of the Wiener and Poisson processes permit the decomposition
of the expectation over time. This decomposition conveniently complements the de-
composition of the optimization over time as in the deterministic case presented in
Section A.4.

The semi-close-open time interval (t, tf] in the optimal expected cost formu-
lation (6.4), given the state at time t, can be decomposed into disjoint increments
(t, t+ δt] and (t + δt, tf] for fixed δt in t < t + δt < tf . Symbolically, the decom-
position rules are written:

Rules 6.1. Decomposition for Time, Integration, Expectation and Mini-
mumization:

• Time domain Decompostion into Subintervals:

(t, tf] = (t, t+ δt] + (t+ δt, tf],

needs to be further decomposed for discrete approximations into sufficiently
small increments ∆ti for i = 1:n+ 1, such that

ti+1 = ti +
i∑

j=1

∆tj ,

“bk0allfinal”
2007/1/7
page 175

i

i

i

i

i

i

i

i

6.2. Bellman’s Principle of Optimality 175

t1 = t, tℓ = t+δt for some integer ℓ ∈ [1, n+1], tn+1 = tf , δtn = maxi[∆ti] →
0 as n → ∞. Recall that the approximation to the stochastic dynamics (6.1)
is

Xi+1 ≃ Xi +

∫ ti+∆ti

ti

dX(s) ≃ Xi + fi∆ti + gi∆Wi + hi∆Pi,

for sufficiently small ∆ti, where, for example, fi ≡ f(Xi,Ui, ti), so that the
change from Xi to Xi+1 is due to the control Ui and random fluctuations
(∆Wi,∆Pi) determined from a prior stage.

• Integration Additive Decomposition Rule:

∫ tf

t

C(X(s),U(s), s)ds =

∫ t+δt

t

C(X(s),U(s), s)ds+

∫ tf

t+δt

C(X(s),U(s), s)ds, (6.6)

for the cumulative running costs by the regular additivity property of regular or
Riemann-type integrals, or in terms of small increments in simplified notation.
Let

V =

∫ tf

t

Cds+ S(X(tf), tf) ≃
n+1∑

i=1

Ĉi,

be the forward approximation, where Ĉi ≡ Ci∆ti = C(Xi,Ui, ti)∆ti for i =

1 : n− 1 and Ĉn+1 ≡ S(X(tf), tf) = S(Xn+1, tn+1) = Sn+1.

• Expectation Operator Multiplication Decomposition Rule:

V = E
(W ,P)(t,tf]

[V |C(t)] = E
(W ,P)(t,t+δt]

[
E

(W ,P)(t+δt,tf]
[V |C(t+ δt)]

∣∣∣∣ C(t)

]
,

where V is an objective function and C(t) = {X(t),U(t)} is the conditioning
at time t. This decomposition relies on the corresponding decomposition of
the Markov processes W(t) and P(t;Q,X(t),U(t), t) into independent incre-
ments, so that the expectation over {W(s),P(s)} for s ∈ (t, tf] is the prod-
uct of expectation over {W(s),P(s)} for s ∈ (t, t + δt] and expectation over
{W(r),P(r)} for r ∈ (t + δt, tf]. In order to compute the expectation over
the path of a Markov process, we need to approximate the process by a sum of
n independent increments for sufficiently large n to obtain sufficiently small
∆ti and then take the product of the expectations with respect to each of these
independent increments, and finally taking the limit as n → ∞ relying on
mean square convergence in the result as in the first two chapters. In simple
notation,

V = E[V |C(t)] ≃ E

[
n+1∑

i=1

Ĉi

∣∣∣∣∣X1,U1

]
,

“bk0allfinal”
2007/1/7
page 176

i

i

i

i

i

i

i

i

176 Chapter 6. Stochastic Dynamic Programming

where E
[
Ĉ1

∣∣∣X1,U1

]
≡ E0

[
Ĉ1

]
= Ĉ1 since Ĉ1 = C(X1,U1, t1)∆t1,

E
[
Ĉ2

∣∣∣X1,U1

]
= E

(∆W1,∆P1)

[
Ĉ2

∣∣∣X1,U1

]
≡ E1

[
Ĉ2

]
= Π1

j=0Ej

[
Ĉ
]
,

E
[
Ĉ3

∣∣∣X3,U3

]
= E1

[
E

(∆W2,∆P 2)

[
Ĉ3

∣∣∣X2,U2

]]
≡ Π2

j=0Ej

[
Ĉ3

]
,

so in general,

E
[
Ĉi+1

∣∣∣X1,U1

]
= Πi

j=0Ej

[
Ĉi+1

]
,

with

Ej

[
Ĉi+1

]
≡ E

(∆Wj ,∆P j)

[
Ĉi

∣∣∣Xj ,Uj

]

for j = 0 : i, E
[
Ĉi+1

]
= Ĉi+1 and finally,

V ≃
n+1X

i=1

Πi−1
j=0Ej

h
bCi

i
−→ E

(W ,P)(t,t+δt]

»Z t+δt

t

Cds

+ E
(W ,P)(t+δt,tf]

»Z tf

t+δt

Cds + S(X(tf), tf)

˛̨
˛̨ (X,U)(t + δt)

–˛̨
˛̨ (X,U)(t)

–
,

as n→ ∞, confirming the construction, assuming mean square convergence.

• Minimization Operator Multiplication Decomposition Rule:

V
∗

= min
U(t,tf]

[
V
]

= min
U(t,t+δt]

[
min

U(t+δt,tf]

[
V
]]
, (6.7)

where V is the expected value of an objective so that the decomposition rule is
analogous to the use in deterministic dynamic programming. This decompo-
sition depends on the reasonable heuristic idea that given a minimum on the
later interval (t+ δt, tf], taking the minimum of the given minimum over the
small earlier interval (t, t + δt] yields the minimum over the longer interval
(t, tf]. In terms of the small increments (∆ti) construction,

V
∗ ≃

n+1X

i=1

min
U(t,tf]

h
Πi−1

j=0Ej

h
bCi

ii
=

n+1X

i=1

"
Πi−1

j=0 min
Uj

Ej

h
bCi

i#
=

n+1X

i=1

Πi−1
j=0MEj

h
bCi

i

where

ME0 ≡ min
U1

[
E0

[
Ĉ0

∣∣∣ (X0,U0)
]]

and

MEj ≡ min
Uj

[
Ej

[
Ĉi

∣∣∣Xj ,Uj

]]

“bk0allfinal”
2007/1/7
page 177

i

i

i

i

i

i

i

i

6.2. Bellman’s Principle of Optimality 177

for j = 0 : i− 1. As n→ ∞ and δtn → 0, then

V
∗ → min

U(t,t+δt]

[
E

(W ,P)(t,t+δt]

[∫ t+δt

t

Cds+ min
U(t+δt,tf]

[
E

(W ,P)(t+δt,tf]

[∫ tf

t+δt

Cds+ S(X(tf), tf)

∣∣∣∣ (X,U)(t+ δt)

]]∣∣∣∣ (X,U)(t)

]]
.

The optimal decomposition seems to work for many examples. However, for
empirical counterexamples, see Rust [240].

Thus, optimal expected cost (6.4) can be decomposed as follows:

v∗(x, t) = min
U(t,t+δt]

[
E

(W ,P)(t,t+δt]

[∫ t+δt

t

C(X(s),U(s), s)ds

+ min
U(t+δt,tf]

[
E

(W ,P)(t+δt,tf]

[∫ tf

t+δt

C(X(s),U(s), s)ds + S(X(tf), tf)

∣∣∣∣{X(t+ δt),U(t + δt)}
]] ∣∣∣∣X(t) = x ,U(t) = u

]]

= min
U(t,t+δt]

[
E

(W ,P)(t,t+δt]

[∫ t+δt

t

C(X(s),U(s), s)ds

+v∗(X(t+ δt), t+ δt)

∣∣∣∣X(t) = x ,U(t) = u

]]
, (6.8)

where the definition (6.4) for v∗ has been reused with the arguments shifted by
the time-step δt, since the inner part of the decomposition that is on (t+ δt, tf] is
precisely the definition of v∗ in (6.4) but with arguments shifted from (x, t) to (X(t+
dt), t + dt). Thus, Eq. (6.8) is a backward recursion relation for v∗. The subscript
notation U(t, t+δt] under the min operator means that the minimum is with respect
to U in the range (t, t + δt], with similar subscript notation {W,P}(t, tf] for the
expectation operator. Thus, we have formally derived the fundamental recursive
formula of stochastic dynamic programming:

Lemma 6.2. Bellman’s Principle of Optimality:
Under the assumptions of the decomposition rules (6.7, 6.7, 6.6) and the properties
of jump-diffusions,

v∗(x, t) = min
U(t,t+δt]

[
E

(W ,P)(t,t+δt]

[∫ t+δt

t

C(X(s),U(s), s)ds

+v∗(X(t+ δt), t+ δt)

∣∣∣∣X(t) = x ,U(t) = u

]]
. (6.9)

The argument of the minimum when it exists, within the control domain Du,
is the optimal control u∗ = u∗(x, t). Although the SDE is a forward differential

“bk0allfinal”
2007/1/7
page 178

i

i

i

i

i

i

i

i

178 Chapter 6. Stochastic Dynamic Programming

equation integrated forward from the initial condition, the optimal control problem
is a backward general or functional equation integrated backward from the final
time. The backward equation is quite basic, when one has a final objective, here
optimal costs. Then the primary question is where to start initially to get that
optimum. People do backward calculations all the time, such as when going to a
scheduled meeting or a class, the meeting time is fixed and the problem is to estimate
what time one should leave to get to the meeting. However, when economic decisions
are made, the decision makers may not behave according to Bellman’s principle of
optimality according to the studies of Rust [240].

In general, capital letters are used for stochastic processes and lower case
letters for conditioned or realized variables.

6.3 Hamilton-Jacobi-Bellman (HJB) Equation of
Stochastic Dynamic Programming

Using the Principle of Optimality (6.9) and by taking the limit of small δt,
replacing δt by dt, we can systematically derive the partial differential equation
of stochastic dynamic programming, also called the stochastic Hamilton-Jacobi-
Bellman (HJB) equation, for the general, multi-dimensional Markov dynamics
case. From the increment form of the state differential dX(t) = X(t + dt) − X(t),
we consider the expansion of the state argument

X(t+ dt) = X(t) + dX(t)

about X(t) for small dX(t) and about the explicit time argument t + dt about t
in the limit of small time increments dt, using an extension of Taylor approxima-
tions extended to include discontinuous (i.e, Poisson) and non-smooth (i.e., Wiener)
processes. Sufficient differentiability of the optimal value function v∗(x, t), at least
to first order in time and second order in state, is assumed except when its state
argument has Poisson jumps. The spirit of the derivation of the multi-dimensional
chain rule (5.98) is applied to the Principle of Optimality (6.9), except that the
mean square limit substitution for the bilinear Wiener Wi(t)Wj(t) process is not
needed here because of the pre-optimization expectation operation. Then neglect-
ing o(dt) terms as dt→ 0+ (strictly, we are really working with finite increments δt)
and substituting for the conditioning on X(t) and U(t), an intermediate reduction
of the optimal expected value is

v∗(x, t)
dt
= min

u

[
E

(dW ,dP)(t)

[
C(x,u, t)dt + v∗(x, t) + v∗t (x, t)dt

+∇⊤
x [v∗](x, t) · (f(x,u, t)dt + g(x,u, t)dW(t)) (6.10)

+
1

2
dW⊤(t)g⊤(x,u, t)∇x[∇⊤

x [v∗]](x, t)(g(x,u, t)dW(t))

+

np∑

j=1

∫

Q

(
v∗(x + ĥj(x,u, t, qj), t) − v∗(x, t)

)
Pj(dt,dqj ;x,u, t)

]]
,

“bk0allfinal”
2007/1/7
page 179

i

i

i

i

i

i

i

i

6.3. HJB Equation of Stochastic Dynamic Programming 179

where it has been assumed that the random mark variables Qj = qj are pair-wise
independently distributed and the jump amplitude is separable in the marks. So

h(x,u, t,q) = [hi,j(x,u, t, qj)]nx×np
, (6.11)

with a corresponding multiplicative factoring of the Poisson random measure. Recall
from Chapter 5 (5.100) that the jth vector component of the jump amplitude is

ĥj(x,u, t, qj) ≡ [hi,j(x,u, t, qj)]nx×1 , (6.12)

for j = 1 : np, corresponding to the jth Poisson process

dPj(t;x,u, t) =

∫

Q
Pj(dt,dqj ;x,u, t) ,

in terms of the jth Poisson mark-time random measure Pj . Note that the first t
argument of dPj is the time implicit to the Poisson process, while the second t argu-
ment is an explicit time corresponding to the implicit state and control parametric
dependence.

The next step is to take the conditional expectation over the now isolated
differential Wiener and Poisson processes, but done by expanding them in compo-
nents to facilitate understanding of the step and suppressing some arguments for
simplicity,

v∗(x, t)
dt
= v∗(x, t) + v∗t (x, t)dt+ min

u
[C(x,u, t)dt

+∇⊤
x [v∗](x, t) ·

(
f(x,u, t)dt +

nw∑

i=1

gi(x,u, t)EdWi
[dWi(t)]

)

+
1

2

nw∑

i=1

nw∑

j=1

EdWi,dWj
[dWi(t)dWj(t)]

[
g⊤(x,u, t)∇x[∇⊤

x [v∗]]g(x,u, t)
]
i,j

+

np∑

j=1

∫

Q

(
v∗(x + ĥj(x,u, t, qj), t) − v∗(x, t)

)
EPj

[
Pj(dt,dqj ;x,u, t)

]]

ind
=
inc

v∗(x, t) + v∗t (x, t)dt + min
u

[
C(x,u, t)dt + ∇⊤

x [v∗](x, t) (f(x,u, t)dt + 0)

+
1

2

nw∑

i=1

1+

nw∑

j=1

ρi,j(1−δi,j)

[g⊤(x,u, t)∇x

[
∇⊤

x [v∗]
]
(x, t)g(x,u, t)

]
i,j
dt

+

np∑

j=1

λj(t;x,u, t)

∫

Q

(
v∗(x + ĥj(x,u, t, qj), t) − v∗(x, t)

)

·ΦQj
(dqj ;x,u, t)dt

]
, (6.13)

where we have used the expectations

E[dWi(t)] = 0, E[dWi(t)dWi(t)] = (δi,j + ρi,j(1 − δi,j)dt

“bk0allfinal”
2007/1/7
page 180

i

i

i

i

i

i

i

i

180 Chapter 6. Stochastic Dynamic Programming

with correlation coefficient ρi,j and

E[Pj(dt,dqj ;x,u, t)] = λj(t;x,u, t)dtΦQj
(dqj ;x,u, t)

= λj(t;x,u, t)φQj
(qj ;x,u, t)dqjdt .

Also, with sufficiently small dt, U(t, t + dt] has been replaced by the conditioned
control vector u at t.

Note that the v∗(x, t) value on both sides of the equation cancel and then the
remaining common multiplicative factors of dt also cancel, so the HJB equation
has been derived for this general case:

Theorem 6.3. Hamilton-Jacobi-Bellman Equation (HJBE) for Stochastic
Dynamic Programming (SDP)
If v∗(x, t) is twice differentiable in x and once differentiable in t, while the operator
decomposition rules (6.7-6.6) are valid, then

0 = v∗t (x, t) + min
u

[H(x,u, t)] ≡ v∗t (x, t) + H∗(x, t) (6.14)

where the Hamiltonian (technically, a pseudo-Hamiltonian) functional is given by

H(x,u, t) ≡ C(x,u, t) + ∇⊤
x [v∗](x, t) · f(x,u, t)

+
1

2

(
gR ′g⊤

)
(x,u, t) : ∇x

[
∇⊤

x [v∗]
]
(x, t)

+

np∑

j=1

λj(t;x,u, t)

∫

Q

[
v∗
(
x + ĥj(x,u, t, qj), t

)
− v∗(x, t)

]

·φQj
(qj ;x,u, t)dqj , (6.15)

where the correlation modified indentity R ′ is defined in (5.95) as

R ′ ≡ [δi,j + ρi,j(1 − δi,j)]nw×nw
, (6.16)

and where the correlation coefficient between i and j components is

ρi,jdt = Cov[dWi(t), dWj(t)] , (6.17)

provided j 6= i for i, j = 1 : nx. The double-dot product A : B is defined in (5.99).
The optimal control, if it exists, is given by

u∗ = u∗(x, t) = argmin
u

[H(x,u, t)] , (6.18)

subject to any control constraints.

This HJB equation (6.14) is no ordinary PDE, but but has the following
properties or attributes:

Properties 6.4.

“bk0allfinal”
2007/1/7
page 181

i

i

i

i

i

i

i

i

6.3. HJB Equation of Stochastic Dynamic Programming 181

• The HJBE is a functional PDE or PIDE due to the presence of the minimum
operator min and the Poisson integral term (the last term) with steps in the
state argument of the optimal value function v∗ due to the jump amplitude.

• The HJBE is a scalar valued equation, but has a (nu+ 1)-dimensional so-
lution consisting of the scalar optimal value function v∗ = v∗(x, t) and the
optimal control vector u∗ = u∗(x, t) as well. These dual solutions are gen-
erally tightly coupled in functional dependence. In general, this tight coupling
requires a number of iterations between v∗ and u∗ to obtain a reasonable ap-
proximation to the (nu+1)-dimensional solution. However, it should be noted
that the optimal control u(x, t) in (6.18) is deterministic and if the x depen-
dence is genuine then it is also feedback optimal control. In fact, the HJB
equation is a deterministic equation as well.

• A further complication in this functional PDE or PIDE is that the HJB equa-
tion (6.14) has global state dependence due to the Poisson jump functional
integral term, whereas the HJB equation for purely Gaussian or Wiener pro-
cesses is essentially a diffusion equation that has only local state depen-
dence since it depends only on the values v∗(x, t), u∗(x, t), the gradient vector
∇x[v∗](x, t), and the Hessian matrix of 2nd order derivatives ∇x[∇⊤

x [v∗]](x, t)
at (x, t). Contrast this with the random noise case including the Poisson ran-
dom measure disturbance, with local dependence at x, but global dependence
on a range of points at x + ĥj(x,u, t, qj) depending on the Poisson mark
distribution.

While letting C∗(x, t) ≡ C(x,u∗, t), f∗(x, t) ≡ f(x,u∗, t), g∗(x, t) ≡ g(x,u∗, t),

ĥ
∗
j (x, t, qj) ≡ ĥj(x,u

∗, t, qj), and so forth for all control-dependent functions, then
the HJB equation (HJBE) takes the form of a backward parabolic partial differential
equation except that it has an additional integral term:

0 = v∗t (x, t) + H(x,u∗(x, t), t)

= v∗t (x, t) + C∗(x, t) + ∇⊤
x [v∗](x, t) · f∗(x, t)

+
1

2

(
g∗R ′g∗⊤

)
(x, t) :∇x

[
∇⊤

x [v∗]
]
(x, t) (6.19)

+

np∑

j=1

λ∗j (t;x, t)

∫

Q
∆j [v

∗](x, t, qj)φ
∗
Qj

(qj ;x, t)dqj ,

where the jth jump increment is defined as

∆j [v
∗](x, t, qj) ≡ v∗

(
x + ĥ

∗
j (x, t, qj), t

)
− v∗(x, t) (6.20)

and the double-dot product (A : B) is defined in (5.99). The final condition is given
by v∗(x, tf) = S(x, tf).

The Hamilton-Jacobi-Bellman name of the equation comes from the fact that
Bellman [25, 26] was the founding developer of dynamic programming and the fact

“bk0allfinal”
2007/1/7
page 182

i

i

i

i

i

i

i

i

182 Chapter 6. Stochastic Dynamic Programming

that the general evolution equation, v∗t (x, t) + H∗(x, t) = 0, is called a Hamilton-
Jacobi equation and where H(x,u, t) is like a classical Hamiltonian. Sometimes,
the HJB equation (6.14) is called simply the Bellman equation, or the stochastic
dynamic programming equation or the PDE of stochastic dynamic programming,
or in particular, the PIDE of stochastic dynamic programming where PIDE denotes
a partial integral differential equation).

6.4 Linear Quadratic Jump-Diffusion (LQJD)
Problem

The linear quadratic jump-diffusion (LQJD) problem is also called a linear quadratic
Gaussian Poisson (LQGP) problem or jump linear quadratic Gaussian (JLQG)
problem. The Markov property of the jump-diffusion processes described in this
book leads to an analogous dynamic programming formulation to dynamic pro-
gramming for deterministic processes as in the deterministic linear quadratic (LQ)
problem of Subsection A.4.4. In this chapter, the LQJD problem is presented in
more generality than in Chapter A.

The linear quadratic problem in both state and control leads to a quadratic
decomposition of the optimal value function with respect to the state and a linear or
feedback decomposition of the optimal control. However, first the LQJD problem is
examined for a special case that is linear quadratic in control only to show how much
an advantage is gained by the control dependence alone. For many applications it
is not appropriate to have the problem linear quadratic in the state.

6.4.1 LQJD in Control Only (LQJD/U) Problem

A general variant of the LQJD problem is the LQJD/U problem that is LQJD in
control only. Just having a control problem linear quadratic in control retains an
important feature of the full linear quadratic control problem in that the optimal
control can be solved for exactly in terms of the optimal value, even though the
state decomposition property does not follow. The restricted linear quadratic prob-
lem in the control only will be treated first to examine how far the analysis can be
taken before treating the full linear quadratic problem in the state and the control.
In many control problems, the state dependence of the plant function f(x,u, t) is
dictated by the application and may be significantly nonlinear, but the control de-
pendence of the dynamics is up to the control designer who might chose to make
the control simple, e.g., linear, so that the control process will be manageable for
the control manager. Hence, the LQ problem in control only, may be more appro-
priate for some applications. In the past, linear systems were preferred since linear
methods were well-known, but now nonlinear methods and problems have become
more prevalent as we try to make more realistic models for applications.

Let the jump-diffusion linear quadratic model, in the control only, be given
with the plant function for the deterministic or non-noise dynamics term,

f(x,u, t) = f0(x, t) + f1(x, t)u , (6.21)

“bk0allfinal”
2007/1/7
page 183

i

i

i

i

i

i

i

i

6.4. Linear Quadratic Jump-Diffusion (LQJD) Problem 183

with the diffusion term,

g(x,u, t) = g0(x, t) , (6.22)

assumed control-independent for simplicity, with a jump term decomposition cor-
responding to independent sources of np-type jumps

h(x,u, t,q) = h0(x, t,q) = [h0,i,j(x, t, qj)]nx×np
, (6.23)

also assumed control-independent along with the very simplified Poisson noise

dP(t;Q,x,u, t) = dP(t;Q,x,u, t) , E[dP(t;Q,x,u, t)] = λ(t;x,u, t)dt ,(6.24)

and finally with the quadratic running cost function,

C(x,u, t) = C0(x, t) + C⊤
1 (x, t)u +

1

2
u⊤C2(x, t)u . (6.25)

It is assumed that all right hand side coefficients are commensurate in multiplication
and that the product is the same type at that on the left hand side. A crucial
assumption in case of a minimum objective is that the quadratic control C2(x, t)
is positive definite, but C2(x, t) can be assumed to be symmetric without loss of
generality by the symmetric property of quadratic forms (B.135).

Thus, the pseudo-Hamiltonian is quadratic in the control,

H(x,u, t) = H0(x, t) + H⊤
1 (x, t)u +

1

2
u⊤H2(x, t)u , (6.26)

where the scalar coefficient is

H0(x, t) =

[
C0 + f⊤0 ∇x[v∗] +

1

2
g0g

⊤
0 :∇x[∇x[v∗]]

]
(x, t)

+

np∑

j=1

λj(t;x, t)

∫

Qj

∆j [v
∗](x, t, qj)φQj

(qj)dqj , (6.27)

where the double-dot product (5.99) is GG⊤ :A = Trace[G⊤AG], while the jump
increment is

∆j [v
∗](x, t, qj) ≡ v∗

(
x + ĥj(x, t, qj), t

)
− v∗(x, t) ,

the linear control coefficient nu-vector is

H1(x, t) =
[
C1 + f⊤

1 ∇x[v∗]
]
(x, t) , (6.28)

and the quadratic control coefficient nu × nu-matrix is simply

H2(x, t) = C2(x, t) , (6.29)

where H2(x, t) is assumed to be symmetric along with C2(x, t). If the minimum
cost is the objective, then H2(x, t) is positive definite since C2(x, t) is assumed to
be positive definite.

“bk0allfinal”
2007/1/7
page 184

i

i

i

i

i

i

i

i

184 Chapter 6. Stochastic Dynamic Programming

Thus, in search of a regular control minimum, the critical points of the pseudo-
Hamiltonian H(x,u, t) is considered by examining the zeros of its gradient,

∇u[H](x,u, t) = H1(x, t) + H2(x, t)u = 0 , (6.30)

yielding the regular control,

u(reg)(x, t) = −H−1
2 (x, t)H1(x, t)

= −C−1
2 (x, t)

(
C1 + f⊤

1 ∇x[v∗]
)
(x, t) , (6.31)

with the existence of the inverse being guaranteed by positive definiteness. The
fact that the regular control can be solved for exactly in terms of the optimal value
v∗(x, t) is a major benefit of having an LQJD problem that is just quadratic in the
control. If the usual LQ assumption it made that the control is unconstrained, then
the regular control is also the optimal control:

u∗(x, t) = u(reg)(x, t) (6.32)

and the optimal Hamiltonian using (6.31) is

H∗(x, t) ≡ H(x,u∗, t)

=

[
H0 − H⊤

1 H−1
2 H1 +

1

2
H⊤

1 H−⊤
2 H2H−1

2 H1

]
(x, t)

=

[
H0 −

1

2
H⊤

1 H−1
2 H1

]
(x, t) , (6.33)

where by symmetry the inverse transpose H−⊤
2 = H−1

2 . Since the difference of the
quadratic H in control from the designated minimum using the Taylor approxima-
tion form and the critical condition (6.30) is

H(x,u, t) −H∗(x, t) = H0 −H∗(x, t) + (u− u∗)⊤∇u[H](x,u∗, t)

+
1

2
(u − u∗)⊤∇u[∇⊤

u [H]](x,u∗, t)(u − u∗)

=
1

2
H⊤

1 H−1
2 H1 +

1

2
(u − u∗)⊤H2(u − u∗)

=
1

2

(
H⊤

1 H−1
2 H1

)
(x, t) +

1

2
(u − u∗)⊤H2(x, t)(u − u∗)

≥ 1

2

(
H⊤

1 H−1
2 H1

)
(x, t) ≥ 0 , (6.34)

it is always possible to solve the optimal control in the minimum problem if C2(x, t)
and thus H2(x, t) are symmetric, positive definite. This corresponds to the mini-
mum principle discussed for deterministic optimal control problems in Chapter A.

Within the generality of this linear quadratic problem in control only, the
optimal control will generally be nonlinear in the state, so the corresponding HJB
equation,

v∗t (x, t) + H∗(x, t) = 0 , (6.35)

“bk0allfinal”
2007/1/7
page 185

i

i

i

i

i

i

i

i

6.4. Linear Quadratic Jump-Diffusion (LQJD) Problem 185

will be highly nonlinear in the state, with H∗(x, t) given by (6.33) and coefficients
(6.27, 6.28, 6.29). This requires careful solution by numerical PDE or PIDE methods
or the computational methods of Chapter 8.

These LQJD/U derived results are summarized in the following theorem:

Theorem 6.5. LQJD/U Equations:
Let the problem be the LQJD in control only problem, so that the deterministic plant
function f(x,u, t) is linear in the control as given in (6.21), the coefficient g(x,u, t)
of the Wiener process dW(t) is given in (6.22), the jump amplitude h(x,u, t,q) of
the Poisson jump process dP(t;Q,x, t) is given by (6.23), and the quadratic running
cost C(x,u, t) is given in (6.25).

Then, the Hamiltonian H(x,u, t) is a quadratic in the control (6.26) with
coefficients {H0(x, t),H1(x, t),H2(x, t)} given in (6.27, 6.28, 6.29), respectively.
The optimal control vector, in absence of control constraints, has the linear feedback
control form,

u∗(x, t) = u(reg)(x, t) = −C−1
2 (x, t)

[
C1 + f⊤

1 ∇x[v∗]
]
(x, t) , (6.36)

as long as the quadratic control coefficient C2(x, t) is positive definite in case of a
minimum expected objective and in absence of constraints on the control. Assuming
that an optimal value v∗(x, t) solution exists, then v∗(x, t) satisfies the Hamilton
Jacobi Bellman equation,

v∗t (x, t) +

(
H0 −

1

2
H⊤

1 H−1
2 H1

)
(x, t) = 0 . (6.37)

The solution v∗(x, t) is subject to the final condition

v∗(x, tf) = S(x, tf) , (6.38)

and any necessary boundary conditions.

For solutions of LQJD/U problems, computational methods are quite essential;
see Hanson’s 1996 chapter [108] or Chapter 8.

6.4.2 LLJD/U or the Case C2 ≡ 0:

If the quadratic cost coefficient C2(x, t) ≡ 0, then

H(x,u, t) = H0(x, t) + H⊤
1 (x, t)u , (6.39)

the linear linear jump-diffusion (LLJD/U) problem in control only. The minimum
with respect to the control depends on the linear cost coefficient

H∗(x, t) = min
u

[
H0(x, t) + H⊤

1 (x, t)u
]

= H0(x, t) + min
u

[
H⊤

1 (x, t)u
]
. (6.40)

Since this is a problem of linear or singular control, it makes sense only if the
control is constrained, e.g., component-wise constraints,

U
(min)
i ≤ ui ≤ U

(max)
i . (6.41)

“bk0allfinal”
2007/1/7
page 186

i

i

i

i

i

i

i

i

186 Chapter 6. Stochastic Dynamic Programming

For this type of constraint the minimum is separable by component and the optimal
control ia a nu-dimensional bang-bang control

H∗(x, t) = H0(x, t) +

nu∑

i=1

min [H1,i(x, t)ui]

= H0(x, t) +

nu∑

i=1

H1,i(x, t)U
(max)
i , H1,i(x, t) < 0

0, H1,i(x, t) = 0

H1,i(x, t)U
(min)
i , H1,i(x, t) > 0

= H0(x, t) +
1

2
H1(x, t). ∗

[
U(min). ∗(1 + sgn1)

+U(max). ∗(1 − sgn1)
]
, (6.42)

where 1 ≡ [1]nu×1, sgn1 ≡ [sgn(H1,i(x, t)]nu×1,

sgn(x) ≡

−1, x < 0
0, x = 0
+1, x > 0

 (6.43)

is the sign or signum function, U(min) ≡ [U
(min)
i]nu×1, U(max) ≡ [U

(max)
i]nu×1, and

v. ∗u ≡ [viui]nu×1 is the dot-star or element-by-element product. The optimal
control is undefined for components for which H1,i(x, t) = 0, but otherwise is given
in composite form:

u∗i (x, t) =

{
U

(max)
i , H1,i(x, t) < 0

U
(min)
i , H1,i(x, t) > 0

}
. (6.44)

If the components of H1 change sign often, then that can lead to chattering con-
trol.

6.4.3 Canonical LQJD Problem

The standard or canonical LQJD problem is linear in the dynamics and quadratic
in the costs with respect to both state and control vectors. This LQJD problem
is a special case of the LQJD problem in control only and results in substantial
simplifications of the solution with a quadratic state decomposition of the optimal
value function and the a linear or feedback decomposition of the optimal control
vector. The decomposition of optimal value and control is similar to that of the
deterministic LQ problem, but here the more general quadratic state and linear
control decompositions is presented.

Let the more general jump-diffusion linear quadratic model be given with the
plant function for the deterministic or non-noise dynamics term and be linear in
both state X(t) and U(t),

f(x,u, t) = f0(t) + f⊤
1 (t)x + f⊤

2 (t)u , (6.45)

“bk0allfinal”
2007/1/7
page 187

i

i

i

i

i

i

i

i

6.4. Linear Quadratic Jump-Diffusion (LQJD) Problem 187

the first subscript indicating the degree and the subsequent subscripts, if present,
indicating either state (1) or control (2), with the diffusion term,

g(x,u, t) = g0(t) , (6.46)

assumed state-independent and control-independent for simplicity, and with the
jump term,

h(x,u, t,q) = h0(t,q) , (6.47)

also assumed state-independent and control-independent for simplicity. The current
form of the linear SDE (6.1) is written here as

dX(s)
sym
= f(X(s),U(s), s)ds + g0(s)dW(s) + h0(s,Q)dP(s;Q, s) , (6.48)

on t ≤ s ≤ tf , with E[dP(t;Q, t)] = [λ0,j(t)dt]np×1.
The quadratic running cost function is

C(x,u, t) = C0(t) + C⊤
1 (t)x + C⊤

2 (t)u

+
1

2
x⊤C1,1(t)x + x⊤C1,2(t)u +

1

2
u⊤C2,2(t)u (6.49)

and the terminal cost also has a general quadratic form

S(X(tf), tf) = S0(tf) + S⊤
1 (tf)X(tf) +

1

2
X⊤(tf)S1,1(tf)X(tf) , (6.50)

in the state vector. It is assumed that all right hand side coefficients are com-
mensurate in multiplication and the product is the same type as that on the left
hand side. It is assumed that all coefficients are well-defined, but in particular that
C2,2(t) is positive definite for the minimum problem, a crucial assumption, and
symmetric due to the quadratic form, while C1,1(t) and C1,2(t) need to be positive
semi-definite. Also, S1,1(tf) is symmetric, positive semi-definite.

As in the deterministic LQ problem in Section A.4.4, a quadratic function of
the state vector is sought. However, due to the extra linear terms in the quadratic
cost beyond the pure quadratic form in (A.126) a more general quadratic decom-
position is heuristically assumed for the optimal value,

v∗(x, t) = v0(t) + v⊤
1 (t)x +

1

2
x⊤v1,1(t)x , (6.51)

where the optimal value coefficients {v0(t),v1(t), v1,1(t)} are compatible in multipli-
cation and any product is scalar valued. Without loss of generality, the quadratic
coefficient v1,1(t) is taken to be symmetric. Consequently, the partial derivative
with respect to time is

v∗t (x, t) = v̇0(t) + v̇⊤
1 (t)x +

1

2
x⊤v̇1,1(t)x ,

where {v̇0(t), v̇1(t), v̇1,1(t)} denote the state time derivatives, the state gradient is

∇x[v∗](x, t) = v1(t) + v1,1(t)x ,

“bk0allfinal”
2007/1/7
page 188

i

i

i

i

i

i

i

i

188 Chapter 6. Stochastic Dynamic Programming

the state Hessian is
∇x

[
∇⊤

x [v∗]
]
(x, t) = v1,1(t)

and the jump increment is

∆j [v
∗](x, t, qj) = v⊤

1 (t)ĥ0,j(t, qj) +
1

2
ĥ
⊤
0,j(t, qj)v1,1(t)ĥ0,j(t, qj)

+x⊤v1,1(t)ĥ0,j(t, qj) ,

where
ĥ0,j(t, qj) = [h0,i,j(t, qj)]nx×1

for j = 1 : np.
With the proposed general quadratic decomposition (6.51) of v∗(x, t), the

pseudo-Hamiltonian has a quadratic decomposition in both state and control vectors
like the cost coefficient C(x,u, t) decomposition (6.49),

H(x,u, t) = H0(t) + H⊤
1 (t)x + H⊤

2 (t)u

+
1

2
x⊤H1,1(t)x + x⊤H1,2(t)u +

1

2
u⊤H2,2(t)u , (6.52)

where the scalar coefficient is

H0(t) = C0(t) + f⊤0 (t)v1(t) +
1

2

(
g0g

⊤
0

)
(t) : v1,1(t)

+v⊤
1 (t)h0(t). ∗λ0(t) +

1

2
v1,1(t). ∗(h0Λh0)(t) , (6.53)

where

h0(t) ≡
[∫

Qj

h0,i,j(t, qj)φQj
(qj ; t)dqj

]

nx×np

, (6.54)

λ0(t) ≡ [λ0,i(t)]np×1 , (6.55)

Λ0(t) ≡ [λ0,i(t)δi,j]np×np
, (6.56)

h0Λ0h⊤0 (t) ≡
[np∑

k=1

λ0,k

∫

Qj

h0,i,k(t, qk)h0,j,k(t, qk)φQk
(qk; t)dqk

]

nx×nx

,(6.57)

the linear state coefficients is

H1(t) = C1(t) + f1(t)v1(t) + v1,1(t)f0(t) + v1,1(t)h0(t). ∗λ0(t) , (6.58)

the linear control coefficient is

H2(t) = C2(t) + f2(t)v1(t) , (6.59)

and the quadratic coefficients are

H1,1(t) = C1,1(t) + 2f1(t)v1,1(t) , (6.60)

H1,2(t) = C1,2(t) + v⊤1,1(t)f
⊤
2 (t) , (6.61)

H2,2(t) = C2,2(t) . (6.62)

“bk0allfinal”
2007/1/7
page 189

i

i

i

i

i

i

i

i

6.4. Linear Quadratic Jump-Diffusion (LQJD) Problem 189

Since quadratic forms only operate on the symmetric part of the quadratic coefficient
(B.135), H2,2(t) will be symmetric, positive definite with C2,2(t).

The optimal control is the same as the regular control in the absence of control
constraints, so the zero of

∇u[H](x,u, t) = H2(t) + H⊤
1,2(t)x + H2,2(t)u

results in

u∗(x, t) = −H−1
2,2(t)

(
H2(t) + H⊤

1,2(t)x
)

= −C−1
2,2(t)

(
C2(t) + f2(t)v1(t) +

(
C⊤

1,2(t) + f2(t)v1,1(t)
)
x
)
.

(6.63)

Hence, the optimal control vector is a linear or affine function of the state vector,
the general form of linear feedback control. This completes the preliminary work
on the LQJD problem for the feedback control state dependence.

Upon substituting the preliminary reduction of the linear optimal control
(6.63) into the Hamilton Jacobi Bellman equation (6.35), then the HJB equation
becomes

0 = v̇0(t) + v̇⊤
1 (t)x + 1

2x
⊤v̇1,1(t)x + H0(t) + H⊤

1 (t)x

−H⊤
2 (t)H−1

2,2(t)
(
H2(t) + H⊤

1,2(t)x
)

+ 1
2x

⊤H1,2(t)H−1
2,2(t)x − x⊤H1,2(t)H−1

2,2(t)
(
H2(t) + H⊤

1,2(t)x
)

+ 1
2

(
H⊤

2 (t) + x⊤H1,2(t)
)
H−1

2,2(t)
(
H2(t) + H⊤

1,2(t)x
)
.

(6.64)

Next, separating this LQJD form of the HJBE (6.64) into purely quadratic terms,
purely linear terms and state-independent terms leads to a set of three uni-directionally
coupled ordinary matrix differential equations for the optimal control coefficients
v1,1(t), v1(t) and v0(t) which are summarized in the following theorem which we
have just derived.

Theorem 6.6. LQJD Equations:
Let the nx × 1 jump-diffusion state process X(t) satisfy dynamics linear in both the
state and the nu × 1 control U(t) with nx × 1 linear deterministic plant term

f(x,u, t) = f0(t) + f⊤
1 (t)x + f⊤

2 (t)u

from (6.45), with nx × nw state and control independent diffusion coefficient g0(t)
of the nw×1 Wiener process dW(t), and with nx×np state and control independent
jump amplitude h0(t, q) (6.46) of the np × 1 Poisson process dP(t;Q, t). Let the
scalar quadratic running cost be

C(x,u, t) = C0(t) + C⊤
1 (t)x + C⊤

2 (t)u

+
1

2
x⊤C1,1(t)x + x⊤C1,2(t)u +

1

2
u⊤C2,2(t)u

“bk0allfinal”
2007/1/7
page 190

i

i

i

i

i

i

i

i

190 Chapter 6. Stochastic Dynamic Programming

and terminal cost be

S(X(tf), tf) = S0(tf) + S⊤
1 (tf)X(tf) +

1

2
X⊤(tf)S1,1(tf)X(tf) .

Then the optimal stochastic control problem admits a solution quadratic in the state
vector

v∗(x, t) = v0(t) + v⊤
1 (t)x +

1

2
x⊤v1,1(t)x ,

with optimal control vector that in linear in the state vector

u∗(x, t) = −C−1
2,2(t)

(
C2(t) + f2(t)v1(t) +

(
C⊤

1,2(t) + f2(t)v1,1(t)
)
x
)
.

The optimal value v∗(x, t) coefficients satisfy a uni-directionally coupled set of ma-
trix ordinary differential equations, which are solved starting from the nx × nx

quadratic coefficient equation

0 = v̇1,1(t) + C1,1(t) + 2f1(t)v1,1(t) (6.65)

−
(
C1,2(t) + v1,1(t)f

⊤
1 (t)

)
C−1

2,2 (t)
(
C⊤

1,2(t) + f1(t)v1,1(t)
)

for v1,1(t), then the nx × 1 linear coefficient equation

0 = v̇1(t) + C1(t) + f1(t)v1(t) (6.66)

−
(
C1,2(t) + v1,1(t)f

⊤
1 (t)

)
C−1

2,2(t) (C2(t) + f2(t)v1(t))

+v1,1(t)h0(t)λ0(t)

for v1(t) using the existing solution for v1,1(t), and finally the scalar state-independent
coefficient equation

0 = v̇0(t) + C0(t) + f⊤0 (t)v1(t) +
1

2
g0(t)g

⊤
0 (t) : v1,1(t) (6.67)

−1

2

(
C⊤

2 (t) + v⊤
1 (t)f2(t)

)
C−1

2,2 (t) (C2(t) + f2(t)v1(t))

+v⊤
1 (t)h0(t). ∗λ0(t) +

1

2

(
h0Λ0h⊤0

)
(t) : v1,1(t).

Remarks 6.7.

• The nonlinear differential equation (6.65) for the quadratic coefficient v1,1(t)
is called a matrix Riccati equation due to the quadratic linearity in v1,1(t).
Since v1,1(t) can be assumed to be symmetric without loss of generality since
it is defined as the coefficient of a quadratic from, computational effort can be
reduced to just finding the upper or lower triangular part, i.e., just nx(nx+1)/2
elements.

• Once v1,1(t) is known or a reasonable approximation is found, the equation
(6.66) for the linear coefficient v1(t) will be a linear matrix equation which is
relatively simpler to solve than the matrix Riccati equation.

“bk0allfinal”
2007/1/7
page 191

i

i

i

i

i

i

i

i

6.5. Exercises 191

• Similarly, once both v1,1(t) and v1(t) are found to reasonable approximations,
then equation (6.67) for the state-independent coefficient v0(t) will be a linear
scalar equation.

• Once the solutions to the time-dependent coefficients v1,1(t), v1(t) and v0(t)
are obtained, then the optimal value v∗(x, t) quadratic decomposition (6.51) is
justified, at least heuristically.

6.5 Exercises

1. For the scalar linear jump-diffusion dynamics with arithmetic rather than
geometric diffusion,

dX(t) = (µ0X(t) + β0U(t))dt+ σ0dW (t) + ν0X(t)dP (t),

for 0 ≤ t ≤ tf and initial state X(0) = x0 > 0 and the control process
−∞ < U(t) < +∞ is unconstrained. The coefficients µ0 6= 0, β0 6= 0, σ0 > 0,
ν0 ≥ 0 and λ0 > 0 are constants, where E[dP (t)] = λ0dt (note that the jump
process here is a discrete, Poisson process, since there is no mark process).
The costs are quadratic, i.e.,

V [X,U](X(t), t) =
1

2

∫ tf

t

(
q0X

2(s) + r0U
2(s)

)
ds+

1

2
SfX

2(tf)

for q0 > 0, r0 > 0, and Sf > 0. Let the optimal, expected value be

v∗(x, t) = min [E [V [X,U](X(t), t) |X(t) = x, U(t) = u]] .

(a)

(b) Derive the PDE of Stochastic Dynamic Programming for the optimal
expected value:

v∗(x, t) = min
u

[E [V [X,U](X(t), t) |X(t) = x, U(t) = u]] ,

starting from the Principle of Optimality;

(c) Specify the final condition for v∗(x, t) fully qualified;

(d) Formally find the optimal (unconstrained) control u∗(x, t) in terms of
the shadow “cost” v∗x(x, t);

(e) Obtain an LQJD solution form for v∗(x, t) and an explicit linear feedback
control law for u∗(x, t);

2. Derive the modifications necessary in the set of Riccati-like equations for the
scalar Linear-Quadratic Jump-Diffusion (LQJD) problem when the dynamics
are scalar and linear (affine), i.e.,

dX(t) = f(X(t), U(t), t)dt+ g(X(t), U(t), t)dW (t) + h(X(t), U(t), t)dP (t) ,

“bk0allfinal”
2007/1/7
page 192

i

i

i

i

i

i

i

i

192 Chapter 6. Stochastic Dynamic Programming

where
E[dP (t)] = λ(t)dt ,

f(x, u, t) = f0(t) + f1(t)x+ f2(t)u ,

g(x, u, t) = g0(t) + g1(t)x ,

h(x, u, t) = h0(t) + h1(t)x ,

the jump amplitude being independent of any mark process. The running and
terminal costs for a maximum objective are quadratic,

C(x, u, t) = C0(t) + C1(t)x+ C2(t)u+ 0.5C1,1(t)x
2 + C1,2(t)xu + 0.5C2,2(t)u

2 ,

where C2,2(t) < 0, and

S(x, t) = S0(t) + S1(t)x + 0.5 ∗ S1,1(t)x
2 ,

where S1,1(t) < 0.

If the objective is to maximize the expected total utility in the unconstrained
control case, then find the Riccati ODEs for the coefficient functions v0(t),
v1(t), v1,1(t), in the solution form,

v∗(x, t) = v0(t) + v1(t)x+ 0.5v1,1(t)x
2

and u0(t) and u1(t) in the form

u∗(x, t) = u0(t) + u1(t)x

explicitly in terms of the {v0(t), v1(t), v1,1(t)}, dynamical and cost coefficient
functions. Do not try to solve the Riccati equation system of ODEs for
{v0(t), v1(t), v1,1(t)}.

3. Let β(t) be the discount rate at time t and

exp
(
−β̂(t, s)

)
= exp

(
−
∫ s

t

β(r)dr

)
= β̂(0, s) − β̂(0, t) (6.68)

be the cumulative discount factor for the time-interval [t, s], so the optimal,
expected, discounted costs are

v∗(x, t)=min
u

[
E

[∫ tf

t

e−
bβ(t,s)C(X(s), U(s), s)ds+e−

bβ(t,tf)S(X(tf), tf)

∣∣∣∣ C(t)

]]
,

where C(t) = {X(t) = x, U(t) = u} is the conditioning set. Noting that this
v∗(x, t) does not have the form to satisfy the Principle of Optimality given
in (6.9) because of the dual-time dependence of the discount factor on (t, s),
so

(a) show that w∗(x, t) = exp
(
−β̂(t)

)
v∗(x, t) properly satisfies the usual

form of the Principle of Optimality (6.9) and hence

“bk0allfinal”
2007/1/7
page 193

i

i

i

i

i

i

i

i

6.5. Exercises 193

(b) show that proper modification of the Principle of Optimality for dis-
counted costs is

v∗(x, t) = min
u

[
E

[∫ t+δt

t

e−
bβ(t,s)C(X(s), U(s), s)ds

+e−
bβ(t,t+δt)v∗(X(t+ δt), t+ δt)

∣∣∣ C(t)
]]
.

(6.69)

4. Derive the Hamilton-Jacobi-Bellman PDE for the scalar optimal stochastic
control problem (a simplified jump-diffusion optimal portfolio and consump-
tion problem), with stochastic dynamical system,

dX(t) = X(t)
(
µ0(t)dt+ U1(t)

(
µ1(t)dt+ σ(t)dW (t) +

(
eQ − 1

)
dP (t)

))

−U2(t)dt ,

where t ∈ [0, tf], X(0) = x0 > 0, E[dP (t)] = λ(t)dt = Var[dP (t)], E[dW (t)] =
0, Var[dW (t)] = dt, Q is an IID uniformly distributed mark on [a, b], a < 0 < b,

{µ0(t), µ1(t), σ(t), λ(t)}
are specified time-dependent coefficients, X(t) ≥ 0 is the state, {U1(t), U2(t)}
is the control set, 0 ≤ U2(t) ≤ K2X(t), K2 > 0, −UN ≤ U1(t) ≤ UP , UN > 0,
UP > 0 and the optimal objective is

v∗(x, t) = max
{u1,u2}

[
E{W,P}

[∫ tf

t

e−β̂(t, s)U
γ
2 (s)

γ
ds

+e−β̂(t, tf)X
γ(tf)
γ

∣∣∣∣ C(t)

]]
,

where C(t) ≡ {X(t) = x, U1(t) = u1(t), U2(t) = u2(t)} is the conditioning

set, β(t) > 0 is the discount rate with the cumulative discount β̂(t, s) defined
in (6.68), γ ∈ (0, 1) is a constant utility power and the zero-state absorbing
boundary condition for this problem is v∗(0+, t) = 0.

(a) If Exercise 3 on the form of the Principle of Optimality of discounting
has not been done, then do it now, otherwise proceed to next item.

(b) Derive the modified HJBE for time-discounting from the discount form
of the Principle of Optimality in (6.69), with the minimum merely re-
placed by a maximum. Be sure to point out the difference from the
non-discounting form.

(c) Derive the relationship of the optimal controls to the shadow utility
v∗x(x, t), accounting for the control constraints.

(d) Test the validity of the CRRA (constant relative risk aversion) canonical
separated form of the regular solution,

v∗(x, t) = v0(t)x
γ/γ,

determining what reduced ODE the time-dependent solution factor sat-
isfies, specifying what side (final and boundary) conditions need to be
satisfied for the problem.

“bk0allfinal”
2007/1/7
page 194

i

i

i

i

i

i

i

i

194 Chapter 6. Stochastic Dynamic Programming

Suggested References for Further Reading

• Bellman, 1957 [25].

• Cont and Tankov, 2004 [59].

• Fleming and Rishel, 1975 [85].

• Gihman and Skorohod, 1979 [95].

• Hanson, 1996 [108].

• Jazwinski, 1970 [154].

• Kushner, 1967 [173].

• Kushner and Dupuis, 2001 [179].

• Lewis, 1986 [184].

• Øksendal and Sulem, 2005 [223].

• Runggaldier, 2003 [239].

• Stengel, 1994 [258].

• Yong and Zhou, 1999 [288].

“bk0allfinal”
2007/1/7
page 195

i

i

i

i

i

i

i

i

Chapter 7

Kolmogorov Forward and
Backward Equation and
Their Applications

The theory of probability as mathematical discipline can and
should be developed from axioms in exactly the same way as
Geometry and Algebra.
—Andrey Nikolaevich Kolmogorov (1903-1987), Wikipedia,
March 2006.

Here, the Kolmogorov forward (Fokker-Planck) and backward equations are
treated, including their inter-relationship and their use in finding transition distri-
butions, densities, moments and optimal state trajectories. There is a close relation-
ship between the PDE representations in the Kolmogorov equations and the SDE
representation. Unlike the SDE which is a symbolic representation that requires
specification of the stochastic ne integration rule to be well posed, the Kolmogorov
equations are deterministic. They can be derived from an SDE using expectations
and a chain rule such as Itô’s chain rule. Some investigators prefer to solve problems
with the Kolmogorov PDEs rather than directly from the underlying SDEs.

7.1 Dynkin’s Formula and the Backward Operator

Prior to deriving the Kolmogorov PDEs, a useful formula due to Dynkin is derived.
Dynkin’s formula relates the expectation of a function of a jump-diffusion process
and a functional of the backward jump-diffusion operator. There are many variants
of Dynkin’s formula [77], but here a derivation of Schuss [244] for pure-diffusions is
modified for jump-diffusions in the time-inhomogeneous case and in one-dimension
to start.

Theorem 7.1. Dynkin’s Formula for Jump-Diffusions on [t0, t] in One
Space Dimension:

195

“bk0allfinal”
2007/1/7
page 196

i

i

i

i

i

i

i

i

196 Chapter 7. Kolmogorov Equations

Let X(t) be a jump-diffusion process satisfying the SDE,

dX(t)
sym
= f(X(t), t)dt+ g(X(t), t)dW (t) + h(X(t), t, Q)dP (t;Q,X(t), t) ,(7.1)

with smooth (continuously differentiable) coefficients {f, g, h} with bounded spa-
tial gradients. The diffusion process is the Wiener process W (t) and the jump
process is the Poisson process P (t;Q,X(t), t) such that E[dP (t;Q,X(t), t)|X(t) =
x] = λ(t;x, t)dt and Q is the jump amplitude mark random variable with density
φQ(q;X(t), t). Let v(x, t) be twice continuously differentiable in x and once in t,
while bounded at infinity. Then the conditional expectation of the composite process
v(X(t), t) satisfies Dynkin’s formula in integral form,

u(x0, t0) = v(x0, t0; t) ≡ E[v(X(t), t)|X(t0)=x0]

= v(x0, t0)+E

[∫ t

t0

(
∂v

∂t
(X(s), s)+Bx[v](X(s), s)

)
ds

∣∣∣∣X(t0)=x0

]
, (7.2)

where the dependence on the parameter t is suppressed in u(x0, t0). The jump-
diffusion backward operator Bx0 with respect to the state x0 for time t dependent
coefficients, in backward coordinates, is

Bx0 [v](x0, t0) ≡ f(x0, t0)
∂v

∂x0
(x0, t0) +

1

2
g2(x0, t0)

∂2v

∂x2
0

(x0, t0)

+λ̂(x0, t0)

∫

Q
∆h[v](x0, t0, q)φQ(q;x0, t0)dq, (7.3)

where λ̂(x0, t0) ≡ λ(t;x0, t0) suppresses the forward time t and the Poisson h-jump
is

∆h[v](x0, t0, q) ≡ v(x0 + h(x0, t0, q), t) − v(x0, t0) . (7.4)

Note that the subscript x0 on the backward operator Bx0 only denotes that the oper-
ator operates with respect to the backward state variable x0 for jump-diffusions and
only denotes partial differentiation in the pure-diffusion (h(x0, t0, q) ≡ 0) case.

In the time-homogeneous case, f(x, t) = f(x), g(x, t) = g(x) and h(x, t, q) =
h(x, q), so v(x, t) = v(x) and

u(x0) ≡ E[v(X(t))|X(t0) = x0]

= v(x0) + E

[∫ t

t0

Bx[v](X(s))ds

∣∣∣∣X(t0) = x0

]
, (7.5)

dropping the t dependence of the backward operator here.

Proof. Dynkin’s formula follows from Itô’s chain rule for jump-diffusions here.
Thus,

dv(X(t), t)
dt
=

(
∂v

∂t
+ f

∂v

∂x
+

1

2
g2 ∂

2v

∂x2

)
(X(t), t)dt+

(
g
∂v

∂x

)
(X(t), t)dW (t)

+

∫

Q
∆h[v](X(t), t, q)P(dt,dq;X(t), t) , (7.6)

“bk0allfinal”
2007/1/7
page 197

i

i

i

i

i

i

i

i

7.1. Dynkin’s Formula and the Backward Operator 197

where common arguments have been condensed. Upon integrating in t,

v(X(t), t) = v(x0, t0)+

∫ t

t0

((
∂v

∂t
+ f

∂v

∂x
+

1

2
g2 ∂

2v

∂x2

)
(X(s), s)ds (7.7)

+

(
g
∂v

∂x

)
(X(s), s)dW (s)+

∫

Q
∆h[v](X(s), s, q)P(ds,dq;X(s), s)

)
.

Next taking expectations while using the facts that follow from the independent
increment property of Markov processes,

E

[∫ t

t0

G(X(s), s)dW (s)

]
= 0

after (2.43) and with the zero mean jump process

E

[∫ t

t0

H(X(s), s)P̂(ds,dq;X(s), s)

]
= 0,

generalized from (3.27) with dP̂ (s), where here the mean-zero Poisson random mea-
sure is

P̂(dt,dq;X(t), t) ≡ P(dt,dq;X(t), t) − λ(t;X(t), t)φQ(q;X(t), t)dqdt, (7.8)

then using the definition of the backward operator Bx[v],

E[v(X(t), t)|X(t0)=x0] = v(x0, t0)

+E
[∫ t

t0

(
∂v
∂t +Bx[v]

)
(X(s), s)ds |X(t0)=x0

]
.

(7.9)

In the time-homogeneous case, without time-dependent coefficients, we need
only use the x-dependent test function v = v(x) and the Dynkin formula reduces
to (7.5).

Example 7.2. Application of Dynkin’s Formula to Final Value Problems:
Consider the final value problem for the backward problem with PDE

∂v
∂t0

(x0, t0) + Bx0 [v](x0, t0) = α(x0, t0) x0 ∈ Ω, t0 < tf ,

v(x0, tf) = γ(x0, tf) x0 ∈ Ω ,
(7.10)

where the general functions α(x, t) and γ(x, t) are given, while Bx0 [v](x0, t0) is the
jump-diffusion backward operator defined in (7.3). From Dynkin’s formula (7.2)
with t = tf ,

E[γ(X(tf), tf)|X(t0) = x0] = v(x0, t0) + E

[∫ tf

t0

α(X(s), s)

∣∣∣∣X(t0) = x0

]
,

“bk0allfinal”
2007/1/7
page 198

i

i

i

i

i

i

i

i

198 Chapter 7. Kolmogorov Equations

where the jump-diffusion process is given by the SDE (7.1). By simple rearrange-
ment, the formal solution to the final value problem is given by

v(x0, t0) = E

[
γ(X(tf), tf) −

∫ tf

t0

α(X(s), s)

∣∣∣∣X(t0) = x0

]
, (7.11)

in a more useful form, suitable for stochastic simulations using the given problem
functions and the SDE.

The final problem (7.10) can be called the Dynkin’s equation corresponding
to Dynkin’s formula (7.2).

7.2 Backward Kolmogorov Equations

Many exit and stopping time problems rely on the backward Kolmogorov equations,
since they represent perturbations of the initial condition when the final condition
for exit or stopping is known. Another very useful application is a PDE governing
the behavior of the transition density as a function of the initial state. First the gen-
eral backward equation in the sense of Kolmogorov is derived using an infinitesimal
form of Dynkin’s equation.

Theorem 7.3. General Backward Kolmogorov Equation
for Jump-Diffusions on [t0, t] in One Space Dimension:
Let the jump-diffusion process X(t) at time t with X(t0) = x0 at initial or back-
ward time t0 satisfy (7.1) along with associated conditions and let the test function
v(X(t)) also satisfy relevant conditions. Let

u(x0, t0)=v(x0, t0; t)≡E[v(X(t))|X(t0) = x0]=E(t0,t][v(X(t))|X(t0) = x0], (7.12)

suppressing the forward time t in favor of the backward time t0. Then u(x0, t0)
satisfies the following backward PDE with backward arguments,

0 =
∂u

∂t0
(x0, t0) + Bx0[u](x0, t0) , (7.13)

where the backward operator with respect to x0 operating on u is

Bx0[u](x0, t0) = f(x0, t0)
∂u

∂x0
(x0, t0) +

1

2
g2(x0, t0)

∂2u

∂x2
0

(x0, t0) (7.14)

+λ̂(x0, t0)

∫

Q
∆h[u](x0, t0, q)φQ(q;x0, t0))dq ,

the h-jump of u is

∆h[u](x0, t0, q) ≡ u(x0 + h(x0, t0, q), t0) − u(x0, t0) , (7.15)

with final condition

lim
t0↑t

u(x0, t0) = v(x0). (7.16)

“bk0allfinal”
2007/1/7
page 199

i

i

i

i

i

i

i

i

7.2. Backward Kolmogorov Equations 199

Proof. This formal proof is a modified version of the one for pure diffusions in
Schuss [244] modified to include Poisson jump processes. First, the objective is to
calculate the backward time partial derivative

u(x0, t0) − u(x0, t0 − dt)
dt
=
∂u

∂t0
dt ≡ ∂u

∂t0

∣∣∣∣
x0 fixed

dt ,

so consider the infinitesimal backward difference in the spirit of Dynkin’s formula,
noting that the initial time t0 is perturbed one step backward in time to t0 −
dt with fixed x0. On the other hand, using the representation (7.12), splitting
the expectation at t0 using the new random variable X(t0) and expanding by the
stochastic chain rule,

u(x0, t0) − u(x0, t0 − dt) = u(x0, t0) − E[v(X(t))|X(t0 − dt) = x0]

= u(x0, t0) − E[E[v(X(t))|X(t0)]|X(t0 − dt) = x0]

= u(x0, t0) − E[u(X(t0), t0)|X(t0 − dt) = x0]

= E[u(x0, t0) − u(X(t0), t0)|X(t0 − dt) = x0]
dt
= E[Bx0[u](x0, t0)dt+ g(x0, t0)dW (t0)

+

∫

Q
∆h[u](X(s), s, q)P̂(ds,dq;X(s), s)|X(t0 − dt) = x0]

= E[Bx0[u](x0, t0)dt|X(t0 − dt) = x0]

= Bx0 [u](x0, t0)dt

=

[
f(x0, t0)

∂u

∂x0
(x0, t0) +

1

2
g2(x0, t0)

∂2u

∂x2
0

(x0, t0)

+ λ̂(x0, t0)

∫

Q
∆h[u](x0, t0, q)φQ(q;x0, t0)dq

]
dt ,

where the stochastic chain rule (5.41) was used, marked by the dt-precision step,
along with expectations over the zero-mean jump-diffusion differentials. Just equat-
ing the two about results for u(x0, t0)− u(x0, t0 − dt) and eliminating the dt factor
yields the backward Kolmogorov equation (7.13) result. The final condition (7.16)
simply follows from the definition of u(x0, t0) in (7.12) and taking the indicated
limit from the backward time t0 to the forward time t for fixed x0,

lim
t0↑t

u(x0, t0) = lim
t0↑t

E[v(X(t))|X(t0) = x0] = E[v(X(t))|X(t) = x0] = v(x0).

Transition Probability Distribution ΦX(t)(x, t; x0, t0):

One of the most important applications of the backward Kolmogorov equation is
for the transition probability whose distribution is given by

ΦX(t)(x, t;x0, t0) ≡ Prob[X(t) ≤ x|X(t0) = x0] (7.17)

“bk0allfinal”
2007/1/7
page 200

i

i

i

i

i

i

i

i

200 Chapter 7. Kolmogorov Equations

with density

φX(t)(x, t;x0, t0) =
∂ΦX(t)

∂x
(x, t;x0, t0) (7.18)

or alternatively by

φX(t)(x, t;x0, t0)dx
dx
= Prob[x < X(t) ≤ x+ dx|X(t0) = x0] (7.19)

= Prob[X(t) ≤ x+ dx|X(t0) = x0]

−Prob[X(t) ≤ x|X(t0) = x0] ,

in dx-precision, provided the density exists, including the case of generalized func-
tions (see Section B.12) as assumed in this book. In terms of the transition density,
the conditional expectation can be rewritten such that

u(x0, t0) = v(x0, t0; t) = E(t0,t][v(X(t))|X(t0) = x0]

=

∫ +∞

−∞
v(x)φX(t)(x, t;x0, t0)dx . (7.20)

Thus, if we let

v(x)
gen
= δ(x− ξ),

then
u(x0, t0) = v(x0, t0; t) = φX(t)(ξ, t;x0, t0)

by definition of the Dirac delta function, and so the transition density satisfies the
general backward Kolmogorov equation (7.13) in the backward or initial arguments
(x0, t0).

Corollary 7.4. Backward Kolmogorov Equation for Jump-Diffusion Tran-
sition Density:
Let φ̂(x0, t0) ≡ φX(t)(x, t;x0, t0), suppressing the parametric dependence on the for-
ward coordinates (x, t), where the process satisfies the jump-diffusion SDE (7.1)
under the specified conditions. Then

0 =
∂φ̂

∂t0
(x0, t0) + Bx0 [φ̂](x0, t0) (7.21)

=
∂φ̂

∂t0
(x0, t0) + f(x0, t0)

∂φ̂

∂x0
(x0, t0) +

1

2
g2(x0, t0)

∂2φ̂

∂x2
0

(x0, t0) (7.22)

+λ̂(x0, t0)

∫

Q
∆h

[
φ̂
]
(x0, t0, q)φQ(q;x0, t0)dq ,

subject to the final condition,

lim
t0↑t

φ̂(x0, t0) = δ(x0 − x) . (7.23)

The final condition (7.23) follows from the alternate, differential definition
(7.19) of the transition probability density.

“bk0allfinal”
2007/1/7
page 201

i

i

i

i

i

i

i

i

7.3. Forward Kolmogorov Equations 201

Often the transition density backward equation (7.21) is referred to as the
backward Kolmogorov equation. It is useful for problems in which the final
state is known, such as an exit time problem or a stopping time problem where a
state boundary is reached, in the case of finite state domains. For some stochastic
researchers, the backward equation is considered more basic than the forward equa-
tion, since in the backward equation some final goal may be reached as in stochastic
dynamic programming, or some significant event may occur, such as the extinction
time for a species. The evolution of the moments or expectations of powers of the
state are governed by transition probability density.

7.3 Forward Kolmogorov Equations

In contrast to the backward time problems of the previous section, the forward
equation will be needed to find the evolution of the transition density forward in
time given an initial state. The basic idea is that the forward operator Fx and the
backward operator are (formal) adjoint operators, i.e., under suitable conditions
on the transition density

φ(x, t) = φX(t)(x, t;x0, t0),

with truncated arguments to focus on forward variables, and a well-behaved test
function v(x), well-behaved particularly at infinity. Then the operators are related
through an inner product equality,

(Bx[v], φ) = (Fx[φ], v) , (7.24)

which is derived in Theorem 7.5 below. The conditional expectations in Dynkin’s
formula can be considered an inner product over a continuous state space with the
transition density such that

(v, φ) = E[v(X(t))|X(t0) = x0] =

∫ +∞

−∞
v(x)φ(x, t)dx ,

emphasizing forward variables (x, t).

Theorem 7.5. Forward Kolmogorov Equation or Fokker-Planck Equation
for the Transition Density φ(x, t;x0, t0):
Let φ(x, t;x0, t0) be the transition probability density for the jump-diffusion process
X(t) that is symbolically represented by the SDE (7.1) along with the coefficient
conditions specified in Dynkin’s Formula Theorem 7.1. Let v(x) be a bounded and
twice differentiable but otherwise arbitrary test function such that the integrated
conjunct vanishes, i.e.,

[(
(fφ)(x, t) − 1

2

∂(g2φ)

∂x
(x, t)

)
v(x) +

1

2
(g2φ)(x, t)v′(x)

]+∞

−∞
= 0 , (7.25)

where (fφ)(x, t) ≡ f(x, t)φ(x, t), g2(x, t) ≡ (g(x, t))2 and v′(x) ≡ (dv/dx)(x).
Then, in the weak sense, φ satisfies the forward Kolmogorov equation in forward

“bk0allfinal”
2007/1/7
page 202

i

i

i

i

i

i

i

i

202 Chapter 7. Kolmogorov Equations

space-time variables (x, t),

∂φ

∂t
(x, t) =

1

2

∂2(g2φ)

∂x2
(x, t) − ∂(fφ)

∂x
(x; t) − (λ̂φ)(x, t) (7.26)

+

∫

Q
(λ̂φ)(x − η, t)|1 − ηx|φQ(q;x− η, t)dq ,

where η = η(x; t, q) is related to the inverse jump amplitude such that

x = ξ + h(ξ, t, q)

is the new state value corresponding to the old state value ξ, such that

η(x; t, q) = h(ξ, t, q),

assuming h is monotonic in ξ so that h is invertible with respect to ξ, that the
Jacobian

(1 − ηx) =

(
1 − ∂η

∂x
(x; t, q)

)
,

is non-vanishing, and that the inverse transformation from ξ to x maps (−∞,+∞)
onto (−∞,+∞).

The transition probability density satisfies the delta function intial condition,

φ(x, t+0) = φX(t+0)(x, t
+
0 ;x0, t0) = δ(x− x0) . (7.27)

Proof. The main idea of this proof is to perform several integrations by parts to
move the partial differentiation from the backward operator on the arbitrary test
function v(x) to differentiation of the jump-diffusion transition probability φ(x, t) =
φX(t)(x, t;x0, t0), deriving the adjoint backward-forward operator relation (7.24) in
principle. Differentiating Dynkin’s formula (7.2) in forward time t for fixed initial
conditions (x0, t0) and for some well-behaved test function v(x),

∂v

∂t
(x0, t0; t) = E

[
∂

∂t

∫ t

t0

Bx[v](X(s))ds

∣∣∣∣X(t0) = x0

]

= E [Bx[v](X(t))|X(t0) = x0] (7.28)

assuming that differentiation and expectation can be interchanged, where the back-
ward operator B is given in (7.3). However, the conditional expectation of B on the
RHS of (7.28) can be written in terms of the transition probability φ (7.20),

E[Bx[v](X(t))|X(t0) = x0] =

∫ +∞

−∞
Bx[v](x)φ(x, t)dx . (7.29)

Combining (7.28) and (7.29) , substituting for B using (7.3), and using two integra-
tion by parts on the spatial derivatives to move the spatial derivatives from v to φ,

“bk0allfinal”
2007/1/7
page 203

i

i

i

i

i

i

i

i

7.3. Forward Kolmogorov Equations 203

then

∂v

∂t
(x0, t0; t) =

∫ +∞

−∞
v(x)

∂φ

∂t
(x, t)dx =

∫ +∞

−∞
Bx[v](x)φ(x, t)dx

=

∫ +∞

−∞

(
f(x, t)v′(x) +

1

2
g2(x, t)v′′(x)

+ λ̂(x, t)

∫

Q
∆h[v](x, t, q)φQ(q;x, t)dq

)
φ(x, t)dx

=

∫ +∞

−∞

(
−v(x)∂(fφ)

∂x
(x, t) − 1

2

∂(g2φ)

∂x
(x, t)v′(x)

+ (λ̂φ)(x, t)

∫

Q
∆h[v](x, t, q)φQ(q;x, t)dq

)
dx

+

[
(fφ)(x, t)v(x) +

1

2
(g2φ)(x, t)v′(x)

]+∞

−∞

=

∫ +∞

−∞

(
v(x)

(
1

2

∂2(g2φ)

∂x2
(x, t) − ∂(fφ)

∂x
(x, t)

)

+ (λ̂φ)(x, t)

∫

Q
∆h[v](x, t, q)φQ(q;x, t)dq

)
dx

+

[(
fφ− 1

2

∂(g2φ)

∂x

)
(x, t)v(x) +

1

2
(g2φ)(x, t)v′(x)

]+∞

−∞
.

The last term is the integrated conjunct from two integrations by parts. By the
hypothesis in (7.25), this conjunct is required to be zero, so that the forward and
backward operators will be genuine adjoint operators. Otherwise, the forward and
backward operators would be called formal adjoints.

So far only the adjoint diffusion part of the forward operator has been formed
with respect to the test function v as an integration weight. There still remains
more work to form the corresponding adjoint jump part and this is done inverting
the jump amplitude function h(x, t, q) with respect to x, assuming that h(x, t, q)
is monotonic x. Let the post-jump state value be y = x + h(x, t, q) for each fixed
(t, q) with inverse written as x = y − η(y; t, q) relating the pre-jump state to the
post-jump state. Technically, with fixed (t, q), if y = (I+h)(x) where here I denotes
the identity function so I(x) = x, then the inverse argument is x = (I + h)−1(y) =

(I − η)(y) for convenience and η
op
= I − (I + h)−1. Thus, dx = (1 − ηy(y; t, q))dy,

where (1 − ηy(y; t, q)) is the Jacobian of the inverse transformation. Further, it is
assumed that the state domain (−∞,+∞) is transformed back onto itself, modulo

“bk0allfinal”
2007/1/7
page 204

i

i

i

i

i

i

i

i

204 Chapter 7. Kolmogorov Equations

the sign of the Jacobian. Consequently, we have
∫ +∞

−∞
v(x)

∂φ

∂t
(x, t)dx =

∫ +∞

−∞
v(x)

(
1

2

∂2(g2φ)

∂x2
(x, t) − ∂(fφ)

∂x
(x, t) − (λ̂φ)(x, t)

+

∫

Q
(λ̂φ)(x − η(x; t, q), t)|1 − ηx(x; t, q, t)|

·φQ(q;x− η(x; t, q), t)dq

)
dx ,

upon replacing y as a dummy variable in the state integral back to x so a common
factor of the test function v(x) can be collected. Finally, since the test function
is assumed to be arbitrary, then the coefficients of v(x) must be equivalent on the
left and right sides of the equation in the weak sense. The argument is that of the
Fundamental Lemma of the Calculus of Variations [40, 15, 163]. This leads to the
forward Kolmogorov equation for the transition density φ(x, t) = φX(t)(x, t;x0, t0)
given in the concluding equation (7.26) of Theorem 7.5,

∂φ

∂t
(x, t) = Fx[φ](x, t)

≡ 1

2

∂2(g2φ)

∂x2
(x, t) − ∂(fφ)

∂x
(x; t) − (λ̂φ)(x, t) (7.30)

+

∫

Q
(λ̂φ)(x − η(x; t, q), t)|1 − ηx(x; t, q)|φQ(q;x− η(x; t, q), t)dq.

Note that the subscript x on the forward operator Fx only denotes that the operator
operates with respect to the forward variable x for jump-diffusions and only denotes
partial differentiation in the pure-diffusion (h(x, t, q) ≡ 0) case.

The initial condition (7.27), φX(t+0)(x, t
+
0 ;x0, t0) = δ(x − x0), is very obvious

for the continuous pure diffusion process, but the jump-diffusion processes undergo
jumps triggered by the Poisson process P (t;Q,X(t), t) and so X(t) can be discon-
tinuous. However, a jump is very unlikely in a small time interval since by (1.42)
modified by replacing λ(t) by the composite time dependence λ(t;X(t), t) ,

Prob[dP (t;Q,X(t), t) = 0] = p0(λ(t;X(t), t)dt) = e−λ(t;X(t),t)dt = 1 + O(dt) ∼ 1 ,

as dt→ 0+, so the initial state is certain with probability one by conditioning, i.e.,

φ(x, t) = φX(t)(x, t;x0, t0) → δ(x− x0) as t→ t+0 .

Remarks 7.6.

• Another applied approach to derive the forward equation for pure diffusions
is to use the diffusion approximation as given by Feller [84], but this requires
strong assumptions about truncating a Taylor expansion just for diffusion pro-
cesses alone. This approach does not apply to jump-diffusions, since the jump
difference term Dh[φ] would require an infinite expansion.

“bk0allfinal”
2007/1/7
page 205

i

i

i

i

i

i

i

i

7.4. Multi-dimensional Backward and Forward Equations 205

• For the jump amplitude, a good illustration could be the affine model that is
the sum of a state-independent term plus a term purely linear in the state,
i.e., h(x, t, q) = ν0(t, q) + ν1(t, q)x for suitable time-mark coefficients, so the
inverse of y = x+ h(x, t, q) is x = (y − ν0(t, q))/(1 + ν1(t, q)) = y − η(y; t, q)
and η(y; t, q) = (ν0(t, q) + ν1(t, q)y)/(1 + ν1(t, q)). For comparison, different
cases of this model are tabulated in Table 7.1.

Table 7.1. Some Simple jump amplitude models and inverses.

State Direct Forward Arg. Inverse

Dependence h(x, t, q) x=y − η(y; t, q) η(y; t, q)

constant ν0(t, q) y − ν0(t, q) ν0(t, q)

pure linear ν1(t, q)x
y

1 + ν1(t, q)
ν1(t, q)y

1 + ν1(t, q)

affine ν0(t, q) + ν1(t, q)x
y − ν0(t, q)
1 + ν1(t, q)

ν0(t, q) + ν1(t, q)y
1 + ν1(t, q)

A mistake is sometimes made by incorrectly generalizing the inverse of the
linear jump case x+ν1(t, q)x = y, so that (1−ν1(t, q))y is incorrectly used for
the forward argument (x) in the linear case instead of the correct argument,
which is x = y/(1 + ν1(t, q)).

• The difference in the jump argument between the backward and forward equa-
tion is that in the backward case the post-jump or forward value y = x +
h(x, t, q) is used, while in the forward case the pre-jump or backward value
x = y − h(x, t, q) = y − η(y; t, q) is used.

7.4 Multi-dimensional Backward and Forward
Equations

For many applications, there can be multiple state variables and multiple sources
of random disturbances. In biological problems there can be several interacting
species each suffering from species specific and common random changes, that can
be detrimental or beneficial in effect and range in magnitude from small to large
fluctuations. Such effects may be due to the weather, diseases, natural disasters or
inter-species predation. In finance, there are the usual background fluctuations in
market values, and then there is the occasional market crash or buying frenzy. In
manufacturing systems, there may be a large number of machines which randomly
fail with the time to repair being randomly distributed due to the many causes of
failure.

Consider again the multi-dimensional SDE from Chapter 5 for the nx-dimensional
state process X(t) = [Xi(t)]nx×1 ,

dX(t)
sym
= f(X(t), t)dt + g(X(t), t)dW(t) + h(X(t), t,Q)dP(t;Q,X(t), t) , (7.31)

“bk0allfinal”
2007/1/7
page 206

i

i

i

i

i

i

i

i

206 Chapter 7. Kolmogorov Equations

where

W(t) = [Wi(t)]nw×1

is an nw-dimensional vector diffusion process and

P(t;Q,X(t), t) = [Pi(t;Qi,X(t), t)]np×1

is an np-dimensional vector state-dependent Poisson jump process. The state-
dependent coefficient functions are dimensionally specified by

f = [fi(X(t), t)]nx×1 ,

g(X(t), t) = [gi,j(X(t), t)]nx×nw
,

h(X(t), t,Q) = [hi,j(X(t), t, Qj)]nx×np

and have dimensions that are commensurate in multiplication. The mark vector,
Q = [Qi)]np×1, in the last coefficient function is assumed to have components corre-
sponding to all Poisson vector process components. The coefficient h(X(t), t,Q) of
dP(t;Q,X(t), t) is merely the mark Q dependent symbolic form of the jump ampli-
tude operator-coefficient h(X(t), t,q), using similar notation, in the corresponding
Poisson random mark integral (5.83), i.e.,

h(X(t), t,Q)dP(t;Q,X(t), t)
sym
=

∫

Q
h(X(t), t,q)P(dt,dq;X(t), t).

Dynkin’s formula remains unchanged, except for converting the state variable X(t)
to a vector X(t) and making the corresponding change in the backward operator
Bx[v] using the multi-dimensional stochastic chain rule (5.98),

v(x0, t0; t) ≡ E[v(X(t))|X(t0) = x0]

= v(x0) + E

[∫ t

t0

Bx[v](X(s);X(s), s)ds

∣∣∣∣X(t0) = x0

]
, (7.32)

where the backward operator is given below. The multi-dimensional backward and
forward Kolmogorov equations are summarized in the following theorem, with the
justification left as an exercise for the reader.

Theorem 7.7. Kolmogorov Equations for Jump-Diffusions in Multi-
dimensions on [t0, t]:
Let

u(x0, t0) = v(x0, t0; t) = E[v(X(t))|X(t0) = x0].

Then u(x0, t0) satisfies the following multi-dimensional backward Kolmogorov PDE
with backward arguments,

0 =
∂u

∂t0
(x0, t0) + Bx0 [u](x0, t0;x0, t0) , (7.33)

“bk0allfinal”
2007/1/7
page 207

i

i

i

i

i

i

i

i

7.4. Multi-dimensional Backward and Forward Equations 207

where the backward Kolmogorov operator is defined as

Bx0 [u](x0, t0;x0, t0) ≡ f⊤(x0, t0)∇x0 [u](x0, t0)

+
1

2

(
gR′g⊤

)
:∇x0

[
∇⊤

x0
[u]
]
(x0, t0) (7.34)

+

np∑

j=1

λ̂j(x0, t0)

∫

Q
∆j [u](x0, t0, qj)φQj

(qj ;x0, t0)dqj,

where R′ is a correlation matrix defined in (5.95), A :B is the double dot product
(5.99),

∆j [u](x0, t0, qj) ≡ u(x0 + ĥj(x0, t0, qj), t0) − u(x0, t0)

is the jump of u corresponding to the jump amplitude

ĥj(x, t, qj) ≡ [hi,j(x, t, qj)]nx×1

of the jth Poisson process Pj at the jth mark for j = 1 : np and with final condition

u(x0, t
−) = v(x0, t

−; t) = v(x0) .

Similarly, the forward Kolmogorov PDE in the multi-dimensional transition
density φ(x, t;x0, t0) as the adjoint of the backward equation is

∂φ

∂t
(x, t) = Fx[φ](x, t) , (7.35)

where the forward Kolmogorov operator is defined as

Fx[φ](x, t) ≡ 1

2
∇x

[
∇⊤

x :
[
gR′g⊤φ

]]
(x, t)

−∇⊤
x [fφ](x; t) −

np∑

j=1

(λ̂jφ)(x, t) (7.36)

+

np∑

j=1

∫

Q
(λ̂jφ)(x − ηj(x; t, qj), t)

∣∣∣∣1 − ∂(ηj(x; t, qj))

∂(x)

∣∣∣∣

· φQj
(qj ;x − ηj(x; t, qj), t)dqj ,

where the backward to forward transformation and its Jacobian are

x − x0 = ηj′ (x, t, qj′) = ĥj′(x0, t, qj′) ;

∂(ηj′(x; t, qj′))

∂(x)
= Det

[[
∂ηj′,i(x; t, qj′)

∂xj

]

nx×nx

]
= Det

[(
∇x

[
η⊤

j′
])⊤]

for j′ = 1 : np.

“bk0allfinal”
2007/1/7
page 208

i

i

i

i

i

i

i

i

208 Chapter 7. Kolmogorov Equations

7.5 Chapman-Kolmogorov Equation for Markov
Processes in Continuous Time

Alternate methods for deriving the Kolmogorov equations are based upon a funda-
mental functional equation of Chapman and Kolmogorov (see Bharucha-Reid [31]
or other references at the end of this chapter). Let X(t) be a nx × 1 Markov pro-
cess in continuous time, i.e., a jump-diffusion, on the state space Ω. The transition
probability distribution function is given by

Φ(x, t;x0, t0) = Prob[X(t) < x | X(t0) = x0] , (7.37)

provided t > t0, X(t) < x means Xi(t) < xi for i = 1 : nx, and assuming the
probability density exists even if in the generalized sense,

φ(x, t;x0, t0) =

(
nx∏

i=1

∂φ

∂xi

)
(x, t;x0, t0) . (7.38)

Expressed as a Markov property for distributions, the Chapman-Kolmogorov
equation for the transition between the start (x0, t0) and the current position (x, t)
through all possible intermediate positions (y, s) is

Φ(x, t;x0, t0) =

∫

Ω

Φ(y, s;x0, t0)Φ(x, t; dy, s)

=

∫

Ω

Φ(y, s;x0, t0)φ(x, t;y, s)dy , (7.39)

where t0 < s < t. Alternately, the Chapman-Kolmogorov equation solely in terms
of transition probability densities is

φ(x, t;x0, t0) =

∫

Ω

φ(y, s;x0, t0)φ(x, t;y, s)dy , (7.40)

upon differentiating (7.39) according to (7.38), again with t0 < s < t. See Bharucha-
Reid [31] or other references at the end of this chapter for applications.

7.6 Jump-Diffusion Boundary Conditions

Many boundary value problems for stochastic diffusion processes are similar to their
deterministic counterparts, but the stochastic justifications are different. When
jump processes are included, then the situation is even more complicated. Since
jump processes are discontinuous, jumps may over shoot the boundary making it
more difficult to construct an auxiliary process that will implement the boundary
with proper probability law.

7.6.1 Absorbing Boundary Condition

If the boundary is absorbing, i.e., the process that hits the boundary stays there
[84, 98, 244, 162], it is quite easy to specify since the process can not reenter the

“bk0allfinal”
2007/1/7
page 209

i

i

i

i

i

i

i

i

7.6. Jump-Diffusion Boundary Conditions 209

interior and the transition probability for the process initially at X(0) = x0 on the
boundary Γ = ∂Ω can not reach X(t) = y in the interior of the domain Ω. Thus,
for pure-diffusions

φX(t)(x, t;x0, t0) = Prob[X(t) = x ∈ Ω|X(t0) = x0 ∈ Γ, t > 0] = 0, (7.41)

whereas for jump-diffusions

φX(t)(x, t;x0, t0) = Prob[X(t) = x ∈ Ω|X(0) = x0 /∈ Interior[Ω], t > 0] = 0, (7.42)

since it is assumed that a jump over-shoot into the boundary or exterior of the region
is absorbed. Kushner and Dupuis [179] have a more elaborate treatment of the
absorbing boundary by stopping the process once it hits the boundary, assumed to
be smooth and reachable in finite time (also called attainable or accessible). These
are boundary conditions for the transition probability density backward equations,
since they are specified on the backward variable x0.

7.6.2 Reflecting Boundary Conditions

The reflecting boundary is much more complicated and the smoothness of the
boundary, i.e., the boundary is continuously differentiable, is important for defining
the reflection. Since a simple reflection at a boundary point, xb, will be in the
plane of the nearby incoming trajectory at x0 and the normal vector Nb to the
tangent plane of the boundary at xb. Let δx = x0−xb be the distance vector to the
point of contact and let Tb a tangent vector in the intersection of the tangent plane
and the trajectory-normal plane. Using stochastic reflection principle, similar to
the reflection principle used in PDEs, a stochastic reflection process is constructed
such that δxr = xr − xb is its current increment at the same time as δx. The only
difference is the opposite sign of its normal component, i.e., δxr = −δnNb + δtTb

if δx0 = +δnNb + δtTb, for sufficiently small and positive components dn and δt.
Since the reflected process at xr by its construction must have the same probability
as the original process at x0, then

N⊤
b∇x0

[
φX(t)

]
(x, txb, t0) = N⊤

b∇x0

[
φ̂
]
(xb, t0) = 0 , (7.43)

upon expanding the difference between the two probability densities

φ̂(x0, t
′
0) − φ̂(xr, t

′
0) = φ̂(xb + δnNb + δtTb, t

′
0) − φ̂(xb − δnNb + δtTb, t

′
0) = 0,

in simplified backward notation at pre-hit time t′0 here, to order δn. The order δt
cancels out.

See Kushner and Dupuis [179] about more reflecting boundary conditions and
systematically constructing reflecting jump-diffusion processes. Also, see Karlin
and Taylor [162] for a thorough discussion of other boundary conditions such as
sticky and elastic, as well as an extensive boundary classification for pure diffusion
problems.

“bk0allfinal”
2007/1/7
page 210

i

i

i

i

i

i

i

i

210 Chapter 7. Kolmogorov Equations

7.7 Stopping Times: Expected Exit and First
Passage Times

In many problems, an exit time, also called a stopping time or a first passage time,
is of interest. For instance when a population falls to the zero level and thus ceases
to exist, it is said to be extinct and the time of extinction is of interest. If it is
a stochastic population, then the expected extinction time is of interest (Hanson
and Tuckwell [119, 121]). For a neuron, stochastic fluctuations can be important
and then the time to reach a threshold to fire a nerve pulse is of interest and in
particular the expected firing time can be calculated (Stein [257], Tuckwell [269],
Hanson and Tuckwell [120]). In cancer growth studies, the expected doubling time
for the size of a tumor is often calculated (Hanson and Tier [117]). There are
many other example of stopping times. First deterministic exit time problems are
introduced as examples and as a basic reference.

Examples 7.8. Deterministic Exit Time Problems

• Forward Exit Time Formulation:
Let X(t) be the state of the system at time t and be governed by the ODE

dX

dt
(t) = f(X(t)), X(0) = x0 ∈ (a, b), (7.44)

where f(x) is strictly positive or strictly negative, f(x) is continuous and
1/f(x) is integrable on [a, b]. Thus inverting 7.44, the forward running time
is

dt = dTF (x) = dx/f(x), TF (x0) = 0,

so

TF (x) =

∫ x

x0

dy/f(y),

and the forward exit time is

TF (b) if f(x) > 0 or TF (a) if f(x) < 0.

• More Relevant Backward Exit Time Formulation:
Since the stochastic exit time problem is more conveniently formulated as a
backward time problem, let x = c be the point of exit, so when x0 = c then we
know the state X(t) is already at the exit and the final condition is TB(c) ≡
0. Consequently, the backward exit time TB(x) problem is formulated with
TB(x) = TF (c) − TF (x) or T ′

B(x) = −T ′
F (x) as

dTB(x) = −dx/f(x), TB(c) = 0

or in the more conventional backward form,

f(x)T ′
B(x) = −1, TB(c) = 0, (7.45)

“bk0allfinal”
2007/1/7
page 211

i

i

i

i

i

i

i

i

7.7. Stopping Times: Expected Exit and First Passage Times 211

so

TB(x) = −
∫ x

c

dy/f(y)

or the backward exit time ending at x = c is

TB(x0) =

∫ c

x0

dy/f(y)

where c = b if f(x) > 0 or c = a if f(x) < 0.

7.7.1 Expected Stochastic Exit Time

First, the exit time is analytically defined, relevant for the piece-wise continuous
jump-diffusion. For continuous, pure diffusion processes, it is sufficient to consider
when the process hits a boundary. However, when the stochastic process also in-
cludes jumps, then it is possible that the process overshoots the boundary and ends
up in the exterior of the domain. Here the domain will simply be an open interval
in one state dimension.

Again let X(t) be a jump-diffusion process satisfying the SDE,

dX(t)
sym
= f(X(t), t)dt+ g(X(t), t)dW (t) + h(X(t), t, Q)dP (t;Q,X(t), t) ,(7.46)

with smooth (continuously differentiable) coefficients {f, g, h} with bounded spatial
gradients.

Definition 7.9. In one state dimension, the exit time for the Markov process X(t)
in continuous time (7.46) from the open interval (a, b) is

τe(x0, t0) ≡ inf
t

[t |X(t) /∈ (a, b);X(t0) = x0 ∈ (a, b)] , (7.47)

if it exists.

Before considering a more general formulation using probability theory, some
applications of Dynkin’s formula will be used to compute the expected extinction
time and some higher moments.

Examples 7.10. Expected Exit Time Applications of Dynkin’s Formula:

• Small modification of Dynkin’s formula for exit times:
Consider the following boundary value problem of inhomogeneous backward
Kolmogorov equation,

∂v

∂t0
(x0, t0) + Bx0 [v](x0, t0) = α(x0, t0), x0 ∈ (a, b) , (7.48)

v(x0, t0) = β(x0, t0), x0 /∈ (a, b) , (7.49)

“bk0allfinal”
2007/1/7
page 212

i

i

i

i

i

i

i

i

212 Chapter 7. Kolmogorov Equations

where Bx0 [v](x0, t0) (7.14) is the jump-diffusion backward operator, α(x0, t0)
is a given general state-independent homogeneous term and β(x0, t0) is a given
general exit boundary value. Both α(x0, t0) and β(x0, t0) depend on the ap-
plication. Sometimes (7.48) is called Dynkin’s equation due to its relationship
with Dynkin’s formula.

Prior to taking expectations, the integral form (7.9) of the stochastic chain
rule was

v(X(t), t) = v(x0, t0) +

∫ t

t0

((
∂v

∂t
+ f

∂v

∂x
+

1

2
g2 ∂

2v

∂x2

)
(X(s), s)ds

+

(
g
∂v

∂x

)
(X(s), s)dW (s) (7.50)

+

∫

Q
∆h[v](X(s), s, q)P(ds,dq;X(s), s)

)
,

but now make the random exit time substitution t = τe(x0, t0) for the deter-
ministic time variable which is simply abbreviated as t = τe and then take
expectations getting an exit time version of Dynkin’s formula,

E [v(X(τe), τe)|X(t0) = x0] = v(x0, t0) (7.51)

+E

[∫ τe

t0

(
∂v

∂t
+ Bx[v]

)
(X(s), s)ds

]
.

Upon substituting Dynkin’s equation (7.48) into Dynkin’ Formula, it reduces
to

E [β(X(τe), τe)|X(t0) = x0] = v(x0, t0) + E

[∫ τe

t0

α(X(s), s)ds

]
. (7.52)

• Ultimate Exit Time Distribution:
Let α(x0, t0) = 0, while β(X(τe), τe) = 1 since if x0 starts at an exit, i.e., x0 /∈
(a, b), then exit is certain and the distribution function is 1. Hence, due to
the jump-diffusion v(x0, t0) = 1 = Φτe(x0,t0)(+∞) on (a, b) under reasonable
conditions for the existence of an exit.

• Expected Exit Time:
Assuming that exit is certain, Φτe(x0,t0)(+∞) = 1, let α(x0, t0) = −1 =
−Φτe(x0,t0)(+∞) and β(X(τe), τe) = 0, corresponding to x0 /∈ (a, b) imply-
ing zero exit time, then

E[τe(x0, t0)] = t0 + v(1)(x0, t0) , (7.53)

where v(1)(x0, t0) is the solution to the problem (7.48-7.49) with α(x0, t0) = 0
and β(X(τe), τe) = 0.

• Second Moment of Exit Time:
Assuming that exit is certain, let α(x0, t0) = −2t0 and β(X(τe), τe) = 0 again,
then

E[τ2
e (x0, t0)] = t20 + v(2)(x0, t0) , (7.54)

“bk0allfinal”
2007/1/7
page 213

i

i

i

i

i

i

i

i

7.7. Stopping Times: Expected Exit and First Passage Times 213

where v(2)(x0, t0) is the solution to the problem (7.48-7.49) with α(x0, t0) =
−2t0 and β(X(τe), τe) = 0. Hence, the variance of the exit time on (a, b) is

Var[τe(x0, t0)] = E[τ2
e (x0, t0)] − E2[τe(x0, t0)]

= v(2)(x0, t0) − 2t0v
(1)(x0, t0) − (v(1))2(x0, t0)

and the coefficient of variation (CV) of the exit time is

CV[τe(x0, t0)] =

√
Var[τe(x0, t0)]

E[τe(x0, t0)]

=

√
v(2)(x0, t0) − 2t0v(1)(x0, t0) − (v(1))2(x0, t0)

v(1)(x0, t0) + t0
.

• Higher Moments of Exit Time:
Assuming that exit is certain, let α(x0, t0) = −ntn−1

0 and again β(X(τe), τe) =
0, then

E[τn
e (x0, t0)] = tn0 + v(n)(x0, t0) , (7.55)

where v(n)(x0, t0) is the solution to the problem (7.48-7.49) with α(x0, t0) =
−ntn−1

0 and β(X(τe), τe) = 0.

Often conditional exit time moments are of interest, but then the inhomo-
geneous term α(x0, t0) genuinely depends on the state x0 which makes the (7.51)
form of Dynkin’s formula not too useful since then the α(X(s), s) in the integrand
genuinely depends on the stochastic process X(s) and the integral is no longer
simple. Hence, for more conditional and more general problems a more general
form is needed. This more general form is based upon a generalization of the time-
homogeneous derivations in Schuss [244] and in the appendix of Hanson and Tier
[117] to the time dependent coefficient case, obtaining a hybrid backward or Dynkin
equation for the exit time density φτe(x0,t0)(t).

Lemma 7.11. Exit Time Distribution and Density:
Given the exit time τe(x0, t0) (7.47), then its probability distribution can be related
to the distribution for X(t) by

Φτe(x0,t0)(t) = 1 −
∫ b

a

φX(t)(x, t;x0, t0)dx, (7.56)

where φX(t)(x, t;x0, t0) is the transition probability density for the Markov process
X(t) = x in continuous time conditionally starting at X(t0) = x0, as given in
(7.18). The density φX(t)(x, t;x0, t0) is assumed to exist.

Assuming the exit time distribution and the transition density are differentiable
even in a generalized sense, the exit time probability density is

φτe(x0,t0)(t) =
∂Φτe(x0,t0)

∂t
(t) .

“bk0allfinal”
2007/1/7
page 214

i

i

i

i

i

i

i

i

214 Chapter 7. Kolmogorov Equations

The φX(t) transition density is assumed to be twice differentiable in x0 and once
in t, leading to the Kolmogorov equation in the forward time but with the backward
operator Bx0 ,

∂φτe(x0,t0)

∂t
(t) = Bx0

[
φτe(x0,t0)(t)

]
(7.57)

= f(x0, t0)
∂φτe(x0,t0)

∂x0
(t) +

1

2
g2(x0, t0)

∂2φτe(x0,t0)

∂x2
0

(t)

+λ̂(x0, t0)

∫

Q
∆h[φτe(x0,t0)(t)](x0, t0, q)φQ(q;x0, t0)dq,

where the jump function ∆h is given in (7.4).

Proof. The Eq. (7.56) for the exit time distribution follows from the probability
definitions

Φτe(x0,t0)(t) = Prob[τe(x0, t0) < t] = Prob[X(t) /∈ (a, b)|X(t0) = x0]

= 1 − Prob[X(t) ∈ (a, b)|X(t0) = x0]

= 1 −
∫ b

a

φX(t)(x, t;x0, t0)dx,

i.e., the fact that the exit time probability is the complement of the probability
that the process X(t) is in the interval (a, b) and thus yields the right-hand side of
(7.56).

Under differentiability assumptions, the exit time density can be related to an
integral of the forward operator Fx using the forward Kolomogorov

φτe(x0,t0)(t) =
∂Φτe(x0,t0)

∂t
(t) = −

∫ b

a

φX(t),t(x, t;x0, t0)dx

= −
∫ b

a

Fx[φ](x, t;x0, t0)dx .

Manipulating partial derivatives, first in forward form,

φX(t),t(x, t;x0, t0)) = φX(t),t−t0(x, t;x0, t0) = −φX(t),t0−t(x, t;x0, t0)

and then in backward form,

φX(t),t0(x, t;x0, t0) = φX(t),t0−t(x, t;x0, t0) ,

leads to

φτe(x0,t0)(t) = +

∫ b

a

φX(t),t0(x, t;x0, t0)dx = −
∫ b

a

Bx0 [φ](x, t;x0, t0)dx .

Again assuming sufficient differentiability along with the interchange of integral and

“bk0allfinal”
2007/1/7
page 215

i

i

i

i

i

i

i

i

7.7. Stopping Times: Expected Exit and First Passage Times 215

differential operators,

φτe(x0,t0),t(t) = −
∫ b

a

B[φX(t),t(x, t;x0, t0)]dx

= −
∫ b

a

Bx0 [F [φX(t)]](x, t;x0, t0)dx

= −Bx0

[∫ b

a

F [φX(t)](x, t;x0, t0)dx

]
= +Bx0

[
φτe(x0,t0)(t)

]
.

This is a hybrid Kolmogorov equation (7.57), since it is in forward time t on
the left and the backward operator is on the far right.

Examples 7.12. Conditionally Expected Exit Time Applications:

• Ultimate Probability of Exit:
The ultimate probability of exit is

Φe(x0, t0) ≡ Φτe(x0,t0)(+∞) =

∫ ∞

0

φτe(x0,t0)(t)dt , (7.58)

assuming that the distribution is bounded for all t. Also under the same con-
ditions, ∫ ∞

0

φτe(x0,t0),t(t)dt = φτe(x0,t0)(t)

∣∣∣∣
+∞

0

= 0

and then from the exit time density equation (7.57), integration-operator in-
terchange and (7.58) for Φe(x0, t0),

∫ ∞

0

B[φτe(x0,t0)(t)]dt = B[Φe(x0, t0)] = 0 . (7.59)

For certain exit at both endpoints a and b, the obvious boundary conditions
are Φe(a, t0) = 1 and Φe(b, t0) = 1 for continuous diffusion processes, but
[Φe(x0, t0)] =1 for x0 /∈ (a, b) for jump-diffusions. Presuming uniqueness,
then the solution to the boundary value problem is Φe(x0, t0) = 1.

• Conditional Exit on the Right of (a, b): Now suppose the statistics of
ultimate exit on one side of (a, b), say x0 ∈ [b,+∞), i.e., on the right. The
corresponding random exit time variable is

τ (b)
e (x0, t0) = inf

t
[t |X(t) ≥ b, X(s) ∈ (a, b), t0 ≤ s < t, X(t0) = x0] ,

and the exit time distribution function is

Φ
τ
(b)
e (x0,t0)

(t) ≡ Prob[τ (b)
e (x0, t0) < t]

“bk0allfinal”
2007/1/7
page 216

i

i

i

i

i

i

i

i

216 Chapter 7. Kolmogorov Equations

and the corresponding density is φ
τ
(b)
e (x0,t0)

(t). Thus, the ultimate conditional

distribution,

Φ(b)
e (x0, t0) ≡

∫ +∞

0

φ
τ
(b)
e (x0,t0)

(t)dt,

for counting only exits on the right, has boundary conditions Φ
(b)
e (x0, t0) = 1

if x0 ∈ [b,+∞), but Φ
(b)
e (x0, t0) = 0 if x0 ∈ (−∞, a]. (For counting only

exits at the left, (−∞, a], then the boundary conditions are interchanged for

Φ
(a)
e (x0, t0).) In general, the conditional distribution Φ

(b)
e (x0, t0) will not be

one as in the certain ultimate probability in the prior item, so it is necessary to
work in exit time moments rather than expected exit times. Let the conditional
exit time first moment be

M (b)
e (x0, t0) ≡

∫ +∞

0

tφ
τ
(b)
e (x0,t0)

(t)dt (7.60)

and the expected conditional exit time is

T (b)
e (x0, t0) ≡M (b)

e (x0, t0)/Φ
(b)
e (x0, t0) (7.61)

if x0 > a. Upon integration of both sides of (7.57), making the reasonable
assumption

tφ
τ
(b)
e (x0,t0)

(t)

∣∣∣∣
+∞

0

= 0

when apply integration by parts on the left, then the conditional moment equa-
tion, interchanging left and right sides, is

Bx0

[
M (b)

e

]
(x0, t0) = −Φ(b)

e (x0, t0) (7.62)

with boundary condition M
(b)
e (x0, t0) = 0 if x0 /∈ (a, b). The conditions are

zero on either side of (a, b) for different reasons, due to instant exit for x0 ∈
[b,+∞) and due to excluded exit for x0 ∈ (−∞, a].

7.8 Diffusion Approximation Basis

Up until this point, stochastic diffusions have almost been taken as given. There
are many derivations for physical diffusions in physics and engineering, such as the
diffusion of a fluid concentration in a liquid or gas according to Fick’s law for the flux
or flow of concentration or the diffusion of heat in a conduction medium according
to Fourier’s law for the flux of heat. These types of physical diffusions lead to the
same or similar diffusion equations as seen in this chapter when the jump terms are
omitted. However, the stochastic diffusions are usually postulated on a different
basis.

A fundamental property that distinguishes the pure diffusion process from the
discontinuous jump process among Markov processes in continuous time is that the

“bk0allfinal”
2007/1/7
page 217

i

i

i

i

i

i

i

i

7.8. Diffusion Approximation Basis 217

diffusion process is a continuous process. Let X(t) = [Xi(t)]nx×1 be a continuous
process, then it must satisfy the following continuity condition, given some δ > 0,

lim
∆t→0

Prob[|∆X(t)| > δ | X(t) = x]

∆t
= 0 , (7.63)

so jumps in the process are unlikely.
In addition, two basic moment properties are needed for the continuous process

to have a diffusion limit and these are that the conditional mean increment process
satisfy

E[∆X(t)|X(t) = x] =

∫

Ω

φX(t)(y, t+ ∆t;x, t)dy) (7.64)

= µ(x, t)∆t+ o(∆t) as ∆t → 0 ,

where µ(x, t) = [µi(x, t)]nx×1, and that the conditional variance increment process
satisfy

Cov[∆X(t),∆X⊤(t)|X(t) = x] = σ(x, t)∆t + o(∆t) as ∆t → 0 , (7.65)

where σ(x, t) = [σi.j(x, t)]nx×nx
> 0, i.e., positive definite, and φX(t)(x, t;x0, x0)dy)

is the transition probability density for X(t). Alternatively, these two infinitesimal
moment conditions can be written

lim
∆t→0

E[∆X(t)|X(t) = x]

∆t
= µ(x, t)

and

lim
∆t→0

Cov[∆X(t),∆X⊤(t)|X(t) = x]

∆t
= σ(x, t) .

There are other technical conditions that are needed and the reader should
consult references like Feller [84, Chapt. 10] or Karlin and Taylor [162, Chapt. 15] for
the history and variations in these conditions. Another technical condition implies
that higher order moments are negligible,

lim
∆t→0

E[|∆X(t)|m | X(t) = x]

∆t
= 0 , (7.66)

for m ≥ 3.

Remarks 7.13.

• Note that since the focus is on diffusion, the mth central moment could be used
here as in [84, 162], instead of the uncentered mth moment in (7.66), just as
the 2nd moment could have been used in (7.65) instead of the covariance. For
high moments, the central moment form may be easier to use since means of
deviation are trivially zero.

“bk0allfinal”
2007/1/7
page 218

i

i

i

i

i

i

i

i

218 Chapter 7. Kolmogorov Equations

• Karlin and Taylor [162] show that from the Chebyshev inequality (Chapter 1,
Exercise 4),

Prob[|∆X(t)| > δ | X(t) = x]

∆t
≤ E[|∆X(t)|m | X(t) = x]

δm∆t
, (7.67)

that the high moment condition (7.66) for any m ≥ 3 can imply the continuity
condition (7.63) for δ > 0. Depending on the problem formulation, the high
moment condition may be easier to demonstrate than estimating the tail of
the probability distribution in the continuity condition.

In terms of the general multi-dimensional jump-diffusion model (7.31), the
corresponding infinitesimal parameters, in absence of the jump term (h = 0), are
the infinitesimal vector mean

µ(x, t) = f(x, t)

and the infinitesimal matrix covariance

σ(x, t) = (gg⊤)(x, t) .

These infinitesimal properties by themselves do not make a diffusion process,
since adding jump processes to diffusion process invalidates the continuity condition
(7.63). For instance, examining this continuity condition for the simplest case of a
simple Poisson process X(t) = P (t) but with a time-dependent jump rate λ(t) > 0,
yields

Prob[|∆P (t)| > δ | P (t) = j]

∆t
=

∞∑

k=1

e−∆Λ(t) (∆Λ)k(t)

k!∆t
=

1 − e−∆Λ(t)

∆t

assuming for continuity’s sake that 0 < δ < 1 and where

∆Λ(t) =

∫ t+∆t

t

λ(s)ds → λ(t)∆t as ∆t → 0+ .

Thus,

lim
∆t→0

Prob[|∆P (t)| > δ | P (t) = j]

∆t
= λ(t) > 0

invalidating the continuity condition as expected, although the two basic infinitesi-
mal moments can be calculated. In general, the higher moment criterion (7.66) will
not be valid either, since for example,

lim
∆t→0

E[|∆P (t)|3 | X(t) = x]

∆t
= lim

∆t→0

∞∑

k=1

e−∆Λ(t) (∆Λ)k(t)

k!∆t
k3

= lim
∆t→0

∆Λ(t)(1 + 3∆Λ(t) + (∆Λ)2(t))

∆t
= λ(t) > 0 ,

“bk0allfinal”
2007/1/7
page 219

i

i

i

i

i

i

i

i

7.9. Exercises 219

where incremental moment Table 1.2 has been used. It is easy to guess that the
number of infinitesimal moments of the Poisson process will be infinite, extrapo-
lating from Table 1.2, unlike the limit of two infinitesimal moments for diffusion
processes. However, the table only can be used to confirm that cases m = 3:5 yield
the infinitesimal expectation of λ(t).

So far these conditions are merely general formulations of diffusion processes
for which similar properties have been derived in the earlier chapters of this book.
Where their power lies is when they are used to approximate other stochastic pro-
cesses, such as in the stochastic tumor application using a diffusion approximation
that can be solved for tumor doubling times in Subsection 11.2.1.

7.9 Exercises

1. Derivation of the Forward Kolmogorov Equation in the Generalized Sense.
Let the jump-diffusion process X(t) satisfy the SDE,

dX(t) = f(X(t), t)dt+ g(X(t), t)dW (t) + h(X(t), t, Q)dP (t;Q,X(t), t)) ,(7.68)

X(t0) = x0, where the coefficient functions (f, g, h) are sufficiently well-
behaved, Q is the jump-amplitude random mark with density φQ(q;X(t), t)
and E[dP (t;Q,X(t), t)|X(t) = x] = λ(t;Q, x, t)dt.

(a) Show (easy) that, in the generalize sense,

φ(x, t)
gen
= E[δ(X(t) − x)|X(t0) = x0] , t0 < t ,

where φ(x, t) = φX(t)(x, t;x0, t0) is the transition probability density for
the process X(t) conditioned on the starting at X(t0) = x0 and δ(x) is
the Dirac delta function.

(b) Show that the Dirac delta function with composite argument satisfies
∫ +∞

−∞
F (y)δ(γ(y) − x)dy

gen
= F

(
γ−1(x)

) ∣∣(γ−1)′(x)
∣∣ ,

where γ(y) is a monotonic function with non-vanishing derivative and
inverse y = γ−1(z), such that (γ−1)′(z) = 1/γ′(y) and |γ−1(±∞)| = ∞.

(c) Apply the previous two results and other delta function properties from
Section B.12 to derive the forward Kolmogorov equation (7.26) in the
generalized sense.
Hint: Regarding the proof of (7.26), the diffusion part is much easier
given the delta function properties for the derivation, but the jump part
is similar and is facilitated by the fact that γ(y) = y + h(y; t, q) for fixed
(t, q).

2. Derivation of the Feynman-Kac (Dynkin with Integrating Factor) Formula
for Jump-Diffusions.
Consider the jump-diffusion process,

dX(t) = f(X(t), t)dt+ g(X(t), t)dW (t) + h(X(t), t, Q)dP (t;Q,X(t), t),

“bk0allfinal”
2007/1/7
page 220

i

i

i

i

i

i

i

i

220 Chapter 7. Kolmogorov Equations

X(t0) = x0 ∈ Ω, t0 < t < tf and related backward Feynman-Kac (pronounced
Fineman-Katz) final value problem,

∂v

∂t0
(x0, t0) + B[v](x0, t0) + θ(x0, t0)v(x0, t0) = α(x0, t0) , (7.69)

x0 ∈ Ω, 0 ≤ t0 < tf , with final condition

v(x0, tf) = γ(x0, tf) , x0 ∈ Ω , 0 ≤ t0 < tf ,

where B[v](x0, t0) is the backward operator corresponding to the jump-diffusion
process (7.3). The given coefficients, θ(x0, t0), α(x, t) and γ(x, t) are bounded
and continuous. The solution v(x0, t0) is assumed to be twice continuously
differentiable in x0 while once in t.

(a) In preparation, apply the stochastic chain rule to the auxiliary function

w(X(t), t) = v(X(t), t) exp(Θ(t0, t))

to use an integrating factor technique to remove the non-Dynkin linear
source term θ(x0, t0)v(x0, t0) from (7.69) with integrating factor expo-
nent process

Θ(t0, t) =

∫ t

t0

θ(X(s), s)ds.

Then show (best done using the usual time-increment form of the stochas-
tic chain rule) that

dw(X(t), t)
dt
= eΘ(t0,t)

((
∂v

∂t
+ B[v] + θv

)
(X(t), t)dt (7.70)

+(gv
∂v

∂x
)(X(t), t)dW (t)

+

∫

Q
δh[v](X(t), t, q)P̂(dt,dq;X(t), t)

)
,

where δh[v] is defined in (7.4) and P̂ is defined in (7.8).

(b) Next integrate the SDE (7.70) on [t0, tf], solve for v(x0, t0), then take
expectations and finally apply the final value problem to obtain the
Feynman-Kac formula corresponding to (7.69),

v(x0, t0) = E

[
e+Θ(t0,tf)γ(X(tf), tf) (7.71)

−
∫ tf

t0

e+Θ(t0,s)α(X(s), s)ds

∣∣∣∣X(t0) = x0

]
.

Hint: Follow the procedure in the derivation proof of Theorem 7.3 for
this Feynman-Kac formula. See Schuss [244] or Yong and Zhou [288]
for pure diffusion processes.

“bk0allfinal”
2007/1/7
page 221

i

i

i

i

i

i

i

i

7.9. Exercises 221

3. Moments of Stochastic Dynamical Systems. Consider first the linear stochastic
dynamical system,

dX(t) = µ0X(t)dt+ σ0X(t)dW (t) + ν0X(t)h(Q)dP (t;Q), X(t0) = x0 ,

where {µ0, σ0, ν0} is a set of constant coefficients, x0 is specified and h(q)
has finite moments with respect to a Poisson mark amplitude density φZ(z).
Starting with a Dynkin’s Formula (or the Forward Kolmogorov Equation if
you like deriving results the hard way),

(a) Show that the conditional first moment of the process

X(t) = E[X(t)|X(t0) = x0]

satisfies a first order ODE in X(t) only, (x0, t0) fixed, corresponding to
the mean (quasi-deterministic) analog of the SDE. Solve the ODE in
terms of the given initial conditions.

(b) Derive the ODE for second moment

X2(t) = E[X2(t)|X(t0) = x0]

for the more general SDE

dX(t) = f(X(t))dt+ g(X(t))dW (t) + h(X(t), q)dP (t;Q) ,

X(t0) = x0, in terms of expected coefficient values over both state and
mark spaces.

(c) Use the general second moment ODE of part (b) to derive the corre-
sponding ODE for the state variance

Var[X(t)] = X2(t) − (X)2(t)

for the linear dynamical system in the part (a). Your result should
show that the ODE is linear in Var[X](t) with an inhomogeneous term
depending on the X(t) first moment solution and constants, so the ODE
is closed in that it is independent of any higher moments beyond the
second. Solve the ODE.

Suggested References for Further Reading

• Arnold, 1974 [13].

• Bharucha-Reid, 1960 [31].

• Feller, 1971 [84, II].

• Gihman and Skorohod, 1972 [94].

• Goel and Richter-Dyn, 1974 [98].

“bk0allfinal”
2007/1/7
page 222

i

i

i

i

i

i

i

i

222 Chapter 7. Kolmogorov Equations

• Hanson and Tier, 1982 [117].

• Jazwinski, 1970 [154].

• Karlin and Taylor, 1981 [162, II].

• Kushner and Dupuis, 2001 [179].

• Ludwig, 1975 [188].

• Øksendal, 1998 [222].

• Schuss, 1980 [244].

“bk0allfinal”
2007/1/7
page 223

i

i

i

i

i

i

i

i

Chapter 8

Computational Stochastic
Control Methods

God does not care about our mathematical difficulties.
He integrates empirically.
—Albert Einstein (1879-1955).

An idea which can be used once is a trick.
If it can be used more than once it becomes a method.
—George Polya and Gabor Szego.

“That’s when I realized that research was my true calling,
not software,” he says. Developing software so other people
could answer the big questions wasn’t for him. He wanted to
get back to answering them himself.
—Ajay Royyuruat , IBM Genographer, Dream Jobs, IEEE
Spectrum, vol. 43, no. 2, February 2006, pp. 40-41.

The use of stochastic models, on the other hand, can result
in gigantic increases in the complexity of data volume, stor-
age, manipulation, and retrieval requirements.
—Simulation-Based Engineering Science, Report of the Na-
tional Science Foundation Blue Ribbon Panel on Simulation-
Based Engineering Science, J. T. Oden, Chair, February
2006, 85 pages.

Stochastic dynamic programming is not easy since the PDE of stochastic
dynamic programming or the Hamilton-Jacobi equation given in (6.14-6.17)
of Chapter 6 is not a standard PDE (partial differential equation). In fact, it is
a functional PDE with just diffusion owing to the presence of a maximum with
respect to the control. Also, for the more general jump-diffusion, the additional
jump integrals make the PDE of stochastic dynamic programming a functional

223

“bk0allfinal”
2007/1/7
page 224

i

i

i

i

i

i

i

i

224 Chapter 8. Computational Stochastic Control Methods

partial integral differential equation or functional PIDE (partial integral differential
equation). The analytic complexity of this functional PIDE means that for the
usual finite difference or finite element methods, numerical convergence conditions
are unknown or not easily ascertainable.

This chapter discusses PDE-oriented finite difference methods developed by
the author and coworkers [106, 107, 108, 277, 110] for solving the PDE of stochastic
dynamic programming (SDP) (6.14-6.17), with special emphasis on techniques
and convergence conditions. The numerical foundations and complexity of compu-
tational stochastic control are discussed in [110].

An alternative method relies on using Markov chain probabilities to construct
convergent finite difference approximations that are rigorously convergent in the
weak sense and is called the Markov chain approximation (MCA) developed
by Kushner and coworkers [174, 175, 179].

Some methods use a canonical model formulation whose solution algorithm
results in significant reduction in the dimensional complexity, e.g., the linear-
quadratic (LQ) model for the optimal control of jump-diffusions (LQJD or
LQGP) [274] and the constant relative risk aversion (CRRA) utility model
for the optimal portfolios in finance [122, 123, 129, 291]. In addition, special inte-
gration methods for jump integrals and a least squares approximation for forming
simpler LQJD problems are also discussed [277]. The LQJD canonical model di-
mensional reduction algorithm is covered in Section 6.4 on page 182 in Chapter 6
while the deterministic LQ and variants are covered in Section A.3 on page A23 in
Chapter A.

Another canonical model dimensional reduction algorithm is treated in Sec-
tions 10.4 on page 326 and 10.5 on page 337 in Chapter 10 for two different optimal
portfolio and consumption applications.

For a more historical introduction to computational methods in control, see
Larson [182], Polak [227] and Dyer and McReynolds [76].

8.1 Finite Difference PDE Methods of SDP

A decade ago, the author contributed an invited chapter on Computational Stochas-
tic Dynamic Programming [108] in a Control and Dynamic Systems volume dis-
cussing the use of finite difference methods of solution. This section is based on his
past experience with large scale stochastic control applications using many of the
largest vector and parallel computers available academically from national centers
such as Argonne National Laboratory, Los Alamos National Laboratory, National
Center for Supercomputing Applications, San Diego Supercomputing Center and
the Pittsburgh Supercomputing Center. An updated version of the techniques in-
volved is given but simplified to one state dimension initially for convenience.

Consider the jump-diffusion SDE for state X(t) and control U(t),

dX(t)
sym
= f(X(t), U(t), t)dt+ g(X(t), U(t), t)dW (t)

+h(X(t), U(t), t, Q)dP (t;Q,X(t), U(t), t) ,
(8.1)

where dP (t;Q,X(t), U(t), t) and dW (t) are the stochastic differentials of the jump-

“bk0allfinal”
2007/1/7
page 225

i

i

i

i

i

i

i

i

8.1. Finite Difference PDE Methods of SDP 225

diffusion process including the compound Poisson markQ with jump-rate λ(t;x, u, t).
The SDE coefficients, (f(x, u, t), g(x, u, t), h(x, u, t, q)), are assumed to be bounded
or at least integrable in their arguments, so as not to over-restrict the problem. Let
the objective be the minimum of the expected cumulative running costs C(x, u, t)
and terminal cost S(xf , tf),

v∗(x, t) ≡ minU [t,tf)

[
E

(dW,dP)[t,tf)

[∫ tf

t C(X(s), U(s), s)ds+ S(X(tf), tf)

∣∣∣X(t) = x, U(t) = u
]]
,

(8.2)

for t0 ≤ t < tf .
The application of Bellman’s Principle of Optimality and the stochastic

chain rule along with the infinitesimal moments E[dW (t)] = 0, Var[dW (t)] = dt and
E[dP (t;Q,X(t), U(t), t)|X(t) = x, U(t) = u] = λ(t;x, u, t)dt leads to the stochastic
dynamic programming PIDE using only order dt terms,

0 = v∗t (x, t) + minu [H(x, u, t)]

≡ v∗t (x, t) + minu

[
C(x, u, t) + f(x, u, t)v∗x(x, t) + 1

2g
2(x, u, t)v∗xx(x, t)

+ λ(t;x, u, t)
∫
Q (v∗(x+ h(x, u, t, q), t) − v∗(x, t))φQ(q;x, u, t)

]

= v∗t (x, t) + H∗(x, t) .

(8.3)

If the regular or unconstrained optimal control exists and is unique, then

u(reg)(x, t) = argmin
u

[H(x, u, t)] , (8.4)

but, in general, the optimal control, u∗(x, t), is subject to any control constraints.
The final condition from the minimal conditional expected cost objective (8.2) is

v∗(x, t) = S(x, tf). (8.5)

However, the boundary conditions in general are model and domain dependent.

8.1.1 Linear Control Dynamics and Quadratic Control Costs

In order, to keep the focus on basic computations, it will be assumed that the drift of
the state dynamics is linear in the control and that the running costs are quadratic
in the control, i.e, the LQJD problem in control only (LQJD/U) discussed
in Subsection 6.4.1. These assumptions are more general than the LQJD problem,
but are sufficient to determine optimal control clearly in terms of (x, t). Hence, let

f(x, u, t) = f0(x, t) + f1(x, t)u,

g(x, u, t) = g0(x, t), h(x, u, t, q) = h0(x, t, q),

λ(t;x, u, t) = λ0(t;x, t), φQ(q;x, u, t) = φQ(q),

C(x, u, t) = c0(x, t) + c1(t;x, t)u+ c2(x, t)u
2,

H(x, u, t) = H0(x, t) + H1(x, t)u + 1
2H2(x, t)u

2 .

(8.6)

“bk0allfinal”
2007/1/7
page 226

i

i

i

i

i

i

i

i

226 Chapter 8. Computational Stochastic Control Methods

Thus, the PDE of stochastic dynamic programming in Hamilton-Jacobi form using
(6.19) with the current assumptions,

0 = v∗t (x, t) + H∗(x, t)

= v∗t (x, t) + C0(x, t) + C1(x, t)u
∗ + 1

2C2(x, t)(u
∗)2

+(f0(x, t) + f1(x, t)u
∗)v∗x(x, t) + 1

2g
2
0(x, t)v

∗
xx(x, t)

+λ0(t;x, t)
∫
Q (v∗(x+ h0(x, t, q), t) − v∗(x, t))φQ(q)dq ,

(8.7)

and the regular control is from (6.31) after simplifications for the current one state
dimension form,

u(reg)(x, t) = − (c1(x, t) + f1(x, t)v
∗
x(x, t)) /c2(x, t) , (8.8)

provided c2(x, t) > 0, i.e., positive definite, for a minimum. Since real problems
have contraints, let U (min) ≤ u(x, t) ≤ U (max). Then the optimal control law can
be written

u∗(x, t) = min(U (max),max(U (min), u(reg)(x, t)))

=

U (min), u(reg)(x, t) ≤ U (min)

u(reg)(x, t), U (min) ≤ u(reg)(x, t) ≤ U (max)

U (max), U (max) ≤ u(reg)(x, t)

 .

(8.9)

For multidimensional state space problems see the stochastic dynamic programming
Chapter 6 here or Hanson’s computational stochastic dynamic programming chapter
in [108].

8.1.2 Crank-Nicolson, Extrapolation-Predictor-Corrector Finite
Difference Algorithm for SDP

The numerical algorithm used here is basically a modification of the work of Dou-
glas and Dupont [72, 73] on nonlinear parabolic equations modified for stochastic
dynamic programming and the PIDE for jump-diffusions.

First the problem is discretized in backward time since stochastic dynamic
programming is a backward problem but the state space is discretized in a regular
grid, with Nt nodes in t on [t0, tf] and Nx nodes in x on [x0, xmax],

t→ Tk = tf −(k−1) · ∆t, for k = 1:Nt, ∆t = (tf − t0)/(Nt − 1) ,

x→ Xj = x0+(j−1) · ∆X, for j = 1:Nx, ∆X = (xmax−x0)/(Nx−1) .
(8.10)

This grid leads to a corresponding discretization of the dependent variables that fol-
low using a second order central finite difference (CFD) for the time deriva-
tive, evaluating at the mid-time point, and second order CFDs for the state deriva-
tives when j = 1:Nx for each k = 1:Nt corresponding to the backward time count

“bk0allfinal”
2007/1/7
page 227

i

i

i

i

i

i

i

i

8.1. Finite Difference PDE Methods of SDP 227

with T1 = tf :

v∗(Xj , Tk) → Vj,k ,

v∗t (Xj , Tk+0.5) → (Vj,k+1−Vj,k)/(−∆t) ,

v∗x(Xj , Tk) → DVj,k = 0.5(Vj+1,k−Vj−1,k)/∆X ,

v∗xx(Xj , Tk) → DDVj,k = (Vj+1,k− 2Vj,k+Vj−1,k)/(∆X)2 ,

u(reg)(Xj , Tk) → URj,k = − (C1,j,k + F1,j,kDVj,k) /C2,j,k ,

u∗(Xj , Tk) → USj,k = min(UMAX,max(UMIN,URj,k)) ,

v∗(Xj +h0(Xj , Tk, q), Tk) → VHj,k(q),

(8.11)

where Fi,j,k = fi(Xj , Tk) for i = 0 : 1, Ci,j,k = ci(Xj , Tk) for i = 0 : 2, UMIN =
U (min) and UMAX = U (max).

The Crank-Nicolson Implicit (CNI) method provides central differencing
in state and time, so is second order accurate in both independent variables, i.e.,
O2(∆X) + O2(∆t), and the implicitness provides stability over all positive steps in
time, ∆t. However, for general problems, such as those that are multi-dimensional
or are nonlinear, the implicit and tridiagonal properties are no longer valid, unless
CNI can be extended by alternating directions implicit (ADI) through known
splittings of the spatial operators. However, for nonlinear problems, recalling from
Chapter 6 that the PDE of stochastic dynamic programming is nonlinear, ADI is
not useful and predictor-corrector methods can be used to preserve the second order
accuracy in several dimensions and for nonlinear problems. For these more general
applications, the basic structure of the CNI method upon dissection consists of a
midpoint integral approximation and an averaging to convert the time-midpoint to
integral grid point values. Thus, symbolically using the PDE of stochastic dynamic
programming in Hamilton-Jacobi form, 0 = v∗t (x, t) + H∗(x, t), using (8.7), the
midpoint rule approximation is then

Vj,k+1−Vj,k =
∫ Tk−∆t

Tk
v∗t (Xj , t)dt = −

∫ Tk−∆t

Tk
H(Xj , t)dt

≃ +∆t · H(Xj , Tk+0.5) = +∆t · Hj,k+0.5 ,
(8.12)

which is finally followed by a second order accuracy preserving averaging
step,

Vj,k+1≃Vj,k + 0.5 · ∆t · (Hj,k + Hj,k+1) , (8.13)

where the midpoint (mid-time) value of the objective has been replaced by targeted
values at given time nodes. While this last step may look like a linear assumption, in
most cases this can be extended by quasi-linearization, e.g., the average for a power
can be approximated by (Vj,k+0.5)

n+1 ≃ 0.5(Vj,k)n(Vj,k + Vj,k+1) in the zeroth
correction with further refinement in subsequent corrections, always keeping the
newest update of Vj,k+1 as a linear term. The reader can show that under second
order differentiability the averaging step is second order accurate in time (O2(∆t))
at the midpoint, it being well-known that the midpoint rule used here is second
order accurate in time. It is the midpoint rule evaluation that makes the seemingly

“bk0allfinal”
2007/1/7
page 228

i

i

i

i

i

i

i

i

228 Chapter 8. Computational Stochastic Control Methods

first order approximation for v∗t (x, t) in (8.11) accurate to O2(∆t) rather than to
O(∆t).

Integration and Interpolation for Jump Integrals

Another modification is needed for handling the jump integrals. One procedure is
the use of Gauss-statistics rules introduced by Westman and Hanson in [277]
as a generalization of the Gaussian quadrature rules, but customized for the given
mark density φQ(q) in the application. These rules use Nq points Qi and Nq weights
wi and have a polynomial precision of degree nq = Nq − 1. The weights and nodes
satisfy the 2 ·Nq nonlinear equations,

Nq∑

i=1

wi ·Qj
i = EQ[Qj] =

∫

Q
qjφQ(q)dq , (8.14)

for j = 0 : 2Nq−1. This leads to the Gauss-statistics approximation for the jump
integral:

IVHj,k ≡
∫
Q VHj,k(q)φQ(q)dq ≃∑Nq

i=1 wiVHj,k(Qi)

=
∑Nq

i=1 wiv
∗(Xj+h0(Xj , Tk, Qi), Tk) .

(8.15)

In general, the VHj,k(Qi) will be implicit values that are not necessarily at specified
state nodes j′ = 1 : Nt in Vj′,k. Just as in Crank-Nicolson averaging, O2(∆X)
interpolation is needed relative to the nearest neighbor state nodes. Let the ith
state argument be

Xj +h0(Xj , Tk, Qi) = Xj+ℓi
+ ǫi∆X ,

where the floor integer is

ℓi = ℓi,j,k = ⌊h0(Xj , Tk, Qi)/∆X⌋

and fraction
ǫi = ǫi,j,k = h0(Xj , Tk, Qi)/∆X − ℓi.

Thus, the O2(∆X) interpolation is

VHj,k(Qi) ≃ (1−ǫi) · Vj+ℓi,k + ǫi · Vj+ℓi+1,k , (8.16)

assuming the jumps are not out of range of the state space or are handled by proper
boundary conditions. Thus,

IVHj,k ≃
Nq∑

i=1

wi ((1−ǫi) · Vj+ℓi,k + ǫi · Vj+ℓi+1,k) . (8.17)

Example 8.1. Gauss-Statistics Quadrature for Log-Uniform
Jump-Amplitudes:

“bk0allfinal”
2007/1/7
page 229

i

i

i

i

i

i

i

i

8.1. Finite Difference PDE Methods of SDP 229

For example, in the case that φQ(q) is the density of the uniform distribution on
[a, b], then

for Nq = 1, nq = 1, w1 = 1, Q1 = 0.5(a+ b) ;

or

for Nq = 2, nq = 3, w1 = 0.5, w2 = 0.5,

Q1 = 0.5(a+ b) − 0.5(b− a)/
√

3, Q2 = 0.5(a+ b) + 0.5(b− a)/
√

3 .

For higher precision on finite mark domains [a, b], piecewise applications of these
rules can be made on subdivisions [qi, qi+1] where qi = a+ (i− 1)∆q for i = 1 :Mq

nodes with ∆q = (b − a)/(Mq − 1). See Westman and Hanson [277] for more
information.

In the case that there is a special q-dependence of the jump-amplitude coeffi-
cient h0(x, t, q) for which the moments can be easily or conveniently calculated, then
it may be possible to use just the interpolation of VHj,k(q) without Gauss-statistics
quadrature in q.

Example 8.2. Geometric Jump-Diffusion with Log-Uniform
Jump-Amplitudes Jump-Integral Approximation:

In the financial geometric jump-diffusion with log-uniform jump-amplitude distribu-
tion (10.119), the distribution of q is uniform with respect to the log-return ln(x),
but in the original return values the jump in the return is h(x, t, q) = x · (eq − 1)
by Itô’s chain rule. For the financial market q is very small, then so is eq − 1,
while a is small and negative with b small and positive. Provided |ǫ| ≤ 1 where
ǫ = Xj(e

q − 1)/∆X, then the appropriate piece-wise linear interpolation using the
explicit node set {Vj−1,k, Vj,k, Vj+1,k} is

VHj,k(q) ≃
{

(1 − ǫ)Vj,k + ǫVj+1,k, q ≥ 0, ǫ ≥ 0

−ǫVj−1,k + (1 + ǫ)Vj,k, q ≤ 0, ǫ ≤ 0

}
. (8.18)

Since the factor (eq−1) is now explicit, it can be integrated directly without Gaussian
quadrature to produce,

∫ b

a
VHj,k(q)φQ(q)dq ≃ Vj,k +

Xj

∆X (Vj,k − Vj−1,k)1+a−ea

b−a

+
Xj

∆X (Vj+1,k − Vj−,k) eb−1−b
b−a .

(8.19)

Extrapolation, Prediction and Correction

Summarizing the above CNI discretizations, the PIDE of stochastic dynamic pro-
gramming of (8.7) can be put in the preliminary form

Vj,k+1 = Vj,k + ∆t · Hj,k+0.5

= Vj,k + ∆t (Cj,k+0.5 + Fj,k+0.5 · DVj,k+0.5

+0.5 ·G2
0,j,k+0.5 · DDVj,k+0.5 + Λk · (IVHj,k+0.5 − Vj,k+0.5)

)
,

(8.20)

“bk0allfinal”
2007/1/7
page 230

i

i

i

i

i

i

i

i

230 Chapter 8. Computational Stochastic Control Methods

where Cj,k = C0,j,k + C1,j,kUSj,k + 0.5 · C2,j,k · US2
j,k, Fj,k = F0,j,k + F1,j,kUSj,k,

G0,j,k = g0(Xj , Tk), Λk = λ0(Tk), USj,k = min(UMAX,max(UMIN,URj,k)) and
URj,k = − (C1,j,k + F1,j,k · DVj,k) /C2,j,k, using (8.11).

Once there are two prior values Vj,k−1 and Vj,k which happens when k ≥ 2,
linear extrapolation (ex) can be used to accelerate the SDP corrections. The first
step from the final condition at k = 1 to k = 2 takes the most corrections since
no trend is available, only Vj,1. Otherwise the extrapolation (ex) step for the time-
midpoint is used for k ≥ 2 rather than the initial prediction at k = 1,

V
(ex)
j,k+0.5 =

{
Vj,k, k = 1

0.5(3Vj,k − Vj,k−1), k ≥ 2

}
, (8.21)

which is used to update the derivative DVj,k+0.5, 2nd derivative DDVj,k+0.5, regular
control URj,k+0.5, optimal control URj,k+0.5 and jump functions VHj,k+0.5(q) in

the list (8.11) for the pseudo-Hamiltonian ∆t · H(ex)
j,k+0.5 in (8.12, 8.20) using quasi-

linearization for nonlinear terms. The resulting update of the value is called the
predictor or 1st correction step (c, 1),

V
(c,1)
j,k+1 = Vj,k + ∆t · H(ex)

j,k+0.5 , (8.22)

for all j, as long as k ≥ 2. Otherwise the predicted step uses the current value or

V
(c,1)
j,k+1 = Vj,k +∆t ·Hj,k using (8.20). The evaluation step uses the updated average,

V
(c,1)
j,k+0.5 = 0.5(V

(c,1)
j,k+1 + Vj,k) , (8.23)

which is used to update all the needed values in (8.11) and finally in all the next
correction (c, 2),

V
(c,2)
j,k+1 = Vj,k + ∆t · H(c,1)

j,k+0.5 . (8.24)

The γth correction loop given V
(c,γ)
j,k+1 will contain

V
(c,γ)
j,k+0.5 = 0.5(V

(c,γ)
j,k+1 + Vj,k) , (8.25)

plus the corresponding evaluations of DV
(c,γ)
j,k+0.5, DDV

(c,γ)
j,k+0.5, UR

(c,γ)
j,k+0.5, UR

(c,γ)
j,k+0.5,

VH
(c,γ)
j,k+0.5(q) including integration, and H(c,γ)

j,k+0.5. Then

V
(c,γ+1)
j,k+1 = Vj,k + ∆t · H(c,γ)

j,k+0.5 . (8.26)

The corrections continue until the stopping criterion is reached, for instance, the
relative criteria given tolerance tolv,

∥∥∥V (c,γ+1)
j,k+1 − V

(c,γ)
j,k+1

∥∥∥
1
< tolv

∥∥∥V (c,γ)
j,k+1

∥∥∥
1
, (8.27)

for each k, continuing corrections if not satisfied, otherwise stopping the corrections
setting γmax = γ + 1 and setting the final (k + 1)st value at

Vj,k+1 = V
(c,γmax)
j,k+1 . (8.28)

“bk0allfinal”
2007/1/7
page 231

i

i

i

i

i

i

i

i

8.1. Finite Difference PDE Methods of SDP 231

In (8.27), ‖ ∗ ‖1 denotes the one-norm with respect to the state index j for cur-
rent time index k, but other norms could be used with the one-norm being less
computationally costly.

Stability criteria is another matter due to the complexity of the PIDE of
SDP in terms of multi-state systems, jump integrals, nonlinear terms and optimiza-
tion terms. A rough criterion focuses on the diffusion term G2

0,j,k+0.5DDVj,k+0.5 in
(8.20), which can be expanded by substituting the CFD form (8.11) for DVj,k+0.5

and DDVj,k+0.5 into (8.20) and produces

Vj,k+1 =
(
1 − ∆t

∆X2G
2
0,j,k+0.5

)
Vj,k+0.5

+0.5 ∆t
∆X2

(
G2

0,j,k+0.5 + Fj,k+0.5∆X
)
Vj+1,k+0.5

+0.5 ∆t
∆X2

(
G2

0,j,k+0.5 − Fj,k+0.5∆X
)
Vj−1,k+0.5

+∆tCj,k+0.5 + Λk∆t · (IVHj,k+0.5 − Vj,k+0.5) ,

(8.29)

where Cj,k = C0,j,k +C1,j,kUSj,k +0.5 ·C2,j,k ·US2
j,k and Fj,k = F0,j,k +F1,j,kUSj,k.

Following Kushner and Dupuis [179] and ignoring the jump and cost terms,
the positivity of the diffusion with drift terms leads to a parabolic mesh ratio

max
j,k

(
G2

0,j,k+0.5

) ∆t

(∆X)2
< 1, (8.30)

or so, but certainly should be less than one. This assumes that the PIDE is
diffusion-dominated and accounts for the drift as well as other terms in (8.3).
The discrete HJB equation is said to be diffusion-dominated, modified for current
form from a relation in [179], if

min
j,k

(
G2

0,j,k − |Fj,k|∆X
)
≥ 0, (8.31)

where Fj,k = F0,j,k +F1,j,kUSj,k, so that the coefficients of the non-diagonal terms,
Vj+1,k+0.5 and Vj−1,k+0.5 are also positive. Otherwise the discrete problem is either
mixed domination or drift-dominated, ignoring the jump cost terms. The tech-
nique is to decrease ∆t and/or increase ∆X if spurious oscillations appear. Not that
the diffusion-dominated condition (8.31) is satisfied for sufficiently small state step-
size ∆X as long as the diffusion coefficient G2

0,j,k+0.5 is not also sufficiently small.
For more information on linear and multi-state models, see Hanson [108], [216]
and [111] or see Kushner and Dupuis [179].

The central finite differences for state derivatives work quite well in the diffusion-
dominated regime, but are not useful for specified derivative boundary conditions,
such as the convection boundary condition and the no-flux or reflecting boundary
condition (7.43), e.g., v∗x(x0, t) = 0 on the left boundary or v∗x(xmax, t) = 0 on the
right boundary, respectively, assuming the diffusion coefficient g2

0(x, t)/2 > 0 for a
well defined flux and nonsingular boundary condition. Using second order forward
and backward finite differences, respectively, to maintain consistency in numerical
accuracy with the central differences in the interior of [x0, xmax], the derivatives at

“bk0allfinal”
2007/1/7
page 232

i

i

i

i

i

i

i

i

232 Chapter 8. Computational Stochastic Control Methods

the boundaries are

v∗x(x0, Tk) ≃ DV1,k = −0.5(V3,k − 4V2,k + 3V1,k)/∆x,

v∗x(xmax, Tk) ≃ DVNx,k = +0.5(VNx−2,k − 4VNx−1,k + 3VNx,k)/∆x.
(8.32)

Now, these signs of these terms are not a problem for stability since these conditions
are used as eliminants for V1,k for left boundary values and VNx,k for right boundary
values rather than a replacements for the discrete HJB equations (8.29). An alter-
nate derivative boundary condition implementation is to add artificial boundary to
the domain, but this author has found better performance using only the domain
with the derivative boundary values like (8.32).

For finite element versions see Chung, Hanson and Xu [54] or Hanson[108].
Although not on SDP, the work of Chakrabarty and Hanson [49] uses the CNI-
predictor-corrector methods discussed here with finite elements for a large scale
distributed parameter or PDE-driven system. Finite element methods are better
for presenting multidimensional systems and systems on irregular domains.

8.1.3 Upwinding Finite Differences If Not Diffusion-Dominated

When the diffusion-dominated condition (8.31) is no longer valid then the drift
term becomes important or the system (8.3) becomes drift dominant and the coef-
ficients of the non-diagonal terms, Vj+1,k and Vj−1,k are no longer guaranteed to be
positive. In this case the system takes upon more hyperbolic PDE characteristics
since the drift terms are of hyperbolic type as are first order PDEs. In the case of
drift-dominance or near-drift-dominance, following Kushner [179] and others, the
finite difference to the first state partial of the optimal value function v∗x(Xj , Tk) in
(8.11) should be changed from second-order CFD to first-order upwinded finite
differences (UFD) which uses forward or backward finite differences (FFDs or
BFDs) to coincide with the sign of the drift coefficient, respectively, i.e.,

DVj,k =

{
(Vj+1,k − Vj,k)/∆x, Fj,k ≥ 0

(Vj,k − Vj−1,k)/∆x, Fj,k < 0

}
, (8.33)

where again Fj,k = F0,j,k + F1,j,kUSj,k. Thus, upwind is in the direction of the
drift. However, upwinding requires a sacrifice of numerical accuracy consistency,
going from O(∆X2) CFD to O(∆X) UFD for the first state partial, in favor of
more stable numerical calculations. Substituting the UFD form (8.33) for DVj,k in
(8.20) produces

Vj,k+1 =
(
1 − ∆t

∆X2

(
G2

0,j,k+0.5 + 0.5|Fj,k+0.5|∆X
))

Vj,k+0.5

+0.5 ∆t
∆X2

(
G2

0,j,k+0.5 + [Fj,k+0.5]+∆X
)
Vj+1,k+0.5

+0.5 ∆t
∆X2

(
G2

0,j,k+0.5 + [Fj,k+0.5]−∆X
)
Vj−1,k+0.5

+∆tCj,k+0.5 + Λk∆t · (IVHj,k+0.5 − Vj,k+0.5) ,

(8.34)

“bk0allfinal”
2007/1/7
page 233

i

i

i

i

i

i

i

i

8.1. Finite Difference PDE Methods of SDP 233

where [f]± ≡ max[±f] ≥ 0, such that [f]+ +[f]− = |f | and [f]+− [f]− = f . Hence,
for the diffusion terms, all coefficients are positive provided the drift-adjusted
parabolic mesh ratio condition is satisfied,

max
j,k

(
G2

0,j,k+0.5 + 0.5|Fj,k+0.5|
) ∆t

(∆X)2
< 1, (8.35)

without the extra diffusion-dominated condition in (8.31) being needed.

8.1.4 Multi-state Systems and Bellman’s Curse of
Dimensionality

Generalization to multi-dimensional state spaces can lead to very large scale com-
putational problems, since the size of the computational problem grows with the
number of dimensions multiplied by the number of nodes per dimension.

Starting with a version of the PDE of SDP in (6.19) modified for the LQJD/U
form in (6.21-6.25) and no diffusion process correlations (R ′ = Inw×nw

),

0 = v∗t (x, t) + C0(x, t) + C⊤
1 (x, t)u∗ +

1

2
(u∗)⊤C2(x, t)u

∗

+∇⊤
x [v∗](x, t) · (f0(x, t) + f1(x, t)u

∗)

+
1

2

(
g0g

⊤
0

)
(x, t) :∇x

[
∇⊤

x [v∗]
]
(x, t) (8.36)

+

np∑

ℓ=1

λℓ(t)

∫

Qℓ

(
v∗
(
x + ĥ0,ℓ(x, t, qℓ), t

)
− v∗(x, t)

)
φQℓ

(qℓ)dqℓ ,

where the double-dot product (:) is defined as a trace in (5.99) and the ℓth jump-

amplitude vector is ĥ0,ℓ(x, t, qℓ) ≡ [h0,i,ℓ(x, t, qℓ)]nx×1 for ℓ = 1:np.
Let the state dimension be nx and realized state vector be given by x =

[xi]nx×1. In discrete form, the state vector with a common Nx nodes per dimension
becomes x = [xi]nx×1 → Xj = [Xi,ji

]nx×1, representing a single point in state
space, given one ji for each state i from the range ji = 1 :Nx for i = 1 : nx with
Xi,ji

= xi,0 + (ji − 1)∆Xi and ∆Xi = (xi,max − xi,0)/(Nx − 1). The entire set of
points in state space can be represented by X = [Xi,j]nx×Nx

with corresponding
vector index J = [Ji,j]nx×Nx

. This representation leads to a large scale expansion
of the independent variables of SDP from that in (8.37) for each current k = 1:Nt,

“bk0allfinal”
2007/1/7
page 234

i

i

i

i

i

i

i

i

234 Chapter 8. Computational Stochastic Control Methods

using CFD for each state component of state partial derivatives:

v∗(Xj, Tk) → VJ,k ≡ [Vj1,j2,...,jnx ,k]Nx×Nx×···×Nx ,

v∗
t (Xj, Tk) → (VJ,k+1−VJ,k)/(−∆t),

∇x[v∗](Xj, Tk) → DVJ,k ≡ [DVi,j1,...,jnx ,k]nx×Nx×···×Nx

=
ˆ`

Vj1+δi,1,...,jnx+δi,nx ,k

−Vj1−δi,1,...,jnx−δi,nx ,k

´
/∆Xi

˜
nx×Nx×···×Nx

,

∇x

ˆ
∇⊤

x [v∗]
˜
(Xj, Tk) → DDVJ,k ≡ [DDVi,j,j1,...,jnx ,k]nx×nx×Nx×···×Nx ,

u(reg)(Xj, Tk) → URJ,k ≡ [URi,j1,...,jnx ,k]nx×Nx×···×Nx

= − (C1,J,k + F1,J,kDVj,k) . //, C2,J,k,

u∗(Xj, Tk) → USJ,k ≡ [USi,j1,...,jnx ,k]nx×Nx×···×Nx

= [min(UMAXi, max(UMINi

, URi,j1,...,jnx ,k))]nx×Nx×···×Nx ,

v∗(Xj + bh0,ℓ(Xj, Tk, qℓ), Tk) → VHJ,k(qℓ).

(8.37)

where δi,j is the Kronecker delta, Fi,J,k = fi(XJ , Tk) for i = 0 : 1, Ci,J,k =
ci−(XJ , Tk) for i = 0 : 2, the symbol “./” denotes element-wise division, UMINi =

U
(min)
i for i = 1:nx and UMAXi = U

(max)
i for i = 1:nx. The hypercube form of the

control constraints is used here only for a concrete example, and can be replaced
for what is appropriate in the application of interest.

The Hessian matrix is not necessarily diagonal and is only so if the diffusion
coefficient 0.5(g0g

⊤
0)(x, t) is diagonal, so the full, asymmetric Hessian is given here:

DDVJ,k ≡
ˆ
DDVi,j,j1,...,jnx ,k

˜
nx×nx×Nx×···×Nx

=
ˆ`

Vj1+δi,1,...,jnx+δi,nx ,k−2Vj1,...,jnx ,k+Vj1−δi,1,...,jnx−δi,nx ,k

´
δi,j

‹
∆X2

i

+0.25
`
Vj1+δi,1+δj,1,...,jnx +δi,nx+δj,nx ,k

−Vj1−δi,1+δj,1,...,jnx−δi,nx1+δj,nx ,k − Vj1+δi,1−δj,1,...,jnx+δi,nx−δj,nx ,k

+Vj1−δi,1−δj,1,...,jnx−δi,nx−δj,nx ,k

´

·(1 − δi,j) /(∆Xi∆Xj)]nx×nx×Nx×···×Nx
,

(8.38)

in the second order accuracy, central finite difference form. If the Hessian is diago-
nal, then only the second line of (8.38) is needed. The off-diagonal terms, i.e., when
i 6= j, are conveniently calculated as the operator product of two central finite dif-
ferences for the two independent partials. In the case where the off-diagonal terms
are significant enough that they can affect stability and convergence, Kushner and
Dupuis [179] recommend a better form form than that given in (8.38) for the cross
term in DDVJ,k.

These are the basic numerical ingredients for converting the one-state prob-
lem Crank-Nicolson Extrapolator-Predictor-Corrector method in Subsec-
tion 8.1.2 to the multi-state problem.

Curse of Dimensionality

In the full Hessian case, the Hessian is the largest array that will be needed in the
computation and will basically determine the order of both computing and memory

“bk0allfinal”
2007/1/7
page 235

i

i

i

i

i

i

i

i

8.2. Markov Chain Approximation for SDP 235

demands for the solution of the PDE of SDP. In this full case the demands per
time-step k will then be roughly proportional to the order of the DDVj,k count or

O (NDDV) = O

(
n2

x ·
nx∏

i=1

Nx

)
= O

(
n2

x ·Nnx
x

)
= O

(
n2

x · enx ln(Nx)
)
, (8.39)

which is nx times the size of the vector functions like DVj,k and will grow exponen-
tially with state dimension times the logarithm of the common number of nodes per
dimension. If the number of nodes per dimension varies, i.e., Ni nodes in dimension

i, then the geometric meanNx = (
∑nx

i=1Ni)
1/nx can be used in place of the common

value Nx in the above exponential estimate. This exponential growth in demands
quantifies the exponential complexity in solving the PIDE of SDP and is called
Bellman’s curse of dimensionality. However, the very same exponential com-
plexity (8.39) is found in high dimensional, second order PDEs. If there are nx = 6
states and there are Nx = 64 nodes per state using 8-byte (8B) or double words,
then the order of the amount of storage required is NDDV = 8 · 62 · 646B = 18GB,
where 1GB is a gigabyte or a computer billion bytes or 10244 bytes.

If the discrete Hessian is diagonal, then the amount of storage needed is re-
duced to some multiple of

NDV = 8 · nx ·Nnx
x B,

using 8 byte (8B) words, DDV that has the same size as DV, so in the example
with nx = 6 and Nx = 64, NDV = 8 · 6 · 646B = 3GB, a more reasonable size for
a large scale problem capable computer. If the number of nodes per dimension is
reduced to 32 instead of 64, then the amount of storage needed is some multiple
of 8 · 6 · 326B = 49, 152MB = 0.0469GB, approaching PC desktop capability (1MB
being a megabyte or or 10242 bytes). The growth of the curse of dimensionality in
the logarithm to the base 2 scale is illustrated in Fig. 8.1 for the diagonal Hessian
size caseNDV. Note the top scale in the figure is about 60 log(B) and 260B = 10246B
is 1 terabytes (1TB) or 10242GB (1GB = 240B, while 1MB = 220B) and that is
well within the capabilities of our current largest scale computers.

For parallel processing techniques in computational stochastic programming
refer to Hanson’s 1996 chapter [108]. See also [109] for more general supercomputing
techniques that were developed originally solving computational control application
problems.

8.2 Markov Chain Approximation for SDP

Another method for numerically solving stochastic dynamic programming problems
in continuous time is Kushner’s Markov chain approximation (MCA) [174, 175]
that implicitly provides good convergence properties by normalizing the correspond-
ing finite differences as proper Markov chains. In addition, MCA facilitates the proof
of weak convergence using probabilistic arguments. Kushner and Dupuis’s [179]
method of using an auxiliary stochastic process, so that the composite stochastic
process properly satisfies boundary conditions, is also treated. The summary here is
in the spirit of this applied text to make the Markov chain approximation method

“bk0allfinal”
2007/1/7
page 236

i

i

i

i

i

i

i

i

236 Chapter 8. Computational Stochastic Control Methods

0
1

2
3

4
5

6

2

4

6

8

10

10

20

30

40

50

60

log
2
(N

x
), log

2
(Nodes)

Curse of Dimensionality: N
DV

 = log
2
(8*n

x
 exp(n

x
 ln(N

x
)))

n
x
, State Dimensions

lo
g

2(N
D

V
),

 L
og

2(
P

ro
bl

em
 S

iz
e

O
rd

er
)

Figure 8.1. Estimate of the logarithm to the base 2 of the order of the
growth of memory and computing demands using 8 byte words to illustrate the curse
of dimensionality in the diagonal Hessian case for nx = 1 : 10 dimensions and
Nx = 1:64 = 1:26 nodes per dimension. Note that 1KB or one kilobyte has a base
2 exponent of 10 = log2(2

10), while the base 2 exponent is 20 for 1MB, 40 for 1GB
and is 60 for 1TB.

more accessible, concentrating on the techniques, rather than the problems and
formal definitions.

8.2.1 The MCA Formulation for Stochastic Diffusions

Although MCA is valid for jump-diffusions, only diffusions will be considered here
to keep the complexity manageable and the reader can consult [179] for a more
complete treatment of MCA. Let the diffusion satisfy the SDE,

dX(t)
sym
= f(X(t), U(t), t)dt+ g(X(t), t)dW (t) , (8.40)

where the notation otherwise is the same as in (8.1) of the prior section, with f
and g being bounded, continuous and Lipshitz continuous in X , while f has the
same properties in U , but uniformly. For later reference, the following conditional
infinitesimal moments are

E[dX(t)|X(t) = x, U(t) = u] = f(x, u, t)dt,

Var[dX(t)|X(t) = x, U(t) = u] = g2(x, t)dt.
(8.41)

“bk0allfinal”
2007/1/7
page 237

i

i

i

i

i

i

i

i

8.2. Markov Chain Approximation for SDP 237

Let the minimal, expected costs be defined as

v∗(x, t) ≡ minU [t,tf)

[
E

(dW,dP)[t,tf)

[∫ tf

t
C(X(s), U(s), s)ds+ S(X(tf), tf)

∣∣∣X(t) = x, U(t) = u
]]
,

(8.42)

for t0 ≤ t < tf . The corresponding PDE of stochastic dynamic programming is

0 = v∗t (x, t) + minu [H(x, u, t)]

≡ v∗t (x, t) + minu

[
C(x, u, t) + f(x, u, t)v∗x(x, t) + 1

2g
2(x, t)v∗xx(x, t)

]

= v∗t (x, t) + H∗(x, t) .

(8.43)

The first step of the numerical part of the MCA procedure is to approximate
the backward PDE (8.43) by a backward Euler method in time for simplicity. Then
using the kth time step at tk with optimal value vk(x) ≃ v∗(x, tk), the next value is

vk−1(x) = vk(x) + ∆tk−1 minu

[
Ck(x, u) + fk(x, u)v′k(x) + 1

2g
2
k(x)v′′k (x)

]
, (8.44)

for forward index k = 1 :Nt, tk ≡ tk−1 + ∆tk−1, tNt
= tf , Ck(x, u) = C(x, u, tk),

fk(x, u, tk) and gk(x) = g(x, tk). The final condition is vNt
(x) = S(x, tf). The time

step ∆tk−1 is called the MCA interpolation time increment and is selected
to help form a proper Markov chain for convergence, so the increments are not
necessarily constant. Though motivated by an approximation in time, time has been
removed from the problem, i.e., the current problem is actually time-independent.
Finite differences in the state come after specifying diffusion consistency conditions.

8.2.2 MCA Local Diffusion Consistency Conditions

Let ξk for k ≥ 0 denote a Markov chain of discrete stages, intended as a discrete
model for the state x, whose spacing is the order of some state mesh measure ∆X ,
i.e., |∆ξk| = O(∆X) where ∆ξk ≡ ξk+1 − ξk. Let the Markov chain transition
probability for diffusions (D) be defined by

p(D)(x, y|u) ≡ Prob[ξk+1 = y|ξj , uj , j < k, ξk = x, uk = u] (8.45)

for transitions from current stage ξk = x to the next stage ξk+1 = y using control
policy uk = u. (The term stage is used to denote a discrete state.) These transitions
must satisfy the probability rules of non-negativity p(D)(x, y|u) ≥ 0 and probability
conservation for transitions,

∑
ℓ p

(D)(x,Xℓ|u) = 1, under current control u and over
probable state transitions y = Xℓ. The increments ∆ξk must satisfy the MCA local
diffusion consistency conditions:

E[∆ξk|x, u] ≡
∑

ℓ(Xℓ − x) · p(D)(x,Xℓ|u) = ∆tk−1 · (fk(x, u) + o(1));

Var[∆ξk|x, u] ≡
∑

ℓ(Xℓ − x− E[∆ξk|x, u])2 · p(D)(x,Xℓ|u)
= ∆tk−1 · (g2

k(x) + o(1)),

(8.46)

“bk0allfinal”
2007/1/7
page 238

i

i

i

i

i

i

i

i

238 Chapter 8. Computational Stochastic Control Methods

with ∆ξk → 0+ as ∆X → 0+, for k = 0 : Nt−1. The conditions are consistent
with the first two conditional infinitesimal moments (8.41) of a stochastic diffusion
approximation corresponding to the SDE (8.40), so they are neccesary preconditions
for convergence of the Markov chain to the diffusion SDE (8.40).

See Sect. 7.8 on p. 216 or Feller, vol. II [84]) for more information. Also, see
Kloeden and Platen [165] for stricter definitions of diffusion consistency conditions.
The generalization of these diffusion consistency conditions to jump-diffusions is
much more complicated, but is treated in Subsect. 8.2.4.

The discrete process can be used to construct a piece-wise constant (pwc/)
interpolation of the state and control processes in continuous time, i.e.,

(X(pwc/)(t), U (pwc/)(t) = {(ξk, uk), tk−1 ≤ t < tk−1 + ∆tk−1 = tk,

for k ≥ 1} , (8.47)

with the relationship between the interpolation times tk and interpolation time
increments ∆tk−1 being tk+1 =

∑k
j=0 ∆tj . In general, the time increments will

depend on ξk and uk, which also depends on the order of state mesh ∆X , so
∆tk−1 = ∆tk−1(ξk, uk; ∆X). As the state mesh goes ot zero, it is required that the
maximal state mesh go to zero, i.e., maxu,x[∆tk−1(x, u; ∆X)] → 0+.

8.2.3 MCA Numerical Finite Differences for State Derivatives
and Construction of Transition Probabilities

Construction of the Markov chain transition probabilities is found by finite differ-
encing the state derivative. The state derivative is upwinded by first order forward
or backward differences (UFD) for greater stability depending on the sign of the
drift coefficient fk(x, u, t) as in (8.33),

v′k(x) ≃

(
vk(x+ ∆X) − vk(x)

∆X , fk(x, u) ≥ 0

(
vk(x) − vk(x − ∆X)

∆X , fk(x, u) < 0

 (8.48)

and central finite differences (CFDs) of second order accuracy are used for the
second state partial

v′′k (x) ≃ vk(x+ ∆X) − 2vk(x) + vk(x− ∆X)

∆X2 . (8.49)

Alternately, second order upwinding can be used for the state first derivative so
that the accuracy is consistent with O(∆X2) accuracy of the second derivative used
above, but this leads to a double jump in the state by 2±∆X so this complication
will not be introduced here although the larger O(∆X) error numerically pollutes
the smaller O(∆X2) error for small ∆X . Using the O(∆X2) forward and backward
finite differences of the form used for derivative boundary conditions in (8.32) would
not be useful since the alternating signs would lead to improper, negative transition
probabilities for a least one double step transition.

“bk0allfinal”
2007/1/7
page 239

i

i

i

i

i

i

i

i

8.2. Markov Chain Approximation for SDP 239

Substituting into Eq. (8.44) for vk−1(x) and then collecting the coefficients in
terms of transition probabilities,

vk−1(x) = minuk−1

[
∆tk−1 · Ck(x, uk−1) + p

(D)
k (x, x|uk−1) · vk(x)

+p
(D)
k (x, x + ∆X |uk−1) · vk(x+ ∆X)

+p
(D)
k (x, x − ∆X |uk−1) · vk(x− ∆X)

]
,

(8.50)

the transition probabilities are found to be

p
(D)
k (x, x|uk−1)=1−∆tk−1

∆X2
·
(
g2

k(x)+∆X |fk(x, uk−1)|
)
, (8.51)

p
(D)
k (x, x + ∆X |uk−1)=

∆tk−1

∆X2
·
(
0.5g2

k(x)+∆X [fk(x, uk−1)]+
)
, (8.52)

p
(D)
k (x, x − ∆X |uk−1)=

∆tk−1

∆X2
·
(
0.5g2

k(x)+∆X [fk(x, uk−1)]−
)
, (8.53)

where [f]± ≡ max[±f] ≥ 0. Upwinding ensures that all terms in the coefficients of

∆tk−1 are non-negative, so that the up and down transition probabilities, p
(D)
k (x, x+

∆X |uk−1) and p
(D)
k (x, x−∆X |uk−1) are nonnegative. Note that on the right-hand-

side of the conservation law (8.50) for the transition probabilities to get the value
function for the past time tk−1, the value function is evaluated at the current time
tk, but the control is for the past time tk−1 which makes it seem like the control is
implicit. However, uk−1 is thought to be the control to get the state x from time
tk−1 to time tk and the optimization over uk−1 will determine uk−1 in terms of
values at tk anyway, so is not really an implicit term. Genuine implicit methods are
discussed in Kushner and Dupuis [179].

It is clear that ∆tk−1 must be sufficiently small so that the state self-transition

probability p
(D)
k (x, x|uk−1) is non-negative, i.e., is a proper probability. This implies

the following convergence criteria

∆tk−1

∆X2
≤ 1

γ2
k(x)+∆X |fk(x, uk−1)|

(8.54)

or in terms of a generalization of the parabolic mesh ratio condition

(
g2

k(x)+∆X |fk(x, uk−1)|
)
· ∆tk−1

(∆X)2
≤ 1, (8.55)

including both the diffusion coefficient and the upwinded drift term in the scaling
of ∆tk−1/(∆X)2. Since (8.54) should hold for all discrete time steps k, then we
should have

max
x,u,k

[
(g2

k(x)+∆X |fk(x, u)|)∆tk−1

∆X2

]
≤ 1. (8.56)

“bk0allfinal”
2007/1/7
page 240

i

i

i

i

i

i

i

i

240 Chapter 8. Computational Stochastic Control Methods

The diffusion consistency conditions (8.46) can be confirmed in this three local
state case directly,

E[∆ξk|x, uk−1] = p
(D)
k (x, x|uk−1) · 0 + p

(D)
k (x, x+ ∆X |uk−1) · (+∆X)

+p
(D)
k (x, x− ∆X |uk−1) · (−∆X)

= ∆tk−1 · ([fk(x, uk−1)]+ − [fk(x, uk−1)]−)

≡ ∆tk−1 · fk(x, uk−1),

Var[∆ξk|x, uk−1] = p
(D)
k (x, x|uk−1) · (∆tk−1fk(x, uk−1))

2

+p
(D)
k (x, x+ ∆X |uk−1) · (∆X − ∆tk−1fk(x, uk−1))

2

+p
(D)
k (x, x− ∆X |uk−1) · (−∆X − ∆tk−1fk(x, uk−1))

2

= ∆tk−1 ·
(
g2

k + |fk(x, uk−1)|∆X − 2∆tk−1f
2
k (x, uk−1)

)

= ∆tk−1 ·
(
g2

k + o(1)
)

as ∆X → 0+ and consequently ∆tk−1 → 0+.
Upon proper choice of the time and state grids satisfying (8.56), for example

in the case of regular grids as used in the previous section in (8.10) with Nt nodes
in t on [t0, tf] and Nx nodes in x on [x0, xmax], Tk = tf −(k−1)∆t for k = 1 :Nt,
∆tk−1 = ∆t = (tf − t0)/(Nt − 1) and Xj = x0 + (j− 1)∆X for j = 1 : Nx,
∆X = (xmax−x0)/(Nx−1), then

Vj,k−1 ≡ vk−1(Xj)

= ∆t · Ck(Xj , Uj,k−1) + p
(D)
k (Xj , Xj |Uj,k−1) · Vj,k

+p
(D)
k (Xj , Xj+1|Uj,k−1) · Vj+1,k

+p
(D)
k (Xj , Xj−1|Uj,k−1) · Vj−1,k,

(8.57)

when the optimal control is

Uj,k−1 = argminuk−1

[
∆tk−1 · Ck(Xj , uk−1) + p

(D)
k (Xj , Xj |uk−1) · Vj,k

+p
(D)
k (Xj , Xj+1|uk−1) · Vj+1,k

+p
(D)
k (Xj , Xj−1|uk−1) · Vj−1,k

]
,

(8.58)

for j = 1 : Nx for each stage k = Nt : −1 : 2 in backward order. Note that
in [179], Kushner and Dupuis suggest a preference for selecting the interpolation
time-step ∆tk−1 so that the self-transition probability p(D)(x, x|u) vanishes leading
to a renormalization of the non-self-transition probabilities like p(D)(x, x± ∆X |u).

In this section, the Markov chain approximation has only been summa-
rized to convey the main ideas, but for those interested in the weak convergence
proofs and related theory they should consult [176, 179] and additional references
therein.

“bk0allfinal”
2007/1/7
page 241

i

i

i

i

i

i

i

i

8.2. Markov Chain Approximation for SDP 241

8.2.4 MCA Extensions to Include Jump Processes

In [179, Sect. 5.6, pp. 127-133], Kushner and Dupuis briefly present the extensions
of the Markov chain approximation for diffusions to that for jump-diffusions.
Earlier Kushner and DiMasi [178] made contributions to the jump-diffusion optimal
control problem, while Kushner [177] more recently gave further results on existence
and numerical methods for the problem.

The main idea is based upon the facts that the Poisson process is instan-
taneous compared to the continuity of the diffusion process and that the Poisson
process during short time intervals ∆t can be asymptotically treated as a zero-one
Bernoulli process as mentioned in prior chapters. Starting with the jump-diffusion
SDE extension of (8.40),

dX(t)
sym
= f(X(t), U(t), t)dt+ g(X(t), t)dW (t) ,

+h(X(t), U(t), t, Q)dP (t;Q,X(t), U(t), t) ,
(8.59)

where dP (t;Q,X(t), U(t), t) is the differential Poisson process with rate λ(t;x, u, t),
h(x, u, t, q) is the state jump-amplitude and generalized probability density φQ(q).
The conditional infinitesimal moments are given by

E[dX(t)|X(t) = x, U(t) = u] = f(x, u, t)dt+ EQ[h(x, u, t, Q)]λ(t;x, u, t)dt,

Var[dX(t)|X(t) = x, U(t) = u] = g2(x, t)dt + EQ[h2(x, u, t, Q)]λ(t;x, u, t)dt.
(8.60)

By separability of the diffusion and the jumps for sufficiently small time-steps

∆tk−1, the diffusion transition probabilities are unchanged, p
(D)
k (x, y|u) for stage k.

The probability of zero or one Poisson jump in time-steps of ∆tk−1 can be written

p
(J)
j,k =

1 − λ∆tk−1 + o(∆tk−1), j = 0 jumps

λ∆tk−1 + o(∆tk−1), j = 1 jump

o(∆tk−1), j ≥ 2 jumps

, (8.61)

as ∆tk−1 → 0+.
For the discretization jump-amplitude function h(x, t, q) of the corresponding

compound Poisson process, a concrete rather than the abstract formulation of Kush-
ner and Dupuis [179] will be given so that the transition of a piece-wise-constant
pre-jump stage x = Xj for some j to a piece-wise-constant post-jump stage y = Xℓ

for some ℓ, where Xj+1 = Xj + ∆Xj for j = 1 :Nx − 1, X1 = x0, XNx
= xmax

and the mesh is given by ∆X = maxj (∆Xj) → 0+. However, the treatment of
jumps is much more complicated than that for diffusion whose dependence is only
local, depending on only nearest neighbor or similarly close nodes, but jump be-
havior is globally dependent on nodes that may be remote from the current node
Xj . Also, the connection of the jump-amplitude function to the jump-amplitude
random mark variable q will be clarified. The jump-amplitude may be continuously
distributed due to a continuous mark density φQ(q). It is assumed that post-jump
stage y = x+ h(x, t, q) is uniquely invertible with q as a function of y given x, but
it is necessary to have a set target S(Xℓ) rather than a point target y = Xℓ so a

“bk0allfinal”
2007/1/7
page 242

i

i

i

i

i

i

i

i

242 Chapter 8. Computational Stochastic Control Methods

corresponding set Qj,ℓ(t) of positive probability measure can be found. Let S(Xℓ)
be a partition of the state domain [X1, XNx

] such that

Nx∑

ℓ=1

S(Xℓ) = [X1, XNx
].

The S(Xℓ) will usually depend on the application due particular boundary condi-
tions, singular points or related zero points, which could lead to forward or backward
shifted intervals or intervals centered about Xℓ as with rounding. The discretized,
here piece-wise-continuous (pwc), instead of the prior piece-wise-constant (pwc/)

step functions, jump-amplitude H
(pwc)
j,ℓ (t) given the stage set S(Xℓ) is

H
(pwc)
j,ℓ (t) = h(Xj , t,Qj,ℓ(t)) = S(Xℓ) −Xj , (8.62)

implicitly defining the mark set Qj,ℓ(t) for 1 ≤ j <∞ and 1 ≤ ℓ <∞. This ensures
that a jump takes a proper (pwc) stageXj to a proper (pwc) stageXℓ defined by the
set S(Xℓ). Given a jump it is also necessary to know the corresponding probability
of the transition referenced by (8.62) , i.e.,

Prob [y = x+ h(x, t, q) ∈ S(Xℓ) | x = Xj, y ∈ S(Xℓ)]

= Φ(Xj , Xℓ, t) ≡
∫
Qj,ℓ(t)

φQ(q)dq,
(8.63)

where φQ(q) is the generalized mark density with corresponding distribution ΦQ(q),

except that when h(Xĵ , t, q) = 0 for some ĵ, i.e., there is a zero jump and y ∈ S(Xℓ)

is not achievable for general ℓ, then Φĵ,ℓ(t) ≡ 0. In the case that Φ(Xj , Xℓ, t) leads
to a probabilistically deficient distribution, in general the renormalized form is

Φ̂(Xj , Xℓ, t) = Φ(Xj , Xℓ, t)
/

Φ(Xj , t) , (8.64)

where

Φ(Xj , t) ≡
Nx∑

ℓ=1

Φ(Xj , Xℓ, t) =

Nx∑

ℓ=1

∫

Qj,ℓ(t)

φQ(q)dq.

Example 8.3. Geometric Jump-Diffusion Target Mark Set Calculations:
For the geometric jump-diffusion used in finance, with linear jump-amplitude

h(x, t, q) = xJ(q, t),

it is convenient to choose the log-return jump as the mark, i.e.,

q = [ln(X)](t) = ln
((
X(t−) +X(t−)J(q, t−)

)
/X(t−)

)
= ln(1 + J(q, t−)),

so h(x, t, q) = x(exp(q) − 1). Hence, X1 = x0 = 0 is a zero point needing special
treatment since there can be no target stage except for [X1, X1] = {0}, so that a
proper partition of [X1, XNx

] would be S(X1) = {0} and S(Xℓ) = (Xℓ−1, Xℓ−2] for

“bk0allfinal”
2007/1/7
page 243

i

i

i

i

i

i

i

i

8.2. Markov Chain Approximation for SDP 243

ℓ = 2:Nx. The discrete jump-amplitude H
(pwc)
1,ℓ (t) ≡ 0 for definiteness when X1 = 0

and
H

(pwc)
j,ℓ (t) ≡ Xℓ −Xj

for ℓ = 2:Nx. The target mark set is

Qj,ℓ(t) = (ln(Xℓ−1/Xj), ln(Xℓ/Xj)]

for ℓ = 2 : Nx when j > 1. Given a mark density, then a renormalized target
distribution Φ̂(Xj , Xℓ, t) can be calculated.

The Markov chain approximation ξk(∆X) is locally jump-diffusion con-
sistent if there is an interpolation time interval ∆tk−1 = ∆t(x, u; ∆X) → 0+

uniformly in (x, u,∆X) as the mesh gauge ∆X → 0+ and so that

1. Along with ∆t(x, u; ∆X), there is a locally diffusion consistent transition prob-
ability p(D)(x, y | u; ∆X) satisfying the conditions in (8.46);

2. The jump-diffusion transition probabilities p(JD)(x, y | u;λ,∆X) must
conserve probability over the post-jump values y = Xℓ from any given pre-
jump value x = Xj, i.e.,

∑

ℓ

p(JD)(Xj , Xℓ | u;λ,∆X) = 1.

3. Markov chain increments ∆ξk satisfy the MCA jump-diffusion local consis-
tency conditions consistent with the jump-diffusion conditional infinitesimal
moments (8.60), with replacements f(x, u, t) → fk, (x, u), g(x, t) → gk(x),

h(x, t, q) → hk(x, q), H
(pwc)
j,ℓ (t) → H

(pwc)
j,ℓ,k Φ̂(Xj , Xℓ, t) → Φ̂k(Xj , Xℓ), under

current control u and over probable state transitions

E[∆ξk | Xj , uk−1] ≡
∑

ℓ(Xℓ −Xj) · p(JD)(Xj , Xℓ | uk−1;λ,∆X)

= ∆tk−1 · (fk(Xj , uk−1) + λEQ[hk(Xj , Q)] + o(1)) ;

Var[∆ξk | Xj , uk−1] ≡
∑

ℓ(Xℓ −Xj − E[∆ξk | Xj , uk−1])
2

·p(JD)(x,Xℓ | uk−1;λ,∆X)

= ∆tk−1 ·
(
g2

k(x) + λEQ[h2
k(Xj , Q)] + o(1)

)
,

(8.65)

with ∆ξk → 0+ as ∆X → 0+, for k = 0:Nt−1.

4. There is a small error factor ε(s, u; ∆X) = o(∆t(x, u; ∆X)) that can be used
to construct (Kushner and Dupuis [179], modified for clarification here) the
jump-diffusion transition probability p(JD)(x, y | u;λ,∆X) and is of the
form

p(JD)(Xj , Xℓ | u;λ,∆X)

= (1 − λ∆t(Xj , u; ∆X) − ε(Xj, u; ∆X)) · p(D)(Xj , Xℓ | u; ∆X)

+(λ∆t(Xj , u; ∆X) + ε(Xj , u; ∆X)) · Φ̂k(Xj , Xℓ)1Xℓ∈Xj+H
(pwc)
j,ℓ,k

,

(8.66)

“bk0allfinal”
2007/1/7
page 244

i

i

i

i

i

i

i

i

244 Chapter 8. Computational Stochastic Control Methods

for 1 ≤ j < ∞ and 1 ≤ ℓ < ∞, where 1S is the indicator function for set

S = {Xℓ ∈ Xj +H
(pwc)
j,ℓ,k } and is used so the term it multiplies is only used for

a jump.

By using the conservation laws

Nx∑

ℓ=1

p(D)(Xj , Xℓ | u; ∆X) = 1

and
Nx∑

ℓ=1

Φ̂(Xj , Xℓ, t) = 1,

it is easy to show the constructed jump-diffusion transition probability in (8.66) is
conserved, i.e.,

Nx∑

ℓ=1

p(JD)(Xj , Xℓ | u;λ,∆X) = 1.

The error factor ε(s, u; ∆X) reflects the the asymptotically small error terms o(∆tk−1)
in the Poisson counting process definition (8.61), but is selected so the conservation
is exact.

Using the first moment diffusion local consistency condition in (8.46) and a
mark density weighted rectangular integration rule,

EQ[hk(x,Q)] ≃
Nx∑

ℓ=1

H
(pwc)
j,ℓ,k Φ̂k(Xj , Xℓ).

Then,

E[∆ξk | Xj , u] ≃ ∆tk−1(Xj , u; ∆X) · (fk(Xj , u) + EQ[hk(x,Q)] + o(1))

= X
(D)

+X
(J)
,

splitting the diffusion and jump parts. Similarly, for the second moment jump-
diffusion consistency condition, except with more algebra with the above splitting
and more small time asymptotics in absorbing all quadratic and smaller time incre-
ments into ∆tk−1 · o(1), it can be demonstrated that

Var[∆ξk | Xj , u] ≃ ∆tk−1(Xj , u; ∆X) ·
(
g2

k(Xj) + EQ

[
h2

k(x,Q)
]
+ o(1)

)
.

Further evaluations require knowledge of the mark density, the jump-diffusion
coefficients (f, g, h) and the boundary condition on the state domain. Due to the
global nature of the compound jump process with jump beyond the local nodes
needed by the diffusion component process, the diffusion mesh ratio criteria (8.56)
(or (8.30) in case the central finite differences are usable) will have to suffice for
practical reasons. See Kushner and Dupius [179] for information on reflected bound-
ary conditions and other techniques for handling boundary conditions when there
are jumps.

“bk0allfinal”
2007/1/7
page 245

i

i

i

i

i

i

i

i

8.2. Markov Chain Approximation for SDP 245

Suggested References for Further Reading

• Chung, Hanson and Xu, 1992 [54].

• Douglas and Dupont, 1970 [72].

• Douglas, 1979 [73] .

• Dyer and McReynolds, 1979 [76].

• Gunzburger, 2003 [101].

• Hanson, 1989 [106], 1991 [107], 1996 [108] and 2003 [109, 110].

• Hanson and Naimipour, 1993 [111].

• Kushner, 1976 [174], 1990 [175], 2000a [176] and 2000b [177].

• Kushner amd DiMasi, 1978 [178].

• Kushner and Dupuis, 2001 [179].

• Kushner and Yin, 1997 [181].

• Larson, 1967 [182].

• Naimipour and Hanson, 1993 [216].

• Polak, 1973 [227].

• Press et al., 2002 [230].

• Westman and Hanson, 1997 [274] and 2000 [277].

• Zhu and Hanson, 2006 [291].

“bk0allfinal”
2007/1/7
page 246

i

i

i

i

i

i

i

i

246 Chapter 8. Computational Stochastic Control Methods

“bk0allfinal”
2007/1/7
page 247

i

i

i

i

i

i

i

i

Chapter 9

Stochastic Simulations

Any one who considers arithmetical methods of producing
random digits is, of course, in a state of sin.
—John von Neumann (1903-1957),
apparently meant just as a caution,
http://en.wikiquote.org/wiki/John von Neumann .

Fast cars, fast women, fast algorithms...
what more could a man want?
—Joe Mattis at http://www.xs4all.nl/∼jcdverha
/scijokes/1 5.html#subindex.

Methods are considered that treat stochastic dynamics, such as direct simula-
tions of SDEs [166, 165] with many numerical techniques offering improvements over
the elementary integration methods beyond stochastic versions of Euler’s method.

Monte Carlo methods simulate solutions to higher level applications, which
include many improvements to increase the probable accuracy in order to reduce the
need of large scale sample sizes, many of the techniques involve variance reduction
and generation sample variates for nonuniform distributions [96, 150, 290].

9.1 SDE Simulation Methods

Simulation methods for the dynamics of stochastic differential equations are dis-
cussed. Basic simulation procedures have been introduced in Chapters 2-5, but
here the simulation of diffusion and jump-diffusion simulation is discussed and ex-
plored much further. Primary references are by Kloeden et al. [166], Cyganowski et
al. [65, 64, 66], the compact review by D. Higham [139] and D. Higham and Kloe-
den [143, 144]. Many of these references deal almost entirely with diffusions and
the most comprehensive, theoretically and numerically, on diffusions is the mono-

247

“bk0allfinal”
2007/1/7
page 248

i

i

i

i

i

i

i

i

248 Chapter 9. Stochastic Simulations

graph of Kloeden and Platen [165]. The references of Maghsoodi [191], Cyganowski
et al. [65, 64] and D. Higham and Kloeden [144] treat jump-diffusions in a serious
way. However, random simulations to solve stochastic optimal control problems
are not too useful due to the additional complexity involved in the optimization
step, while optimal control problems can be reduced to deterministic ODE or PDE
formulations which can be solved more systematically.

9.1.1 Convergence and Stability for Stochastic Problems and
Simulations

Consider the jump-diffusion stochastic differential equation.

dX(t) = f(X(t), t)dt+ g(X(t), t)dW (t) + h(X(t), t)dP (t), (9.1)

X(0) = x0 with probability one and 0 ≤ t ≤ tf , where the coefficient functions
f(X(t), t), g(X(t), t) and h(X(t), t) are continuously differentiable (see [165] for
tighter conditions; h(X(t), t) could also depend on random marks Q).

In Section 4.3.3, the main concern was formal SDE simulations, but here there
will be more attention on convergence of the simulations. Let tk denote a discrete
time such that tk+1 = tk + ∆t for k = 0 :Nt − 1, so tNt

= tf and ∆t = tf/Nt. For
the state, let Xk denote the discrete approximation at time tk to the exact value
X(tk), i.e., Xk ≃ X(tk).

Definition 9.1. The approximation Xk is said to converge to the exact value
X(tk),

• in the strong mean absolute error sense if the conditional expectation,

E [|Xk −X(tk)| | X(0) = x0] → 0+ as ∆t→ 0+, (9.2)

for fixed time tk = k∆t, e.g., tf = tNt
;

the strong convergence in the mean absolute error is said to be order or with
log-rate γs > 0 in mean absolute error if

E [|Xk −X(tk)| | X0 = x0] ≤ Cs · (∆t)γs , (9.3)

for sufficiently small ∆t, for fixed time tk = k∆t, e.g., tf = tNt
and constant

Cs > 0.

• in the weak sense if the difference in conditional expectations,

|E [Xk | X0 = x0] − E [X(tk) | X(0) = x0]| → 0+ as ∆t→ 0+, (9.4)

for fixed time tk = k∆t, e.g., tf = tNt
;

the weak convergence is said to be order or with log-rate γw > 0 in mean
error if

|E [Xk | X0 = x0] − E [X(tk) | X(0) = x0]| ≤ Cw · (∆t)γw , (9.5)

for sufficiently small ∆t, for fixed time tk = k∆t, e.g., tf = tNt
and constant

Cw > 0.

“bk0allfinal”
2007/1/7
page 249

i

i

i

i

i

i

i

i

9.1. SDE Simulation Methods 249

• Alternately, strong convergence in mean square error (mse), instead
of mean error, can be defined (Maghsoodi [191]),

sup
k

(
E
[
(Xk −X(tk))2

∣∣X0 = x0

])
≤ C(mse)

s · (∆t)γ(mse)
s , (9.6)

for sufficiently small ∆t and constant C
(mse)
s > 0; thus the maximal root mean

square error rate is

O
(
(∆t)γ(mse)

s /2
)
,

so it is fair to compare the mean absolute error rate γs with the root mean

square error rate γ
(mse)
s /2.

For ordinary differential equations, a solution X(t) is asymptotic stable as
t→ +∞ if

lim
t→+∞

|X(t)| = 0,

in the continuous time case and in the discrete time case the approximation Xk is
asymptotic stable as k → +∞ if

lim
k→+∞

|Xk| = 0.

However, such a definition is not applicable even if the coefficient functions are
bounded and otherwise nicely behaved, since for diffusions the range of the random
process W (t) is infinite. Thus, the notion of stochastic asymptotic stability has to
be modified for stochastic processes.

Definition 9.2.

• For continuous time, the real stochastic solution X(t) is said to be asymp-
totically mean square stable if

lim
t→+∞

E
[
X2(t)

∣∣ X(0) = x0

]
= 0. (9.7)

Alternately, X(t) is asymptotically stable in probability if

Prob

[
lim

t→+∞
|X(t)| = 0

∣∣∣∣ X(0) = x0

]
. (9.8)

• For discrete time, the real stochastic approximation Xk is said to asymptot-
ically mean square stable

lim
k→+∞

E
[
X2

k

∣∣ X0 = x0

]
= 0. (9.9)

Alternately, Xk is asymptotically stable in probability if

Prob

[
lim

k→+∞
|Xk| = 0

∣∣∣∣ X0 = x0

]
. (9.10)

“bk0allfinal”
2007/1/7
page 250

i

i

i

i

i

i

i

i

250 Chapter 9. Stochastic Simulations

As a continuous-time example, consider the linear, constant coefficient SDE,
letting (f(x, t), g(x, t), h(x, t)) = (µ0, σ0, ν0) in (9.1),

dX(t) = X(t)(µ0dt+ σ0dW (t) + ν0dP (t)),

where µ0, σ0, ν0 and λ0 are constants and where E[dP (t)] = λ0dt. From (4.80), the
exact solution is

X(t) = x0 exp((µ0 − σ2
0/2)t+ σ0W (t))(1 + ν0)

P (t). (9.11)

Using the independent increment techniques for the expectation in (4.81), the mean
square is

E
[
X2(tf)

∣∣X(0) = x0

]
= x2

0e
(2(µ0+λ0ν0)+σ2

0+λ0ν2
0)tf .

Thus, X(tf) is asymptotically mean square stable if the exponential is decaying as
tf → +∞, so

2(µ0 + λ0ν0) + σ2
0 + λ0ν

2
0 < 0, (9.12)

which, in qualitative terms of the relative conditional infinitesimal moments, can
be put in the form:

E[dX(t)/X(t) | X(t)] < −0.5Var[dX(t)/X(t) | X(t)],

assuming x0 > 0 so X(t) > 0. Hence, the combined jump-diffusion relative in-
finitesimal mean has to be less than minus one-half of the relative infinitesimal
variance.

9.1.2 Stochastic Diffusion Euler Simulations

The simplest simulation model using Euler’s Method for SDEs is more properly
called the Euler-Maruyama (EM) method to distinguish it from the determin-
istic Euler method for DEs and this was used in Section 4.3.3 in this text and has
the stochastic difference form

Xk+1 = Xk + Fk∆t+Gk∆Wk, (9.13)

for k = 0 :Nt − 1, where Fk ≡ f(Xk, tk), Gk ≡ g(Xk, tk) and ∆Wk ≡ W (tk+1) −
W (tk). For instance, in MATLABTM, a fragment of the code for the discrete diffusion
approximation for a linear would be like that given in Fig. 9.1. Recall that MAT-
LABTM is unit based, .i.e., array subscripts start at one. In this example, the drift
coefficient rate is time-dependent with f(x, t) = µ(t)x where µ(t) = 1/(1 + 0.5t)2,
but the dW (t)-coefficient is time-independent with g(x, t) = σ(t)x where σ(t) = σ0

where σ0 is a constant, i.e.,

dX(t) = X(t)(µ(t)dt+ σ(t)dW (t)). (9.14)

In this case the log-transformation Y (t) = ln(X(t)) by the Itô stochastic chain rule
leads to a state-independent SDE, Y (t) = (µ(t) − σ2(t)/2)dt + σ(t)dW (t) and a

“bk0allfinal”
2007/1/7
page 251

i

i

i

i

i

i

i

i

9.1. SDE Simulation Methods 251

function sdeeulersim

% Euler-Maruyama Simulation Test: Linear SDE:

% dX(t) = X(t)(mu(t)dt+sigma(t)dW(t)),

% Given Initial data: x0, t0, tf, Nt; functions: f, g, xexact

clc

%

randn(’state’,8); % Set random state or seed;

x0 = 1; t0 = 0; tf = 5; Nt = 2^14; DT = tf/Nt; sqrtt = sqrt(DT);

X(1) = x0; Xexact(1) = x0; t = [t0:DT:tf];

DW = randn(1,Nt)*sqrtt; % Simulate DW as sqrt(DT)*randn;

W = cumsum(DW); % Omits initial zero value;

for k = 1:Nt % Exact formula to fine precision}

Xexact(k+1) = xexact(x0,t(k+1),W(k)); % Calls subfunction;

end

L = 2^3; NL = Nt/L; KL = [0:L:Nt]; DTL = L*DT; tL = [t0:DTL:tf];

for k = 1:NL % Euler formula to lumped, coarse precision:

DWL = sum(DW(1,KL(k)+1:KL(k+1)));

Xeul(k+1)=Xeul(k)+f(Xeul(k),tL(k))*DTL+g(Xeul(k),tL(k))*DWL;

Xdiff(k+1) = Xeul(k+1) - Xexact(KL(k+1));

end

plot(tL,Xeul,’k--’,’linewidth’,3); hold on

plot(t,Xexact,’k-’,’linewidth’,3); hold off

title(’SDE Euler-Maruyama and Exact Linear SDE Simulations’);

xlabel(’t, Time’); ylabel(’X(t), State’);

legend(’X(t): Euler’,’Xexact: Exact’,’Location’,’Best’);

%

function y = f(x,t)

mu = 1/(1+0.5*t)^2; % Change with application;

y = mu*x;

%

function y = g(x,t)

sig = 0.5; % Change with application;

y = sig*x;

%

function y = xexact(x0,t,w)

% exact solution if available for general linear SDE:

mubar = 2-2/(1+0.5*t); sig = 0.5; sig2bar = sig^2*t/2;

y = x0*exp(mubar-sig2bar + sig*w);

%End Code

Figure 9.1. Code: Euler SDE simulations.

simple integration followed by a transformation inversion leads to the general exact
stochastic solution

X(exact)(t) = x0 exp(µ(t) − σ2(t)/2 + (σ ∗W)(t)), (9.15)

where µ(t) =
∫ t

0 µ(s)ds, σ2(t) =
∫ t

0 σ
2(s)ds and (σ ∗W)(t) =

∫ t

0 σ(s)dW (s), which

in the simpler case here reduces the integral to (σ ∗W)(t) = σ0W (t), so that an

“bk0allfinal”
2007/1/7
page 252

i

i

i

i

i

i

i

i

252 Chapter 9. Stochastic Simulations

approximation of this diffusion integral in not necessary. Equation (9.15) is an exact
formula, but comparison of the Euler-Maruyama approximation to that of the exact
requires an approximate simulation of W (t) in (σ ∗W)(t). Following D. Higham’s
[139] lead, a fine grid of Nt sample points is used for the exact formula and a
lumped, coarse grid with Nt/8 points is taken from the set for the exact case. This
makes for a more accurate comparison. The comparison between the coarse Euler-
Maruyama approximation and the fine exact approximation X(exact)(t) in (9.15), is
illustrated in Fig. 9.2. The error between the Euler-Mayuyama approximate path

0 1 2 3 4 5
0

2

4

6

8

10

12

Euler−Maruyama and Exact Linear SDE Simulations

t, Time

X
(t

),
 S

ta
te

Xeul(t): Euler
Xexact(t): Exact

Figure 9.2. Comparison of coarse Euler-Maruyama and fine exact paths,
simulated using MATLAB with Nt = 1024 fine sample points for the exact path
(9.15) and Nt/8 = 128 coarse points for the Euler path (9.13), initial time t0 = 0,
final time tf = 5 and initial state x0 = 1.0. Time-dependent parameter values are
µ(t) = 0.5/(1 + 0.5t)2 and σ(t) = 0.5.

and the exact path at the coarse time points is presented in Fig. 9.3. For further
computer experiments verifying convergence using paths averages, see D. Higham
[139]. For the complete sample code used to generate these Euler-Maruyama figures,
see Sect. C.16 of Appendix C.

Kloeden and Platen [165, Section 10.2] show for the Euler-Maruyama simula-
tion method, using a level of analysis beyond the scope of this text, that the log-rate
of convergence in the strong sense is γs = 0.5, while in the weak sense the rate is
γw = 1. Thus, the log-rate for convergence in the weak sense is the same as that for
the traditional Euler’s method applied to deterministic DEs in the strong or weak
sense, i.e., γ = 1 for the deterministic case, since the expectation operator plays no
role.

For convergence in the weak sense, the Euler-Maruyama method and the lin-

“bk0allfinal”
2007/1/7
page 253

i

i

i

i

i

i

i

i

9.1. SDE Simulation Methods 253

0 1 2 3 4 5

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4
Euler and Exact SDE Simulations Error

t, Time

X
eu

l(t
)−

X
ex

ac
t(

t)
, E

rr
or

Figure 9.3. Error in coarse Euler-Maruyama and fine exact paths using
the coarse discrete time points. The simulations use MATLAB with the same values
and time-dependent coefficients as in Fig. 9.2. The Euler maximal-absolute error
for this example is 1.3 ≃ 34∆t/8, while for Nt = 4096 the maximal error is better
at 0.28 ≃ 29∆t/8.

ear, constant rate SDE,

dX(t) = µ0X(t)dt+ σ0X(t)dW (t),

where µ0 and σ0 are constants, the log-rate result can be shown with a reasonable
effort. From (9.15) or (9.11) with ν0 = 0, the exact solution is

X(exact)(t) = x0 exp((µ0 − σ2
0/2)t+ σ0W (t)).

In this case, the EM approximation from (9.13) has the form of a stochastic differ-
ence equation (S∆E),

Xk = Xk−1 · (1 + µ0∆t+ σ0∆Wk−1), (9.16)

for k = 1:Nt, and the expectation of Xk conditioned on the past value Xk−1 is

E[Xk | Xk−1] = Xk−1 · (1 + µ0∆t),

so by iterated expectations

E[Xk | X(0) = x0] = (1 + µ0∆t)E[Xk−1 | Xj, j = 0:k − 2] = (1 + µ0∆t)
kx0

“bk0allfinal”
2007/1/7
page 254

i

i

i

i

i

i

i

i

254 Chapter 9. Stochastic Simulations

and finally E[XNt
| X(0) = x0] = x0(1 + µ0∆t)

Nt at tNt
= tf . From (4.81), for

jump-diffusions but ignoring the jumps, the expectation of the exact solution at the
final fixed time is

E
[
X(exact)(tf)

∣∣∣ X(0) = x0

]
= x0e

µ0tf .

The asymptotic evaluation, for sufficiently small ∆t, of weak convergence criteria is
then
∣∣E[XNt

| X0 = x0]−E[X(exact)(tf) | X(0) = x0]
∣∣ = |x0|·

∣∣(1 + µ0∆t)
Nt − eµ0tf

∣∣

= |x0|·
∣∣eNt ln(1+µ0∆t) − eµ0Nt∆t

∣∣

∼ |x0|eµ0tf ·
∣∣∣e−0.5µ2

0tf ∆t− 1
∣∣∣

∼ |x0|eµ0tf ·0.5µ2
0tf∆t = C̃w∆t,

so γw = 1, as advertised, with C̃w = 0.5µ2
0|x0| exp(µ0tf), for both linear determin-

istic and stochastic Euler’s method, although only in the weak sense in the linear
stochastic case.

Finally, consider the mean square stability of the EM approximation Xk.
Recasting the EM S∆E (9.16) to the recursion form Xk = Ak−1 · Xk−1, where
Ak ≡ (1 + µ0∆t+ σ0∆Wk), so that the solution can be written

Xk = x0

k−1∏

ℓ=0

Aℓ.

Next, considering the mean square,

E[X2
k | X0 = x0] = x2

0E

»“Qk−1
ℓ=0 Aℓ

”2
–
= x2

0E
hQk−1

ℓ=0 A2
ℓ

i
= x2

0

Qk−1
ℓ=0 E

ˆ
A2

ℓ

˜

= x2
0

Qk−1
ℓ=0 ((1+µ0∆t)2+σ2

0∆t) = x2
0

`
(1+µ0∆t)2+σ2

0∆t
´k

= x2
0

`
1+2µ0∆t+(µ0∆t)2+σ2

0∆t
´k

,

(9.17)

by interchanging the power and product operators, interchanging the product and
expectation operators due to the independent increments property of the ∆Wk,
using E[∆Wℓ] = 0 and E[∆W 2

ℓ] = ∆t, and the final fact that
∏k−1

ℓ=0 θ = θk. Since as
k → ∞, θk → 0 if and only if θ < 1 and in this case obviously θ > 0, so asymptotic
mean square stability of the Xk requires that

2µ0+σ2
0+µ2

0∆t < 0. (9.18)

Note from (9.12) with ν0 = 0, the corresponding critical stability condition for the
exact solution is 2µ0 +σ2

0 < 0 or that µ0 < −0.5σ2
0 and that µ0 must be sufficiently

negative, but (9.18) for EM is much more restrictive requiring

µ0 < −0.5(σ2
0 + µ2

0∆t),

since the discrete term µ2
0∆t has been retained because ∆t may not be so small to

be negligible, although µ2
0dt would be negligible compared to one in the dt-precision

“bk0allfinal”
2007/1/7
page 255

i

i

i

i

i

i

i

i

9.1. SDE Simulation Methods 255

used in the exact, continuous time case. For numerical consideration, (9.18) could
be interpreted as a constraint on the discrete time-step, i.e.,

∆t < 2
∣∣µ0+0.5σ2

0

∣∣ /µ2
0 ,

valid only if µ0 is selected to be in the asymptotically mean square stable range,
µ0 < −0.5σ2

0, of the exact solution. For more elaborate discussion of asymptotic
stability, see D. Higham [139] for diffusions or D. Higham and Kloeden [145] for
jump-diffusions.

9.1.3 Milstein’s Higher Order Stochastic Diffusion Simulations

It is difficult to see how to improve on the Euler-Maruyama method (9.13) since it
is perfectly consistent with Itô’s formulation of forward integration of the diffusion
stochastic integral equation

X(t) = X(0) +

∫ t

0

(f(X(s), s)ds+ g(X(s), s)dW (s)) , (9.19)

corresponding to the diffusion SDE (9.1). Here, only a formal applied mathematical
derivation is given, since comprehensive details fill the large volume of Kloeden and
Platen [165]. Clues about where to start are the fact that Euler’s method has a
theoretical log-rate of γs = 0.5 for strong convergence ([165]) and that the same
power obtained for just the expectation of absolute value of the standard diffusion
process, E[|∆Wk|] = O(

√
E[∆W 2

k]) = O(
√

∆t) as given in Table 1.1 on page 7 of
Chapter 1. The main idea of expanding the simulation approximation is to expand
the coefficient g(x, t) of the term whose expected absolute value would give rise
to the O(

√
∆t) convergence. A way to do this is to apply iterations with Itô’s

stochastic chain rule in integral of g(X(t), t) on [tk, t], t ≥ tk,

g(X(t), t) = g(Xk, tk) +
∫ t

tk

((
gt + fgx + 0.5g2gxx

)
(X(s), s)ds

+(ggx)(X(s), s)dW (s)) ,
(9.20)

loosely upgrading the g(x, t) requirements needed to twice continuously differential
and where wholesale arguments have been used, e.g., (ggx)(x, t) = g(x, t)gx(x, t).

This stochastic Taylor technique is also called an Itô-Taylor expansion. It
can be used recursively to obtain very high order approximations, but here just
(9.20) is substituted into a version of (9.19) rewritten for [tk, tk+1] ,

Xk+1 = Xk +
∫ tk+1

tk
(f(X(t), t)dt+ g(X(t), t)dW (t))

= Xk +
∫ tk+1

tk
(f(X(t), t)dt+ (g(Xk, tk)

+
∫ t

tk
((gt + fgx + 0.5ggxx) (X(s), s)ds

+(ggx)(X(s), s)dW (s))) dW (t))

≃ Xk + Fk∆t+Gk∆Wk +GkGXk

∫ tk+1

tk

∫ t

tk
dW (s)dW (t),

(9.21)

“bk0allfinal”
2007/1/7
page 256

i

i

i

i

i

i

i

i

256 Chapter 9. Stochastic Simulations

where GXk ≡ gx(Xk, tk). Next, using the Itô forward integration approximation
on coefficient terms and the negligibility of the residual double integral,

∫ tk+1

tk

∫ t

tk

dsdW (t) =

∫ tk+1

tk

(t− tk)dW (t) =

∫ ∆t

0

tdW (t)
dt
= 0,

by Itô mean square rules in dt-precision, which justifies dropping the correspond-
ing terms. The retained double integral is just another form of Itô’s fundamental
Theorem 2.30 on page 41,

∫ tk+1

tk

∫ t

tk
dW (s)dW (t) =

∫ tk+1

tk
(W (t) −Wk)dW (t)

=
(∫∆t

0
W (t)dW (t)

)

k

dt
= 0.5 · (∆w2

k − ∆t).
(9.22)

Thus, Milstein’s approximate method is the stochastic difference equation
(S∆E),

Xk+1 = Xk + Fk∆t+Gk∆Wk + 0.5GkGXk · (∆W 2
k − ∆t), (9.23)

for the SDE (9.1) and k = 0 : Nt − 1, where Fk ≡ f(Xk, tk), Gk ≡ g(Xk, tk),
GXk ≡ gx(Xk, tk) and ∆Wk ≡W (tk+1)−W (tk). Using the linear, time-dependent
SDE model (9.14) as in Fig. 9.2 and the same fine-coarse grid numerical procedure,
the Milstein and exact simulations are displayed in Fig. 9.4. The difference is
very slight and hardly noticeable and the error between the Milstein approximate
path and the exact path at the coarse time points is presented in Fig. 9.5. Finally,
Fig. 9.6 illustrates the direct difference between the Milstein and Euler-Maruyama
approximations. (For the sample code used to generate these Milstein figures, see
Sect. C.17 of the Appendix.)

The Milstein algorithm converges strongly with log-rate γs = 1, but for the
proof and computational justification see Kloeden and Platen [165, Sections 10.3
and 10.6]. Also see D. Higham’s very accessible tutorial review [139] for computa-
tional justification and a nice Milstein-strong MATLABTM code. MapleTM and MAT-
LABTM codes for diffusion SDEs for finance can be given in D. Higham and Kloeden
[143] along with higher order approximations. Other diffusion MapleTM codes are
found in Cyganowski, Kloeden and Ombach [66]. MathematicaTM diffusion SDE
codes are presented in Stojanovic [259].

However, note that the diffusion factor 0.5(∆W 2
k −∆t) in the Milstein approx-

imation has the mean E[0.5(∆W 2
k − ∆t)] = 0 and variance

Var[0.5(∆W 2
k − ∆t)] = 0.25(E[∆W 4

k] − (∆t)2) = 0.5(∆t)2,

which normally would be negligible in dt-precision. Using Table 1.1 on page 7,
indicates limited correction possibilities.

9.1.4 Convergence and Stability of Jump-Diffusion Euler
Simulations

The stochastic Euler’s method for jump-diffusions governed by the SDE (9.1) with
discrete Poisson jumps at mark-independent amplitudes h(x, t), i.e.,

dX(t) = f(X(t), t)dt+ g(X(t), t)dW (t) + h(X(t), t)dP (t),

“bk0allfinal”
2007/1/7
page 257

i

i

i

i

i

i

i

i

9.1. SDE Simulation Methods 257

0 1 2 3 4 5
0

2

4

6

8

10

12

Milstein and Exact Linear SDE Simulations

t, Time

X
(t

),
 S

ta
te

Xmil(t): Milstein
Xexact: Exact

Figure 9.4. Comparison of coarse Milstein and fine exact paths, simulated
using MATLAB with Nt = 1024 fine sample points for the exact path (9.15) and
Nt/8 = 128 coarse points for the Milstein path (9.23), initial time t0 = 0, final time
tf = 5 and initial state x0 = 1.0 as in Fig. 9.2. Time-dependent parameter values
are µ(t) = 0.5/(1 + 0.5t)2 and σ(t) = 0.5.

in its simplest form using the forward integral approximation of Itô for fixed ∆t is

Xk+1 = Xk + Fk∆t+Gk∆t+Hk∆Pk, (9.24)

where (Fk, Gk, Hk) = (f(Xk, tk), g(Xk, tk), h(Xk, tk)), ∆t = tk+1 − tk, ∆Wk =
Wk+1 − Wk, and ∆Pk = Pk+1 − Pk, for k = 0 : Nt. Maghsoodi [191] and also
Maghsoodi and Harris [192] derived most of the theory behind this method and
derived numerous Milstein-like higher order approximations, so sometimes (9.24) is
called the Euler-Maghsoodi method.

Linear Jump-Diffusion Euler Method Convergence

Following the stochastic diffusion Euler analysis for the linear, constant coefficient
case,

dX(t) = X(t)(µ0dt+ σ0dW (t) + ν0dP (t)),

the discrete Euler is written

Xk = Bk−1 ·Xk−1; Bk ≡ (1 + (µ0 + λ0ν0)∆t+ σ0∆Wk + ν0(∆Pk − λ0∆t)),

“bk0allfinal”
2007/1/7
page 258

i

i

i

i

i

i

i

i

258 Chapter 9. Stochastic Simulations

0 1 2 3 4 5
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Milstein and Exact SDE Simulations Error

t, Time

X
m

il(
t)

−X
ex

ac
t(

t)
, E

rr
or

Figure 9.5. Error in coarse Milstein and fine exact paths using the coarse
discrete time points. The simulations use MATLAB with the same values and time-
dependent coefficients as in Fig. 9.2. The Milstein maximal-absolute error for this
example is 1.2, while for Nt = 4096 the maximal error is better at 0.95.

where the discrete Poisson process is written in mean-zero (i.e., martingale) inde-
pendent increment form for convenience, so that

Xk = x0

k−1∏

ℓ=0

Bℓ,

and by independent increments as well as independent jump-diffusion processes,

E[Xk | X0 = x0] = x0

k−1Y

ℓ=0

E[Bℓ] = x0

k−1Y

ℓ=0

(1 + (µ0 + λ0ν0)∆t) = x0(1 + (µ0 + λ0ν0)∆t)k.

From the exact solution (9.11) using the expectation in (4.81), the final mean square
at tf = Nt∆t is

E [X(tf) | X(0) = x0] = x0e
(µ0 + λ0ν0)tf .

“bk0allfinal”
2007/1/7
page 259

i

i

i

i

i

i

i

i

9.1. SDE Simulation Methods 259

0 1 2 3 4 5

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Milstein and Euler SDE Simulations Difference

t, Time

X
m

il(
t)

−X
eu

l(t
),

 D
iff

er
en

ce

Figure 9.6. Difference in coarse Milstein and Euler paths using the coarse
discrete time points. The simulations use MATLAB with the same values and
time-dependent coefficients as in Fig. 9.2. The Milstein-Euler maximal-absolute
difference for this example is 0.19, while for Nt = 4096 the maximal difference is
comparable at 0.24.

Next, computing the convergence criteria in the weak sense asymptotically,

|E[XNt | X0 = x0] − E[X(tf) | X0 = x0]|

= |x0|
∣∣∣(1 + (µ0 + λ0ν0)∆t)

Nt − e(µ0 + λ0ν0)Nt∆t
∣∣∣

= |x0|e(µ0 + λ0ν0)tf
∣∣eNt ln(µ0+λ0ν0)∆t)−(µ0+λ0ν0)Nt∆t − 1

∣∣

∼ |x0|e(µ0 + λ0ν0)tf
∣∣∣e−0.5Nt(µ0+λ0ν0)2∆t2 − 1

∣∣∣

∼ Cw∆t,

where Cw = |x0|(µ0 + λ0ν0)
2tf exp(µ0 + λ0ν0)tf) and the convergence in the weak

sense is order one in ∆t with γw = 1.
The distributed jump case is somewhat similar, except the marks introduce

much more complications. Let the linear distributed jump-diffusion SDE have con-
stant coefficients except that the relative jump amplitude depends on the random
mark Q and the symbolic product ν(Q)dP (t;Q) is replaced by the proper jump

“bk0allfinal”
2007/1/7
page 260

i

i

i

i

i

i

i

i

260 Chapter 9. Stochastic Simulations

sum. So

dX(t) = X(t)

µ0dt+ σ0dW (t) +

dP (t;Q)∑

ℓ=1

ν(Qℓ)

 ,

and the discrete Euler processes are written in zero mean form,

Xk = βk−1 ·Xk−1;

βk ≡ 1 + (µ0 + λ0E[ν(Q)])∆t+ σ0∆Wk + E[ν(Q)](∆Pk − λ0∆t)

+
∑∆Pk

ℓ=1 (ν(Qℓ) − E[ν(Q)])

The exact solution at node tk upon using the stochastic chain rule and integrating
is

X(tk) = x0 exp

(
(µ0 − σ2

0/2)tk + σ0Wk +

Pk∑

ℓ=1

Qℓ

)
,

where we have again set Q ≡ ln(1 + ν(Q)) or ν(Q) = exp(Q) − 1 for convenience
of setting the mark distribution appropriate for the log-process. Using the iter-
ated expectations technique to nest the Poisson and jump mark expectations, the
expectations are

E[Xk | X0 = x0] = x0E
[∏k−1

j=0 βj

]
= x0

∏k−1
j=0 E[βj]

= x0

∏k−1
j=0 (1 + (µ0 + λ0(E[exp(Q)] − 1))∆t)

= x0(1 + (µ0 + λ0(E[exp(Q)] − 1))∆t)k

for the approximation and

E[X(tk) | X(0) = x0] = x0 exp((µ0 − σ2
0/2)tk)EWk

[exp(σ0Wk)]

·EPk

[
EQ

[
exp

(∑Pk

ℓ=1Qℓ

)∣∣∣Pk

]]

= x0 exp((µ0 + λ0(E[exp(Q)] − 1))tk),

for the exact. Again, asymptotic results are derived for weak absolute mean error
as ∆t→ 0+ for fixed tk,

|E[Xk | X0 = x0] − E[X(tk) | X(0) = x0]|
= |x0|·

∣∣e−k ln(1+(µ0+λ0(E[exp(Q)]−1))∆t − e(µ0+λ0(E[exp(Q)]−1))tk

∣∣

∼ |x0|e(µ0+λ0(E[exp(Q)]−1))tk

∣∣∣e−0.5k(µ0+λ0(E[exp(Q)]−1))2∆t2 − 1
∣∣∣ ∼ Cw∆t,

where

Cw = 0.5|x0|tk(µ0 + λ0(E[exp(Q)] − 1))2e(µ0+λ0(E[exp(Q)]−1))tk .

Again the weak convergence rate is linear with γw = 1.

“bk0allfinal”
2007/1/7
page 261

i

i

i

i

i

i

i

i

9.1. SDE Simulation Methods 261

Maghsoodi [191] shows that the strong mean square error convergence rate
(9.6) is O(∆t) for the jump-diffusion Euler method for nonlinear coefficients subject
to linear Lipschitz bounds, which translates into a strong root mean square rate of

O
(√

∆t
)
.

A similar result was shown by D. Higham and Kloeden [145] for the implicit jump-
diffusion or stochastic theta method (STM) with the mean square error based
upon piece-wise-constant interpolation functions rather than the discrete approxi-
mate and exact values themselves (θ = 0 is the explicit, stochastic Euler method,
while the theta method is implicit for 0 < θ ≤ 1). For the jump-diffusion problem,
the theta method only applies to the drift term in (9.24),

Xk+1 = Xk + ((1 − θ)Fk + θFk+1) +Gk∆Wk +Hk∆Pk, (9.25)

in order to preserve stochastic consistency with jump-diffusion with the jump-
diffusion conditional infinitesimal moments (8.46,8.65), by avoiding implicit, back-
ward steps in the diffusion and jump terms. The technical details of STM are
beyond the scope of this chapter.

Euler Mean Square Linear Asymptotic Stability for Jump-Diffusions

For the mean square asymptotic stability of the jump-diffusion Euler method, the
procedure leading up to the corresponding diffusion critical condition (9.18) is used.
Starting with the jump-diffusion linear system recursive form,

Xk = Bk−1 ·Xk−1,

then the mean square is

E[X2
k |X0 = x0] = x2

0E

»“Qk−1
ℓ=0 Bℓ

”2
–
= x2

0

Qk−1
ℓ=0 E

ˆ
B2

ℓ

˜

= x2
0

Qk−1
ℓ=0

`
(1+(µ0 + λ0ν0)∆t)2+(σ2

0 + λ0ν
2
0)∆t

´

= x2
0

`
(1+(µ0 + λ0ν0)∆t)2+(σ2

0 + λ0ν
2
0)∆t

´k
.

Again, as k → ∞, the base of the power k must be less than one since the base
is non-negative, so the mean square asymptotic stability criterion for the linear,
constant coefficient, jump-diffusion Euler approximation is

2(µ0 + λ0ν0) + σ2
0 + λ0ν

2
0 + (µ0 + λ0ν0)

2∆t < 0, (9.26)

which means that µ0 + λ0ν0 needs to be sufficiently negative (note that λ0 > 0 if
the jump process is to be genuine),

µ0 + λ0ν0 < −0.5(σ2
0 + λ0ν

2
0 + (µ0 + λ0ν0)

2∆t)

and when interpreted in terms of the first and second relative conditional infinites-
imal moments is

E[∆Xk/Xk | Xk 6= 0] < −0.5E[(∆Xk/Xk)2 | Xk 6= 0].

“bk0allfinal”
2007/1/7
page 262

i

i

i

i

i

i

i

i

262 Chapter 9. Stochastic Simulations

If we restrict our attention to when the exact solution is mean square stable, i.e.,
2(µ0 + λ0ν0) + σ2

0 + λ0ν
2
0 < 0 from (9.12), then (9.26) can be used to construct a

constraint on the discrete time step,

∆t < 2
∣∣µ0 + λ0ν0 + 0.5(σ2

0 + λ0ν
2
0)
∣∣ /(µ0 + λ0ν0)

2 .

9.1.5 Jump-Diffusion Euler Simulation Procedures

A simple numerical procedure is given in Subsection 4.3.3 on page 115 for the linear
system with discrete jump of size ν0,

dX(t) = X(t)(µ0dt+ σ0dW (t) + ν0dP (t)),

using MATLABTM’s normal random number generator randn and a small time-step
zero-one Poisson-Bernoulli jump law using the acceptance-rejection method. Since
this zero-one jump law uses the ∆t-order asymptotic precision definition of the
Poisson process there is a restriction that λ∆t < 1 so that the one-jump probability
is positive. See Program C.14 in the Appendix C for the MATLAB code used.

However, this λ∆t < 1 condition can be easily rectified by just renormalizing
Poisson distribution, pk(λ∆t) = exp(−λ∆t)(λ∆t)k/k!, for a finite number of jumps
k ≤ j without expanding the exp(−λ∆t) factor in the numerator, so

p
(j)
k (λ∆t) ≡ (λ∆t)k/k!

∑j
ℓ=0(λ∆t)

ℓ/ℓ!
(9.27)

is valid as long as λ∆t > 0 and conserves probability. This is the same as if the
original normalization exp(+λ∆t) were expanded by λ∆t in the denominator to
j + 1 terms and the result called a Padé approximation or rational function. Form
(9.27) also exactly preserves the ordering of the Poisson jump probabilities, i.e.,

p
(j)
k+1(λ∆t)

p
(j)
k (λ∆t)

=
λ∆t

k + 1

as long as k = 0:j − 1. This form can be used with the acceptance-rejection method
as long as the unit interval [0, 1] is partitioned into j + 1 subintervals of length

p
(j)
k (λ∆t) for k = 0 : j such that a random number generator like MATLABTM’s
rand is used and if the number generated lands in the subinterval corresponding to

p
(j)
k (λ∆t), then the realized number of jumps is k. Computer experiment experience

indicates that it is best not to put the small subintervals adjacent to the endpoints
of [0, 1] due to the open interval (0, 1) bias of computer random generators.

Distributed Jump Linear Jump-Diffusion Euler Method

In Fig. 5.1 on page 161, the simulations for uniformly distributed marks Q on
(a, b) = (−2,+1) and time-dependent linear or geometric jump-diffusion SDE,

dX(t) = X(t)(µd(t)dt+ σ(t)dW (t) + ν(Q)dP (t;Q)).

“bk0allfinal”
2007/1/7
page 263

i

i

i

i

i

i

i

i

9.1. SDE Simulation Methods 263

However, it is more convenient to work with the exponent of the exact solution
derived by the stochastic chain rule to obtain the SDE,

dY (t) = d ln(X(t)) = (µ(t) − σ2(t)/2)dt+ σ(t)dW (t) +QdP (t;Q),

where the mark has been selected as Q ≡ ln(1 + ν(Q)) for convenience (this would
seem to preclude time-dependence in the jump amplitude ν(Q), but time can be in-
cluded in the mark range [a, b] or the mark density φQ(q). The MATLAB code C.15
is a modification of the linear jump-diffusion SDE simulator code C.14 illustrated in
Fig. 4.3 for constant coefficients and discrete mark-independent jumps. The state
exponent Y (t) is simulated as

Y S(k + 1) = Y S(k) + (µ(k) − σ2(k)/2) ∗DT + σ(k) ∗DW (k) +Q(k) ∗DP (k) ,

with t(k+1) = t0+k∗DT for k = 0:NI − 1 withNI = 1, 000, t0 = 0 and 0 ≤ t(k) ≤
2. The incremental Poisson jump term DP (k) = P (t(k) +DT ;Q) − P (t(k);Q) is
simulated by the MATLABTM uniform random number generator rand on (0, 1)
using the acceptance-rejection technique [230, 96] (see also Subsect. 9.2.3 on p. 278)
to implement the zero-one jump law to obtain the probability of λ(i)Dt that a jump
is accepted, else a jump is rejected. The same random state (seed), but a different
set of generated random samples, is used to obtain the simulations of the uniformly
distributed Q on (a, b). i.e., Q = a + (b − a) ∗ rand(1, NI), that is used only if
there is a jump event. Finally, the state itself is computed by a simple exponential
inversion of the log-process as

X(k + 1) = x0 ∗ exp(Y (k + 1)),

and should be highly accurate for sufficiently small DT since this procedure based
upon the exact exponent is the same procedure that is used for producing the exact
simulation, say by Maghsoodi [191]. Clearly, if one has a linear SDE with constant
parameter coefficients for an application, then the best strategy is to simulate the
exact solution since it is available. However, if the object is just to use the linear
SDE for testing a method on more general nonlinear SDEs, related perhaps by
similar Lipschitz linear bounds, then simulation of the original linear SDE for X(t)
is recommended.

Many deterministic numerical methods are difficult to translate directly into
numerical methods of diffusions or jump-diffusions due to the non-smooth or dis-
continuous nature of the diffusion process W (t) or the jump process P (t;Q), re-
spectively. Hence, implicit methods or multistep methods (many of these are
designed to reduce or eliminate the implicitness of implicit methods) have to be
modified to separate the treatment of the deterministic term (f(x, t)∆t) from that
of the diffusion term (g(x, t)∆W (t)) or that of the jump term (h(x, t)∆P (t;Q) or
h(x, t, q)∆P (t;Q)). It is necessary to preserve stochastic approximation consistency
with respect to the jump-diffusion conditional infinitesimal moments (8.46,8.65).

Stochastic Split-Step Backward Euler Method

One such method is a stochastic modification of the deterministic backward
Euler (DBE) method (Xk+1 = Xk+f(Xk+1, tk+1)∆t) which for the jump-diffusion

“bk0allfinal”
2007/1/7
page 264

i

i

i

i

i

i

i

i

264 Chapter 9. Stochastic Simulations

problem is split into two stages by Cyganowski and Kloeden [65] and more recently

by D. Higham and Kloeden [144], the first stage is just a backward Euler step,X
(dbe)
k+1 ,

only improved by the deterministic drift and a second stage that adds diffusion and
jump term improvement,

X
(dbe)
k+1 = Xk + f

(
X

(dbe)
k+1 , tk+1

)
∆t,

X
(ssbe)
k+1 = Xk + g

(
X

(dbe)
k+1 , tk+1

)
∆Wk + h

(
X

(dbe)
k+1 , tk+1

)
∆Pk,

(9.28)

which they call a split-step backward Euler (SSBE). The first stage is implicit

inX
(dbe)
k+1 , so enhances the stability and convergence, for which some results are given

in [65, 144], but no rates of convergence. The coefficients in [144] are autonomous,
but time-dependence is added here for generality. An improved refinement is also
included in [65, 144] and that is using the compensated or zero-mean Poisson ∆Pk−
λk∆t, a martingale, to obtain the compensated split-step backward Euler
(CSSBE),

X
(dbe)
k+1 = Xk +

(
f
(
X

(dbe)
k+1 , tk+1

)
+ λkh

(
X

(dbe)
k+1 , tk+1

))
∆t,

X
(cssbe)
k+1 = Xk + g

(
X

(dbe)
k+1 , tk+1

)
∆Wk + h

(
X

(dbe)
k+1 , tk+1

)
(∆Pk − λk∆t),

(9.29)

which provides better improvement in the first, deterministic backward Euler, stage.
No computational validation is given in [65, 144]. In [146], D. Higham, Mao and
Stuart show O(∆t) mean square error convergence rates for SSBE on nonlinear
diffusion SDEs with coefficient functions satisfying linear Lipschitz conditions.

Maghsoodi [191] also extended the Milstein algorithm for diffusions to jump-
diffusions by expanding the jump coefficient h(x, t) like the diffusion coefficient
g(x, t) stochastic Taylor expansion. However, the new and numerous jump terms
are much more complicated than the diffusion version and Cyganowski, Kloeden and
Ombach [66] demonstate by computer experiment that this method works well for
discrete jump problems but not for distributed (mark-dependent) jump problems,
so the extension will not be discussed here.

Related convergence and stability results for discrete jump-diffusions are given
by D. Higham and Kloeden in [144] for the stochastic theta method as previously
mentioned in association with the STM algorithm (9.25).

Jump-Adapted Euler Method

Thus far, methods using constant time-steps ∆t = tk+1−tk or a fixed set of variable
time-steps ∆tk−1tk+1 − tk have been discussed, such that the number of jumps of
∆Pk in [tk, tk+1] have been enumerated and corresponding jump marks, if present,
simulated. An alternate numerical approach, suggested by Maghsoodi [191], is to
interlace the set of Poisson random jump times, Tj for j = 1:NJ such that TNJ

≤ tf ,
with a fixed set tℓ for ℓ = 0 :Nt to define a jump-adaptive (JA) method grid
augmented by initial and final times, such that τ0 ≡ 0 < τk < τk+1 = τk + ∆τk <
τN(ja) = τf with subintervals of length ∆τk = τk+1 − τk for k = 0 :N (ja) − 1. One

“bk0allfinal”
2007/1/7
page 265

i

i

i

i

i

i

i

i

9.2. Monte Carlo Methods 265

restriction is that the mesh measure satisfies max0≤k≤N(ja)−1(∆τk) ≤ ∆τ where

∆τ ≃ ∆t plus some leeway.
It is well known that it is the Poisson subintervals or the time to the next

jump ∆Tj = Tj+1 − Tj are independent and identically, exponentially distributed
(1.24) with rate λ (unfortunately, the literature on jump-adapted method confuses
the IID properties of the inter-jump times and the interdependence of the jump-
times themselves). The exponentially distributed Poisson jump-time generation is
given on page 14 using the logarithmic transformation of a uniform random number
generator and a vector version is

% log-uniform exponential density:

DT=-log(rand(1,NJ))/lambda;

T=cumsum(DT);

(9.30)

where rand(1,NJ) is MATLABTM’s 1×NJ vector random generator and cumsum is
the cumulative sum function, assuming that the total number of jumps is known.

Let the discrete state be denoted as X
(ja)
k ≃ X(τk) corresponding to adapted-

jump-time τk, so the jump-diffusion Euler method for discrete jumps is

X
(ja)
k+1 = X

(ja)
k + F

(ja)
k ∆τk +G

(ja)
k ∆W

(ja)
k +H

(ja)
k ∆P

(ja)
k , (9.31)

where ∆W
(ja)
k = W (τk+1)−W (τk), ∆P

(ja)
k = P (τk+1)−P (τk), F

(ja)
k = f(X

(ja)
k , τk);

similarly for G
(ja)
k and H

(ja)
k . Note that if τk+1 coincides with a jump time Tj for

some j then ∆P
(ja)
k = 1, otherwise ∆P

(ja)
k = 0. However, as Maghsoodi [191] warns,

when analyzing something like convergence in the mean then it must be recognized

that if τk+1 = Tj then ∆W
(ja)
k = W (Tj)−W (τk) is not statistically independent of

∆P
(ja)
k = P (Tj) − P (τk), if expectations are to be calculated. A sample fragment

of the code to compute ∆τk, ∆W
(ja)
k and ∆P

(ja)
k could be as given in Fig. 9.7. This

code fragment can be patched together with the given application SDE and chosen
base numerical algorithm such as the jump-diffusion Euler or split-step backward
Euler, for instance.

9.2 Monte Carlo Methods

The Monte Carlo method started as a statistical sampling procedure at Los Alamos
National Laboratory in 1946 from an idea of Ulam in analogy considering the prob-
ability of winning the card game of solitaire, from the idea of von Neumann for
the programming neutron transport on a newly emerging electronic computer and
Metropolis for computer implementation [78, 206, 208]. Without the emergence of
electronic computers very few people would attempt to use large scale statistical
sampling to solve large problems. One exception was the famous physicist Fermi
who could calculate very fast using a mechanical calculator and had time to do big
calculations because he often could not sleep, so in fact he was using a smaller scale
version of the Monte Carlo method fifteen years before it had a name (for other
earlier examples see Hammersley and Handscomb [104] for instance). The method

“bk0allfinal”
2007/1/7
page 266

i

i

i

i

i

i

i

i

266 Chapter 9. Stochastic Simulations

function jumpadapt

% Jump adaptive (JA) code fragment:

% merged regular and jump times

Nt=10; lambda=9; t0=0; tf=1; Dt = (tf-t0)/Nt;

t = Dt*[0:Nt]; % Regular grid

DT = -log(rand)/lambda; S=DT; j=0;

while S < tf % Get jump time grid, T(NJ)<tf

j=j+1;

NJ=j;

T(j)=S; DTJ(j)=DT;

DT = -log(rand)/lambda; % Exponential density

S=S+DT;

end

[tau,ktau]=sort([t T]); % Concatenate and sort times

Dtau=tau(2:Nja)-tau(1:Nja-1); % Concatenate and sort times

randn(’state’,10);

RN=randn(1,Nja-1); % Std. normal density

DP=zeros(1,Nja-1);

for k=2:Nja

DW(k-1)=sqrt(Dtau(k-1))*RN(k-1); % Get DW

if ktau(k)>Nt+1

DP(k-1)=1; % Get final DP

end

end

Figure 9.7. Code: Jump-adapted code fragment.

was named for an uncle of Ulam’s who had a obsession about going to gamble at
Monaco, the gambling capital of Europe. In a 1949 paper of Metropolis and Ulam
[208] entitled The Monte Carlo Method, they spelled out the basic ideas in a
more or less essay form: the potential applications, the statistical approach, the
independent random sampling, the frequency distributions, the law of large num-
bers for convergence and the asymptotic theorems for probable errors. Although
von Neumann is not an author on this paper, it contains his ideas on techniques
of random number generation and a hint of his acceptance and rejection method
to handle general shaped domains by rejecting those samples which land outside of
the domain.

A more major idea of von Neumann was the logical structure of most mod-
ern programmable computers, the von Neumann computer. The newly emerging
electronic computer mentioned was the ENIAC, a very primitive, nonprogrammable
and decidedly non-von computer as non-von Neumann computers are called. Not
too long afterward, there was a parallel effort at both Princeton with von Neu-
mann and at Los Alamos with Metropolis to build a von Neumann computer, but
Metropolis was able to get the Los Alamos computer named MANIAC working first.

“bk0allfinal”
2007/1/7
page 267

i

i

i

i

i

i

i

i

9.2. Monte Carlo Methods 267

As it is with most computer advances, faster computers do not save the user time
because the user will bring a bigger problem that will take about the same amount
of time as the previous problem. The user who thought of the larger Monte Carlo
problem to bring to the MANIAC was the physicist Teller and the problem was
calculating the equation of state of an ideal rigid sphere gas. However, the major
contribution of the resulting 1953 paper by Metropolis, the Rosenbluths and the
Tellers [207] was the use of weighted sampling, now called importance sam-
pling, by using the exponential distribution of the energy change as the weight.
This version of the Monte Carlo method is called the Metropolis algorithm [70]
and was selected a one of ten top algorithms of the century [68, 23]. This
may be confusing, because the basic Monte Carlo algorithm is sometimes called
the Metropolis algorithm too. The 1953 paper [207] contains significantly more
detail than the 1949 paper [208], in both cases Metropolis is the lead author and
some would say the lead Monte Carlo computation teacher. The title of the 1953
paper is Equation of State Calculation by Fast Computing Machines and
the quoted cycle time of the MANIAC translated to 5.6 mHz, i.e., 5.6e-3 cycles per
second, which would be extremely slow compared to todays 2GHz to 4GHz PCs or
2.0e+9 to 4.0e+9 cycles per second, not fast at all.

For general references on the Monte Carlo method, see the classic monograph
of Hammersley and Handscomb [104] or the more recent book of Kalos and Whit-
lock, 1986 [157]. Much of the more recent advances have come from applications of
the Monte Carlo method to finance, so for general references on Monte Carlo with
application to finance see Glasserman [96] and Jäckel [150]. For the pioneering and
award winning paper on application of the Monte Carlo method to financial options
see Boyle [38] or for a two decade update see Boyle, Broadie and Glasserman [39].

9.2.1 Basic Monte Carlo Simulations

The benefits of Monte Carlo are only realized in high dimensions and for function-
als of stochastic processes with simulation complexities beyond direct simulations of
SDEs as covered in the previous section or for deterministic problems such as phys-
ical diffusions whose solutions can be simulated by Monte Carlo. Many problems
can be transformed into an integral form or integral functional such as

I[F] =

∫

V
F (x)dx, (9.32)

where x = [xi]nx×1 is a nx-dimensional vector on volume V and F (x) is a bounded,
integrable scalar-valued function on V . For instance, if V is finite then I[F] could
be interpreted in terms if the expectation

I[F] = V · EX[F (X)]

of F with respect to uniform variates X such that V ≡
∫
V dx < ∞ with uniform

density φX(x) = 1/V on domain V .
In general (9.32) can be interpreted to include nonuniform distributions by

scaling F by a suitable density φX(x) for variates X on V so that

F (x) = f(x)φX(x),

“bk0allfinal”
2007/1/7
page 268

i

i

i

i

i

i

i

i

268 Chapter 9. Stochastic Simulations

∫

V
φX(x)dx = 1

and

I[F] = EX[f(X)] =

∫

V
f(x)φX(x)dx. (9.33)

The general rule for the selection of the density φX(x) is that it capture important
characteristics, such as variability, of the integrand F (x) on domain V such that
the function f(X) is bounded and not very variable. The density φX(x) should
be known and the generation of its variates should be computable with reasonable
effort. In the uniform case, φX(x) = 1/V and f(X) = V · F (X).

Example 9.3. Risk-Neutral European Call Option Pricing:
An example of a complex functional is the risk-neutral European call option pricing
model of Zhu and Hanson [290] using a jump-diffusion SDE with log-uniformly
distributed jump-amplitude marks,

C(S0, tf)=E eP(tf)

[
C(BS)

(
S0e

eP(tf)−λJ̄tf , tf

)]
(9.34)

where

P̃(tf) =

P (tf ;Q)∑

i=1

Qi (9.35)

is the compound Poisson jump process cumulative sum at the strike time tf with
uniformly distributed IID random marks Qi on [a, b] , mean jump-amplitude

J̄≡EQ[J(Q)]≡E[exp(Q)−1]=(exp(b)−exp(a)/(b−a)−1 (9.36)

and Black-Scholes call option price

C(BS)(s, tf) ≡ sΦ(d1(s))−Ke−rtfΦ(d2(s)), (9.37)

with strike price K, interest rate r, diffusive volatility σ, standardized normal dis-
tribution function Φ(x) and Black-Scholes argument functions d1(s) ≡ (ln(s/K)+
(r+σ2/2)tf)/(σ

√
tf) and d2(s)≡d1(s) − σ

√
tf . Refer to [290] for the transforma-

tions used to achieve this form, which one would not attempt to evaluate directly
but would try to estimate the call option price.

Returning to the general integral functional problem (9.33), an estimate În of
the value of the integral I[F] = EX[f(X) is the sample mean sn of n indepen-
dent, identically distributed sample points X distributed on V corresponding to the
density φX(x),

În = sn, (9.38)

“bk0allfinal”
2007/1/7
page 269

i

i

i

i

i

i

i

i

9.2. Monte Carlo Methods 269

where the sample mean sn or Monte Carlo Estimator µ̂n = sn is

µ̂n ≡ sn =
1

n

n∑

i=1

f(Xi) ≡
1

n

n∑

i=1

fi , (9.39)

the estimate of the mean of f with respect to φX(x). Obviously, the function f(x)
must be bounded for the sample mean to exist. The true mean of f is

µf = EX[f(X)] =

∫

V
f(x)φX(x)dx.

Then, the estimate µ̂n is an unbiased estimate, since the bias of the estimator
from the true mean is zero, i.e.,

βbµn
≡ EX[µ̂n − µf] =

1

n

n∑

i=1

EX[f(Xi)] − µf = EX[f(X)] − µf = 0, (9.40)

using the IID property of the sample points. Further, by the strong law of large
numbers (SLLN) (B.117),

µ̂n −→ µf with probability one as n→ +∞.

The true variance of f is

σ2
f = VarX[f(X)] =

∫

V
(f(x) − µf)2φX(x)dx

and so the unbiased estimate of the sample variance from (B.111) is

σ̂2
n =

1

n− 1

n∑

i=1

(Xi − µ̂n)2. (9.41)

Example 9.4. Choice of Monte Carlo Sampling Distribution:
A rule of thumb is that, while many other distributions may work in generating
Monte Carlo estimations, the better density captures more variability of F (x) along
with the domain V and leaves a less variable f(x) to simulate. Thus, the better
choice will be the the better Monte Carlo results.

It is general numerical practice to choose an integrand weight function that
captures most of the variability and can easily be integrated exactly so that the re-
maining integrand factor can be discretely and well approximated. For example the
truncated normal distribution,

I =
1√
2π

∫ b

a

e−x2/2dx, (9.42)

can be Monte Carlo estimated using a uniform (u) density φ(u)(x) = 1/(b − a) on
[a, b] with sampled function

f (u)(x) = (b− a) exp(−x2/2)/
√

2π

“bk0allfinal”
2007/1/7
page 270

i

i

i

i

i

i

i

i

270 Chapter 9. Stochastic Simulations

or a normal (n) density φ(n)(x) = exp(−x2/2)/
√

2π on [−∞,+∞] and

f (n)(x) = 1x∈[a,b] = {1, x ∈ [a, b]; 0, x /∈ [a, b]},

is an indicator function. The exact mean is invariant with respect to the density,

µ
(n)
f = I = Φn(a, b; 0, 1) = µ

(u)
f ,

where Φn(x, y; 0, 1) is the usual standard normal distribution in this book on [x, y]
However, it is obvious that the exact variance assuming a normal density factor will
be much smaller than the exact variance assuming a uniform density factor and a

highly variable f(x), if a and b are not small. In fact,
(
σ

(n)
f

)2

= I− I2 for the nor-

mal case since 12
x∈[a,b] = 1x∈[a,b] and

(
σ

(u)
f

)2

= (b−a)Φn(
√

2a,
√

2b; 0, 1)/(2
√
π)−I2

for the uniform by transformation E(u)[(f (u))2(x)] to the standard normal distribu-
tion. As a → −∞ and b → +∞, the standard normal distributions Φn → 1 in
uniform as well as in normal cases and the difference has the unbounded asymptotic
approximation,

(
σ

(u)
f

)2

−
(
σ

(n)
f

)2

∼ b− a

2
√
π

− 1,

demonstrating in this extreme case that the choice of the sampling density φX(x) can
make a big difference in the variance σ2

f . A companion computational demonstration
code C.18 for this problem when [a, b] = [−R,R] is given on p. C29 of Appendix A.
Of course, one would not use the uniform distribution on an infinite domain.

Convergence of Scaled Monte Carlo Esimate Distribution to a Normal
Distribution

By the central limit theorem (B.118) the sample mean converges in distri-
bution to a normal distribution,

Prob

[
µ̂n − µf

σf/
√
n

≤ ξ

]
−→ Φn(ξ; 0, 1) as n→ +∞ , (9.43)

or alternately we say (µ̂n−µf)/(σf/
√
n)

dist−→ ξ, distributed according to Φn(ξ; 0, 1),
where Φn(ξ; 0, 1) is the standard normal distribution defined in (B.1.4) and σf/

√
n

is called the standard error or probable error. However, this form of the stan-
dard error is not too useful since neither σf or µf are known, else a Monte Carlo
approximation would not be neeeded, but σ̂2

n is an unbiased estimator of σ2
f and

therefore σ̂2
n must converge to σ2

f in distribution too and thus σf will be replaced
by σ̂n relying on continuous extensions of the central limit theorem [150]. However,
in general σ̂n is not necessarily an unbiased estimate of σf , since a function of an
unbiased estimator of a parameter is not the unbiased estimate of the function of
the parameter, as pointed out by Hammersley and Handscomb [104].

“bk0allfinal”
2007/1/7
page 271

i

i

i

i

i

i

i

i

9.2. Monte Carlo Methods 271

Monte Carlo Estimate Confidence Intervals

Following Glasserman’s [96] arguments for confidence intervals with variations, the
convergence in distribution (9.43) implies as n→ +∞,

Prob

[
µ̂n − µf ≤ σ̂n√

n
ξ

]
∼ Φn(ξ; 0, 1),

so replacing ξ by −ξ,

Prob

[
µ̂n − µf ≤ − σ̂n√

n
ξ

]
∼ Φn(−ξ; 0, 1)

and consequently we have an asymptotic formula for confidence intervals about the
true mean µf ,

Prob

[
− σ̂n√

n
ξ ≤ µ̂n − µf ≤ σ̂n√

n
ξ

]
∼ Φn(ξ; 0, 1) − Φn(−ξ; 0, 1) = 2Φn(ξ; 0, 1) − 1.

Putting this in a more useful form, let δ > 0 and ξ = ξ(δ) such that 2Φn(ξ(δ); 0, 1)−
1 = 1 − δ or

Φn(ξ(δ); 0, 1) = 1 − δ/2 (9.44)

to simplify the inversion. Thus, a practical, asymptotic confidence level 1 − δ or
100(1 − δ)% is given by the probability

Prob

[
µ̂n − σ̂n√

n
ξ(δ) ≤ µf ≤ µ̂n +

σ̂n√
n
ξ(δ)

]
∼ 1 − δ, (9.45)

that the true mean µf is in the confidence interval

(
µ̂n − σ̂nξ(δ)√

n
, µ̂n +

σ̂nξ(δ)√
n

)
.

If ξ(δ) = 1, the difference between the true value and the estimate is just ±standard
error with a confidence level of 68.27% that the simulation will be in the confidence
interval, but 32.63% chance that it will be out of it. If the difference is ±2·standard
error then the level is 95.45%, but only a 4.55% “lack of confidence” level. Any-
way, it will be assumed that the probable error of the Monte Carlo estimator

ên = |µ̂n − µf | ∝ σ̂n/
√
n.

An important observation is that this probable or standard error is independent of
the dimension of the volume nx, as long as the volume is known. However, if it is
necessary to approximate the volume due to its complexity, then this approximation
will influence the real error.

Example 9.5. Convergence and Errors in Monte Carlo Estimators:
Monte Carlo simulations are illustrated in Fig. 9.8 using the uniform density φX(x) =

“bk0allfinal”
2007/1/7
page 272

i

i

i

i

i

i

i

i

272 Chapter 9. Stochastic Simulations

1/(b − a) on [a, b] for the one-dimensional integral of F (x) =
√

1 − x2 on [a, b],
−1 ≤ a < b ≤ +1, so f(x) = (b − a) · F (x). The computational convergence of
the mean µ̂n and standard deviation σ̂n estimations of f(x) versus the logarithm
of sample size log10(n) are exhibited in Subfig. 9.8(a), while the logarithm of the
standard error log10(σ̂n/

√
n) is shown versus the logarithm of the actual absolute

error log10(|µ̂n − µf |), in Subfig. 9.8(a). The computational convergence is some-
what smooth from n = 10 to n = 10, 000, 000, but differences in the errors are more
dramatic reflecting the slight variability of σ̂n/

√
n and the greater variability of µ̂n

compared to the constant exact value µf on a log-log plot.

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Monte Carlo Results, Uniform Dist., F(x) = sqrt(1−x 2)

log(n), Log
10

 Sample Size

f−
M

om
en

ts

µ n
, σ

n

µ
n
, Mean−est.

σ
n
, StdDev−est.

(a) Moments of f(x), bµn and bσn/
√

n.

1 2 3 4 5 6 7
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

Monte Carlo Errors, Uniform Dist., F(x) = sqrt(1−x 2)

log(n), Log
10

 Sample Size

f−
E

rr
or

s
lo

g(
S

td
E

rr
or

n
),

 lo
g(

A
bs

E
rr

or
n
)

log
10

(StdError
n
)

log
10

(AbsError
n
)

(b) Logarithm of errors, log10(bσn/
√

n) and
log10(|bµn) − µf |).

Figure 9.8. Monte Carlo simulations for testing use of the uniform distribution
to approximate the integral of the integrand F (x) =

√
1 − x2 on (a, b) = (0, 1) using

MATLAB code C.19 on p. C31 for n = 10k, k = 1:7.

Finite Difference Comparison

Three important characterisitics of Monte Carlo estimators, from Glasserman [96],
are bias, variance and computational effort or time. For computational effort, a
primary comparison is with the traditional finite difference methods.

Let the Monte Carlo target integral of (9.32) be over a unit nx-dimensional
hypercube for simplicity, i.e.,

V ≡ [0, 1]nx = [0, 1] × [0, 1]× · · · × [0, 1]; V = (1 − 0)nx = 1,

decomposed into a regular grid of m fixed steps ∆X = 1/m in each dimension. so
that the grid points in the ith dimension are

Xi,ji
= ji/m, for ji = 0:m and i = 1:nx.

“bk0allfinal”
2007/1/7
page 273

i

i

i

i

i

i

i

i

9.2. Monte Carlo Methods 273

The finite difference approximation will be an expansion of the form,

I[F] ≃ I(fd)
m =

m∑

j1=1

· · ·
m∑

jnx=1

ωj1 · · ·ωjnx
· F (j1/m, . . . , jnx

/m),

where the finite difference method weights are denoted by ωji
for ji = 0 :m and

i = 1 :nx, but must at least satisfy the volume conservation consistency condition
that

nx∏

i=1

m∑

ji=1

ωji
· 1 = V = 1,

and the higher order the method will have even more conditions to be satisfied.
There are m+ 1 grid points per dimension, so the total number of grid points will
be nfd = (m+1)nx or m = nnx

fd −1. An rth order finite difference (fd) method
will have the following error estimate

efd = I(fd)
m − I[F] = O ((∆X)r) = O

(
m−r

)
= O ((nfd)

−r/nx), (9.46)

so for nfd and r fixed,

efd −→ O
(
(nfd)

−0
)

= O(1), as nx → ∞,

i.e., in the limit of high problem dimensions, finite difference methods with fixed
step sizes become useless, independent of the order r of the method.

A rough theoretical comparison between the computational effort of the Monte
Carlo method and fixed spaced finite difference methods (Newton-Cotes rules) can
be made by assuming that the gross computational effort will be the order of the
total number of points and they will be the same for both types of methods, i.e.,
nfd = n. Also, for a fair comparison, assume that these methods have comparable
global errors, i.e., efd = O(ên) or that the orders of the errors are the same,

n−r/nx = 1/
√
n,

which implies that the dimension of V is related to the order of the finite difference
method r,

nx = 2r.

Since the Monte Carlo method is a global method, r must be taken to be the global
order of the finite difference method. For the simplest integration rule, the left
or right rectangular rules (Itô’s forward integration is the left rectangular rule),
the global order is r = 1, so Monte Carlo and finite differences are comparable in
computational effort and error when nx = 2. For the trapezoidal or midpoint rule,
r = 2 and nx = 4 when comparable. For Simpson’s (1/3) rule, r = 4 and nx = 8
when comparable for even spacing, but for uneven grid spacing r = 3 since the
cubic bonus due to even spacing symmetry is lost and nx = 6 instead (similarly
the midpoint rule order is reduced to that of the other rectangular rules). See the
comments corresponding to Fig. 9.10 for comparing results from the trapezoidal
and Simpson’s rules with the Monte Carlo method using the rejection technique.

“bk0allfinal”
2007/1/7
page 274

i

i

i

i

i

i

i

i

274 Chapter 9. Stochastic Simulations

Monte Carlo Advantages*

• Error is theoretically independent of problem dimension, nx = dim[V].

• So, no curse of dimensionality, but best if nx ≥ 5 or so and several random
samples are used, i.e.,

{
X

(k)
i,j

∣∣∣ i = 1:nx, j = 1:n sample points, k = 1:K samples
}
.

• Works for complex integrands and domains.

• Not too sensitive to reasonable sample random number generator.

Monte Carlo Disadvantages*

• Probabilistic error bounds, not strict errors bounds that can not be exceeded,
e.g., 32% of samples can exceed standard error, σf/

√
n ≃ σ̂n/

√
n.

• Irregularity of F (x) or f(x) is not considered, so missed spikes or outliers
possible.

• Generating many large random sample sets for high accuracy can be costly in
computer and user time.

• Interplay of functions and volumes can be very complex.

Monte Carlo Ratios and Efficiencies

Any advantages* and disadvantages* are subject to testing and performance eval-
uation in each case. When comparing two different Monte Carlo methods, say one
with the basic Monte Carlo method of Subsect. 9.2.1 with variance σ2

1 and
another with variance reduced to variance σ2

2 , both likely to be estimated valued,
then the user should compare the methods with the variance reduction ratio, or
simply the variance ratio, defined [104] as the improvement ratio from method 1
relative to method 2,

VRR1,2 =
σ2

1

σ2
2

, (9.47)

that is method 2 is the better variance reducer if VRR1,2 > 1 and significantly
larger.

However, checking for variance reduction alone is not sufficient since the com-
putational costs of the variance reduction should not be excessive, so the compu-
tational cost ratio

CCR1,2 =
τ1
τ2
, (9.48)

should also be checked, where τ1 is the computational cost (e.g., CPU time) of the
first method (usually the basic Monte Carlo method) and τ2 is the computational
cost of the second method.

“bk0allfinal”
2007/1/7
page 275

i

i

i

i

i

i

i

i

9.2. Monte Carlo Methods 275

Hammersley and Handscomb [104] combine both the variance and computa-
tional cost ratios into the efficiency of method 2 relative to method 1 as

Eff1,2 = VRR1,2 · CCR1,2 =
σ2

1τ1
σ2

2τ2
. (9.49)

See also Glasserman [96, pp. 9-12] or Glynn and Whitt [97] for a more thorough
description of Monte Carlo efficiency. In addition, Glasserman [96, p. 185] has
observed that

The greatest gains in efficiency from variance reduction techniques
result from exploiting specific features of a problem, rather than from
generic potential variance reduction.

In fact, two primary methods of variance reduction rely on the Monte Carlo user
choosing a known factor that represents a significant proportion of the variability of
the target function f(x) or the associated density φX(x). Importance sampling
techniques rely on finding a multiplicative factor that is a better density than the
one originally proposed. Control variate techniques rely on finding an known
additive factor so that when the factor is subtracted from the target function the
variance is significantly reduced. In any case, the selection usually depends on good
user knowledge of the problem or related model problems.

9.2.2 Inverse Method for Generating Non-Uniform Variates

When there is an explicit formula for a distribution of a non-uniform variate in
terms of elementary functions, then since the distribution function must lie in [0, 1],
an inverse of the distribution function in terms of a uniform variate can transform
the non-uniform random variate so that it can be generated by a uniform random
variate.

Example 9.6. Inversion of Exponential to Uniform Distribution:
This was illustrated very early in Subsection B.1.7 for the exponential distribution.

From (B.40), the exponential distribution for variable x ≥ 0 and mean µ ≥ 0 is

Φe(x;µ) = 1 − exp(−x/µ),

so equating this to the uniform distribution on [0, 1],

Φu(u) = Prob[0 ≤ U ≤ u] = u = 1 − exp(−x/µ)

and inverting yields the inverse relation,

x = −µ · ln(1 − u).

However, some computing effort can be saved by eliminating the floating point sub-
traction in the log-argument by using the complementary property of Φu(u) that
1−Φu(u) = 1− u = Prob[0 ≤ U ≤ 1− u] is also a uniform distribution for (1− u)

“bk0allfinal”
2007/1/7
page 276

i

i

i

i

i

i

i

i

276 Chapter 9. Stochastic Simulations

on [0, 1] (this may seem overly simple, but many students in the sciences without
strong statistics background have difficulty accepting this unless it is spelled out).
Thus, matching the uniform to the exponential distribution can also be formated as,

Prob[0 ≤ U ≤ 1 − u] = 1 − u = 1 − exp(−x/µ),

leading to a more efficient form for simulations,

x = −µ · ln(u), (9.50)

especially when there are a large number of simulations, Xi = −µ·ln(Ui) for i = 1:n,
e.g., n =1.e+6.

In general, if it is necessary to generate random variates from a non-uniform
random variate Xi with a known distribution function ΦX(x) but without an exist-
ing random number generator, then if ΦX(x) is strictly increasing, Φ′

X(x) > 0, and
so an inverse exists,

Ui = ΦX(Xi) ⇐⇒ Xi = Φ−1
X (Ui). (9.51)

Validation that (9.51) is correct follows from the chain of equations,

ΦX(x) ≡ Prob[X ≤ x] = Prob[Φ−1
X (U) ≤ x]

= Prob[U ≤ ΦX(x)] = Prob[U ≤ u] ≡ ΦU (u),

using the definition of a probability distribution, (9.51) for pairs (X,U) and (u, x)
and the definition of the inverse. For practical purposes, this would mean that
ΦX(x) is in the form of elementary functions.

Example 9.7. Use of Built-in Inverses:
In some special cases, efficient numerical inverses are available, such as the inverse
for the error function or complementary error function, erfinv or erfcinv, in
MATLABTM, which can be used for inverting the normal distribution (if access to
the Statistics Toolbox of MATLABTM is available, then norminv builtin function
can be used, but the definition norminv(x) = -sqrt(2)*erfcinv(2*x) is triv-
ial, so the toolbox is not necessary). In MapleTM, the general procedure using the
stats[random] statistics subpackage is based upon its uniform random generator
function with the specification of ’inverse’ option for non-uniform distributions
by the inverse cumulative distribution function (’icdf’) method, unless a builtin
function is called by name, e.g., normald for normal distribution, or the automatic
(’auto’) builtin option is specified.

For more general cases, when either (1) the distribution ΦX(Xi) has a flat
subinterval on the interior of its range, say (c, d), i.e., there is a least one subinterval
c < xi ≤ x ≤ xi+1 < d where Φ′

X(x) = 0, or (2) the distribution has a jump in the
interior of its range, i.e., there is an xj such that ΦX(x+

j) > ΦX(x−j). The book of
Glasserman [96, Section 2.2.1] is a good reference for these irregular cases and also
a good source for many inverse transform method examples.

“bk0allfinal”
2007/1/7
page 277

i

i

i

i

i

i

i

i

9.2. Monte Carlo Methods 277

One important example for this book on jump-diffusions is the inversion of
the cumulative discrete Poisson distribution with mean Λ to the continuous uniform
distribution. The Poisson distribution (B.50) is written as the nth order cumulative
distribution is written with a distribution recursion as

P (N) =
N∑

k=0

pk(Λ); p0(Λ) = 1; pk+1(Λ) = Λ · pk(Λ)/(k + 1).

Glasserman’s [96] pseudo-code is translated to MATLABTM code in Fig. 9.9 below.

function N = cumpois(Lambda)

% cumpois function turns uniform point into Poisson jump count;

U = rand; % generate 1 uniform random point;

% code can be changed to use vector U if needed;

pk = exp(-Lambda); % initialize Poisson distribution;

P = 0; % initialize cumulative distribution;

N = 0; % initialize cumulative jump counter;

while P < U, % generate cumulative Poisson count;

N = N + 1; \% step jump counter if U too small;

pk = Lambda*pk/N; \% update Poisson distribution;

P = P + pk; \% update cumulative distribution;

end

% End function cumpois; returns count N at mean rate Lambda;

Figure 9.9. Code: Inverse Poisson method to generate jump counts using
the uniform distribution [96, Fig. 3.9].

A facsimile of the code in Fig 9.9 has been used successfully by Zhu and Hanson [290]
in their Monte Carlo simulation of risk-neutral European call option pricing, cited
in Example 9.3. Note that since cumpois takes the jump count Λ as input, cumpois
can be used for temporal Poisson processes such as in Properties 1.21 on page 21.

If the components of a vector variate are an independent set of random vari-
ates, then it is fairly easy to invert the distribution in favor of a set of independent
uniform variates since the joint distribution of independent variates is the product
of component marginal distributions (Defn. B.35, p. B25), .i.e., if

ΦX(x) =

nx∏

i=1

ΦXi
(xi) =

nx∏

i=1

ui, (9.52)

then

x = [xi]nx×1 =
[
Φ−1

Xi
(ui)

]
nx×1

, (9.53)

using the inversion transform method component by component.
For instance, if Xj are IID exponentially distributed random vectors with

vector mean µ and Uj are generated IID uniformly distributed random vectors for

“bk0allfinal”
2007/1/7
page 278

i

i

i

i

i

i

i

i

278 Chapter 9. Stochastic Simulations

each sample point j = 1:n, then the Xj can be generated by

Xj = [Xi,j]nx×1 = [−µi ln(Ui,j)]nx×1 = −µ. ∗ log(Uj) ,

for all j, where .* is the elements-wise multiplication symbol and log(U) is the
vectorized natural logarithm function of vector U as in MATLABTM (log10 is the
corresponding MATLABTM base 10 logarithm).

9.2.3 Acceptance and Rejection Method of von Neumann

The method of acceptance and rejection is due to von Neumann [273], one of the
earliest techniques introduced into the Monte Carlo method. It can be applied to
produce samples for unusual probability distributions as well as for unusual domains
since the method uses simpler problems that are easier to draw variates in simpler
domains. In two dimensions, it is just a matter to find the proportion of points
from the simpler, bounding area which lie in the more complicated, interior area.

Note that knowing the formula for a density function, φ
(1)
X (x) on domain V ,

does not mean we know how to generate random variates Xi for it. Let φ
(2)
X (x) be

another density function, such as a uniform, normal or exponential density function,
which is simpler (else not useful), for which there is a known method for generating

the corresponding random variates, X
(2)
i and suppose there is a positive constant c

for the relative bound

φ
(1)
X (x) ≤ c · φ(2)

X (x), (9.54)

for x in V . For consistency, the target density φ
(1)
X (x) should have a zero when the

known comparison, generating density φ
(2)
X (x) does, so the relative bound can be

written
φ

(1)
X (x)(

cφ
(2)
X (x)

) ≤ 1,

assuming that 0/0 ≤ 1 has been defined. The unit bound indicating that a scalar
uniform density will be useful. Since both are densities, the relative bound means
that 1 ≤ c · 1 upon integrating both sides of (9.54), so c ≥ 1 is required. The
procedure for the acceptance-rejection method or technique on the ith step is

1. Generate a random variate X
(2)
i for the comparison density φ

(2)
X (x) (e.g., this

comparison density could also be a uniform density for one-dimension, in
which case, X(i) = rand, in MATLABTM).

2. Compute the relative ordinate

Yi =
φ

(1)
X (X

(2)
i)(

cφ
(2)
X (X(2))

) , (9.55)

with generated X
(2)
i , assuming the relative bound constant c has already been

calculated.

“bk0allfinal”
2007/1/7
page 279

i

i

i

i

i

i

i

i

9.2. Monte Carlo Methods 279

3. Generate a scalar uniform random variate Ui and use it to accept or reject
the relative ordinate Yi, such that

• If Ui ≤ Yi, then accept X
(1)
i = X

(2)
i as a variate for the target density

φ
(1)
X and get another point Xi+1, stepping i, unless i+ 1 > n.

• Else, if Ui > Yi, then reject the current X
(2)
i and try another ith gener-

ated variate from comparison density φ
(2)
X .

Note that

Prob
[
X(2) Rejected

]
=

TotalArea
[
cφ

(2)
X (x) − φ

(1)
X (x)

]

TotalArea
[
cφ

(2)
X (x)

] =
c− 1

c
≤ 1,

so, in addition, the user wants (c − 1) to be small and positive, i.e., c should be
a tight bound constant, to reduce the amount of computation to avoid too many

rejected attempts and thus increase efficiency. Also, the target distribution Φ
(1)
X (x)

for X = X(1) (vector inequalities are shorthand notation for a set of component
equalities) is

Prob [X ≤ x] =
TotalArea

[
φ

(1)
X (y)

∣∣∣ y ≤ x
]

TotalArea
[
cφ

(2)
X (x)

] + Prob
[
X(2) Rejected

]
· Prob [X ≤ x]

=
1

c
Φ

(1)
X (x) +

c− 1

c
Φ

(1)
X (x) = Φ

(1)
X (x),

consistent with the definition of a distribution.

Example 9.8. Application of Acceptance-Rejection with Normal Distri-
bution:
Figure 9.10, a computational application of the acceptance-rejection technique is
illustrated for the truncated normal distribution Φn(a, b; 01) defined for a previous
uniform-normal comparison in (9.42) of Example 9.4. The computation converges
nicely, with standard errors of 2.1e-4 when n = 106 sample points and 6.59e-5 when
n = 107. However, when these one-dimensional results are compared to standard
finite difference methods the results are not so impressive, e.g., the trapezoidal rule
has an absolute error of 2.88e-05 using 101 points and Simpson’s (1/3) rule has an
absolute error of 3.09e-9 using the same 101 points, although, as we have said, the
finite difference methods are better for low dimensions.

Example 9.9. Multidimensional Application of Acceptance-Rejection Tech-
nique:
Figure 9.11 illustrates the application of Monte Carlo multidimensional simulations
with the von Neumann acceptance-rejection technique similar the former nx = 1
truncated normal distribution problem (9.42) in Example 9.4, but here for dimen-
sions nx = 2 : 5. Subfig. 9.11(a) exhibits the Monte Carlo mean estimates, µ̂n,

“bk0allfinal”
2007/1/7
page 280

i

i

i

i

i

i

i

i

280 Chapter 9. Stochastic Simulations

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Monte Carlo Results, Normal Dist., F(x) = φ
n
(x) on [a,b]

log(n), Log
10

 Sample Size

M
om

en
ts

 µ
n
, 1

0*
st

d−
er

r n

µ
n
, Mean−est.

10*std−err
n

Figure 9.10. Monte Carlo simulations shown apply the acceptance and rejection
technique and the normal distribution to compute the estimates for the mean bµn and the
magnified standard error 10 · bσn/

√
n for the integral of the truncated normal distribution

with F (x) = φn(x) on [a, b] = [−2, 2] using MATLAB code C.20 on p. C33 for n =
10k, k = 1:7.

which roughly settle down by sample size n = 104, but definitely by n = 105 for
this problem and sample sets. In Subfig. 9.11(b), the Monte Carlo standard error
estimates, σ̂n/

√
n are displayed, showing a remarkable similar decay in sample size

beyond sample size n = 103. Note that since the integrand F (x) = φn(x) is the
normal density restricted to the vector interval [a,b], the normal density scaled in-
tegrand is f(x) = 1x∈[a,b], an indicator function for the set [a,b], so f2(x) = f(x)
and the estimate of the standard error,

σ̂n/
√
n =

√
µ̂n(1 − µ̂n)/(n− 1),

satisfies the same formula regardless of dimension nx as suggested by the Monte
Carlo theory.

Box-Muller Algorithm for Normal Random Variates

Many of the normal random number generators, if not all, use the algorithm of
Box and Muller [37] or updates of it [195] (see also [230, 96]). Since the normal
distribution is a special function that cannot be put in terms of elementary functions,
it is not exactly invertible by the inverse transform method, except numerically or
artificially by defining another special function for the inverse. Box and Muller
use pairs of uniform variates and polar coordinate to construct their algorithm to
compute a pair of normal variates.

Let U1 and U2 be two independent uniform variates on (0, 1), use them to
construct a pair of polar coordinates (R, T) and then use those to construct two

“bk0allfinal”
2007/1/7
page 281

i

i

i

i

i

i

i

i

9.2. Monte Carlo Methods 281

1 2 3 4 5 6
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Monte Carlo Means, Normal Dist., F(x) = φ
n
(x) on [a,b]

log(n), Log
10

 Sample Size

M
ea

n
E

st
im

at
es

,
µ n

nx = 2
nx = 3
nx = 4
nx = 5

(a) Mean estimates, bµn, for f(x).

1 2 3 4 5 6

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Monte Carlo Std. Errors, Normal Distribution on [a,b]

log(n), Log
10

 Sample Size

S
td

. E
rr

or
s,

 s
td

er
r

n

nx = 2
nx = 3
nx = 4
nx = 5

(b) Logarithm of standard errors,
log10(bσn/

√
n).

Figure 9.11. Monte Carlo simulations for estimating multi-dimensional inte-
grals for the nx-dimension normal integrand F (x) = φn(x) on [a, b] = [−2, 2]nx using
MATLAB code C.21 on p. C35 for n = 10k, k = 1:6. The acceptance-rejection technique
is used to handle the finite domain.

independent normal variates (X1, X2),

R =
√
−2 ln(U1) and T = 2πU2,

X1 = R cos(T) and X2 = R sin(T),

where 0 < R < ∞ and 0 < T < 2π since 0 < Ui < 1 for i = 1 : 2. The inverse
transformation is then tan(2πU2) = X2/X1 and −2 ln(U1) = X2

1 +X2
2 or

U1 = exp
(
−
(
X2

1 +X2
2

)
/2
)

and U2 = tan−1(X2/X1)/(2π).

The Jacobian of the transformation, (X1, X2) −→ (U1, U2), is

J = ∂(U1,U2)
∂(X1,X2)

= Det

[
∂U1/∂X1 ∂U1/∂X2

∂U2/∂X1 ∂U2/∂X2

]

= − exp
(
−
(
X2

1 +X2
2

)
/2
)
/(2π) = −Φn(X1, X2; (0, 0), (1, 1)),

(9.56)

i.e., the negative of a standard 2-dimensional normal distribution for two indepen-
dent, standard normal variates (X1, X2), so the objective and only |J | is needed.
Conservation of probability consistency is easily verified, since in theory,

1 =

Z 1

0

Z 1

0

du1du2 =

Z +∞

−∞

Z +∞

−∞

|J |dx1dx2 =
1

2π

Z +∞

−∞

Z +∞

−∞

e−x2
1/2e−x2

2/2dx1dx2 = 1.

Marsaglia and Bray [195] modified the Box-Muller algorithm save computing
costs by using the acceptance-rejection technique between a square enclosing the
unit circle so that the sine and cosine functions would not be needed. They begin
by generating two independent uniform variates on the square (−1,+1)× (−1,+1)

“bk0allfinal”
2007/1/7
page 282

i

i

i

i

i

i

i

i

282 Chapter 9. Stochastic Simulations

rather than on (0, 1) × (0, 1), i.e., keeping U1 and U2 as the initial (0, 1) uniform
variates, U3 = 2 · U1 − 1 and U4 = 2 · U2 − 1. Next let the squared radius be R2 =
U2

3 +U2
4 and while R2 > 1, i.e., out of the unit circle, then reject it and try again, but

if R2 ≤ 1 then compute the normalized Box-Muller radius R3 =
√
−2 ln(R2)/R2

and finally output the independent, standard normal variate pair,

X3 = R3 · U3 and X4 = R3 · U4.

9.2.4 Importance Sampling

There are two principal ways to reduce the standard error and thus improve the
likely accuracy of Monte Carlo simulation relative to the basic Monte Carlo simula-
tion (Subsection 9.2.1; Hammersley and Handscomb call the method in their 1964
compact little book [104, Section 5.2] the crude Monte Carlo method). One way
is to increase the sample size n, but the computational cost is high, e.g., increasing
the sample size 100 times is necessary to reduce the standard error by 1/10th of its
magnitude due to the weak reciprocal square root order. The other way is to reduce
the variance and a way to do that is to pick a better density to draw samples from
that more closely matches the integrand F (x). Importance sampling methods
strive to find the better or practical best distribution. As previously mentioned,
importance sampling was introduced into the Monte Carlo method in one of the
earliest papers [207] on the subject, sometimes called the Metrhopolis algorithm, in
which the desirable sampling distribution was the exponential distribution of energy
changes.

Suppose there is an initial density φX(x) with mean of f(x) integral

µf = EX[f(X)] =

∫

V
f(x)φX(x)dx =

∫

V
F (x)dx, (9.57)

but we seek a better density φ̃X(x) that more closely characterizes the original
integrand F (x) and leads to the equivalent formulation,

µ̃ef = Eeφ

[(
fφ/φ̃

)
(X)

]
=

∫

V

(
fφ/φ̃

)
(x)φ̃X(x)dx = µf , (9.58)

where f̃(x) ≡
(
fφ/φ̃

)
(x) is a potentially less variable sample target function and

Eeφ denotes an expectation with respect to the new density φ̃X(x), subject to min-
imal likelihood properties that

φ̃X(x) ≥ 0 ⇐⇒ φX(x) ≥ 0,

mainly so that any indeterminant 0/0 form can be defined as 1. The corresponding
variance is given by

σ̃2
ef =

∫

V

(
f̃(x) − µ̃ef

)2

φ̃X(x)dx =

∫

V
f̃2(x)φ̃X(x)dx − µ̃2

ef . (9.59)

“bk0allfinal”
2007/1/7
page 283

i

i

i

i

i

i

i

i

9.2. Monte Carlo Methods 283

Since the means are the same, µ̃2
ef = µ2

f , reduction of the variance is equivalent to

reduction of the new second moment, i.e., making

∫

V
f̃2(x)φ̃X(x)dx <

∫

V
f2(x)φX(x)dx.

In importance sampling the goal is to sample at important points of f̃(x) such as
points of maximum likelihood (see Glasserman [96]).

The Monte Carlo unbiased estimates are the means for n-point samples,

µ̂n =
1

n

n∑

i=1

f(Xi) and ̂̃µn =
1

n

n∑

i=1

f̃
(
X̃i

)
, (9.60)

where the points X̃i are sampled from the distribution of the φ̃X(x) density, while
the unbiased sample variances are

σ̂2
n =

1

n− 1

n∑

i=1

(f(Xi) − µ̂n)
2

and ̂̃σ
2

n =
1

n− 1

n∑

i=1

(
f̃
(
X̃i

)
− ̂̃µn

)2

. (9.61)

As with the exact variances or second moments, it is expected that the new second
sampled moment is reduced, i.e.,

1

n

n∑

i=1

f̃2
(
X̃i

)
<

1

n

n∑

i=1

f2(Xi),

since this is equivalent to ̂̃σ
2

n < σ̂2
n for sample variances or ̂̃σn/

√
n < σ̂n/

√
n for the

Monte Carlo standard error estimates.
The best choice of a new density would obviously be the normalized absolute

value the full problem,

φ̃X(x) = |F (x)|
/∫

V
|F (y)|dy ,

but that would be an absurd circular argument since the normalization factor in the
denominator would be the integral we are seeking to estimate if it were the case that
F (x) > 0. As Glasserman [96, Fig. 4.16] states, importance sampling is the most
complex of Monte Carlo techniques for reducing variance, but has the potential
whose effectiveness ranges from the best to the worst. See Glasserman’s [96] book
for a more advanced treatment.

Analogous concepts arose long ago in the statistically related Gaussian quadra-
ture rules [230], i.e., Gauss statistics quadrature [275], of numerical analysis. For
instance, the Gauss-Legendre rules correspond to integrals weighted in proportion
to a uniform density on [−1,+1], Gauss-Laguerre rules to the exponential or gamma
densities on (0,∞) and Gauss-Hermite to the normal distribution (−∞,+∞). The
criteria for the numerical weights wi and nodes xi is that the Gaussian rules give
the best polynomial precision for the polynomial approximation to the weighted

“bk0allfinal”
2007/1/7
page 284

i

i

i

i

i

i

i

i

284 Chapter 9. Stochastic Simulations

function corresponding to the importance sampled f(x). Practical criteria concern
matching the rule with the domain, whether finite, semi-infinite or full-infinite,
but also matching integrand singularities in the case of certain Gaussian rules not
mentioned here.

There is a more advanced code like the adaptive Monte Carlo code called
VEGAS [183] of Lepage that primarily uses importance sampling, but also uses
stratified sampling discussed in the next subsection. The VEGAS algorithm and
code is discussed in Numerical Recipes [230].

9.2.5 Stratified Sampling

If the integrands are very variable, then partitioning the domain into disjoint sub-
domains, computing Monte Carlo estimates on each subdomain and reassembling
the estimates to form a global estimate can usually reduce the global estimated
variance, sometimes significantly [104, 96, 150, 230].

Consider a partition of the domain V into np disjoint parts, called strata,
such that the union

np⋃

k=1

∆Vk = V

and the Monte Carlo integral of interest (9.33)

µf = EX[f(X)] =

np∑

k=1

∫

∆Vk

f(x)φX(x)dx =

np∑

k=1

pkµ
(k)
f , (9.62)

where the kth stratum probability is

pk =

∫

∆Vk

φX(x)dx > 0 ∋
np∑

k=1

pk = 1,

assumed known, and the strata mean

µ
(k)
f =

∫

∆Vk

f(x)φX(x)dx/pk.

Let X
(k)
i be a sample point drawn from the density φX(x) on the kth strata

∆Vk for i = 1 : nk where nk > 0 and
∑np

k=1 nk = n, the sample size. Also let

f
(k)
i ≡ f(X

(k)
i), so that the kth strata Monte Carlo estimate of the mean is

µ̂(k)
nk

=
1

nk

nk∑

i=1

f
(k)
i (9.63)

and since µf =
∑np

k=1 pkµ
(k)
f the total mean estimate is

µ̂n,np =

np∑

k=1

pkµ̂
(k)
nk

=

np∑

k=1

pk

nk

nk∑

i=1

f
(k)
i . (9.64)

“bk0allfinal”
2007/1/7
page 285

i

i

i

i

i

i

i

i

9.2. Monte Carlo Methods 285

This strata sampled estimate is an unbiased estimate since

µ
(k)
f = E(k)

[
f
(
X

(k)
i

)]
≡ E

[
f
(
X

(k)
i

) ∣∣∣X(k)
i ∈ ∆V

]
.

Then,

E [µ̂n,np] =

np∑

k=1

pk

nk

nk∑

i=1

E(k)
[
f

(k)
i

]
=

np∑

k=1

pk

nk

nk∑

i=1

µ
(k)
f =

np∑

k=1

pkµ
(k)
f = µf ,

independent of the sample distribution nk. Note that the order of Monte Carlo esti-
mation and stratification are not generally interchangeable if the unbiased property
is to be preserved. For instance, if the original simple Monte Carlo estimate µ̂n

(9.39) is directly converted to a stratified sum,

µ̂n =
1

n

np∑

k=1

nk∑

i=1

f
(k)
i

and the expectation is calculated as

E[µ̂n] =
1

n

np∑

k=1

nk∑

i=1

E(k)
[
f

(k)
i

]
=

1

n

np∑

k=1

nkµ
(k)
f ,

which for general strata means µ
(k)
f this sum will not be µf . However, in the special

case of proportional strata sampling in which nk = pk · n, then

E[µ̂n] =

np∑

k=1

pkµ
(k)
f = µf .

Recall that the exact variance of f is

σ2
f = VarX[f(X)] =

np∑

k=1

∫

∆Vk

(f(x) − µf)2φX(x)dx,

but due to the total mean µf the total variance does not easily decompose into the
strata variances,

(
σ

(k)
f

)2

= Var
(k)
X [f(X)] = E(k)

[(
f(X) − µ

(k)
f

)2
]

=
∫
∆Vk

(
f(x) − µ

(k)
f

)2

φX(x)dx/pk.

(9.65)

Following Glasserman [96], the variance is written in with the usual second and first
moment technique,

σ2
f = E

[
f2(X)

]
− µ2

f =
∑np

k=1 pkE(k)
[
f2(X)

]
− µ2

f

=
∑np

k=1 pk

((
σ

(k)
f

)2

+
(
µ

(k)
f

)2
)
−
(∑np

k=1 pkµ
(k)
f

)2

.
(9.66)

“bk0allfinal”
2007/1/7
page 286

i

i

i

i

i

i

i

i

286 Chapter 9. Stochastic Simulations

In contrast, the strata Monte Carlo estimate, the variance, using prior defin-

intions and the IID property of the X
(k)
i , is

σ2
bµn,np

= Var [µ̂n,np] = E
[∑np

k=1 pk

(
1

nk

∑nk

i=1 f
(k)
i − µ

(k)
f

)]

=
∑np

k=1

∑np
ℓ=1

pkpℓ

nknℓ

∑nk

i=1

∑nk

j=1 E(k)
[(
f

(k)
i − µ

(k)
f

)(
f

(ℓ)
j − µ

(ℓ)
f

)]

=
∑np

k=1
p2

k

n2
k

∑nk

i=1

(
σ

(k)
f

)2

=
∑np

k=1
p2

k

nk

(
σ

(k)
f

)2

.

(9.67)

Thus, the strata reduction of variance will be

σ2
f − σ2

bµn,np
=
∑np

k=1 pk

(
1 − pk

nk

)(
σ

(k)
f

)2

+
∑np

k=1 pk

(
µ

(k)
f

)2

−
(∑np

k=1 pkµ
(k)
f

)2

≥ ∑np
k=1 pk

(
1 − pk

nk

)(
σ

(k)
f

)2

,

(9.68)

since the second moment majorizes the square of the first moment, here for µ
(k)
f

with probability pk = 1. For strata proportional sampling, nk = pk · n, then

σ2
f − σ2

bµn,np
≥ n− 1

n

np∑

k=1

pk

(
σ

(k)
f

)2

, (9.69)

so proportional sampling stratification always reduces the variance.
Another form of strata sampling, nk = qk ·n so qk > 0 and

∑np
k=1 qk = 1, but qk

is otherwise arbitrary. This form is called fractional sampling. The arbitrariness
of the fractions qk can be used to determine the optimal sampling allocation
of the stratification with the objective to achieve maximum variance reduction for
stratification. Since when nk = qk · n,

σ2
f − σ2

bµn,np
≥

np∑

k=1

pk

(
1 − pk

nqk

)(
σ

(k)
f

)2

, (9.70)

but instead of maximizing the full right-hand-side of (9.68) for σ2
f − σ2

bµn,np
, it is

only necessary to minimize the bound in (9.70) containing the variable parameter
qk. This can be done using the Lagrange multiplier technique to handle the∑np

k=1 qk = 1 constraint with λ as the multiplier by letting

S(q, λ) =

np∑

k=1

pk

(
1 − pk

nqk

)(
σ

(k)
f

)2

+ λ

(
np∑

k=1

qk − 1

)
.

The reader can easily verify that the optimal allocation solution for the vector of
probabilities q is

q∗ =
p.∗ σ

(b⊤σ)
=

[piσi]np×1
np∑

k=1

pkσk

, (9.71)

“bk0allfinal”
2007/1/7
page 287

i

i

i

i

i

i

i

i

9.2. Monte Carlo Methods 287

by taking the gradient of the objective S(q, λ) with respect to q and elimination of
the multiplier λ. Hence, the optimal bound on the variance reduction is

σ2
f −

(
σ∗

bµn,np

)2

≥
np∑

k=1

pk

(
σ

(k)
f − 1

n

np∑

ℓ=1

pℓσ
(ℓ)
f

)
σ

(k)
f , (9.72)

See Glasserman [96] for a more advanced treatment of stratified sampling
and see Numerical Recipes [229, 230] for a discussion and the advanced recursive
stratified sampling code called MISER.

9.2.6 Antithetic Variates

The antithetic variate technique of variance reduction reuses a prior draw, called
the thetic (or thesis) variate, to construct an opposing random variable, called
the antithetic variate and is usually a mirror image of the thetic variate with the
same mean, that has a negative correlation with the thetic variate. The most

common antithetic examples are U
(a)
i = 1−Ui for the standard uniform distribution

on [0, 1] and Z
(a)
i = −Zi for the standard normal distribution. Hence, E[U

(a)
i] =

0.5 = E[Ui], Var[U
(a)
i] = 1/12 = Var[Ui] and

Cov[Ui, U
(a)
i] = −1/12 < 0

for the uniform, while E[Z
(a)
i] = 0 = E[Zi], Var[Z

(a)
i] = 1 = Var[Zi] and

Cov[Zi, Z
(a)
i] = −1 < 0.

The analogous properties hold when the uniform and normal distributions are not

standard, i.e, X
(a)
i = b + a − Xi on [a, b] for the uniform and X

(a)
i = 2µ −Xi for

the normal with mean µ and variance σ. For most other continuous distributions,
the samples are drawn from these to standard distributions and are converted by
transformation to the target distribution. For example, Xi = −µ ln(Ui) and

X
(a)
i = −µ ln(1 − Ui) = −µ ln(1 − exp(−Xi/µ))

for the exponential distribution with mean µ, using Example 9.6.
In order to keep this section from being too complicated, it will be assumed

that the distribution from which the Monte Carlo random variates will be drawn will
be from the general uniform in one-dimension (nx = 1) with density φ(x) = 1/(b−a)
on (a, b),

µf =
1

(b − a)

∫ b

a

f(x)dx.

Note that the antithetic mean will be the same as the thetic mean,

µ
(a)
f =

1

(b − a)

∫ b

a

f(b+ a− x)dx =
1

(b − a)

∫ b

a

f(y)dy = µf .

“bk0allfinal”
2007/1/7
page 288

i

i

i

i

i

i

i

i

288 Chapter 9. Stochastic Simulations

For the Monte Carlo estimates,

µ̂n =
1

n

n∑

i=1

f(Xi); and µ̂(a)
n =

1

n

n∑

i=1

f
(
X

(a)
i

)
,

both converging to µf by the strong law of large numbers. For the antithetic variate
(av) technique, define the thetic-antithetic average mean estimate with limit µf as

µ̂(av)
n =

1

2

(
µ̂n + µ̂(a)

n

)
(9.73)

and note that the Monte Carlo sample size has been doubled to 2n using only the
original IID sample {Xi} sample of n points, but at the computational cost of double
the number of function evaluations of f(x). However, if the variance can be reduced
substantially then the original sample size of n could be reduced to compensate for
the additional function evaluations.

The new variance is then

Var
[
µ̂

(av)
n

]
= 1

4Var
[
µ̂n + µ̂

(a)
n

]

= 1
4E

[
(µ̂n − µf)2 +

(
µ̂

(a)
n − µf

)2

+ 2(µ̂n − µf)
(
µ̂

(a)
n − µf

)]

= 1
4Var[µ̂n] + 1

4Var
[
µ̂

(a)
n

]
+ 1

2Cov
[
µ̂n, µ̂

(a)
n

]
.

(9.74)

If the covariance Cov[µ̂n, µ̂
(a)
n] is negative, then a variance reduction ratio of no more

than one half would be guaranteed, thus paying for the doubled function evaluations
in terms of efficiency (9.49). By a result quoted in Boyle et al. [39], if the target
function of f is monotonic, then

Cov[µ̂n, µ̂
(a)
n] < 0,

which is likely true in many applications, e.g., positive payoffs, but perhaps difficult
to verify. In multidimensions, negativity conditions will likely have to be replaced by
negative semi-definite conditions for practical purposes due to independence across
dimensions.

Example 9.10. Antithetic Variates for Compound Poisson Process:
In the jump-diffusion European call option pricing problem of Zhu and Han-

son [290], it was necessary to draw a sample from the compound Poisson process
with rate λ,

Si =

Ni∑

j=1

Qi,j , for i = 1:n,

estimating the Poisson cumulative sum P̃(tf) in Eq. (9.35) of Example 9.3, where
the jump-amplitude marks Qi,j are uniformly distributed on [a, b]. First the jump
count Ni for i = 1:n sample points is computed by the inverse transform method in
Example 9.9, then a set of standard uniform variates Ui,j for j = 1 :Ni jumps and

“bk0allfinal”
2007/1/7
page 289

i

i

i

i

i

i

i

i

9.2. Monte Carlo Methods 289

i = 1:n points (i.e., Qi,j = a+ (b− a)Ui,j and Q
(a)
i,j = a+ (b− a)(1 − Ui,j)). Next

the partial sums are computed,

Si = aNi + (b − a)

Ni∑

j=1

Ui,j and S
(a)
i = (a+ b)Ni − Si, (9.75)

which are then used to compute thetic-antithetic averages of jump-shifted Black-
Scholes formulas and associated jump-exponentials.

9.2.7 Control Variates

As in importance sampling (Subsection 9.2.4) with its multiplicative factoring of
the density by seeking a better density, the control variate technique [104] seeks
an additive factor, but a known one, that is representative of the variability in
the target integrand. This technique was introduced in general by Hammersley-
Handscomb [104] in their little book and later introduced to finance along with the
antithetic techniques to finance by Boyle [38] in 1977 with a substantial update
by Boyle, Broadie and Glasserman [39] in 1997. See also Glasserman’s book [96,
Sect. 4.1] for more recent advances in finance.

Again, consider the target integral, returning back to nx-dimensional space V
with density φX(x),

µf =

∫

V
f(x)φX(x)dx

and basic Monte Carlo estimate

µ̂n =
1

n

n∑

i=1

f(Xi),

converging to µf as n→ ∞ by the strong law of large numbers, where the set {Xi}
of n IID sample points drawn are from the density φX(x).

Next, through knowledge of the problem a simpler function f (c)(x) is found
which significantly represents the variability of the target function f(x) and can be
used as a control (c) enabler, such that

µ
(c)
f =

∫

V
f (c)(x)φX(x)dx

is known or those value can be accurately approximated. Using the same IID set
{Xi} of sample points, the basic Monte Carlo estimate is

µ̂(c)
n =

1

n

n∑

i=1

f (c)(Xi),

which is convergent to and is an unbiased estimate of µ
(c)
f . The error

(
µ̂

(c)
n − µ

(c)
f

)

will be used as a control variable to control the variance reduction of the basic

“bk0allfinal”
2007/1/7
page 290

i

i

i

i

i

i

i

i

290 Chapter 9. Stochastic Simulations

unbiased estimate µ̂n of µf by constructing a potentially improved control variate
(cv) estimate,

µ̂(cv)
n (α) ≡ µ̂n − α

(
µ̂(c)

n − µ
(c)
f

)
, (9.76)

where α is a control parameter that will be optimized given the knowledge of the

control function f (c). In particular, the partly known error
(
µ̂

(c)
n − µ

(c)
f

)
will be used

to control the control variate estimate error
(
µ̂

(cv)
n (α) − µf

)
, noting from (9.76),

E
[
µ̂(cv)

n (α)
]

= µf − α
(
µ

(c)
f − µ

(c)
f

)
= µf ,

that the unbiased estimation of µf is unchanged.
Upon examining the variance of the control variate estimate in terms of α

following [96],

Var
[
µ̂

(cv)
n (α)

]
= Var

[
µ̂n − α

(
µ̂

(c)
n − µ

(c)
f

)]

= E

[(
(µ̂n − µf) − α

(
µ̂

(c)
n − µ

(c)
f

))2
]

= Var[µ̂n] − 2αCov
[
µ̂n, µ̂

(c)
n

]
+ α2Var

[
µ̂

(c)
n

]
,

(9.77)

a simple quadratic optimization in α produces an optimal control parameter,

α∗ =
Cov

[
µ̂n, µ̂

(c)
n

]

Var
[
µ̂

(c)
n

] =

ρ
bµn,bµ(c)

n

q
Var[µ̂n]√

Var
[
µ̂

(c)
n

] , (9.78)

where the correlation function is

ρX,Y =
Cov[X,Y]√
Var[X]Var[Y]

.

Thus, the optimal control variate variance is

Var
h
bµ(cv)

n (α∗)
i

= Var [bµn] −

“
Cov

h
bµn, bµ(c)

n

i”2

Var
h
bµ(c)

n

i =

„
1 −

“
ρbµn,bµ(c)

n

”2
«

Var [bµn] , (9.79)

so the absolute value of the correlation |ρbµn,bµ(c)
n
| must be less than one for variance

reduction. Note that Hammersley and Handscomb in their 1964 book [104, Sect. 5.5]
do not use a control parameter (i.e., α ≡ 1) and so require from (9.77) with α = 1
that

2Cov
[
µ̂n, µ̂

(c)
n

]
> Var

[
µ̂(c)

n

]
,

i.e., the covariance must be sufficiently positive, unlike (9.79). In fact, the optimal
variance reduction ratio, from (9.79) and from the definition of VRR (9.47), is

VRR∗
bµn,bµ(c)

n

≡ Var[µ̂n]

Var
[
µ̂

(cv)
n (α∗)

] =
1(

1 −
(
ρbµn,bµ(c)

n

)2
) , (9.80)

“bk0allfinal”
2007/1/7
page 291

i

i

i

i

i

i

i

i

9.2. Monte Carlo Methods 291

so the absolute value of the correlation |ρbµn,bµ(c)
n
| should not only be less than one,

but should be sufficiently close to one for significant variance reduction, in theory.
However, the exact statistics represented in the optimal parameter α∗ in (9.78)

and particularly the related optimal correlation ρbµn,bµ(c)
n

are unknown. Hence, in

practice, an estimate of α∗ is needed, leading to the sample control parameter
estimate of α∗,

α̂n =
ĉ(c)n(
σ̂(c)

n

)2 ≡

1

n− 1

n∑

i=1

(fi − µf)
(
f

(c)
i − µ

(c)
f

)

1

n− 1

n∑

j=1

(
f

(c)
j − µ

(c)
f

)2

=

n∑

i=1

(fi − µf)
(
f

(c)
i − µ

(c)
f

)

n∑

j=1

(
f

(c)
j − µ

(c)
f

)2

(9.81)

and the corresponding estimated control variate Monte Carlo estimate

µ̂(cv)
n (α̂n) = µ̂n − α̂n

(
µ̂(c)

n − µ
(c)
f

)
, (9.82)

but introducing some bias particularly due to the approximate covariance ĉ
(c)
n in

(9.81). The bias (9.40) is given by

βbµ(cv)
n

= E
[
µ̂(cv)

n (α̂n) − µf

]
= −E

[
α̂n

(
µ̂(c)

n − µ
(c)
f

)]
, (9.83)

which in general will be nonzero due to the nonlinear dependence of α̂n.

Example 9.11. Control Variate Adjusted Jump-Diffusion Payoff:
Zhu and Hanson [290] further reduced the variance of the thetic-antithetic adjusted
jump-factor Black-Scholes mentioned in Example 9.10 using the error in the thetic-
antithetic adjusted jump-factor,

∆Yi = 0.5
(
eSi + eS

(a)
i

)
− eλtf J̄ ,

where the partial sums Si and S
(a)
i are given in (9.75), J̄ ≡ E[J(Q) is the asset

mean jump amplitude given in (9.36) of Example 9.3 and tf is the option exercise
time. The complex corrections to the bias βbµ(cv)

n
in (9.83) are given and proven

in [290, 289] along with other results. The combination of antithetic and control
variate variance reduction techniques were easy to implement and were efficient in
spite of the theoretical complexity and the combination was better than either one
separately.

For more formation in depth on the control variate technique, see Boyle,
Broadie and Glasserman [39] and Glasserman [96].

“bk0allfinal”
2007/1/7
page 292

i

i

i

i

i

i

i

i

292 Chapter 9. Stochastic Simulations

Another topic that is important but beyond the scope of this book is the
quasi-Monte Carlo method which uses quasi-random or low-discrepancy number
sequences which are more genuine deterministic sequences than the pseudo-random
number sequences commonly used. Their generation is more complex generally
then the pseudo-random sequences, but their big benefit is that convergence is
between genuine order ord(1/

√
n) and ord(1/n), so can outperform the variance

reduction techniques just discussed. See Niederreiter [218] for the basic theoretical
background to the quasi-Monte Carlo method. For more general information, see
Glasserman [96, Chapt. 5] and Jäckel [150, Chapt. 8]. The Sobol’ [253] quasi-
random numbers seem to be the best overall performers in various measures as
demonstrated in [96, Figs. 514-5.16] and [150, Figs. 8.2-8.9]. Also, see Numerical
Recipes [230, Sect. 7.7] of Press et al. for the Sobol’ sequence code sobseq.

Suggested References for Further Reading

• Applebaum, 2004 [12].

• Beichl and Sullivan, 2000 [23].

• Boyle, 1977 [38].

• Boyle, Broadie and Glasserman, 1997 [39].

• Cyganowski and Kloeden, 2000 [65].

• Cyganowski, Grüne and Kloeden, 2002 [64].

• Cyganowski, Kloeden and Ombach, 2002 [66].

• Glasserman, 2003 [96].

• Glynn and Whitt, 1992 [97].

• Hammersley and Handscomb, 1964 [104].

• D. Higham, 2001 [139] and 2004 [140].

• D. Higham and Kloeden, 2002 [143] and 2005 [144].

• D. Higham, Mao and Stuart, 2002 [146].

• Jäckel, 2002 [150].

• Kalos and Whitlock, 1986 [157].

• Kloeden and Platen, 1992 [165].

“bk0allfinal”
2007/1/7
page 293

i

i

i

i

i

i

i

i

9.2. Monte Carlo Methods 293

• Kloeden, Platen and Schurz, 1994 [166].

• Lepage, 1978 [183].

• Maghsoodi , 1996 [191].

• Maghsoodi and Harris, 1987 [192].

• Metropolis, A. Rosenbluth, M Rosenbluth, A. Teller, and E. Teller, 1953 [207].

• Metropolis and Ulam, 1949 [208].

• Niederreiter, 1992 [218].

• Press and Farrar, 1990 [229].

• Press, Teukolsky, Vetterling and Flannery, 2002 [230].

• Zhu, 2005 [289].

• Zhu and Hanson, 2005 [290].

“bk0allfinal”
2007/1/7
page 294

i

i

i

i

i

i

i

i

294 Chapter 9. Stochastic Simulations

“bk0allfinal”
2007/1/7
page 295

i

i

i

i

i

i

i

i

Chapter 10

Applications in Financial
Engineering

From the point of view of the risk manager, inappropriate
use of the normal distribution can lead to an understatement
of risk, which must be balanced against the significant
advantage of simplification.
—Alan Greenspan (1995), Joint Central Bank Research Con-
ference [79].

Merton (1969, 1971, 1973) uses the formula from Itô’s
lemma and the continuous-time Bellman equation, but
otherwise uses none of the concepts and methods of proof
developed by Lebesgue and followers.
—Harry M. Markowitz in the forward to [245].

There is never enough time, unless you’re serving it.
—Malcolm Forbes (1919 - 1990),
http://www.quotationspage.com/quote/957.html.

Stochastic effects play a major role in financial engineering applications, either
using a combination of financial assets and other instrument to remove stochastic-
ity all together through hedging or balancing securities, or just accommodating the
financial portfolio analysis to stochastic effects. For general background, the formal
derivation of the classical Black-Scholes [34] option pricing model is presented, but
for students already familiar with the Black-Scholes formulation, they may prefer to
skip to the next more rigorous section. Applying methods previously developed, this
chapter presents the derivation of the Black-Scholes-Merton [34, 201, 203] formula
for pricing European call and put options from the stock, bond and option portfolio
diffusion model, including Merton fractions and self-similar solutions [203]. A re-
lated option pricing Merton study for underlying stock-bond jump-diffusion models
is also discussed. In addition, optimal consumption and portfolio policies for con-

295

“bk0allfinal”
2007/1/7
page 296

i

i

i

i

i

i

i

i

296 Chapter 10. Applications in Financial Engineering

stant relative risk aversion (CRRA) utilities of terminal wealth and instantaneous
consumption is discussed for marked jump-diffusions. The notion of scheduled event
with distributed response (the so-called Greenspan processes) [235, 122, 129] is
presented. The role of optimal stochastic control in finance is discussed. The stock
jump-diffusion probability density is derived for the linear model treating the com-
posite process as a triad of independent random variables [124, 123].

10.1 Classical Black-Scholes Option Pricing Model

The Black-Scholes option pricing model [34, 35] is perhaps the most used financial
model in financial engineering, had been called the most seminal work in finance in
the last 25 years during 1997 and is probably the most cited work in finance.

The Black-Scholes model is for a portfolio containing a stock option, hedged
with the stock itself with price S(t) and a risk-less bond with price B(t) at time t
providing a constant reference market rate of interest r. The option is assumed to
be a European option, i.e., there is a contract with a fixed time-to-maturity T to
either buy a number of shares of the stock at a given exercise price K per share at
contract expiration time T (called a European call option) or to sell a number of
shares of a stock at a given price K per share at a number of shares of a stock at a
given exercise price K per share at contract expiration time T (called a European
put option). The call and put options can be considered together, since they share
the same financial market model except for different final boundary conditions at
expiration t = T . The options contract is between the investor (buyer) and maker
(writer) of the contract.

At the end of the term, t = T , of the contract, the investor’s call option payoff
or exercise profit is

max[S(T) −K, 0]. (10.1)

So the profit from exercising the option is positive only if the final stock price S(T)
per share exceeds the contract exercise price K, in which case the investor can buy
the stocks at price K, i.e., exercise the option, and then sell the stocks in the market
for price S(T). Otherwise, the rational investor does nothing, i.e., does not exercise
the option contract. At the start t = 0, the investor must bet that S(T) will rise
above K and the fixed cost of the bet is the option price, Y0. Hence, the investor
net profit for is the payoff (10.1) less the call option price Y0 for the contract. The
net profit position of the contract writer is just the opposite of that of the investor
or contract buyer. See Hull [147, pp. 5-10] for a simple, concrete example. A simple
version of Black-Scholes model will be given here, following Hull [147], but with our
notation and added explanations.

The situation is reversed for the put option. At the end of the term of the
contract, the investor’s put option payoff or exercise profit is

max[K − S(T), 0]. (10.2)

So the profit is positive only if the final stock price S(T) drops below the contract
exercise price K, in which case the investor can sell the stocks at price K to the

“bk0allfinal”
2007/1/7
page 297

i

i

i

i

i

i

i

i

10.1. Classical Black-Scholes Option Pricing Model 297

contract maker and then buy stocks more cheaply in the market for S(T), else the
rational investor does nothing, i.e., does not exercise the option. At the start t = 0,
the investor bets that S(T) will fall below K and again the fixed cost of the bet is
the option price. Again, the net profit is the payoff (10.2) less the put option price
Y0 for the contract.

Let the stock or other asset price S(t) dynamics satisfy the linear SDE (often
called geometric Brownian motion),

dS(t) = S(t) (µdt+ σdW (t)) , S(0) = S0 , (10.3)

where µ is the constant rate of appreciation of the stock price and σ is the constant
volatility (standard deviation) in the stock price. The bond price equation is not
really needed, only that a risk-less investment grows at a constant rate r so that at
time t the principal has grown by an exponential factor exp(rt) from time zero.

Let the option price be given by the function Y = F (S(t), t) with exercise
price K at exercise time t = T when the starting stock price is S0 at t = 0. By the
stochastic chain rule, the option price changes according to the SDE,

dY (t) = dF (S(t), t) =

(
∂F

∂t
+ µS(t)

∂F

∂S
+

1

2
σ2S2(t)

∂2F

∂S2

)
dt

+σS(t)
∂F

∂S
dW (t) , (10.4)

where all partial derivatives are evaluated at (S(t), t), e.g.,

∂F

∂t
=
∂F

∂t
(S(t), t)

denotes the partial derivative of F (s, t) with respect to the second argument t with
the first argument s held fixed and evaluated at (S(t), t) after differentiation. The
major problem evaluating the initial option price Y0 = F (S0, 0) is the volatility or
uncertainty term

σ
∂F

∂S
dW (t)

in (10.4) makes any pricing decision difficult unless this term can be controlled or
eliminated (i.e., hedged in the language of options pricing).

So to control or hedge the volitility term, the value of a portfolio of the
option and stock is defined as

V (t) = NFF (S(t), t) +NSS(t) , (10.5)

where NF is the number of options and NS is the number of stocks or other assets.
Finding the change in the portfolio value is one of the not so clear assumptions
in Black-Scholes option pricing derivations that is addressed in more detail in the
next section, but there are also many other explanations, such as in D. Higham’s
nice introductory options book with emphasis on simulations [140]. For the simple

“bk0allfinal”
2007/1/7
page 298

i

i

i

i

i

i

i

i

298 Chapter 10. Applications in Financial Engineering

description here, it is assumed that the change in the numbers alone , FdNF +SNS

is negligible compared to other changes, i.e.,

dV (t) = NFdF (S(t), t) +NSdS(t) . (10.6)

This formula is also called a self-financing strategy. Other arguments given are
that the NF and NS are fixed during changes in F and S or that NF and NS change
slowly compared to F and S. In fact, the seminal paper of Black and Scholes [34]
did take a year or more to get published due to this and other questions [204, 51].

Next, we are interested in eliminating the deviation of the portfolio change for
fixed F and S,

dV (t) − E[dV (t)|F, S] = σS

(
NF

∂F

∂S
+NS

)
dW (t).

So the optimal volatility eliminating hedge is to select the stock number to be

N∗
S = −N∗

F

∂F

∂S
,

where

∆F = ∂F/∂S (10.7)

is called the portfolio delta in finance and the hedge is called a delta hedge [147,
pp. 310ff]. In terms of fractions with N∗

S +N∗
F = N for fixed N ,

N∗
S

N
=

−∂F
∂S

1 − ∂F
∂S

, and
N∗

F

N
=

1

1 − ∂F
∂S

,

providing, ∂F/∂S 6= 1. At this point, we will ignore any contradiction with the
self-financing assumption, relying in the end that Black-Scholes gives a reasonable
and successful formula for option pricing.

Thus,

dV ∗(t) = N∗
F

(
dF − ∂F

∂S
dS

)
= N∗

F

(
∂F

∂t
+

1

2
σ2 ∂

2F

∂S2

)
dt , (10.8)

using (10.3,10.4), while the optimal portfolio value becomes

V ∗(t) = N∗
F

(
F − ∂F

∂S
S

)
. (10.9)

In addition, it is necessary to avoid arbitrage, taking advantage of price dif-
ferentials to make a profit without the trader making his or her own investment. So
it is required that the portfolio earn a return at the risk-less market rate r or

dV ∗(t) = rV ∗(t)dt , (10.10)

“bk0allfinal”
2007/1/7
page 299

i

i

i

i

i

i

i

i

10.1. Classical Black-Scholes Option Pricing Model 299

the no-arbitrage condition. Finally, the Black-Scholes PDE is formed by combining
(10.10) with (10.8) and (10.9), then replacing the stock path function S(t) by the
independent stock variable S,

∂F

∂t
(S, t) +

1

2
σ2 ∂

2F

∂S2
(S, t) = r

(
F (S, t) − S

∂F

∂S
(S, t)

)
. (10.11)

Note that the random volatility term and the mean appreciation (µ) term no longer
appear, but the volatility coefficient appears due to the Itô diffusion coefficient
correction. This PDE is a backward PDE for t on [0, T) and S on [0,∞) with final
condition at t = T for any non-negative S,

F (S, T) = C(S, T) = max[S −K, 0]

for a call option from (10.1) and

F (S, T) = P(S, T) = max[S −K, 0]

for a put option from (10.2). The well-known formula [34, 140] for solution to this
PDE can be found in terms of the normal distribution function, but only the results
are given here since the details are presented for the more general case in the next
section. In the case of the European call option, the Black-Scholes formula is

C0(S0) ≡ C(S0, 0) = S0Φn(d1(S0); 0, 1)−Ke−rTΦn(d2(S0); 0, 1) , (10.12)

where the variable arguments of the normal distribution function Φn(w;µ, σ2) are

d1(s)≡
ln(s/K)+(r+σ2/2)T

σ
√
T

and
d2(s)≡d1(s) − σ

√
T .

In the case of the European put option, the Black-Scholes formula can be found by
the well-known and very general Put-Call Parity that depends basically on the
properties of the maximum function [203, 140],

P0(S0) ≡ P(S0, 0) = C0(S0) +Ke−rT − S0 . (10.13)

In 1900, Bachelier [16, 61], a student of Poincaré, published a theory of option
pricing that was derived from his thesis, but his work was little noticed at the time.
Unlike the Black-Scholes diffusion option pricing model based upon the geometric
Brownian motion stochastic model, Bachelier’s option pricing model was based upon
additive Brownian motion, i.e., instead of being linear in the stock price as in the
multiplicative noise (MultNoise1) case, the noise was independent of stock price and
thus additive noise (4.31). Bachelier’s paper was a very early, very complete and
straight-forward application of stochastic processes in finance. The main drawback
is the additive noise, since stock price fluctuations are now assumed to act in a
compound or multiplicative fashion.

“bk0allfinal”
2007/1/7
page 300

i

i

i

i

i

i

i

i

300 Chapter 10. Applications in Financial Engineering

10.2 Merton’s Three Asset Option Pricing Model
Version of Black-Scholes

Sometimes the Black-Scholes model is called the Black-Scholes-Merton model, since
Merton [201], in his Theory of Rational Option Pricing paper, gave substantial
mathematical justification of the seminal Black-Scholes model using stochastic diffu-
sion processes. Merton’s paper includes generalizations of the Black-Scholes model
that provide greater foundations and limitations for their model. Both the Black-
Scholes and the Merton papers were published in Spring 1973, Merton having held
up the publication of his paper out deference to Black and Scholes’ original model.
Robert C. Merton and Myron Scholes shared the 1997 Nobel prize in economics for
the accomplishments, but unfortunately Fischer Black [204, 51] had passed away in
1995.

The version of the model presented here is based mainly on Merton’s more
general framework [201] (reprinted in Chapter 8 of [203]). The model is for a
portfolio containing a European stock option, hedged with the stock itself with
price S(t) and a risk-less bond with price B(t) at time t, but with more explicit
assumptions than for the classical Black-Scholes.

The market model is comprised of a number of assumptions which will be
enumerated and marked with BSM here, but formulated in the notation and spirit
of this book. Multiple assumptions of Merton have been decomposed into single
assumptions to make them easier to modify new problems. One of the objectives
of this book to offer sufficient detail to enable the reader to become a practitioner
making those new modifications. The more general model of Merton is treated here
since many readers will be familiar with the simpler, classic versions of the Black-
Scholes option pricing model which can be found in many of the references listed
at the end of this chapter, e.g., Hull [147] or Wilmott et al. [282].

• Assumption BSM1. Frictionless Markets:
There are no transaction fees for transactions involving the buying or selling
of the three assets in the portfolio, excluding the original price of the option
contract.

• Assumption BSM2. No Dividends:
There are no dividends paid on the stock asset.

• Assumption BSM3. Continuous Trading, without Jumps:
Trading among the assets is continuous, so discrete aspects of trading such as
jumps are neglected. This assumption is consistent with the no transaction
fees and no dividends of the prior two assumptions, since those are discrete
events.

• Assumption BSM4. Borrowing and Short Selling Allowed:
Short selling of stock or options is allowed within the term of the contract,
with funds placed into the bond asset. Borrowing from the bond asset is
allowed to increase the number of shares of the other two assets. Also, it is
assumed that the borrowing rate is the same as the lending rate.

“bk0allfinal”
2007/1/7
page 301

i

i

i

i

i

i

i

i

10.2. Merton’s Three Asset Option Pricing Model 301

• Assumption BSM5. Linear Stock-Price Stochastic Dynamics:
Let S(t) be the price of stock per share at time t. Then the S(t) satisfies a
linear stochastic diffusion differential equation, written in terms of the rate of
return or relative change in time dt:

dS(t)/S(t) = µS(t)dt+ σS(t)dWS(t) , (10.14)

where

◦ dWS(t) = stochastic diffusion differential process for the stock price pro-
cess S(t), such that E[dWS(t)] = 0 and

(dWS)2(t)
ims
= dt,

else
dWS(t)dWS(s)

ims
= 0 , if s 6= t ,

by independent increments.

◦ µS(t) = E[dS(t)/S(t)]/dt = instantaneous expected rate of return on
the stock in time dt.

◦ σ2
S(t) = Var[dS(t)/S(t)]/dt = instantaneous variance of the rate of return

on the stock in time dt, while σS is the volatility of the stock return.
Here volatility denotes a measure of uncertainty [147], but is derived
from the French word meaning to fly.

Here, a stock is considered a risky asset, compared to the bond asset. Since
the option profit at exercise depends only on the stock price S(T) at the
expiration of the option, for some analysis it is more convenient to view the
process in backward time τ = T − t, also called the time-to-maturity, and to
consider the stock price in that variable, i.e.,

Ŝ(τ) ≡ S(T − τ) .

• Assumption BSM6. Linear Bond-Price Stochastic Dynamics:
Let B(t) be the price of bond asset at time t, in particular a default-free
zero-coupon bond or discounted loan with time-to-maturity T . Then the B(t)
satisfies a linear stochastic diffusion differential equation, written in terms of
the rate of return or relative change in time dt:

dB(t)/B(t) = µB(t)dt+ σB(t)dWB(t) , (10.15)

where

◦ dWB(t) = Stochastic diffusion differential process for the bond return
process B(t), such that E[dWB(t)] = 0 and

(dWB)2(t)
ims
= dt,

otherwise
dWB(t)dWB(s)

ims
= 0 , if s 6= t ,

by independent increments.

“bk0allfinal”
2007/1/7
page 302

i

i

i

i

i

i

i

i

302 Chapter 10. Applications in Financial Engineering

◦ µB(t) = E[dB(t)/B(t)]/dt = instantaneous expected rate of return
on the bond asset.

◦ σ2
B(t) = Var[dB(t)/B(t)]/dt = instantaneous variance of the rate of re-

turn on the stock, while σB is the volatility of the stock return.

Here, a bond is usually considered a lower risk asset, compared to the higher
risk or risky stock asset. Here, the variance or volatility will be taken as a
measure of riskiness, so we say that the stock is riskier or more risky
than the bond if σS > σB . We say that the bond is risk-free if σB = 0.
However, Merton [203] has more precise measures of riskiness, though not as
easy to apply (see Exercise 2).

In the more classical Black-Scholes model, the bond-price is assumed to be
deterministic, so σB(t) = 0, and the mean rate is assumed to be constant, so
µB(t) = r. In this ideal case the bond is called risk-free or risk-less.

In the case where the bond is treated as a discounted loan, then the pay-
back is at the final price B(T), the initial discounted loan amount received is
B(0), which should be less than B(T), so (B(T) − B(0)) > 0 is the amount
discounted. Discounting is a backward time version of interest on principal.
In the backward time problem, the time-to-maturity or time-to-go τ = T − t
is the natural time variable.

In the non-stochastic interest rate problem, as in the traditional Black-Scholes
formulation, σB = 0, µB = r, the mean interest rate for borrowing and selling,
and the bond price in backward time is

B̂(τ) ≡ B(T − τ).

So the bond price decays away from expiration,

dB̂(τ) = −rB̂(τ)dτ

with the bond price decaying in τ due to discounting,

B̂(τ) = B̂(0)e−rτ = B(T)e−r(T−t) .

This backward time view is consistent with the options contract where the
profit depends on the final stock price S(T) and the objective is to find the
number of shares as the initial price S(0) in the final value problem for a
stochastic differential equation.

• Assumption BSM7. Bond and Stock Price Fluctuations are Corre-
lated, but Not Serially:
Thus, the correlation properties between the stock price noise and the bond
price noise are

dWB(t)dWS(t)
ims
= ρdt , (10.16)

dWB(t)dWS(s)
ims
= 0 , if s 6= t. (10.17)

“bk0allfinal”
2007/1/7
page 303

i

i

i

i

i

i

i

i

10.2. Merton’s Three Asset Option Pricing Model 303

The former equation (10.16) expressing correlation on the same time incre-
ments at t (see Exercise 1 for the proof), while the latter equation (10.17)
expresses the lack of serial correlation on disjoint time intervals when s 6= t,
also preserving the independent increment property, where

ρ ≡ Cov[dS(t), dB(t)]√
Var[dS(t)]Var[dB(t)]

=
Cov[dWS(t), dWB(t)]

dt
(10.18)

= the instantaneous correlation coefficient between stock and bond re-
turns, provided σS(t) and σB(t) are positive.

The joint density for (dWS(t), dWB(t)) is obviously the bivariate normal den-
sity in (B.146) of preliminaries Chapter B,

φ(dS(t),dB(t))(s, b) = φn

([
s
b

]
;

[
µS(t)
µB(t)

]
dt,

[
σ2

S(t) ρ(σSσB)(t)
ρ(σSσB)(t) σ2

B(t)

]
dt

)
. (10.19)

Merton [201, 203] claims that the lack of serial correlations is consistent with
the Efficient Markets Hypothesis. In the simpler expositions of the Black-
Scholes model, there are no correlations, so ρ ≡ 0, with σB = 0 and µB = r,
the common interest rate. The mean square limit for non-serial correlation
(10.16) is left as an exercise for the reader.

• Assumption BSM8. No Investor Preferences or Expectations, ex-
cept for Agreement on Parameters:
The investors agree on and have reasonable knowledge the parameters, such
as the means µS and µB, as well as the volatilities σS and σB .

• Assumption BSM9. Option Price is a Function of Stock and Bond
Prices:
The option price per share at time t,

Y (t) = F (S(t), B(t), t;T,K) (10.20)

depends on the stock S and bond B price stochastic variables, as well as on
time t and parameters such as the time-to-maturity T and the contracted
expiration stock price K per share.

Alternatively, the relationship can be cast in terms of the time-to-maturity,
τ = T − t,

Ŷ (τ) = F (S(T − τ), B(T − τ), T − τ ;T,K) .

Although we are interested in the initial option price Y (0) = Ŷ (T), considering

the time dependent option price Y (t) = Ŷ (τ) allows analysis of the problem
and yields more general results that permit conversion of the option contract

“bk0allfinal”
2007/1/7
page 304

i

i

i

i

i

i

i

i

304 Chapter 10. Applications in Financial Engineering

to another investor at the current option price Y (t) = Ŷ (τ). In the case
of constant coefficients, then the results will depend on the general time-to-
exercise tau = T − t without restriction to a fixed exercise time T .

Using a two-state-dimensional version of the stochastic diffusion chain rule,
the return on the option asset, initially keeping all quadratic terms in the
Taylor expansion, is

dY (t) = dF (S(t), B(t), t;T,K)
ims
= Ftdt+ FSdS(t) + FBdB(t)

+
1

2

(
FSS (dS)2(t) + 2FSB dB(t)dS(t) + FBB (dB)2(t)

)
, (10.21)

omitting higher order terms that obviously have zero mean limits. Here,
{FS , FB , FSS , FSB, FBB} are the set of first and second partial derivatives
of F (S,B, t;T,K) with respect to the underlying portfolio assets S and B.
Next, substitution for the return processes S(t) and B(t) is used, along with
the quadratic differential forms in the mean square limit,

(dS)2(t)
ims
= σ2

S(t)S2(t)dt

(dB)2(t)
ims
= σ2

B(t)B2(t)dt (10.22)

(dBdS)(t)
ims
= ρ · σB(t)σS(t)B(t)S(t)dt ,

which simply follow from the corresponding mean square limit differential
forms for (dWS)2(t), (dWB)2(t) and (dWBdWS)(t), respectively, given under
previous assumptions. This forces the geometric Brownian motion form on
the option price,

dY (t)
ims
= Y (t) (µY (t)dt+ σY S(t)dWS(t) + σY B(t)dWB(t)) , (10.23)

where the new option instantaneous return moment coefficients are defined as

Y (t)µY (t) ≡ Ft + µSSFS + µBBFB (10.24)

+
1

2

(
σ2

SS
2FSS + 2ρσSσBSBFSB + σ2

BB
2FBB

)
,

Y (t)σY S(t) ≡ σSSFS , (10.25)

Y (t)σY B(t) ≡ σBBFB . (10.26)

• Assumption BSM10. Self-Financing Portfolio Investments:
LetNS(t), NY (t) andNB(t) be the instantaneous number of shares invested in
the stock, option, and bond at time t, respectively, such that the instantaneous
values of the assets in dollars are

VS(t) = NS(t)S(t) , VY (t) = NY (t)Y (t) , VB(t) = NB(t)B(t) , (10.27)

respectively. However, it is assumed there is a zero instantaneous aggre-
gate portfolio value,

VP (t) = VS(t) + VY (t) + VB(t) = 0 , (10.28)

“bk0allfinal”
2007/1/7
page 305

i

i

i

i

i

i

i

i

10.2. Merton’s Three Asset Option Pricing Model 305

so that the bond value variable can be eliminated

VB(t) = −(VS(t) + VY (t)) . (10.29)

Merton [203] defines a self-financing portfolio as a trading strategy in which
no capital is put in or taken out until maturity. Such a strategy avoids an
imbalance between the stock and its option, which would soon disappear as
other investors took advantage of the imbalance. This strategy is also related
to the avoidance of arbitrage profits and in Black-Sholes is µ = r. Further,
this strategy also includes a no consumption of assets assumption.

It is further assumed that the absolute instantaneous return from the value
of the portfolio VP (t) is a linear combination of the instantaneous returns in
each of the three assets, (S, Y,B), giving the portfolio budget equation

dVP (t) = NS(t)dS(t) +NY (t)dY (t) +NB(t)dB(t) (10.30)

= VS(t)
dS(t)

S(t)
+ VY (t)

dY (t)

Y (t)
+ VB(t)

dB(t)

B(t)
,

using (10.27) to convert from number of shares to asset value assuming that
none of the divisors are zero for the latter more convenient form in terms of
rates of return. Note that the budget equation can not be expressed as the
instantaneous rate of return since VP (t) = 0.

Substituting for the three asset stochastic dynamics from (10.14, 10.15, 10.23)
and eliminating the bond value VB(t) through (10.29),

dVP (t) = VS

(
dS

S
− dB

B

)
+ VY

(
dY

Y
− dB

B

)

= ((µS − µB) VS + (µY − µB)VY) dt

+ (σSVS + σY SVY) dWS(t)

+ (−σBVS + (σY B − σB)VY) dWB(t) . (10.31)

See Merton [203, Chapter 5] text for more justification.

Note that (10.30) does not really follow the Itô stochastic calculus, but states
that the absolute return on the portfolio is the number of shares weighted sum
of the absolute returns on the portfolio assets. However, in [203, Chapter 5],
Merton argues that the missing differential product terms, such as dNS(t)S(t)
and dNS(t)dS(t), represent consumption or external gains to the portfolio,
which would violate the self-financing assumption making the portfolio open
rather than closed to just the three assets.

• Assumption BSM11. Investor Hedging the Portfolio to Eliminate
Volatility:
Since many investors as individuals or as a group act to avoid stochastic effects,
they tune or hedge their trading strategy, as a protection against losses, by
removing volatility through removing the coefficients of the stock and bond

“bk0allfinal”
2007/1/7
page 306

i

i

i

i

i

i

i

i

306 Chapter 10. Applications in Financial Engineering

fluctuations. A main purpose of the stock and bond underlying the option in
the portfolio is to give sufficient flexibility to leverage or hedge the stock and
bond assets to remove volatilities that would not be possible with the option
alone. Hence, setting the coefficients of dWS(t) and dWB(t), respectively, to
zero in (10.31),

(σSV
∗
S + σY SV

∗
Y) = 0 (10.32)

−σBV
∗
S + (σY B − σB)V ∗

Y = 0 . (10.33)

The optimal system (10.32,10.33) has a non-trivial solution for the optimal
values (V ∗

S , V
∗
B) provided the system is singular, i.e., the determinant of the

system is zero,

0 = Det

[
σS σY S

−σB σY B − σB

]
= σS(σY B − σB) + σY SσB , (10.34)

which leads to the Merton volatility fraction

σY S

σS
= −σY B − σB

σB
, (10.35)

provided σS 6= 0 and σB 6= 0. The single optimal option-stock value relation
that makes it work,

V ∗
S = −σY SV

∗
Y

σS
, (10.36)

recalling budget constraint on V ∗
B , giving

V ∗
B = − (V ∗

S + V ∗
Y) = −

(
1 − σY S

σS

)
V ∗

Y . (10.37)

In the case of the non-stochastic, constant rate bond process, as in the more
traditional Black-Scholes model, µb = r and σB = 0, so σY B = 0 and
the option price is assumed to be independent of the bond price B, i.e.,
F = F (S(t), t;T,K) and FB ≡ 0. Then only the optimal values (10.36)
are obtained, i.e., there is no Merton volatility fraction in the traditional
Black-Scholes model.

However, taking the Merton volatility fraction as valid and substituting in for
the definitions of the option-stock volatility σY S and the option-bond volatility
σY B from (10.25-10.26), respectively, then the option price turns out to be
homogeneous [203] in S and B,

Y ∗ = Y ∗
S S + Y ∗

BB . (10.38)

Since this result is based upon the Merton volatility fraction, it does not
appear in the classical Black-Scholes model, the stock and bond dynamics no
longer having common stochastic diffusion forms.

“bk0allfinal”
2007/1/7
page 307

i

i

i

i

i

i

i

i

10.2. Merton’s Three Asset Option Pricing Model 307

• Assumption BSM12. Zero Expected Portfolio Return:
Further, to avoid arbitrage profits, the expected return must be zero as well.
Thus, the coefficient of dt in (10.31) must be zero, aside from the assumption
that VP (t) = 0 would imply that dVP (t) = 0, i.e.,

0 = (µS − µB)V ∗
S + (µY − µB)V ∗

Y (10.39)

=

(
− (µS − µB)

σY S

σS
+ (µY − µB)

)
V ∗

Y , (10.40)

assuming V ∗
Y 6= 0. Otherwise, there would be no option and no optimal values

(10.36) that would follow from the Merton volatility fraction (10.35). This
means that the portfolio returns are hedged to complete equilibrium, deter-
ministically and stochastically. Thus, provided the option value V ∗

Y 6= 0, then,
by setting the coefficient of V ∗

Y in (10.39) to zero, Merton’s Black-Scholes
fraction becomes simply Merton’s fraction for the expected returns, i.e.,

µY − µB

µS − µB
=
σY S

σS
. (10.41)

Since it does not involve either of the bond related volatilities, σB or σY B, this
primary Merton fraction holds for the Black-Scholes model as well. The Black-
Scholes fraction (10.41) states that the net drift ratio equals the option-stock
volatility ratio, where the net drift is relative to the market interest/discount
rate µB .

10.2.1 PDE of Option Pricing

In order to derive the partial differential equation (PDE) of Black-Scholes-Merton
option pricing, the definition of the option expected return µY in (10.24) is viewed
as a PDE for the option price function with the option trajectory Y (t) replaced
by the composite function equivalent F (S,B, t;T,K) as a function of three inde-
pendent variables (S,B, t), (S,B) having replaced the underlying state trajectories
(S(t), B(t)),

µY F ≡ Ft + µSSFS + µBBFB (10.42)

+
1

2

(
σ2

SS
2FSS + 2ρσSσBSBFSB + σ2

BB
2FBB

)
.

It is conceptually important to separate the view of S and B as deterministic,
independent PDE variables and the view of S(t) and B(t) as the random SDE state
trajectories in time, but use each view in the appropriate place.

Next, µY is eliminated using the Black-Scholes fraction (10.41) with µY =
µB + (µS − µB)σY S/σS and the option-stock induced volatility σY S is eliminated
using its definition in (10.25), i.e., σY S = σSSFS/F , while the option price F can
be eliminated by Merton’s homogeneous condition (10.38) with Y replaced by F ,

F = SFS +BFB ,

“bk0allfinal”
2007/1/7
page 308

i

i

i

i

i

i

i

i

308 Chapter 10. Applications in Financial Engineering

incidentally eliminating both first partials FS and FB , so

0 = Ft +
1

2

(
σ2

SS
2FSS + 2ρσSσBSBFSB + σ2

BB
2FBB

)
. (10.43)

This Merton’s PDE of option pricing needs side conditions, final condition at
the expiration time and boundary conditions in the asset variables, the PDE and
conditions forming a final value problem (FVP). For the FVP, the natural time
variable is the time-to-maturity or time-to-go τ = T − t and Ft = −Fτ , so the
backward formulated PDE (10.43) in forward time t can be written as a forward
diffusion or parabolic PDE in backward time τ ,

Fτ =
1

2

(
σ2

SS
2FSS + 2ρσSσBSBFSB + σ2

BB
2FBB

)
. (10.44)

It is conceptionally important to remember that the PDE problem, (10.44) plus
any final and boundary conditions, is a deterministic problem in realized indepen-
dent variables (S,B, t = T − τ) all stochasticity being eliminated, in contrast to the
SDE problem in the stochastic path variables (S(t), B(t), Y (t)) which depends on
the independent variable t and underlying stochastic diffusion processes.

In the classical Black-Scholes model, the bond price has no volatility σB(t) = 0,
so the Merton homogeneous result (10.38) does not hold since it is based upon the
Merton volatility fraction which is invalid if σB(t) = 0. Thus, starting back at the
view of the definition of µY as a PDE (10.42) setting all B partial derivatives to
zero, but eliminating µY using the Black-Scholes fraction (10.41) and σY S using
(10.25), letting the option price function in backward time be defined as

F̂ (S, τ ;T,K) ≡ F (S, T − τ ;T,K) ,

leads to Merton’s Black-Scholes option pricing PDE, including a bond term,

F̂τ =
1

2
σ2

SS
2F̂SS + µB(SF̂S +BF̂B − F̂) . (10.45)

If the assumption that the mean interest/discount rate is the constant market rate,
µB = r along with constant stock volatility σS , then the standard Black-Scholes
option pricing PDE is obtained.

However, many texts do not use Merton’s elaborate assumptions, that we have
decomposed into a larger number of individual assumptions here, so these texts use
a different hedging argument to produce the Black-Scholes PDE and the constant
rate coefficient r. Dropping the zero aggregate assumption, the portfolio value is
then

VP (t) = NS(t)S(t) +NY (t)Y (t) (10.46)

in terms of the number of shares times the price per share for the option and the
underlying stock. Similarly, the change in the portfolio value is given by the budget
equation,

dVP (t) = NS(t)dS(t) +NY (t)dY (t), (10.47)

“bk0allfinal”
2007/1/7
page 309

i

i

i

i

i

i

i

i

10.2. Merton’s Three Asset Option Pricing Model 309

ignoring the missing differential forms as in Merton’s more general version. Upon
eliminating the resultant stochastic terms to form a riskless portfolio, the coefficients
of dWS(t), again yields the stock-option relationship, relating the number of stock
shares to that of the options

NS = −NY F̂S , (10.48)

called delta hedging since ∆ ≡ ∂F̂ /∂S is called the Delta of the option [283],
where the definition of σY S in 10.25) has been used.

Thus,
VP = NY · (F − SF̂S),

where the process Y (t) has been replaced by the composite function definition
Y = F in (10.20), and

dVP = NY ·
(
−F̂τ +

1

2
S2F̂SS

)
dt .

Finally, it is assumed that the portfolio will earn at the riskless rate, avoiding
arbitrage profits without risk,

dVP (t) = rVp(t)dt (10.49)

which upon eliminating VP and dVP leads to the Black-Scholes option pricing
PDE,

F̂τ =
1

2
σ2

SS
2F̂SS + r(SF̂S − F̂) , (10.50)

independent of NY as long as NY 6= 0 and, as typically written, no longer including
the bond term as in Merton’s version (10.45).

The Black-Scholes option pricing equation (10.45) is a parabolic or diffusion
PDE in two asset values, S and B, but degenerate in B since there is no diffusion
term in B and only a drift or mean rate term rBF̂B .

Two elementary solutions of (10.45) can easily be verified:

• Only a stock asset: F̂ (S,B, τ ;T,K) = S.

• Only a deterministic bond asset: F̂ (S,B, τ ;T,K) = B(T) exp(−rτ).

10.2.2 Final and Boundary Conditions for Option Pricing PDE

In the case of the European call option, the final option price, for any value S of
S(T), satisfies the final option profit conditions given in (10.1) for calls or (10.2) for
puts, translated directly as

F (S(T), B(T), T ;T,K) =

{
max[S(T)−K, 0], call
max[K − S(T), 0], put

}

= max[θ(S(T) −K), 0] , (10.51)

“bk0allfinal”
2007/1/7
page 310

i

i

i

i

i

i

i

i

310 Chapter 10. Applications in Financial Engineering

where θ = 1 for calls and θ = −1 for puts. Since S(T) and B(T) are arbitrary but
non-negative, we can replace them by the independent variables S and B respec-
tively to form the final condition for the PDE,

F (S,B, T ;T,K) = max[θ(S −K), 0] , (10.52)

but we will return to the original form (10.51) when transforming to new variables.
For the other boundary conditions, the discussion will be simplified to the

risk-free bond case, i.e., σB(t) = 0, as assumed in the classical Black-Scholes case
(10.50), except that the time-dependent interest/discount rate, µB(t) = r(t), will
be retained. In the case of risky bonds, the boundary conditions are given by
diffusion PDEs instead of explicit functions or values, so solving the PDE (10.44)
by computational methods, as in Chapter 8 or in [108, 230, 264, 283], is more
practical.

The number of boundary conditions depends on the highest order partial
derivative for each independent state variable in the PDE, one condition if it is
first order and two conditions if it is second order. Thus, for (10.44) it is two
boundary conditions in the stock and one in the bond. Time is not a state variable,
but there is one final condition (technically an initial condition for the backward
time variable τ) since the time derivative is first order.

At the zero stock price, S = 0, the Merton’s Black-Scholes PDE (10.45) re-
duces to

F̂τ (0, B, τ ;T,K) = r(BF̂B − F̂) , (10.53)

upon setting S to zero in the coefficients, assuming the derivatives are bounded,
which is a risky assumption prior to finding the solution. This is a first order
PDE, all of which are classified as hyperbolic PDEs, and the usual method of
constructing a solution is called the method of characteristics [251]. Noting
that the PDE problem is a deterministic problem, the PDE (10.53) is compared to

the deterministic (non-Itô!) chain rule for F̃ (B, τ) ≡ F̂ (0, B, τ ;T,K),

dF̃ = F̃τdτ + F̃BdB , (10.54)

assuming that the differentials dτ and dB can be varied independently, the ordi-
nary differential equations (ODEs) for the characteristic path are written maintain-
ing relative proportions between the differentials of (10.54) and the corresponding
coefficients of (10.53),

dτ

1
= −dB

rB
= −dF̃

rF̃
.

Solving these ODEs successively in pairs,

B = B̃(τ) = κe−R(τ) , (10.55)

where κ is a characteristic path constant of integration and the cumulative rate for
time-dependent r(t) is

R(τ) ≡
∫ τ

0

r(T − s)ds ≡
∫ τ

0

r̂(s)ds , (10.56)

“bk0allfinal”
2007/1/7
page 311

i

i

i

i

i

i

i

i

10.2. Merton’s Three Asset Option Pricing Model 311

and

F̃ = f(κ)e−R(τ) ,

where f = f(κ) is an arbitrary function of integration depending on the constant κ
from a prior integration. Using the first integral (10.55) to eliminate κ in favor of

B̃ and τ yields

F̃ (B̃(τ), τ) = f
(
B̃(τ)eR(τ)

)
e−R(τ) . (10.57)

It is not necessary to know much about the method of characteristics, since the
reader can verify the solution by the usual substitution procedure. The arbitrary
function f can be eliminated by applying the final condition (10.52) at τ = 0 with
R(0) = 0,

F̃ (B̃(0), 0) = f(B̃(0)) = F (0, B̃(0), T ;T,K) = max[θ(−K), 0] = 0.5(1 − θ)K .

Since B̃(0) = B(T) is considered arbitrary at this point, f(B̃) = 0.5(1 − θ)K,
a constant (beware: Merton [201] assumes B(T) = 1), leading to the complete
particular solution

F̃ (B, τ) = F̂ (0, B, τ ;T,K) = 0.5(1 − θ)Ke−R(τ) , (10.58)

independent of B = B̃(τ). Note that B̃(τ) is a deterministic path function of a de-
terministic ODE problem since it is derived from the deterministic PDE problem,
(10.53) plus conditions, so is different from the stochastic path function B̂(τ) for
the SDE problem, or more precisely the stochastic ODE problem. The boundary
condition (10.58) corresponds to a boundary condition used by Wilmott [283] for
finite differences applied to Black-Scholes type models.

However, since we cannot assume the partial derivatives are bounded for the
full Merton model (10.44), we will only assume that the option price will be bounded
in the limit of zero stock price:

F̂ (S,B, τ ;T,K) is bounded as S → 0+ . (10.59)

For large S, it is more difficult to find the proper boundary condition. How-
ever, one heuristic choice is to assume that for large S the diffusion term will be
exponentially small so the drift terms will dominate:

F̂τ ≃ r(SF̂S +BF̂B − F̂) . (10.60)

As with the small stock price limit, the conjecture (10.60) needs to be verified

for a solution. Again applying the method of characteristics to F̃ (S,B, τ) ≡
F̂ (S,B, τ ;T,K), or checking by substitution, but with four variables, {τ, B, S, F̂},
instead of three,

dτ

1
= −dB

rB
= −dS

rS
= −dF̂

rF̂
.

“bk0allfinal”
2007/1/7
page 312

i

i

i

i

i

i

i

i

312 Chapter 10. Applications in Financial Engineering

Integration leads to three constants or functions of integration, two of which can be
eliminated in favor of the independent variables S and B,

F̂ (S,B, τ ;T,K) = g
(
SeR(τ), BeR(τ)

)
e−R(τ) , (10.61)

where g = g(S exp(R(τ)), B exp(R(τ))) is an arbitrary function of integration ob-
tained by integrating both the stock and bond characteristic ODEs effectively gen-
erating two constants of integration, and R(τ) is given in (10.56). Applying the
final condition (10.52) when S > K yields

F̂ (S,B, 0;T,K) = max[θ(S −K), 0] = 0.5(1 + θ)(S −K) ,

so that g is a constant function and the complete particular solution

F̂ (S,B, τ ;T,K) ≃ 0.5(1 + θ)(S −Ke−R(τ)) . (10.62)

A similar boundary condition is also specified in Wilmott’s [283] finite difference
applications. However, it turns out we will not need this condition here, but the
condition suggests that the option price will not be bounded as S → +∞.

The bond boundary condition or conditions are not as straightforward, since
the final bond price per share does not appear explicitly in the final option profit
formula. At the zero bond price, B = 0, the Black-Scholes PDE (10.50) reduces to

F̂τ (S, 0, τ ;T,E) = r(SF̂S − F̂) +
1

2
σ2

SS
2F̂SS , (10.63)

upon setting B to zero in the coefficients, assuming the derivatives are bounded.
However, 10.63 is a diffusion equation rather than a boundary value, so there has
been very little simplification of the original Black-Scholes PDE except the dimen-
sion has been reduced to one from two state variables. This may still be useful
for computational methods. The reduction in dimension is similar for the Merton
version (10.44) of the Black-Scholes option pricing PDE, the only difference is that
the drift term is absent. For either PDE, setting B = B(T) in the PDE leads to no
simplification since B(T) would be arbitrary. There is still hope, since Merton has
a way of transforming away B(T) analytically, but this transformation is modified
here.

10.2.3 Transforming PDE to Standard Diffusion PDE

Since the underlying stock and bound price models are linear stochastic diffusion
equations, the expectation is that the distribution of the option price should be
somehow related to the log-normal distribution studied in Chapter 4. However,
here we have two state variables instead of one, so it will be useful to get rid of the
bond B̂ dependence since the dependence is so weak that the bond does not appear
in the final condition. For this purpose, it is noted that the dimensions of B̂, Ŝ, F̂
and K are all in the price of dollars per share. Thus, according to Buckingham’s
pi theorem [42] of dimensional analysis, the solution can be put into the form

“bk0allfinal”
2007/1/7
page 313

i

i

i

i

i

i

i

i

10.2. Merton’s Three Asset Option Pricing Model 313

of intrinsic dimension-less groups collecting all powers (the pi’s) of variables and
parameters in the problem to eliminate any extraneous scalings. Two such groups
for independent and dependent variables that lead to a self-similar solution without
B are

x =
B̂(0)S

K ·B , (10.64)

G(x, τ) =
B̂(0)F̂ (S,B, τ)

K · B , (10.65)

where the scale factor K · B̂/B̂(0) is equivalent to Merton’s [201] if we set the final

bond price B̂(0) = 1 dollar per share. Note that if y(τ) = K · B̂(τ)/B̂(0) has the

final payoff y(0) = K which is the exercise price and dy(τ) = KdB̂(τ)/B̂(0). See
Wilmott [283] for more on the use of similarity transformations in the financial
context.

The partial derivatives of the proposed self-similar transformation to eliminate
the bond explicitly are

∂x

∂S
=
x

S
,
∂x

∂B
= − x

B
,

SF̂S = SGx , BF̂B = − KB

B̂(0)
(xGx −G) , F̂τ =

KB

B̂(0)
Gτ ,

S2F̂SS =
KB

B̂(0)
x2Gxx ,

SBF̂SB = − KB

B̂(0)
x2Gxx ,

B2F̂BB =
KB

B̂(0)
x2Gxx .

Upon substitution of the PDE of option pricing (10.44), a singular diffusion equation
is obtained with variable coefficients,

Gτ (x, τ) =
1

2
σ̂2(τ)x2Gxx , (10.66)

where

σ̂2(τ) = (σ2
S − 2ρσSσB + σ2

B)(T − τ) (10.67)

is a combined volatility term where all the volatilities on the right hand side are
evaluated at the common argument of (T −τ), confirming the validity of the conjec-
tures self-similar solution transformation to transform away the bond variable B,
subject to consistent boundary and initial conditions. The boundedness boundary
condition (10.59) as S → 0+ is

G(0+, τ) is bounded . (10.68)

“bk0allfinal”
2007/1/7
page 314

i

i

i

i

i

i

i

i

314 Chapter 10. Applications in Financial Engineering

As S → +∞, the option boundary condition should also be bounded for a put,
but O(S) for a call is expected. For the final condition it is helpful to consult the
original forward form

F (S(T), B(T), T ;T,K) = max[θ(S(T) −K), 0] ,

leading to

G(x, 0+) = max[θ(x − 1), 0] , (10.69)

where the factor B(T) = B̂(0) washes out as by our proper scaling or by Merton’s
unscaled dollar bond. This completely justifies the assumption of a self-similar
transformation heuristically, since it works.

Note that the diffusion PDE (10.66) has a variable diffusion coefficient that
is quadratic in x and vanishes as x → 0+, so that the PDE is called a singular
diffusion. However, we still have not transformed the backward time variable τ and
we have not used a logarithm transformation like the one we used in Chapter 4. In
order to obtain a standard diffusions PDE, with coefficient 1

2 , let

u = u(τ) =

∫ τ

0

σ̂2(s)ds , (10.70)

w = w(x, τ) = ln(x) +
1

2
u(τ) , (10.71)

G(x, τ) = xΦ(w(x, τ), u(τ)) , (10.72)

combining several of Merton’s [201] transformations. The new time variable u is
a diffusion time that helps eliminate the correlation coefficient and other terms.
The inverse of the independent variable logarithmic transformation is given by x =
exp(w − u/2), with the diffusion time correction. The new dependent variable

Φ(w, u) =
G(x, τ)

x
=
F̂ (S,B, τ)

S
,

provided S > 0, is thus the dimensionless ratio of the option price F̂ to the stock
price S, comprising another self-similar transformation and that transformation is
common to both F̂ and G. Applying this transformation, being easier than the
first, the standard diffusion equation is obtained,

Φu(w, u) =
1

2
Φww(w, u) , (10.73)

where −∞ < w < +∞ and 0 = u(0) < u ≤ u(T). The partial derivatives have the
following meaning,

Φu =

(
∂Φ

∂u

)

w

and Φww =

(
∂2Φ

∂w2

)

u

.

On the other hand, the side conditions are not so standard with the final condition
(10.69) at τ = 0 for G being transformed to

Φ(w, 0+) = e−w max[θ(ew − 1), 0] = max[θ(1 − e−w), 0] , (10.74)

“bk0allfinal”
2007/1/7
page 315

i

i

i

i

i

i

i

i

10.2. Merton’s Three Asset Option Pricing Model 315

where the reader should confirm that this is correct in all cases, since it is gener-
ally not correct to bring a variable into a maximum argument. However, for the
boundary condition a singular limit is avoided by keeping the x factor multiplying
Φ(w, u), so

x(w, u)Φ(w, u) (10.75)

should bounded as w → −∞ when x→ 0+.
The solution of (10.73) can be written in terms of the complementary error

function erfc or the normal distribution Φn, but they are related through several
identities, two of which are in (B.20,B.21). Merton [201], [203, Chapter 5] uses
erfc, while Black and Scholes [34] use the standard normal distribution which in our
notation is Φn(x; 0, 1). The simplest fundamental solution

Φ1(w, u) ≡ Φn(w; 0, u) , (10.76)

of (10.73) can be derived using Fourier transform methods [102, Chapter 9] or can
be derived using the self-similar solution technique used here earlier to remove the
bond dependence. See also the introduction to the diffusion equation (B.26) in
Chapter B. However, it may be much easier to verify

Φ1,u(w, u) =
1

2
Φ1,ww(w, u) , (10.77)

using a symbolic computation system such as MapleTM or MathematicaTM. The
simple diffusion solution Φ1 in (10.76) is just too simple and does not satisfy the
final condition (10.74) at u = 0+ which can be written in terms of either the
standard unit step function H(x) in (B.158) or the averaged unit step function
Ha(x) in (B.159)

Φ(w, 0+) = θ(1 − e−w)H(θw) = θ(1 − e−w)Ha(θw). (10.78)

Since either step function will do, the coefficient vanishes at w = 0, but instead the
simple solution Φ1 satisfies the final condition,

Φ1(w, 0
+) = Ha(w), (10.79)

as the reader can verify by examining the cases w > 0, w = 0 and w < 0 as u→ 0+.
Thus, another solution is needed to provide the extra variable factor e−w.

Specializing to the call option when θ = +1, the second solution is

Φ2(w, u) ≡ e−w+u/2Φn(w;u, u) , (10.80)

which can be shown to satisfy the standard diffusion equation (10.73) and a different
final condition

Φ2(w, 0
+) = e−wHa(w) , (10.81)

“bk0allfinal”
2007/1/7
page 316

i

i

i

i

i

i

i

i

316 Chapter 10. Applications in Financial Engineering

than that of Φ1 in (10.79). The boundedness condition (10.75) is trivial as w → −∞
since both Φ1 and ew−u/2Φ2 vanish by the definition of Φn with u > 0. Thus, the
transformed solution for the call option price is

Φ(call)(w, u) = Φ1(w, u) − Φ2(w, u)

≡ Φn(w; 0, u) − e−w+u/2Φn(w;u, u) (10.82)

= Φn

(
w√
u

; 0, 1

)
− e−w+u/2Φn

(
w − u√

u
; 0, 1

)
, (10.83)

upon transforming to standard normal distributions. Thus, Φ(call) satisfies the final
condition,

Φ(call)(w, 0+) = (1 − e−w)Ha(w) . (10.84)

The solution form resembles solutions of the diffusion equation on a semi-infinite
domain found by the classical method of reflection. Transforming back to the orig-
inal variables, one can compare to the original Black-Scholes form with µB = r
and σ2

B = 0, so B̂(τ) = B̂(0) exp(−rτ) and u = σ2
Sτ . The correlation term with ρ

(10.18) vanishes with σB .
The European put option price solution (θ = −1) is somewhat different, rely-

ing on normal distributions complementary to those of the the European call option
with two component solutions,

Φ(put)(w, u) = Φ3(w, u) − Φ4(w, u)

≡ e−w+u/2 (1 − Φn(w;u, u)) − (1 − Φn(w; 0, u)) (10.85)

= e−w+u/2

(
1 − Φn

(
w − u√

u
; 0, 1

))

−
(

1 − Φn

(
w√
u

; 0, 1

))
, (10.86)

where again the final form is in terms of standard normal distributions. The reader
can verify that Φ(put)(w, u) satisfies the standard diffusion equation (10.73) and the
put option price final condition,

Φ(put)(w, 0+) = (e−w − 1)Ha(−w) (10.87)

and the zero stock limit boundedness condition that ew−u/2Φ(put)(w, u) is bounded
as w → −∞, not zero as in the call case, Maple or Mathematica being the preferred
tools. The put and call option prices are related in a general way according to the
principle of put-call parity, i.e., in transformed variables,

Φ(put)(w, u) − Φ(call)(w, u) = exp(−w + u/2)− 1.

See also Exerecise 6 on p. 346.
The boundary condition limits of the solutions essentially follow from the

corresponding extreme limits of the normal distribution function,

Φn(w;µ, σ2) →
{

0, w → −∞
1, w → +∞

}
, (10.88)

“bk0allfinal”
2007/1/7
page 317

i

i

i

i

i

i

i

i

10.3. Jump-Diffusion Option Pricing 317

except in one case. Thus, for the intermediate transformed call option price multi-
plied by the transformed stock option xΦ(call) using (10.82) for Φ(call)(w, u) satisfies
the limiting conditions,

xΦ(call)(w, u) →
{

0, w → −∞ & x→ 0+

x− 1, w → +∞ & x→ +∞

}
, (10.89)

consistent with the derived limits (10.58) for Black-Scholes call and put option
pricing in the boundary conditions subsection. The put option price is formulated in
terms of the complementary normal probability distribution, 1−Φn(w;µ, σ2) which
vanishes exponentially as w → +∞ and x → +∞, so results in an indeterminate
form, ∞ · 0, for xΦ(put). However, this form can be resolved using l’Hospital’s
rule and the fact that x = exp(w − u/2),

x
(
1 − Φn(w;µ, σ2)

)
=

1 − Φn(w;µ, σ2)

e−w+u/2
→ 1√

2πσ2
e−(w−m)2/(2σ2)+w → 0 ,

since the larger degree monomial in the exponent dominates the smaller one. Finally,
the put option price extreme conditions are

xΦ(put)(w, u) →
{

1 − x, w → −∞ & x→ 0+

0, w → +∞ & x→ +∞

}
, (10.90)

again consistent with prior derived limits (10.62) for Black-Scholes call and put
option pricing. Note that the extreme boundary conditions strongly reflect the
final condition.

Reversing the transformations used to convert the answers Φ(call)(w, u) (10.82-
10.83) for the call option price and Φ(put)(w, u) (10.85-10.86) for the put option price
back to the actual option price Y (t) = F (S(t), B(t), t;T ;K) is left as Exercise 5 at
the end of this chapter.

While the put option pricing results are not in Merton’s continuous returns
paper [201] ([203, Chapter 8]), there are many other results and more exploration
with the removal of assumptions, such as the no dividends exclusion. In his com-
panion discontinuous returns paper [202] ([203, Chapter 9]), Merton presents one
of the first treatments of jump-diffusions in finance.

10.3 Jump-Diffusion Option Pricing

Since the 1973 Black-Scholes-Merton option pricing model is based upon the pure
diffusion stochastic model, there is one obvious missing feature that large market
fluctuations or jumps such as crashes or rallies which characterize extreme market
psychology are not represented. There are several papers on the statistical impor-
tance for including jumps in financial market models, e.g., see Ball and Torous [18]
on stocks and options, Jarrow and Rosenfeld [153]on the capital asset pricing model
(CPAM) or Jorion [155] on foreign exchange and stocks.

There are other qualitative features that characterize real market log-return
distributions that can not be reproduced by the pure diffusion model of Black-
Scholes-Merton, but can be modeled, in part, by adding jumps to the diffusion

“bk0allfinal”
2007/1/7
page 318

i

i

i

i

i

i

i

i

318 Chapter 10. Applications in Financial Engineering

process. One feature is that real markets have negatively skewed log-return distri-
butions, provided a sufficient number of years of daily return data is used [127], so
that the log-return skewness coefficient (B.11),

η3[X] ≡ E[(X − E[X])3]

(Var[X])3/2
< 0,

where

X = ∆ ln(S(ti)) = ln(S(ti+1)) − ln(S(ti))

is the log-return for trading day ti+1 for i = 1 : ns−1 trading days, while η3[X] = 0
for the intrinsically skewless normally distributed log-return model on the pure
diffusion process. Hence, real markets in the long run are found to be pessimistic
due to more negative log-returns, including crashes, than positive log-returns.

Another feature is that real market distributions are found to be leptokurtic
so that the log-return kurtosis coefficient (B.12),

η4[X] ≡ E[(X − E[X])4]

(Var[X])2
> 3,

for X = ∆ ln(S(ti)) = ln(S(ti+1))− ln(S(ti)), whereas the the normally distributed
pure diffusion process is mesokurtic (also said to have zero excess kurtosis. η4[X]−
3) since η4[X] = 3. Leptokurtic means that the distribution is more peaked (kurtic
is derived from the word for crown) at the maximum and consequently has fatter
tails than the normal distribution.

Still another characteristic if the volatility smile which refers to the cur-
vature of the implied volatility, volatility implied by the log-normal Black-Scholes
formula, versus the strike price. For more information on volatility smiles and their
relation to non-log-normal distributions which they signify, see such references as
Hull [147].

Merton [202] in 1976 pioneered the analysis of option pricing for stock returns
governed by a jump-diffusion model. Merton chose the normal distribution for the
jump-amplitude distribution for the log-return. Here, the option pricing with jump-
diffusions is described in terms of the jump-diffusion formulations in this book. The
stock price is assumed to be subject to extreme changes over a very short period of
time due to significant changes in the firm or in the market. Further details can be
found in Zhu [289], and Zhu and Hanson [290]. Thus, consider the jump-diffusion
model for the stock price S(t) at time t,

dS(t) = S(t)(µddt+ σddW (t) + J(Q)dP (t)) , S(0) = S0 > 0 , (10.91)

where µd and σd are designated as the diffusion parameters for the standard diffusion
dW (t), while J(Q) = exp(Q) − 1 > −1 is the jump-amplitude for the jumps of
Poisson process dP (t), such that the symbolic jump from means

J(Q)dP (t) =

dP (t)∑

k=1

J(Qk),

“bk0allfinal”
2007/1/7
page 319

i

i

i

i

i

i

i

i

10.3. Jump-Diffusion Option Pricing 319

for integers k ≥ 1, otherwise the sum is zero if k = 0 and where the marks Qk

are IID normally distributed. Note, unlike Merton in [202], in (10.91) there are
not the same notational shifts in the diffusion drift and jump amplitude, so that
E[dS(t)/S(t)] = µddt+ λdtE[J(Q)] and Merton’s Y − 1 is the same as J(Q) while
α = µd.

By the stochastic chain rule the log-return satisfies

d ln(S(t)) = µlddt+ σddW (t) +

dP (t)∑

k=1

Qk , (10.92)

when µld = µd − 0.5σ2
d is the diffusion-corrected mean appreciation coefficient.

Under the assumption of constant coefficients, the solution of (10.92) is immediate,

S(t) = S0 exp(µldt+ σdW (t) +

P (t)∑

k=1

Qk) . (10.93)

The solution is positive as long as S0 > 0 and Qk is assumed real, a consequence of
the geometric jump-diffusion assumptions.

10.3.1 Jump-Diffusions with Normal Jump-Amplitudes

Since the marks Qk are independent and identically distributed normally, the mark
density is defined in our notation as

φQ(q) = φn(q;µj , σ
2
j) (10.94)

where φn denotes a normal density with mean µj = E[Q] and variance σ2
j = Var[Q].

If the discrete version

∆ ln(S(t)) = µld∆t+ σd∆W (t) +

∆P (t)∑

k=1

Qk

= µld∆t+ σd∆W (t) + µj(∆P (t) − λ∆t) +

∆P (t)∑

k=1

(Qk − µj) , (10.95)

of the log-return SDE (10.92) is used to approximate the log-return difference,

∆ ln(S(t)) ≡ ln(S(t+ ∆t) − ln((S(t)),

where the last line of (10.95) has the stochastic terms collected into independent and
zero mean forms to facilitate moments calculations. The standard moments (mean
plus central moments for higher moments) can be calculated (See Theorem 5.17 on
p. 151, [131] and [289]) using (10.95 rather than the solution (10.93). Thus,

M1 ≡ E[∆ ln(S(t))] = (µld + λµj)∆t,

M2 ≡ Var[∆ ln(S(t))] = (σ2
d + λ(µ2

j + σ2
j))∆t,

M3 ≡ E[(∆ ln(S(t)) −M1)
3] = λµj(µ

2
j + 3σ2

j)∆t,

M4 ≡ E[(∆ ln(S(t)) −M1)
4] = λ(µ4

j + 6µ2
jσ

2 + 3σ4
j)∆t+ 3(σ2

d + λ(µ2
j + σ2

j)2∆t2.

“bk0allfinal”
2007/1/7
page 320

i

i

i

i

i

i

i

i

320 Chapter 10. Applications in Financial Engineering

The variance normalized third moment is the skewness coefficient,

η3[∆ ln(S(t))] =
λµj(µ

2
j + 3σ2

j)

(σ2
d + λ(µ2

j + σ2
j))3/2(∆t)1/2

, (10.96)

so η3[∆ ln(S(t))] < 0 if the log-normal jump-amplitude mean µj < 0, since the
jump rate λ must be positive for there to be jumps. The variance normalized
fourth moment is the kurtosis coefficient,

η4[∆ ln(S(t))] =
λ(µ4

j + 6µ2
jσ

2
j + 3σ4

j)

(σ2
d + λ(µ2

j + σ2
j))2∆t

+ 3, (10.97)

so the η4[∆ ln(S(t))] > 3 provided µj 6= 0 and σj 6= 0. Thus, the jump-diffusion
with log-normally distributed jump amplitudes provides more realistic log-return
distribution properties with skewness whose direction depends on the sign of the
mark mean µj and leptokurtosis for nontrivial mark distributions.

Another advantage, particularly in analysis, follows from the convolution re-
sult that the sum of normals is normally distributed. This is expressed in Corol-
lary 5.21 on p. 157, so for the jump-diffusion with log-normally distributed jump-
amplitude, the density with a small modification for the difference and constant
coefficients is given as an infinite sum of translated normal densities over all Pois-
son jumps by

φ∆ ln(S(t))(x) =

∞∑

k=1

pk(λ∆t)φn(x;µld∆t+ kµj , σ
2
d∆t+ kσ2

j) , (10.98)

where pk(λ∆t) is the Poisson distribution (B.50) with parameter λ∆t and φn(x;µ, σ2)
denotes the normal density with general parameters µ and σ2.

10.3.2 Risk-Neutral Option Pricing for Jump-Diffusions

Rather than follow Merton’s 1976 [202] paper to directly explain his approach using
the PDE formulation of the previous section, we will approach the option pricing
in the presence of both diffusion and jumps by directly applying a risk-neutral
assumption that the discounted earnings on a European call option is at the existing
market rate r, i.e., the risk-neutral call option price has the form

C(rn)(S0, T) ≡ e−rT E(rn)[max[S(T) −K, 0]] , (10.99)

where T is the option exercise time, K is the strike price, exp(−rT) is the dis-
count factor and E(rn) denotes the risk-neutral expected value [147, pp. 248-250],
depending on the initial asset price S0 as well.

As Merton points out, the classical Black-Scholes hedge or the delta hedge
(10.7) is no longer sufficient to eliminate all risk when there are jumps in the under-
lying asset price that result in non-marginal changes. This could come from non-
systematic information about the firm to cause extreme changes in value. There are
special cases that are of little interest and there is always the possibility of using

“bk0allfinal”
2007/1/7
page 321

i

i

i

i

i

i

i

i

10.3. Jump-Diffusion Option Pricing 321

the Black-Scholes hedge to eliminate the diffusive volatility-risk during the quiet
period between jumps, but when a jump event arrives there is the possibility of
a large loss or other unexpected change in value of the option, i.e., the so-called
jump-risk will not be covered. In short, there are too many random variables in
a jump-diffusion to delta hedge away with a single stock. For instance, in the
compound Poisson process there is the pure counting part of the process and then
there is the uncountable IID log-jump-amplitudes or marks Qk that would need to
be hedged.

Letting

µJ ≡ E[J(Q)] =

∫ +∞

−∞
φn(q) (eq − 1) dq = eµj+0.5σ2

j − 1 (10.100)

be the mean jump-amplitude of the asset price, then the mean asset price at the
strike time T using iterated expectations on the closed form solution (10.93),

E[S(T)]=S0e
(µd−0.5σ2

d)T E
[
eσdW (T)e

PN(T)
k=1 Qk

]

= S0e
(µd−0.5σ2

d)T EW (T)

[
eσdW (T)

]
EN(T)

N(T)∏

k=0

EQk|N(T)

[
eQk
∣∣N(T)

]

=S0e
(µd−0.5σ2

d)T e0.5σ2
dT EN(T)

N(T)∏

k=1

(µJ + 1)

= S0e
µdT EN(T)

[
(µJ + 1)N(t)

]
= S0e

µdT
∞∑

k=1

pk(λT)(µJ + 1)k

= S0e
µdT e−λT

∞∑

k=1

(λT (µJ + 1))k/k! = S0e
µdT+λTµJ

= S0e
(µd+λµJ)T , (10.101)

where the IID property of the Qk and the Poisson distribution pk(λT) (B.50) have
also been used.

In the risk-neutral world (see Hull [147, pp. 248-250]) then

E[S(T)] = S0e
(µd+λµJ)T = S0e

rT ,

so the jump diffusion rate in a risk-neutral world must be

µd + λµJ = r,

the sum of the diffusive and jump mean rates. For consistency with the benchmark
Black-Scholes model, this relation will be used to eliminate the diffusive mean rate
in a risk-neutral world

µd = µ
(rn)
d ≡ r − λµJ , (10.102)

“bk0allfinal”
2007/1/7
page 322

i

i

i

i

i

i

i

i

322 Chapter 10. Applications in Financial Engineering

allowing the following formulation of the risk-neutral option.

Definition 10.1. Jump-Diffusion Risk-Neutral European Call Option:
Applying the general jump-diffusion solution (10.93), with (10.102) to the risk-
neutral European call option payoff (10.99) and in terms of the general jump partial
sum random variable

Ŝk =

k∑

i=1

Qi

with density φ bSk
(sk)), yields the form,

C(rn)(S0, T) ≡ e−rT E(rn)[max[S(T)−K, 0]]

≡ e−rT E
[
max

[
S0e

(r−λµJ−σ2
d/2)T+σdW (T)+

PP (T)
k=1 −K, 0

]]

= e−rT
∑∞

k=0 pk(λT)
∫ +∞
−∞ dw φn(w; 0, T)

∫+∞
−∞ dskφ bSk

(sk)

·max
[
S0e

(r−λµJ−σ2
d/2)T+σdw+sk −K, 0

]

= e−rT
∑∞

k=0 pk(λT)
∫ +∞
−∞ dw φn(w; 0, T)

·E bSk

[
max

[
S0e

(r−λµJ−σ2
d/2)T+σdw+ bSk −K, 0

]]
,

(10.103)

Remark 10.2. The random sum Ŝk is used here, rather that the mark Qi as in
(10.101), since the maximum function in (10.103) needs a different splitting of the
expectations.

Theorem 10.3. Risk-Neutral Call Prices as an Infinite Poisson Sum of
Shifted Black-Scholes Call Prices – General Jump-Diffusion Case:
For the general jump-diffusion,

C(rn)(S0, T) =

∞∑

k=0

pk(λT)E bSk

[
C(bs)

(
S0e

bSk−λµJ T , T ;K,σ2
d, r
)]
, (10.104)

where the Black-Sholes call price function

C(bs)(s, T ;K,σ2
d, r) = sΦ (d1(s)) −Ke−rT Φ (d2(s)) , (10.105)

Φ(x) ≡ Φn(x; 0, 1) =
1√
2π

∫ x

−∞
e−y2/2dy (10.106)

is the standardized normal distribution,

d1(s) =
(
ln(s/K) + (r + σ2

d/2)T
)
/(σd

√
T) and d2(s) = d1(s) − σd

√
T (10.107)

are Black-Scholes normal argument functions.

“bk0allfinal”
2007/1/7
page 323

i

i

i

i

i

i

i

i

10.3. Jump-Diffusion Option Pricing 323

Proof. Note that the argument of the last maximum in (10.103) has a root at
w = w0(sk) when

S0e
(r−λµJ−σ2

d/2)T+σdw+sk = K

or when

w0(sk) = (ln(K/S0) − (r − λµJ − σ2
d/2)T + sk)/σd, (10.108)

allowing the removal of the maximum function. Some further manipulations with
the normal integrals permits the transformation to an infinite Poisson sum over
Black-Scholes call functions with shifted arguments,

C(rn)(S0, T) = e−rT
∞∑

k=0

pk(λT)E bSk

[∫ +∞

w0(bSk)

dwφn(w; 0, T)

·
(
S0e

(r−λµJ−σ2
d/2)T+σdw+ bSk −K

)]
,

=
∞∑

k=0

pk(λT)E bSk

[
S0e

bSk−λµJ TA(S0e
bSk−λµJ T) −Ke−rTB(S0e

bSk−λµJ T)
]

where the intermediate functions A(s) and B(s) are derived below.

A(s) = e−σ2
dT/2

∫∞
w0(s)

dw φn(w; (0, T)eσdw

= e−σ2
dT/2 1√

2πT

∫∞
w0(s) dw ǫ−w2/(2T)+σdw

= e−σ2
dT/2 1√

2πT

∫∞
w0(s) dw ǫ−(w−σdT)2/(2T)

= 1√
2π

∫∞
(w0(s)−σdT)/

√
T
dy ǫ−y2/2

=
(
1 − Φ

(
(w0(s) − σdT)/

√
T
))

= Φ
(
(σdT − w0(s))/

√
T
)

= Φ
(
d1

(
S0e

s−λµJ T
))
,

since by (10.108) and (10.107), (σdT − w0(s))/
√
T = d1(S0e

s−λµJ T). The simpler
second argument quickly follows from

B(s) =
∫∞

w0(s)
dw φn(w; (0, T) = Φ

(
−w0(s)/

√
T
)

= Φ
(
d1

(
S0e

s−λµJ T
)

+ σd

√
T
)

= Φ
(
d2

(
S0e

s−λµJ T
))
,

using (10.108) and (10.107) again. Reassembling A(s) and B(s) from the current
equation for C(rn) yields (10.105) from the relation

C(bs)(s, T ;K,σ2
d, r) = sA(s) −Ke−rTB(s),

and thus (10.104) follows.

“bk0allfinal”
2007/1/7
page 324

i

i

i

i

i

i

i

i

324 Chapter 10. Applications in Financial Engineering

Remark 10.4. The primary argument s of C(bs) is shifted for each jump number
k by a factor exp(Ŝk − λµJT) that depends only on the jump process (the result in
this form is valid for general jump-diffusions as treated in this book).

If the mark density is normal, φQ(q) = φn(q;µj , σ
2
j), then the European call

option formula can be simplified.

Theorem 10.5. Risk-Neutral Call Prices as an Infinite Poisson Sum of
Shifted Black-Scholes Call Prices – Log-Normal-Jump-Amplitude Jump-
Diffusion Case:
For the log-normal-jump-amplitude jump-diffusion,

C(rn)
n (S0, T) =

∑∞
k=0 pk(λT)C(bs)

n

(
S0e

k(µj+σ2
j /2)−λµJ T , T ;K,σ2

k(T)/T, r
)
, (10.109)

where the Black-Sholes call price function

C(bs)
n (s, T ;K,σ2

k(T)/T, r) = sΦ
(
d̂1

(
s;σ2

k(T)
))

−Ke−rTΦ
(
d̂2

(
s, σ2

k(T)
))
, (10.110)

d̂1(s;σ
2
k(T)) =

(
ln(s/K) + rT + σ2

k(T)/2
)
/σk(T),

d̂2(s;σ
2
k(T)) = d1(s) − σk(T)

(10.111)

are Black-Scholes normal argument functions, and

σ2
k(T) = σ2

dT + kσ2
j (10.112)

is the log-return variance.

Proof. In order to simplify the expectation calculations, let

X = σdW (T) +
(
Ŝk − kµj

)

be the zero mean part of the risk-neutral log-return process obtained by subtracting
the mean

µk(T) = (r − λJ − σ2
d/2)T + kµj (10.113)

and leaving the variance (10.112),

σ2
k(T) = σ2

dT + kσ2
j ,

so by the normal convolution corollary (10.98) the density is reduced to

φX(x) = φn(x; 0, σ2
k(T)). (10.114)

The payoff cutoff to remove the maximum function in the normal case then is

xk(T) = ln(K/S0) − µk(T).

“bk0allfinal”
2007/1/7
page 325

i

i

i

i

i

i

i

i

10.3. Jump-Diffusion Option Pricing 325

Thus, the normal risk-neutral call price is derived using normal integral identities
as follows,

C(rn)
n (S0, T) = e−rT

∑∞
k=0 pk(λT)

∫ +∞
−∞ dx φn(x; 0, σ2

k(T))max
[
S0e

µk(T)+x −K, 0
]

= e−rT
∑∞

k=0 pk(λT)
∫ +∞

xk(T)
dx φn(x; 0, σ2

k(T))
(
S0e

µk(T)+x −K
)

= e−rT
∑∞

k=0 pk(λT) 1√
2πσ2

k
(T)

·
(
S0e

µk(T)+σ2
k(T)/2

∫ +∞
xk(T) dx e

−(x−σ2
k(T))2/(2σ2

k(T))

−K
∫ +∞

xk(T)
dx e−x2/(2σ2

k(T))
)

=
∑∞

k=0 pk(λT)
(
S0e

µk(T)−rT+σ2
k(T)/2Φ

(
σ2

k(T)−xk(T)
σk(T)

)

−Ke−rTΦ
(

−xk(T)
σk(T)

))

=
∑∞

k=0 pk(λT)

·
(
S0e

k(µj+σ2
j /2)−λµJ T Φ

(
d̂1

(
S0e

k(µj+σ2
j /2)−λµJ T ;σ2

k(T)
))

−Ke−rTΦ
(
d̂2

(
S0e

k(µj+σ2
j /2)−λµJ T ;σ2

k(T)
)))

,

finally by using (10.111) with (10.113) and (10.112).
Note that by several IID and normal identities,

E[e
bSk] = E

[
e

Pk
i=1 Qi

]
=

k∏

i=1

E
[
eQi
]

=
k∏

i=1

eµj+σ2
j /2 = ek(µj+σ2

j /2),

giving the meaning of this exponential term in (10.109) for the final normal jump-

diffusion call option result C(rn)
n (S0, T).

Option pricing for other jump-diffusions can not be written in as simple a form
and the Poisson terms increase in complexity exponentially. The use of the double-
exponential (Laplace) log-jump-amplitude jump-diffusion has been developed by
Kou and co-worker [169, 170]. Zhu and Hanson [290] have developed a Monte-Carlo
estimation of risk-neutral option pricing for uniform log-jump-amplitude jump-
diffusions. Zhu [289] has made a comprehensive study and comparison of various
exponential and uniform log-jump-amplitude jump-diffusions using refined Monte-
Carlo estimations of option prices with several variance reduction techniques. Re-
cently, Yan and Hanson [287] have treated option pricing for the uniform log-jump-
amplitude jump-diffusion combined with stochastic volatility (SVJD) using char-
acteristic functions and fast Fourier transforms following the general methodology
of Carr and Madan [47]. Yan and Hanson [130] computationally solve the SVJD
problem using a systematic finite difference formulation of the free-boundary Amer-
ican put partial integro-differential complementary problem (PIDCP), implemented
using a successive over-relaxtion (SOR) method projected on the maximum payoff
function.

Some other hedging methods for jump-diffusions, like mean-variance hedging,
are treated in a more abstract way by Runggaldier [239], Bingham and Kiesel [33],

“bk0allfinal”
2007/1/7
page 326

i

i

i

i

i

i

i

i

326 Chapter 10. Applications in Financial Engineering

and Cont and Tankov [59] using a generalization of jump-diffusions allowing infinite
jump-rates called Lévy processes (see Chapter 12 in this book).

10.4 Optimal Portfolio and Consumption Models

Prior to Merton’s 1973 mathematical justication and generalization of the Black-
Scholes model [34] in [201], he did pioneering work on the portfolio and consumption
problem in continuous-time. Beginning in 1969 Merton’s paper [198] ([203, Chapter
4]) on lifetime portfolio selection with constant relative risk-aversion (CRRA) util-
ities laid out the background for the widely cited 1971 paper [199, 200] (reprinted
in [203, Chapter 5]) on the optimal portfolio and consumption theory with the
more general hyperbolic absolute risk-aversion (HARA) utilities that exhibit ex-
plicit solutions. While the paper was primarily on geometric Brownian motion
(pure diffusion), generalization to jump-diffusions consisting of Brownian motion
and compound Poisson processes with general random finite amplitude is discussed
very briefly in [199].

While Merton was often on the leading edge of continuous-time finance and
pushing generality of financial models by incorporating the latest financial and
stochastic theories, one can get cut on the leading edge. There are a number of
errors in the 1971 Merton paper [199, 200] due to the lack of proper boundary con-
ditions and problems with the general HARA utilities. In particular, there are diffi-
culties due to enforcing non-negative wealth, handing zero wealth (bankruptcy) and
maintaining the non-negativity of consumption. These errors are very thoroughly
discussed in Sethi’s [245] massive assembly of papers by Sethi and his coauthors
that give corrections and generations to the consumption and investment portfolios
with an emphasis on bankruptcy and pure diffusion. The basic problems are clearly
discussed in Sethi’s introduction [245, Chapter 1], while important basic papers are
the paper of Karatzas, Lehoczhy, Sethi, Shreve [159] (reprint [245, Chapter 2]) on
exact solutions the infinite horizon case and the paper of Sethi and Taksar [246]
(reprint [245, Chapter 3]) pinpointing the errors in Merton’s 1971 paper [199, 200].
The errors were mainly in certain ranges of the HARA utilities and these difficulties
led to a more thorough exploration of the consumption and portfolio problem.

In this section, the jump-diffusion version for the consumption and portfolio
problem is treated with a version of the CRRA utilities that avoids the problematic
parameter range of the general HARA utilities. In particular, the text-oriented
presentation here is partly based on a portfolio optimization paper with time-
dependence and uniformly distributed log-jump-amplitudes of Hanson and West-
man [126] with some corrections.

10.4.1 Log-Uniform Amplitude Jump-Diffusion for Log-Return

Let S(t) be the price of a single financial asset at time t, such as a stock or mutual
fund, governed by a geometric jump-diffusion stochastic differential equation (SDE)

“bk0allfinal”
2007/1/7
page 327

i

i

i

i

i

i

i

i

10.4. Optimal Portfolio and Consumption Models 327

with time-dependent coefficients,

dS(t) = S(t)

µd(t)dt+ σd(t)dG(t) +

dP (t)∑

k=1

J
(
T−

k , Qk

)

 , (10.115)

with S(0) = S0, S(t) > 0, where µd(t) is the mean appreciation return rate, σd(t) is
the volatility, G(t) is a continuous Gaussian process with zero-mean and t-variance
(G is used for the diffusion component of the noise since W in this section will
denote the wealth), P (t) is a discontinuous, Poisson process with jump rate λ(t),
and associated jump-amplitude J(t, Q), −1 < J(t, Q) < ∞ to avoid bankruptcy at
a single jump, with log-return mark Q mean µj(t) and variance σ2

j (t). At the kth

Poisson jump, T−
k is the pre-jump time and Qk is the corresponding IID random

pick for the mark. The stochastic processes G(t) and P (t) are assumed to be
Markov and pairwise independent. The jump-amplitude mark Q, given that a
Poisson jump in time occurs, is also independently distributed. The stock price
SDE (10.115) is similar in our prior work [124, 123], except that time-dependent
coefficients introduce more realism.

Since the stock price process is a geometric jump-diffusion, the common multi-
plicative factor of S(t) on the right can be removed by a logarithmic transformation
yielding the SDE of the stock price log-return,

d ln(S(t)) = µld(t)dt+ σd(t)dG(t) +

dP (t)∑

k=1

ln
(
1 + J

(
T−

k , Qk

))
, (10.116)

where µld(t) ≡ µd(t)−σ2
d(t)/2 is the log-diffusion drift and ln(1 + J(t, q)) the stock

log-return jump-amplitude is the logarithm of the relative post-jump-amplitude.
Since J(t, q) > −1, it is convenient to select the mark process to be the log-

jump-amplitude random variable,

Q = ln (1 + J(t, Q)) , (10.117)

on the mark space Q = (−∞,+∞). Though this is a convenient mark selection, it
implies the independence of the jump-amplitude in time, but not of the log-jump-
amplitude distribution ΦQ(q; t) for Q. For comparison to the Standard and Poor’s
(S&P500) log-return data, the discrete log-return difference form

∆ ln(Si) ≡ ln(Si+1) − ln(Si) = ln(Si+1/Si)

will be used at time ti+1 = ti + ∆ti. The corresponding the log-return differential
d ln(S(t)) in SDE (10.116) is written in the approximate, mean-zero, independent
process, discrete form,

∆ ln(S(ti)) ≃ (µld(ti) + λ(ti)µj(ti))∆ti + σd(ti)∆G(ti)

+µj(ti) (∆P (ti) − λ(ti)∆ti) +
∑∆P (ti)

k=1 (Qk − µj(ti)) ,
(10.118)

where ∆G(ti) ≡ G(ti+1) −G(ti) and ∆P (ti) ≡ P (ti+1) − P (ti).

“bk0allfinal”
2007/1/7
page 328

i

i

i

i

i

i

i

i

328 Chapter 10. Applications in Financial Engineering

10.4.2 Log-Uniform Jump-Amplitude Model

Extreme jumps in the market are rare events making it difficult or impossible to
separate out the jumps from a background of continuous diffusive changes (see Aı̈t-
Sahalia [5]) to determine their distribution. Extreme jumps are limited by circuit
breakers [11] introduced by the New York Stock Exchange in 1988 as a response
to the crash of 1987, so a finite jump-amplitude distribution like the uniform dis-
tribution is appropriate. Thus, consider the uniform density on [a(t), b(t)] for the
marks Q,

φQ(q; t) ≡
{ 1

b(t)−a(t) , a(t) ≤ q ≤ b(t)

0, otherwise

}
, (10.119)

where a(t) < 0 < b(t) to allow for both crashes (q < 0) and rallies (q > 0) .
The basic moments of the uniformly Q (uq) density φQ(q; ti) yields the mean

EQ[Q] = µj(ti) = (a(ti) + b(ti))/2 , (10.120)

variance

VarQ[Q] = σ2
j (ti) = (b(ti) − a(ti))

2/12, (10.121)

third central moment

M
(uq)
3 (ti) ≡ EQ

[
(Q− µj(ti))

3
]

= 0

and fourth central moment

M
(uq)
4 (ti) ≡ EQ

[
(Q− µj(ti))

3
]

= 9σ4
j (ti)/5.

In terms of the original jump-amplitude J(t, Q), the mean is

J̄(ti) ≡ EQ [J(Q, ti)] = EQ

[
eQ − 1

]
=
eb(ti) − ea(ti)

b(ti) − a(ti)
− 1.

The first four moments of the uniform jump-diffusion (UJD) log-return differ-
ence using (10.118) are

M
(ujd)
1 (ti) ≡ E[∆ ln(S(t))] = (µld(ti) + λ(ti)µj(ti))∆ti, (10.122)

M
(ujd)
2 (ti) ≡ Var[∆ ln(S(ti))] =

(
σ2

d(ti) + λ(ti)
(
µ2

j (ti) + σ2
j (ti)

))
∆ti, (10.123)

M
(ujd)
3 (ti) ≡ E

[(
∆ln(S(ti)) −M

(ujd)
1 (ti)

)3
]

= λ(ti)µj(ti)
(
µ2

j(ti) + 3σ2
j (ti)

)
∆ti,

(10.124)

“bk0allfinal”
2007/1/7
page 329

i

i

i

i

i

i

i

i

10.4. Optimal Portfolio and Consumption Models 329

M
(ujd)
4 (ti) ≡ E

[(
∆ln(S(ti))−M (ujd)

1 (ti)
)4
]

= λ(ti)
(
µ4

j(ti) + 6µ2
j(ti)σ

2
j (ti) + 9σ4

j (ti)/5
)
∆ti

+3
(
σ2

d(ti) + λ(ti)
(
µ2

j(ti)+σ
2
j (ti)

))2
(∆ti)

2.

(10.125)

TheM
(ujd)
m (ti) moment calculations, in particular, need Lemma 5.15 from Chapter 5

for the four powers of partial sums of zero-mean IID random variables Q̂k = Qk−µj

, so

E

"
nX

k=1

bQk

!m#
=

8
>>><
>>>:

0, m = 1

nM
(uq)
2 (ti) = nσ2

j (ti), m = 2

nM
(uq)
3 (ti) = 0, m = 3

nM
(uq)
4 (ti) + 3n(n − 1)

“
M

(uq)
2 (ti)

”2

, m = 4

9
>>>=
>>>;

,

where n = ∆P (ti).
Let the uniform jump-diffusion be denoted by

Xi = Gi +

∆P (ti)∑

k=1

Qk

where Gi = µld(ti)∆ti + σd(ti)∆G(ti) is the nonstandard Gaussian process, then
the density for the uniform jump-diffusion Xi, is derived from the law of total prob-
ability (B.92) summing over all Poisson jumps and the nested convolution prop-
erty (B.100),

φujd(x) =

∞∑

k=0

pk(λ(ti)∆ti)φ
(k)
ujd(x),

where pk(Λ) is the usual Poisson counting distribution with corresponding kth den-

sity coefficient φ
(k)
ujd(x) given by

φ
(k)
ujd(x) =

(
φGi

(∗φQ)
k
)

(x),

through the nested convolution property. The complexity of these coefficients grows
exponentially with k. However, the first few are, using (5.77) for k = 0,

φ
(0)
ujd(x) = φGi

(x) = φn(x;µ, σ2),

where for brevity µ = µld(ti)∆ti and σ2 = σ2
d(ti)∆ti, now dropping the (ti) argu-

ment for brevity and using (5.78) for k = 1,

φ
(1)
ujd(x) = (φGi

∗ φQ) (x) = φsn(x− b, x− a;µ, σ2) ≡ Φn(x−b,x−a;µ,σ2)
b−a ,

where φsn(x − b, x − a;µ, σ2) is called the secant-normal density (5.79), and
finally from (5.80) with the triangular density (5.81) for k = 2,

φ
(2)
ujd(x) =

(
φGi

(∗φQ)2
)
(x) = 2b−x+µ

b−a φsn(x− 2b, x− a− b;µ, σ2)

+x−2a−µ
b−a φsn(x− a− b, x− 2a;µ, σ2)

+ σ2

(b−a)2

(
φn(x− 2b;µ, σ2) − 2φn(x− a− b;µ, σ2) + φn(x− 2a;µ, σ2)

)
.

“bk0allfinal”
2007/1/7
page 330

i

i

i

i

i

i

i

i

330 Chapter 10. Applications in Financial Engineering

There are five stochastic jump-diffusion model parameter processes to be es-
timated,

{µd(t), σ
2
d(t), µj(t), σ

2
j (t), λ(t)},

assuming that the interest rate process r(t) is given deterministically and the
time steps ∆ti over the given market period. Using the definitions of the jump
mean-variance parameters {µj(t), σ

2
j (t)} in (10.120-10.121), the uniform jump range

{a(t), b(t)} can be estimated instead. The parameter estimations using variants of
maximum likelihood methods is beyond the scope of this chapter, but the reader
can consult our work in [126, 291] in the time-dependent parameter case and
[124, 125, 127, 128, 131] for other background in the time-independent parameter
case.

10.4.3 Optimal Portfolio and Consumption Policies Application

Let a portfolio contain a riskless asset, the bond, with price B(t) dollars at time t in
years, and a risky asset, the stock, with price S(t) at time t. Let the instantaneous
portfolio change fractions be U0(t) for the bond and U1(t) for the stock, such that
the total satisfies U0(t) + U1(t) = 1. The bounds for U0(t) and U1(t) will be
developed later from the jump-amplitude distribution and the non-negativity of
wealth condition.

Let the bond price process be deterministic and exponential,

dB(t) = r(t)B(t)dt , B(0) = B0, (10.126)

where r(t) is the bond rate of interest at time t. The stock price S(t) has been
given in the jump-diffusion SDE (10.115). The portfolio wealth process changes
due to changes in the portfolio fractions less the instantaneous consumption of
wealth C(t)dt,

dW (t) = W (t) (r(t)dt + U1(t) ((µd(t) − r(t))dt

+σd(t)dG(t) +
∑dP (t)

k=1 J(Qk)
))

− C(t)dt ,
(10.127)

such that W (t) ≥ 0 and that the consumption rate is constrained relative to wealth

0 ≤ C(t) ≤ C
(max)
0 W (t), consistent with non-negative constraints that Sethi and

Taksar [246] show are needed. In addition, the stock fraction is bounded by fixed

constants. U
(min)
0 ≤ U1(t) ≤ U

(max)
0 , so borrowing and short-selling is permited. In

(10.127), U0(t) = 1 − U1(t) has been eliminated [123, 126, 291].
The investor’s portfolio objective is to maximize the conditional, expected cur-

rent value of the discounted utility Uf (w of final wealth at the end of the investment
final time tf and the discounted utility of instantaneous consumption preferences
U(c), i.e., the optimal value of the portfolio satisfies

v∗(t, w) = max{u,c}[t,tf)

[
E
[
e−β(t,tf)Uf (W (tf))

+
∫ tf

t
e−β(t,s)U(C(s)) ds

∣∣∣ C
]]

,
(10.128)

“bk0allfinal”
2007/1/7
page 331

i

i

i

i

i

i

i

i

10.4. Optimal Portfolio and Consumption Models 331

conditioned on the state-control set C = {W (t) = w,U1(t) = u,C(t) = c}, where the
time horizon is assumed to be finite, 0 ≤ t < tf , and β(t, s) is the cumulative time-
discount over time in (t, s) with β(t, t) = 0 and discount rate β(t) = (∂β/∂s)(t, t)
at time t. In order to avoid Merton’s [199] difficulties with HARA utility functions
too general for the portfolio and consumption problem, U ′(C) → +∞ as C → 0+

will be assumed for the utility of consumption, while a similar form will be used
for the final utility Uf (W). Thus, the instantaneous consumption c = C(t) and
stock portfolio fraction u = U1(t) serve as two control variables, while the wealth
w = W (t) is the single state variable.

Absorbing Boundary Condition at Zero Wealth:

Eq. (10.128) is subject to zero wealth absorbing natural boundary condition. This
avoids arbitrage as pointed out by Karatzas, Lehoczky, Sethi and Shreve [159]
([245, Chapter 2]). It is necessary to enforce non-negativity feasibility conditions
on both wealth and consumption. They derive formally explicit solutions from a
consumption-investment dynamic programming model with a an infinite horizon,
that qualitatively correct the results of Merton [199, 200] ([203, Chapter 6]). See
also Sethi and Taksar [246] for specific errors in [199, 200] and Sethi’s excellent
summary [245, Chapter 1].

Here the Merton boundary condition correction in his 1990 text [203, Chap. 6]
is used,

v∗(t, 0+) = Uf (0)e−β(t,tf) + U(0)
∫ tf

t e−β(t,s)ds , (10.129)

since the consumption must be zero when the wealth is zero. The terminal wealth
condition, v∗(tf , w) = Uf (w), must also be satisfied.

Portfolio Stochastic Dynamic Programming:

Assuming the optimal value v∗(t, w) is continuously differentiable in t and twice
continuously differentiable in w, then the stochastic dynamic programming equation
(see our papers [123, 126, 291]) follows from an application of the (Itô) stochastic
chain rule to the principle of optimality,

0 = v∗t (t, w)−β(t)v∗(t, w) + U(c∗)

+ [(r(t)+(µd(t) − r(t))u∗)w − c∗] v∗w(t, w)

+ 1
2σ

2
d(t)(u∗)2w2v∗ww(t, w)

+ λ(t)
b(t)−a(t)

∫ b(t)

a(t) · (v∗(t, α(u∗, q)w)−v∗(t, w)) dq,

(10.130)

where u∗ = u∗(t, w) ∈ [U
(min)
0 , U

(max)
0] and c∗ = c∗(t, w) ∈ [0, C

(max)
0 w] are the

optimal controls if they exist, while v∗w(t, w) and v∗ww(t, w) are the partial derivatives
with respect to wealth w when 0 ≤ t < tf . Upon a jump, the wealth changes by a
factor

α(u, q) ≡ 1 + (eq − 1)u,

in the post-jump wealth argument of (10.130).

“bk0allfinal”
2007/1/7
page 332

i

i

i

i

i

i

i

i

332 Chapter 10. Applications in Financial Engineering

Non-Negativity of Wealth and Jump Distribution:

Non-negativity of wealth implies an additional consistency condition for the control
since the jump in wealth argument α(u∗, q)w = (1 + (eq − 1)u∗)w in the stochastic
dynamic programming equation (10.130) requires α(u, q) ≥ 0 on the support interval
of the jump-amplitude mark density φQ(q). Hence, it will make a difference in the
optimal portfolio stock fraction u∗ bounds if the support interval [a(t), b(t)] is finite
or if the support interval is (−∞,+∞), i.e., had infinite range. Our results will be
restricted to the usual case, the a(t) < 0 < b(t), i.e., both crashes and rallies are
modeled.

Lemma 10.6 (Bounds on Optimal Stock Fraction due to
Non-Negativity of Wealth Jump Argument[291]). If the support of φQ(q) is
the finite interval q ∈ [a(t), b(t)] with a(t) < 0 < b(t), then u∗(t, w) is restricted by
(10.130) to

−1(
eb(t) − 1

) ≤ u∗(t, w) ≤ 1(
1 − ea(t)

) , (10.131)

but if the support of φQ(q; t) is fully infinite, i.e., (−∞,+∞), then u∗(t, w) is re-
stricted by (10.130) to

0 ≤ u∗(t, w) ≤ 1. (10.132)

Proof. It is necessary that α(u, q) ≥ 0 so that α(u, q)w ≥ 0 when the wealth and
its jump-in-wealth in the HJBE (10.130) argument need to be non-negative, w ≥ 0.
The borderline case is when instantaneous stock fraction case is zero, i.e., u = 0, so
α(0, q) = 1 > 0.

Next consider the case when the support, a(t) ≤ q ≤ b(t), is finite. When
u > 0, then

0 ≤ 1 −
(
1 − ea(t)

)
u ≤ α(u, q) ≤ 1 +

(
eb(t) − 1

)
u.

Since ea(t) < 1 < eb(t), the worse case for enforcing α(u, q) ≥ 0 is on the left, so

u ≤ +1(
1 − ea(t)

) =
−1

J(t, a(t))
.

When u < 0, then

0 ≤ 1 −
(
eb(t) − 1

)
(−u) ≤ α(u, q) ≤ 1 +

(
1 − ea(t)

)
(−u).

The worse case for enforcing α(u, q) ≥ 0 is again on the left, so upon reversing signs,

u ≥ −1(
eb(t)−1

) =
−1

J(t, b(t))
,

completing both sides of the finite case (10.131), which can be written in terms of
the original jump-amplitude coefficient −1/J(t, b(t)) ≤ u∗(t, w) ≤ −1/J(t, a(t)).

“bk0allfinal”
2007/1/7
page 333

i

i

i

i

i

i

i

i

10.4. Optimal Portfolio and Consumption Models 333

In the infinite range jump model case when −∞ < q < +∞, 0 < eq < ∞.
Thus, when u > 0,

0 ≤ 1 − u < α(u, q) <∞,

so u ≤ 1. However, when u < 0, then

−∞ < α(u, q) < 1 − u,

so u < 0 leads to a contradiction in that α(u, q) is unbounded below and u ≥ 0,
proving (10.132), which is the limiting case of (10.131) when a(t) → −∞ and
b(t) → −∞.

Remark 10.7. This lemma gives the constraints on the instantaneous stock fraction
u∗(t, w) that limit the jumps to the jumps that at most just wipe out the investor’s
wealth. Unlike the case of pure diffusion where the functional term has local depen-
dence on the wealth mainly through partial derivatives, the case of jump-diffusion
has global dependence through jump integrals over finite differences with jump mod-
ified wealth arguments, leading to additional constraints under non-negative wealth
conditions that do not appear for pure diffusions. The additional constraint comes
not from the current wealth or nearby wealth but from the discontinuous wealth
created by a jump.

In the case of the fitted log-uniform jump-amplitude model, the range of the
jump-amplitude marks [a(t), b(t)] is covered by the estimated largest range,

[a(min), b(max)] =
[
min

t
(a(t)),max

t
(b(t))

]
≃ [−7.113e-2,+4.990e-2],

over the period from 1992-2001 corresponding to t = 1:10 using [126] results. The
corresponding overall estimated range of the optimal instantaneous stock fraction
u∗(t, w) is then

[u(min), u(max)] =

 −1(
eb(max) − 1

) , +1(
1 − ea(min)

)

 ≃ [−19.54,+14.56.],

in large contrast to the highly restricted infinite range models where

[min(u∗(t, w)),max(u∗(t, w))] = [0, 1]

is fixed for any t.

Regular Optimal Control Policies:

In the absence of constraints on the controls, then the maximum controls are the
regular optimal controls u(reg)(t, w) and c(reg)(t, w), which are given implicitly, pro-
vided they are attainable and there is sufficient differentiability in c and u, by the
dual critical conditions,

U ′(c(reg)(t, w)) = v∗w(t, w) , (10.133)

“bk0allfinal”
2007/1/7
page 334

i

i

i

i

i

i

i

i

334 Chapter 10. Applications in Financial Engineering

σ2
d(t)w2v∗ww(t, w)u(reg)(t, w) = −(µd(t)−r(t))wv∗w(t, w)

−λ(t)w 1
b(t)−a(t)

∫ b(t)

a(t)
(eq − 1)v∗w(t, α(u(reg)(t, w), q)w) dq ,

(10.134)

for the optimal consumption and portfolio policies with respect to the terminal
wealth and instantaneous consumption utilities (6.2). Note that (10.133-10.134)
define the set of regular controls implicitly.

10.4.4 CRRA Utility and Canonical Solution Reduction:

For the risk-averse investor, the utilities are assumed to be the constant relative risk-
aversion (CRRA) power utilities [203, 122], with the same power for both wealth
and consumption,

U(x) = Uf (x) = xγ/γ , x ≥ 0 , 0 < γ < 1 . (10.135)

The CRRA utility designation arises since the relative risk aversion is the negative of
the derivative (U ′′(x)) in the marginal utility (U ′(x)) relative to the average change
in the marginal utility (U ′(x)/x), or here

RRA(x) ≡ −U ′′(x)/(U ′(x)/x) = (1 − γ) > 0, (10.136)

i.e., a positive constant, and is a special case of the more general HARA utilities.
The CRRA power utilities for the optimal consumption and portfolio prob-

lem lead to a canonical reduction of the stochastic dynamic programming PDE
problem to a simpler ODE problem in time, by the separation of wealth and time
dependence,

v∗(t, w) = U(w)v0(t), (10.137)

where only the time function v0(t) is to be determined. The regular consumption
control is a linear function of the wealth,

c(reg)(t, w) ≡ w · c(reg)
0 (t) = w/v

1/(1−γ)
0 (t), (10.138)

using (10.133) and U ′(x) = xγ−1 from (10.135). The regular stock fraction u from
(10.134) is a wealth independent control, but is given in uniform case implicit form:

u(reg)(t, w) = u
(reg)
0 (t) ≡ 1

(1−γ)σ2
d
(t)

[
µd(t) − r(t) + λ(t)I1

(
u

(reg)
0 (t)

)]
, (10.139)

I1(u) = 1
b(t)−a(t)

∫ b(t)

a(t)
(eq − 1)αγ−1(t, w)dq. (10.140)

The wealth independent property of the regular stock fraction is essential for the
separability of the optimal value function (10.137). Since (10.139) only defines

u
(reg)
0 (t) implicitly in fixed point form, u

(reg)
0 (t) must be found by an iteration such

as Newton’s method, while the general Gauss-Statistics quadrature [277] can be
used for jump integrals (see [123]).

“bk0allfinal”
2007/1/7
page 335

i

i

i

i

i

i

i

i

10.4. Optimal Portfolio and Consumption Models 335

The optimal controls, when there are constraints, are given in piecewise form
as

c∗(t, w)/w = c∗0(t) ≡ max
[
min

[
c
(reg)
0 (t), C

(max)
0

]
, 0
]
,

provided w > 0, and

u∗(t, w) = u∗0(t) ≡ max
[
min

[
u

(reg)
0 (t), U

(max)
0

]
, U

(min)
0

]
,

is independent of w along with u
(reg)
0 (t).

Substitution of the separable power solution (10.137) and the regular controls
(10.138-10.139) into the stochastic dynamic programming equation (10.130), leads
to an apparent Bernoulli type ODE,

0 = v′0(t) + (1 − γ)
(
g1(t, u

∗
0(t))v0(t) + g2(t)v

γ
γ−1

0 (t)
)
, (10.141)

g1(t, u) ≡ 1
1−γ [−β(t) + γ (r(t) + u(µd(t) − r(t)))

− γ(1−γ)
2 σ2

d(t)u2 + λ(t)(I2(t, u) − 1)
]
,

(10.142)

g2(t) ≡
1

1 − γ

[(
c∗0(t)

c
(reg)
0 (t)

)γ

− γ

(
c∗0(t)

c
(reg)
0 (t)

)]
, (10.143)

I2(t, u) ≡
1

b(t) − a(t)

∫ b(t)

a(t)

αγ(u, q) dq , (10.144)

for 0 ≤ t < tf . The coupling of v0(t) to the time dependent part of the consumption

term c
(reg)
0 (t) in g2(t) and the relationship of c

(reg)
0 (t) to v0(t) in (10.138) means that

the differential equation (10.141) is implicit and highly nonlinear and thus (10.141)
is only of Bernoulli type formally. The apparent Bernoulli equation (10.141) can
be transformed to an apparent linear differential equation by using the Bernoulli

linearizing transformation θ(t) = v
1/(1−γ)
0 (t), to obtain,

0 = θ′(t) + g1(t, u
∗
0)θ(t) + g2(t),

whose general solution can be inverse transformed to the general solution for the
separated time, but implicit, function,

v0(t) = θ1−γ(t) =
[
e−g1(t,u∗

0(t))(tf−t)
(
1+
∫ tf

t
g2(τ)eg1(t,u∗

0(t))(tf−τ)dτ
)]1−γ

. (10.145)

In order to illustrate this stochastic application, a computational approxi-
mation of the solution is presented. The main computational changes from the
procedure used in [123] are that the jump-amplitude distribution is now uniform
and the portfolio parameters, as well as the jump-amplitude distribution are time-
dependent. Parameter time-dependence is approximated by quadratic interpolation

“bk0allfinal”
2007/1/7
page 336

i

i

i

i

i

i

i

i

336 Chapter 10. Applications in Financial Engineering

over the years from 1992-2001. The terminal time is taken to be tf = 11, one year
beyond this range. For this numerical study, the economic rates are taken to be
time-independent, so the bond interest rate is r(t) = 5.75% and the time-discount
rate is β(t) = 5.25%. The portfolio stock fraction constraints are

[U
(min)
0 , U

(max)
0] = [−10, 10] and C

(max)
0 = 0.75

for consumption relative to wealth.
In Figure 10.1, the optimal portfolio stock fraction u∗(t) is displayed. The

portfolio policy is not monotonic in time and the minimum control constraint at

U
(min)
0 is active during the first half year in t ∈ [0, tf], while the maximum constraint

is not activated since u∗(t) remains significantly below that constraint. The u∗(t)
non-monotonic behavior is very interesting compared to the constant behavior in
the constant parameter model in [123]. Likely the stock fraction grew initially due
to the early relatively quiet period, then peaked at the beginning of the fourth year
(1996 in the S&P500 data) as the market became noisier and continued to decline
due to the final relatively noisier period. In Figure 10.2 the optimal, expected,

0 2 4 6 8 10 12
−12

−10

−8

−6

−4

−2

0

2

4

6
Optimal Portfolio Fraction Policy

t, Time in Years

u*
(t

),
 P

or
tfo

lio
 F

ra
ct

io
n

Figure 10.1. Optimal portfolio stock fraction policy u∗(t) on t ∈ [0, 12]

subject to the control constraint set [U
(min)
0 , U

(max)
0] = [−10, 10].

cumulative consumption, c∗(t, w), is displayed in three dimensions. The optimal
consumption policy c∗(t, w) results in this computational example are qualitatively
similar to that of the time-independent parameter case in [123].

“bk0allfinal”
2007/1/7
page 337

i

i

i

i

i

i

i

i

10.5. Important Financial Events Model: The Greenspan Process 337

0

5

10

15 0
20

40
60

80
100

0

20

40

60

80

w, Wealth

Optimal Consumption Policy

t, Time

c*
(t

,w
),

 O
pt

im
al

 C
on

su
m

pt
io

n

Figure 10.2. Optimal consumption policy c∗(t, w) for (t, w) ∈ [0, 12]× [0, 100].

10.5 Important Financial Events Model: The
Greenspan Process

Many financially critical announcements can have significant effects in the mar-
ket, such as those on interest rates, unemployment statistics, budget deficits, trade
deficits, prices of supplies such as oil, weather extremes and many others. Some of
these announcements are scheduled like those of the Federal Reserve Board, labor
reports or business earnings. The response to these scheduled announcements are
sometimes difficult to predict, because market investors may have already factored
in unfavorable or favorable news. Whereas, unscheduled announcements present
both uncertainties in time and response making the compound Poisson processes a
reasonable model. The Poisson model would be unsuitable for scheduled announce-
ments. In [129], Hanson and Westman proposed a quasi-deterministic stochastic
jump process that resembled the compound Poisson process only in the random
jump-amplitude components, but otherwise jump at scheduled or deterministic
times. This theoretical basis for our paper was the optimal portfolio problem for
important external events paper [235] of Rishel . Our contribution was primarily
constructing the intricate computational procedure for the problem and formulat-
ing the problem as a full stochastic differential equation model. The formulation
appears to be of interest in other financial problems where there are uncertain,
scheduled payments such as dividends.

Scheduled jumps affect the market. The response magnitude of the jumps

“bk0allfinal”
2007/1/7
page 338

i

i

i

i

i

i

i

i

338 Chapter 10. Applications in Financial Engineering

can be random, as described by Rishel [235]. On February 17, 2000 there were
large market fluctuations caused by the semi-annual economic report of the now
former Federal Reserve Board Chairman Alan Greenspan to Congress concerning
the raising of interest rates among other things. The next day was followed by a
double witching day with the simultaneous expiration of contracts on stock options
and indices. Although these events and the market responses to them are quite
complicated, these quasi-deterministic processes are strongly motivated by the in-
fluential announcement events by Chairman Greenspan and thus they might be
called “Greenspan processes.”

The optimal portfolio and consumption work [122, 129] will be summarized
and reformulated with the constructs of this book. The reformulation uses a more
concrete formulation of the quasi-deterministic processes than the more general,
abstract Poisson random measure-like formulation in [129]. Also the problem was
reduced to a single risky asset model from the multi-asset model in [129]

10.5.1 Stochastic Scheduled and Unscheduled Events Model,
with Stochastic Parameter Processes

Let the usual Poisson process P (t) denote an unscheduled events process which
occur at the random times Tk for k = 1, 2, . . . , with random jump-amplitudes
J(pk,A(T−

k)) where p is the corresponding random mark and A(t) is an auxil-
iary parameter, vector process. Let the quasi-deterministic process or Greenspan
process Q(t) denote a scheduled events process at fixed times τℓ with random jump-
amplitude K(q̂;A(τ−ℓ)) where q̂ is the corresponding random mark. Both processes
are right-continuous.

Let the portfolio consist of one almost risk-less asset B(t) at time t and one
risky asset S(t). The risk-less asset B(t) satisfies the familiar form,

dB(t) = r(A(t))B(t)dt, B(0) = B0, (10.146)

where the almost risk-less asset interest r(a) depends on a mildly random param-
eter vector A(t) = [A1(t);A2(t)] associated with unscheduled and scheduled event
processes. Here, A1(t)) is a parameter for unscheduled events driven by Poisson
process dP (t), with jump-amplitude J1(q) and random mark p, and satisfied by

dA1(t)=A1(t)J1(q)dP (t) =

dP (t)∑

k=1

A1(T
−
k)J1(qk), (10.147)

where (Tk; qk) are the kth Poisson time-mark parameters. The process A1(t) can
be called a geometric Poisson process since the noise is linear in A1(t), making
the noise multiplicative. For reasons cited in the previous section, the range of
the unscheduled process mark is finite, so a ≤ q ≤ b. Also, A2(t) is a parameter
process for scheduled events driven by the quasi-deterministic process dQ(t), with
jump-amplitude K2(q̂) with random mark q̂, and satisfied by

dA2(t)=A2(t)K2(q̂)dQ(t) =

dQ(t)∑

ℓ=1

A2(τ
−
ℓ)K2(τ

−
ℓ ; q̂ℓ), (10.148)

“bk0allfinal”
2007/1/7
page 339

i

i

i

i

i

i

i

i

10.5. Important Financial Events Model: The Greenspan Process 339

where τℓ is a scheduled event time such that τℓ+1 > τℓ and q̂ℓ is the ℓth realized
jump-amplitude mark for ℓ = 1:M , where τM = max(τℓ) < tf with tf being the

portfolio final time and â ≤ q̂ ≤ b̂. The process A2(t) is also a multiplicative or
geometric noise process.

The risky portfolio asset with price S(t) satisfies the SDE

dS(t)=S(t)(µ(A(t)) + σ(A(t))dG(t) + J(q;A(t))dP (t) (10.149)

+K(q̂;A(t))dQ(t),

where S(0) = S0, 0 ≤ S(t) < tf , µ(a) is the mean stock appreciation rate, G(t) is
a standard Wiener or Gaussian process , σ(a) is the standard deviation coefficient
corresponding to dG(t), A(t) is an auxiliary parameter process, while the compound
unscheduled and scheduled jump processes with jump-amplitudes short-hand nota-
tion can properly be defined as

S(t)J(q;A(t))dP (t) =

dP (t)∑

k=1

S(T−
k)J(qk;A(T−

k)), (10.150)

and

S(t)K(q̂;A(t))dQ(t) =

dQ(t)∑

ℓ=1

S(τ−ℓ)K(q̂ℓ;A(τ−ℓ)). (10.151)

The primary difference between forms (10.150) and (10.151) is that in the former
dP (t) and T−

k are stochastic with E[dP (t)] = λdt and Tk+1 − Tk exponentially
distributed (B.56), while in the latter dQ(t) and τℓ are deterministic so E[dQ(t)] =
dQ(t) and E[τℓ] = τℓ.

10.5.2 Further Properties of Quasi-Deterministic or Scheduled
Event Processes: K(q̂; A(t))dQ(t)

The scheduled jump of the dQ(t) of (10.151) is scheduled at prescribed times τℓ
and jump-counts ℓ = 1 :M , such that τℓ+1 > τℓ and τM = max(τℓ) < tf . At
these times, random jump-amplitiudes K(q̂ℓ;A(τ−ℓ)) where q̂ℓ is the random mark
or background random variable for which the probability distribution can be more
conveniently specified. The A(t) is an auxiliary parameter process that is optional
for the jump-amplitude function K associated with dQ(t). The dQ(t) is a pure
deterministic counting process the triggers the random jump-amplitude.

The expectation of the event response jump-amplitude K(q̂;A(t)) conditioned
on the parameter process is

E[K(q̂;A(t))|A(t) = a] = E[K(q̂;a)] ≡ K(a).

The jump in the ith stock at a jump of the ith scheduled event processes is given
by

[S](τℓ) = S(τ+
ℓ) − S(τ−ℓ) = K(q̂ℓ;A(τ−ℓ))S(τ−ℓ),

“bk0allfinal”
2007/1/7
page 340

i

i

i

i

i

i

i

i

340 Chapter 10. Applications in Financial Engineering

for τℓ < tf where tf is the terminal time and stocks due to right-continuity property
of the scheduled jump processes.

Similarly, for the scheduled parameter process A2(t), the jump at τℓ is given
by

[A2](τℓ) = A2(τ
+
ℓ) −A2(τ

−
ℓ) = K2(q̂ℓ)A2(τ

−
ℓ),

which in turn is similar to the jump of the unscheduled parameter process A1(t),

[A1](Tk) = A1(T
+
k) −A2(T

−
k) = J1(qk)A2(T

−
k).

10.5.3 Optimal Portfolio Utility, Stock Fraction and
Consumption

The set-up of this optimal portfolio problem is similar to that of the prior section, so
the focus will be mainly on differences arising from including the quasi-deterministic
scheduled event processes and skipping similar intermediate steps. Let W (t) be the
portfolio wealth at time t, U1(t) is the vector of the instantaneous fraction of
wealth invested in the risky assets at vector price S(t), such that the risk-less asset
fraction at price B(t) satisfies

U0(t) = 1 − U1(t),

and C(t) is the consumption of wealth. As in the prior sections, the jump-amplitude
distributions will be assumed to be of finite range, so that the risky asset fractions
will not be restricted to [0, 1], but will be restricted to some larger and reasonable
range [U (min), U (max)].

Following Eq. (10.127) of the previous section, the portfolio wealth process,
relative changes due to relative changes in the portfolio fractions less the instanta-
neous consumption of wealth C(t)dt, is governed by the SDE,

dW (t) = (W (t) (r(A(t)) + U1(t)(µ(A(t)) − r(A(t))) − C(t)) dt

+W (t)U1(t)σ(A(t))dG(t) +W (t)U1(t)J(q;A(t))dP (t)

+W (t)U1(t)K(q̂;A(t))dQ(t) ,

(10.152)

with the necessary conditions that W (t) ≥ 0 and that the consumption rate is

constrained relative to wealth 0 ≤ C(t) ≤ C
(max)
0 W (t). For the stochastic dynamic

programming formulation, it is necessary to know the jumps in the wealth for both
unscheduled and scheduled jump-times, which are

[W](Tk) = W (T+
k) −W (T−

k) = W (T−
k)U1(T

−
k)J1(qk) (10.153)

and

[W](τℓ) = W (τ+
ℓ) −W (τ−ℓ) = W (τ−ℓ)U1(τ

−
ℓ)K2(q̂ℓ) . (10.154)

The investor’s objective is to maximize the conditional, expected current value
of the discounted utility Uf (w;a) of final wealth at the end of the investment final

“bk0allfinal”
2007/1/7
page 341

i

i

i

i

i

i

i

i

10.5. Important Financial Events Model: The Greenspan Process 341

time tf and the discounted utility of instantaneous consumption preferences U(c),
so that the optimal value of the portfolio satisfies

v∗(t, w;a) = max{u,c}[t,tf)

[
E
[
e−β(t,tf)Uf (W (tf);a)

+
∫ tf

t
e−β(t,s)U(C(s)) ds

∣∣∣ C
]]

,
(10.155)

conditioned on the state-control set C = {W (t) = w,U1(t) = u,C(t) = c,A(t) =
a}, where the time horizon is assumed to be finite, 0 ≤ t < tf , and β(t, s) ≡∫ s

t β(A(z))dz is the integral over the instant nominal discount rate β(A(t)) on
[t, s]. The instantaneous consumption c = C(t) and stock portfolio fraction vector
u = U1(t) serve as two control variables, while the wealth w = W (t) is the single
state variable.

Again, Merton’s zero-wealth boundary condition correction given in his 1990
text [203, Chap. 6] is used, but here with the extra parameter argument,

v∗(t, 0+;a) = Uf (0;a)e−β(t,tf) + U(0)
∫ tf

t e−β(t,s)ds, (10.156)

since the consumption must be zero when the wealth is zero. The terminal wealth
condition

v∗(tf , w;a) = Uf (w;a), (10.157)

must also be satisfied and provides the start of the stochastic dynamic programming
problem, a backward time problem.

The constant relative risk-aversion (CRRA) power utilities (10.135-10.136)
are also used here, as in the last section, for the risk-averse investor, with the same
power for consumption and wealth, but now with parameter values,

U(c) = cγ/γ , c ≥ 0 , 0 < γ < 1 .

Ui(ai) = |ai|γi/γi , ai 6= 0 , γi 6= 0 , i = 1, 2 ,

Uf (w;a) = U(w)U1(a1)U(a2) , w ≥ 0 , a = [a1; a2] .

(10.158)

The utilities satisfy general properties, which in the case of consumption for exam-
ple: (1) it is non-negative, U(c) ≥ 0, (2) the marginal utility is favorable toward
consumption, U ′(c) > 0, (3) but at a decreasing rate, U ′′(c) < 0.

The application of stochastic dynamic programming to the standard jump-
diffusion with only Gaussian and Poisson noise leads to a single PDE in time t
and wealth, as in the previous section, because the Gaussian and Poisson noise,
in particular the Poisson jump times, average out with the expectation used in
the objective. However, in the present problem with scheduled quasi-deterministic
jumps, the scheduled jump-times are not averaged out by the expectation operator.
Thus, between scheduled jump-times, τℓ for i = 1:N+1 and jump-counters ℓ, the
optimal value function v∗(t, w;a) using the Principle of Optimality and expanding

“bk0allfinal”
2007/1/7
page 342

i

i

i

i

i

i

i

i

342 Chapter 10. Applications in Financial Engineering

using the SDEs and the stochastic chain rule to dt-precision,

0 = v∗t (t, w;a)−β(a)v∗(t, w;a)

+ maxu,c

[
U(c) + ((r(a)+u(µ(a) − r(a)))w − c) v∗w(t, w;a)

+ 1
2 (uσ(a))2w2v∗ww(t, w;a)

+λ
∫ b

a (v∗(t, w(1+uJ(q;a)); a1(1+J1(q)), a2)−v∗(t, w;a)) φq(q)dq
]

= v∗t (t, w;a)−β(a)v∗(t, w;a) + U(c∗)

+ ((r(a)+u∗(µ(a) − r(a)))w − c∗) v∗w(t, w;a)

+ 1
2 (u∗σ(a))2w2v∗ww(t, w;a)

+λ
∫ b

a (v∗(t, w(1+u∗J(q;a)); a1(1+J1(q)), a2)−v∗(t, w;a)) φq(q)dq ,

(10.159)

valid starting from the terminal wealth condition (10.157) and otherwise holding
on open time intervals in backward order determined by the scheduled jump-times
from (τM , tf) to (τℓ−1, τℓ) for ℓ = M:−1 :: 2 (the triple construct has the form start :
step : stop as in MATLABTM) and (0, τ1). Here, u∗ = u∗(t, w;a) and c∗ = c∗(t, w;a)
are the optimal arguments of the maximum in the first part of (10.159) and are
subject to previously stated constraints.

While the unscheduled, Poisson jumps are instantaneous and random, the
expectation from the objective averages the jumps with E[dP (t)] = λdt which is the
same order as the contributions of the continuous terms in (10.159), the scheduled
jumps are instantaneous and deterministic so they do not average, the continuous
terms contribute zero in that instant and only the scheduled jump integral survives.
Hence, at the scheduled jump-time τℓ for ℓ = M :−1: 1 there is a new stochastic
dynamic programming jump condition,

v∗(τ−ℓ , w;a) =
∫ bb

ba v
∗ (τ+

ℓ , w(1+u−ℓ K(q̂;a)); a1, a2(1+K2(q̂)
)
φq(q)dq , (10.160)

where u−ℓ = u∗(τ−ℓ , w;a). This condition does not arise in the usual jump-diffusion
problem with only unscheduled jumps. Note that the value of v∗(τ+

ℓ , w;a) is to be
found from integrating (10.159) from τℓ+1 to τℓ, so that the jump-condition (10.160)
provides the new backward value v∗(τ−ℓ , w;a) which is the start for the integration
of (10.159) on (τℓ−1, τℓ).

Since there is a non-negativity condition on wealth, that condition also applies
to the wealth arguments in (10.159) and (10.160), so

(1+u∗J(q;a)) ≥ 0

and
(1+u∗K(q̂;a)) ≥ 0

are additionally required, respectively.
If the consumption and stock fraction are unconstrained, then the regular

controls, c(reg)(t, w;a) and u(reg)(t, w;a) are implicitly obtained, assuming sufficient
differentiability,

U ′ (c(reg)(t, w;a)
)

= v∗w(t, w;a) (10.161)

“bk0allfinal”
2007/1/7
page 343

i

i

i

i

i

i

i

i

10.5. Important Financial Events Model: The Greenspan Process 343

and

(σ(a)w)2v∗ww(t, w;a)u∗(t, w;a) = −(µ(a) − r(a))wv∗w(t, w;a)

−λw
∫ b

a
J(q)v∗w(t, w(1+u∗J(q)); a1(1+J1(q)), a2)φq(q)dq .

(10.162)

Since these regular control policies introduce both implicitness and nonlinearities
into the PDE of stochastic dynamic programming (10.159), the solution will require
computational iterations. There is also a jump in the regular stock fraction from
(10.160) and is given implicitly by

0 = w
∫ bb

baK(q̂;a)v∗(τ+
ℓ , w(1+u−(reg),ℓK(q̂;a)); a1, a2(1+K2(q̂)) (10.163)

where u
(reg)−
ℓ = u(reg)(τ−ℓ , w;a). The optimal policies (c∗, u∗) are found by applying

the constraints to the regular control policies (c(reg), u(reg)).

10.5.4 Canonical CRRA Model Solution

The great advantage of the CRRA power utilities (10.158) for the portfolio and
consumption optimization problem is that the solution is separable in the form

v∗(t, w;a) = Uf (w;a)v0(t;a) , (10.164)

so the wealth state can be completely stripped away in terms of a given utility
function Uf (w;a), avoiding the exponential computational complexity of the curse
of dimensionality. Also, the terminal condition (10.158) is easily satisfied as long
as the remaining time-dependent part of the solution satisfies

v0(tf ;a) = 1,

and since U(0+;a) = 0 = U(0+) the zero-wealth absorbing boundary condition
(10.156) v∗(t, 0+;a) = 0.

Substituting the canonical solution into the implicit equation (10.161) for
c(reg)(t, w;a) yields a preliminary solution linear in w and in terms of v0(t;a),

c(reg)(t, w;a) = w · c(reg)0 (t;a) ≡ wψ2(a)

v
1/(1−γ)
0 (t;a)

, (10.165)

where ψ2(a) ≡ 1/(U1(a1)U2(a2))
1/(1−γ), using some algebra. The corresponding

optimal consumption is given by

c∗(t, w;a) = wc∗0(t;a) = wmax
(
c
(reg)
0 (t;a), C

(max)
0

)
. (10.166)

However, the reduction of the u(reg)(t, w;a) does not eliminate the implicitness,

but yields a solution independent of w, i.e., u(reg)(t, w;a) = u
(reg)
0 (t;a), a prime

criterion for separability, where

u
(reg)
0 (t;a) =

1

(1 − γ)σ2(a)

(
µ(a) − r(a) +

λ

γ
I ′1

(
t, u

(reg)
0 (t;a);a

))
, (10.167)

“bk0allfinal”
2007/1/7
page 344

i

i

i

i

i

i

i

i

344 Chapter 10. Applications in Financial Engineering

and where

I ′1(t, u;a) ≡ γ2
∫ b

a
J(q;a)

U(1 + uJ(q;a))
(1 + uJ(q;a))

U(1 + J1(q))ψ1(t, q;a)φq(q)dq ,

ψ1(t, q;a) ≡ v0(t; (1 + J1(q))a1, a2)
v0(t; a1, a2)

,

noting that ψ1(t, q;a) is the primary source of implicitness. The corresponding
optimal portfolio fraction is given by

u∗(t, w;a) = max
(
U (min),min

(
U (max), u

(reg)
0 (t;a)

))
. (10.168)

Substituting the PDE (10.159) and CRRA separated solution (10.164) along
with the optimal controls (10.166-10.168), leads to an implicit Bernoulli-type ordi-
nary differential equation,

0 = v′0(t;a) + (1 − γ)
(
ψ′

3(t, u
∗(t;a);a)v0(t;a) + ψ̂2(t;a)v

γ
γ−1

0 (t;a)
)
, (10.169)

where

ψ′
3(t, u;a) = ∂ψ3(t, u;a)/∂t ≡ 1

1−γ (−β(a) + γ (r(a) − (µ(a) − r(a))u)

−γ(1−γ)
2σ2(a) u

2 + λ(I1(t, u;a) − 1)
)
,

ψ̂2(t;a) ≡ 1
1−γ

((
c∗0(t;a)

c
(reg)
0 (t;a)

)γ

− γ

(
c∗0(t;a)

c
(reg)
0 (t;a)

))
ψ2(a) ,

I1(t, u;a) − 1) ≡ γ
∫ b

a U(1 + uJ(q;a))ψ1(t, q;a)U1(1 + J1(q))ψ1(t, q;a)φq(q)dq ,

when t is on (τℓ−1, τℓ) for ℓ = (M + 1):−1: 1, conveniently defining τM+1 ≡ tf and
τ0 ≡ 0.

The implicit, nonlinear Bernoulli equation can be linearized by the transfor-
mation

θ(t) = v
1/(1−γ
0 (t;a),

so (10.169) becomes

0 = θ′(t) + ψ′
3(t, u

∗(t;a);a)θ(t) + ψ̂2(t;a) , (10.170)

which can easily be solved for θ(t) but only formerly in terms of the implicit depen-
dence on the controls which requires iteration to obtain a fully explicit solution.

Besides iterations, the computation of the solution has many complications
in terms of integrating the jump integrals embedded in the coefficients, merging a
regular time grid with the scheduled jumps and assembling solutions on the un-
scheduled subintervals with the jump conditions at the scheduled jumps in time. A
summary for the computational algorithm is given in [129] along with the solutions
for a test case of discrete jumps and various parameter values. The merger of the
regular-time grid and the jump-time grid is illustrated in the simple jump-adapted
code fragment in Fig. 9.7 of Subsubsect. 9.1.5 on p. 264. This is the complication
that is the most asked question about this problem, mostly because it has many
other applications in finance where there are jumps added onto a continuous process,
such as discrete transaction costs, dividends and death benefits.

“bk0allfinal”
2007/1/7
page 345

i

i

i

i

i

i

i

i

10.6. Exercises 345

10.6 Exercises

Many of these exercises, depending on the instructor, whether numerical or theo-
retical, can be done by MATLAB, Maple or Mathematica, but if theoretical, the
Symbolic Toolbox in MATLAB will be needed.

1. Show that the Itô mean square limit for correlated bond-stock price noise at
time t (10.16)

dWB(t)dWS(t)
ims
= ρdt , (10.171)

is valid. Are there any special treatments required if ρ = 0 or ρ = ±1?
You may use the bivariate normal density in (B.146) or Table B.1 of selected
moments of preliminaries Chapter B.

2. Merton [201] ([203], p. 266) gives a stricter definition of more risky or riskier,

Security X1(t) is more risky than security X2(t) if

X1(t) = qX2(t) + ǫ ,

where (q,X2(t), ǫ) are mutually independent, E[q] = 1, E[X2(t)] =
µ2(t), E[ǫ] = 0, Var[q] = σ2

q , Var[X1(t)] = σ2
1(t), Var[X2(t)] =

σ2
2(t) > 0 and Var[ǫ] = σ2

ǫ .

(a) Show that

σ2
1(t) = (1 + σ2

q)σ2
2(t) + µ2

2(t)σ
2
q + σ2

ǫ > σ2
2(t) ,

(b) Can you demonstrate this for a financial application or critically evaluate
the applicability of the definition?

3. Verify that the call option pricing solution Φ(call)(w, u) (10.82) or (10.83)
satisfies the

(a) standard diffusion PDE (10.73),

(b) call final condition (10.84).

Either Maple or Mathematica is recommended.

4. Verify that the put option pricing solution Φ(put)(w, u) (10.85) or (10.86)
satisfies the

(a) standard diffusion PDE (10.73),

(b) put final condition (10.87).

Either Maple or Mathematica is recommended.

“bk0allfinal”
2007/1/7
page 346

i

i

i

i

i

i

i

i

346 Chapter 10. Applications in Financial Engineering

5. (a) Reverse the transformations to obtain option pricing solutions for

F (call)(S,B, t;T,K) and F (put)(S,B, t;T,K)

from the transformed solutions Φ(call)(w, u) and Φ(put)(w, u), respec-
tively, through restoring the original variables B, S, F and τ = T − t.

(b) Reduce the final restored form to the Black-Scholes assumptions on
volatilities and mean rates.

6. Show that the transformed call and put option solutions satisfy a more usual
call-put parity principle, %

(
F̂ ((put)) − F̂ ((call))

)
(Ŝ, B̂, τ ;T,K) = K exp(−R(τ)) − Ŝ(τ),

if certain conditions are satisfied and specify those conditions.

Suggested References for Further Reading

• Aı̈t-Sahalia, 2004 [5].

• Aourir, et al., 2002 [11].

• Bachelier, 1900 [16].

• Ball and Torous, 1985 [18].

• Black, 1989 [35].

• Black and Scholes, 1973 [34].

• Bingham and Kiesel, 2004 [33].

• Bossaerts, 2002, [41].

• Bridgeman, 1963 [42].

• Carr and Madan, 1999 [47].

• Chichilnisky, 1996 [51].

• Cont and Tankov, 2004 [59].

• Courtault et al., 2000 [61].

• Cox and Rubinstein, 1985 [63].

• Duffie, 1992 [74].

• Haberman, 1983 [102].

• Hanson, 1996 [108].

“bk0allfinal”
2007/1/7
page 347

i

i

i

i

i

i

i

i

10.6. Exercises 347

• Hanson and Westman, 2001 [122], 2002 [124, 125, 123, 126], 2003 [127, 128]
and 2004 [129, 131].

• Heath and Schweizer, 2000 [135].

• D. Higham, 2004 [140].

• Hull, 2000 [147].

• Jarrow and Rosenfeld, 1984 [153].

• Jorion, 1989 [155].

• Kamien and Schwartz, 1981 [158].

• Karatzas, et al., 1986 [159].

• Karatzas and Shreve, 1998 [160].

• Klebaner, 1998 [164].

• Kou, 2002 [169].

• Kou and Wang, 2004 [170].

• Lipton, 2001 [186].

• Merton, 1969 [198], 1971 [199] , 1973a [200], 1973b [201], 1976 [202] and
1990 [203].

• Merton and Scholes, 1996 [204].

• Mikosch, 1998 [209].

• Neftci, 2000 [217].

• Pliska, 1997 [225].

• Press et al., 2002 [230].

• Rishel, 1999 [235].

• Rogers and Williams, 2000 [236].

• Runggaldier, 2003 [239].

• Sethi, 1997 [245].

• Sethi and Taksar, 1988 [246].

• Shreve, 2004 [248].

• Sneddon, 1957 [251].

• Tavella and Randall, 2000 [264].

“bk0allfinal”
2007/1/7
page 348

i

i

i

i

i

i

i

i

348 Chapter 10. Applications in Financial Engineering

• Westman and Hanson, 2000, [277].

• Wilmott, 2000 [283].

• Wilmott, Howison and Dewynne, 1996 [282].

• Yan and Hanson, 2006 [287].

• Zhu, 2005 [289].

• Zhu and Hanson, 2005 [290] and 2006 [291].

“bk0allfinal”
2007/1/7
page 349

i

i

i

i

i

i

i

i

Chapter 11

Applications in
Mathematical Biology and
Medicine

Despite assertions in both the lay and the professional
literature, it is now known that normal physiology is
anything but “regular.” . . .
Loss of event-to-event variability occurs during normal aging
and also occurs pathologically in critical illiness.
—Dr. Timothy G. Buchman (2004) [45].

Mathematics Is Biology’s Next Microscope, Only Better;
Biology Is Mathematics’ Next Physics, Only Better
—Joel E. Cohen (2004) [58].

The application to optimal harvesting in uncertain environments is made in
the presence of both background Gaussian noise and catastrophic jump events.
Many problems in nature exhibit random effects and undergo catastrophic changes
for which the stochastic calculus of continuous Wiener processes alone is inadequate.

11.1 Stochastic Bioeconomics: Optimal Harvesting
Applications

For deterministic problems of optimal harvesting of renewable resources, the seminal
reference by C. W. Clark is Mathematical Bioeconomics: The Optimal Management
of Renewable Resources [56]. The book is nicely self-contained with introduction
to the necessary economics, calculus of variations and optimal control theory. An
excellent survey of stochastic bio-economics is given by Anderson and Sutinen in [9].

In this chapter, examples of optimal harvesting problems in random envi-
ronments are illustrated. The first application is optimal harvesting with random
population fluctuations [242]. A second application is optimal harvesting with ran-
dom population fluctuations, but also with price fluctuations [115], so is a two-

349

“bk0allfinal”
2007/1/7
page 350

i

i

i

i

i

i

i

i

350 Chapter 11. Applications in Mathematical Biology and Medicine

dimensional state generalization of the first application.

11.1.1 Optimal Harvesting of Logistically Growing Population
Undergoing Random Jumps

This problem of natural logistic growth of a renewable resource subject to random
disasters and bonanzas was treated by Ryan and Hanson [242]. The parameter data
was motivated by the boom and bust characteristics of Antarctic pelagic whaling
at the time as studied by Clark and Lamberson [57]. The problem is summarized in
the notation of this book, so for more information the reader should refer to [242].

Let X(t) be the amount of biomass (mass of the biological species) of the
harvested species at time t with stochastic dynamics given by

dX(t) = X(t) (r(1 −X(t)/K)− qU(t)) dt+X(t)

np∑

i=1

νidPi(t), (11.1)

where X(0) = x0 > 0 is the initial biomass, r > 0 is the constant intrinsic growth
rate and K > 0 is the constant biomass carrying capacity that reflects the size
of the population that the environment can support in absence of harvesting and
other factors. Hence, the natural growth function f(x) = rx(1 − x/K) is called
the logistic function since as x → K a saturation effect due to crowding limits
growth. Under the assumption of linear harvesting, the rate of harvesting is H(t) =
h(X(t), U(t)) = qU(t)X(t), where U(t) ≥ 0 is the harvesting effort or rate and
also the control variable, while q > 0 is called the catchability coefficient and
is a measure of the efficiency of the harvest. The population suffers from rare
random jumps from various sources for i = 1 : np linear in the biomass X(t) with
proportions −1 < νi. The negative values −1 < νi < 0 denote disastrous effects but
limited by a lower bound so that the population will not be wiped out by a single
disaster, while the positive values νi > 0 denote bonanzas or beneficial effects. The
randomness of the jumps is modeled by a set of np Poisson processes Pi(t) with
common infinitesimal means and variances

E[dPi(t)] = λidt = Var[dPi(t)],

for i = 1 :np, where λi > 0 is the ith jump rate. The actual jump at the jth jump
time ti,j of the ith Poisson process is given in jump notation by

[X](ti,j) ≡ X(t+i,j) −X(t−i,j) = νiX(t−i,j) .

The motivation for the multitude of jump terms in (11.1) is that large random
fluctuations can come from many causes, like climatic changes, over-fishing and
epi-zootics (see [212, 138, 250, 242], for instance).

In [241], Ryan and Hanson treated the optimal harvesting case where the
natural growth of the biomass is exponential with jumps, i.e., 1/K = 0 and the
natural growth function is linear, f(x) = rx, so the overall growth of X(t) is
exponential with harvesting and jumps. The model (11.1) is a pure jump model
with logistic drift because the focus is on the effects of jumps on the harvesting

“bk0allfinal”
2007/1/7
page 351

i

i

i

i

i

i

i

i

11.1. Stochastic Bioeconomics: Optimal Harvesting Applications 351

bioeconomics, although diffusion terms could have been easily added to the model.
For r > 0 with no harvesting and jumps, the exponential model dX(t) = rX(t)dt
leads to unbounded exponential growth, while the logistic model dX(t) = rX(t)(1−
X(t)/K)dt leads to saturated growth as X(t) → K− if x0 < K or limiting decay as
X(t) → K+ if x0 > K. The density dependent (nonlinear) jump case is treated by
Hanson and Ryan in [113].

The economic value of the harvest, starting at time t with biomass x and
ending at the final time tf , is given by the expected, discounted present value,

V [X,U](x, t)=E

[∫ tf

t

e−δsh(X(s), U(s))R(X(s), U(s))ds

∣∣∣∣ (11.2)

X(t)=x, U(t)=u

]
,

where δ is the continuous, inflation-corrected discount rate with discounting starting
at t = 0 and exp(−δt) is the discount factor which accounts for the opportunity
costs of investing money elsewhere in a secure investment. The instantaneous net
harvest revenue per unit harvest is

R(x, u) = (ph(x, u) − C(u)) /h(x, u).

It can be assumed that x > 0 and u > 0 to avoid dividing by zero, but the net
revenue always appears in the product form h(x, u)R(x, u), so the divide check is
not needed. The price of a unit of a harvested biomass (h = qux) is p and

C(u) = c1u+ c2u
2

is the total cost of the harvesting effort when the biomass or stock size is x given
that c2 > 0 so that C(u) is a genuine quadratic. Note that C(u) is assumed to
be quadratic in the effort, which suggests that the effort is more costly the larger
it becomes. In the case of fisheries, this might mean that more inefficient fishing
boats or less experienced fisherman are used as the fishing effort U(t) increases.
The effort is assumed to be bounded, i.e., constrained, so that

0 ≤ U (min) ≤ U(t) ≤ U (max) <∞ (11.3)

and the objective is to seek the maximum, expected current value

v∗(x, t) = max
U

[
V [X,U](x, t)

]
.

Thus, the goal is to calculate optimal value V
∗
(x, t) and the optimal feedback control

or effort

u∗(x, t) = argmax
U

[
V [X,U](x, t)

]

for 0 ≤ t < tf . However, the initial optimal expected, current value V
∗
(x, 0) is the

optimal expected, discounted present value of future revenues.

“bk0allfinal”
2007/1/7
page 352

i

i

i

i

i

i

i

i

352 Chapter 11. Applications in Mathematical Biology and Medicine

In order to facilitate the application of the Hamilton-Jacobi-Bellman (HJB)
equation theorem 6.3 to the discounted current value form in (11.2) with the so-
called cost function C(x,u, t) = exp(−δt)h(x, u)R(x, u) here, the discount factor
exp(−δt) can be removed in the pseudo-Hamiltonian by converting from the present
value v∗(x, t) of Chapter 6 to the current value V∗(x, t) by the transformation

v∗(x, t) = exp(−δt)V∗(x, t).

Thus, v∗t (x, t) = exp(−δt)(V∗
t (x, t) − δt V∗(x, t)), where v∗t and V∗

t are the partial
derivatives of the value functions with respect to time. Note that initially both
value functions coincide, v∗(x, 0) = V∗(x, 0).

Kamien and Schwartz [158] define the difference between the present and
current value in terms of the present and current value Hamiltonians. The current
value Hamiltonian H(x, u, t) is related to the present value Hamiltonian H(x, u, t)
by

H(x, u, t) ≡ e+δtH(x, u, t)

= (pqux− c1u− c2u
2) + (rx(1 − x/K) − qux)V∗

x(x, t)

+

np∑

i=1

λi(t) (V∗(x+ νix, t) − V∗(x, t)) ,

cancelling out the discount factor exp(−δt). Further, separating out the control
terms, the HJBE is

0 = V∗
t (x, t) − δV∗(x, t) + rx(1 − x/K)V∗

x(x, t) + Ŝ∗(x, t)

+

np∑

i=1

λi(t) (V∗(x+ νix, t) − V∗(x, t)) , (11.4)

where the control switching term contains all control terms in the quadratic form:

Ŝ(x, u, t) ≡ ((p− V∗
x(x, t))qx − c1 − c2u)u ,

including only the control dependent terms. The interior critical point of Ŝ(x, u, t)
with respect to the control u is the regular optimal control,

u(reg)(x, t) =
0.5

c2
((p− V∗

x(x, t)) qx− c1) , (11.5)

since c2 > 0, with the regular control being easily computed in terms of the gradient
V∗

x(x, t) due to the quadratic cost assumption. As in the case of many applications,
the control is constrained like in (11.3), so the constrained optimal control is the
composite bang-regular-bang control function,

u∗(x, t) =

U (min), u(reg)(x, t) ≤ U (min)

u(reg)(x, t), U (min) ≤ u(reg)(x, t) ≤ U (max)

U (max), U (max) ≤ u(reg)(x, t)

 . (11.6)

“bk0allfinal”
2007/1/7
page 353

i

i

i

i

i

i

i

i

11.1. Stochastic Bioeconomics: Optimal Harvesting Applications 353

Consequently, the optimal control switch term is

Ŝ∗(x, t) ≡ Ŝ(x, u∗(x, t), t) = c2u
∗(x, t)

(
2u(reg)(x, t) − u∗(x, t)

)
,

after some algebraic manipulations. When u(reg)(x, t) is within the constraints
(11.3), the switch term will be quadratic in u(reg)(x, t), i.e., S∗(x, t) = c2(u

(reg))2(x, t),
and consequently quadratic in the value gradient V∗

x(x, t), so the PDE of stochastic
dynamic programming will be PDE with a quadratic nonlinearity. The gradient
V∗

x(x, t) is the so-called shadow price [56] for the way it directly modifies the price
p in (11.5) and represents the expected value of future harvests [56]. The PDE is
also a partial differential-difference equation, since the discrete Poisson jumps lead
to difference terms in (11.4) rather than the mark integral over difference terms as
more generally presented in Chapter 6.

The final condition for the backward HJB equation is V∗(x, tf) = 0 for x > 0
in absence of salvage or terminal costs. Thus, the final regular control or effort at
t = tf is given by

u(reg)(x, tf) = (pqx− c1)/c2 = c1(x− xf)/(2c2xf)

where xf ≡ c1/(pq) is also the deterministic equilibrium stock value x∞ [56]. How-
ever, in this stochastic case, if c1 6= 0, the final minimum control switch point
is

xf,min = xf

(
1 + 2c2U

(min)/c1

)

and the final maximum control switch point is

xf,max = xf

(
1 + 2c2U

(max)/c1

)
.

As the biomass approaches extinction levels, X(t) → 0+, the rate of change
dX(t) (11.1) vanishes along with it, but the net revenue R(x, u) should have become
negative since costs dominate at low biomass. Hence, it will be assumed in addition
that R(x, u) ≥ 0, i.e., replacing R(x, u) by max[R(x, u), 0], so that the extinction
boundary condition is

V∗(0+, t) = 0

for 0 < t < tf .
A very reasonable approximation to the solution can be obtained from the

quasi-deterministic approximation,

dX(qdet)(t) ≡ E
[
dX(t)|X(t) = X(qdet)(t), U(t) = U (qdet)(t)

]

= r(qdet)X(qdet)(t)
(
1 −X(qdet)(t)/K(qdet)

)
dt,

where r(qdet) ≡ r+
∑np

i=1 λiνi and K(qdet) ≡ Kr(qdet)/r, comprising an approximate
logistic model. For this simplified model, the HJBE will no longer have difference
terms since the jumps have been averaged out, but the optimal control will still be
of the form (11.6).

“bk0allfinal”
2007/1/7
page 354

i

i

i

i

i

i

i

i

354 Chapter 11. Applications in Mathematical Biology and Medicine

Due to the complexity of the PDE, numerical methods are needed to approx-
imate the solution. The HJBE can be solved with PDE-oriented finite difference
methods [108] or the probability-oriented Markov chain approximation [179]. The
finite difference method requires a sufficiently small mesh ratio for a comparison
regular parabolic PDE [108] in the jump-diffusion case, while the Markov chain
approximation, if the Markov chain probabilities are properly constructed, auto-
matically comes with a weak convergence property [179]. For the current appli-
cation in [242] and also in [241], Hanson and Ryan used the PDE-oriented finite
difference method of [108] with predictor-corrector procedures to iterate on the non-
linear terms and precision-preserving interpolation to approximate the jump terms
by values at neighboring finite difference nodes. Both methods are variations of the
finite difference method and are summarized in Chapter 8 in Sections 8.1 for the
PDE-oriented method and 8.2 for the Markov chain approximation, respectively.

The primary bio-economic parameters used in [242] come from [57], i.e., r, K,
q, p and c1, while other parameters like δ, tf , λi and νi are reasonable estimates.
Many of these estimated parameters were subjected to sensitivity tests in [242]
in the many numerical results presented there. Some of the parameters are now
obsolete, since whaling is no longer permitted in many countries or else highly
restricted. Interest and discount rates are much lower now than then. However,
significant sensitivity in u∗ and V ∗ was found to the parameters δ, c2 and λiνi/r for
both a bonanza-dominated case with λiνi/r = 2δi,1 and a disaster-dominated case
with λiνi/r = −0.5δi,2, where here δi,j is the Kronecker delta. In particular, in the
cheap control limit as c2 → 0+, the bang-regular-bang control law approaches
a bang-bang control law in absence of a regular control component.

11.1.2 Optimal Harvesting with Both Price and Population
Random Dynamics

The optimal harvesting problem, under joint population and price fluctuations in a
random jump environment of Hanson and Ryan [115], is also an example of a two-
dimensional state problem. Here, the problem is briefly summarized in the notation
of this book. For general introduction to stochastic resource modeling, the reader
can consult Anderson and Sutinen [9] or Mangel [193].

Again, let X1(t) be the amount of biomass (mass of the biological species) of
the harvested species population at time t with stochastic dynamics consisting of
logistic deterministic dynamics, discrete Poisson jumps and now with background,
stochastic diffusion,

dX1(t) = X1(t)

(
(r1(1 −X1(t)/K1) − q1U1(t)) dt+ σ1dW1(t) (11.7)

+

n1∑

i=1

νi,1dPi,1(t)

)
,

X1(0) = x1,0 > 0, where the extra subscript 1 designates population parameters or
processes, i.e., the essential biological component of the bio-economic process. The

“bk0allfinal”
2007/1/7
page 355

i

i

i

i

i

i

i

i

11.1. Stochastic Bioeconomics: Optimal Harvesting Applications 355

diffusion process σ1dW1(t) satisfies zero mean and σ2
1dt variance properties, with

σ1 > 0 assumed. For the Poisson processes, νi,1 > −1 and λi,1 > 0 for i = 1:n1.
The economic process or price process p(t) depends on the time-dependent

bio-mass harvest rate H(t) = h(X1(t), U1(t)) = q1U1(t)X1(t) and other stochastic
processes. Since on the average p(t) decreases as h(t) increases [115] following
supply-demand principles, the price is assumed to satisfy

p(t) = (p0/H(t) + p1)X2(t), (11.8)

where p0 is a constant supply-demand coefficient such that p(t)H(t) is the gross
harvest return, p1 is the constant price per unit harvested bio-mass coefficient and
X2(t) is a fluctuating inflationary factor [115] satisfying the SDE

dX2(t) = X2(t)

(
r2dt+ σ2dW2(t) +

n2∑

i=1

νi,2dPi,2(t)

)
, (11.9)

X2(0) = x2,0 > 0, where the extra subscript 2 designates parameters and processes
in the price process SDE, σ2 > 0, νi,2 > −1 and λi,2 > 0 for i = 1:n2. It is assumed
that all primary stochastic processes, Pi,1(t), Pi,2(t), W1(t) and W2(t), are pair-wise
independent.

The economic value of the harvest, starting at time t with biomass x1 and
ending at the final time tf , is given by the expected, discounted current value,

V [X, U1](x, t)=E

[∫ tf

t

e−δsH(s)R(X(s), U1(s))ds

∣∣∣∣X(t)=x, U1(t)=u1

]
, (11.10)

where δ is the continuous, nominal discount rate, uncorrected by inflation since
inflation is included in X2(t), with discounting starting at t. The random vector
state is X(t) = [X1(t) X2(t)]

⊤ and x = [x1 x2]
⊤ is a sampled vector state, such

that

R(x, u1) = ((p0 + p1h(x1, u1))x2 − C(u1)) /h(x1, u1)

is the instantaneous net harvest revenue rate per unit biomass. It can be assumed
that x1 > 0 and u1 > 0 to avoid dividing by zero, but the net revenue always
appears in the product form h(x1, u1)R(x, u1) so the zero check is unneeded. The
price of a harvested biomass unit is p and

C(u1) = c1u1 + c2u
2
1

is the total cost of the harvesting effort given that c2 > 0 so that C(u1) is a genuine
quadratic.

The effort control constraints are again assumed to be

0 ≤ U
(min)
1 ≤ U1(t) ≤ U

(max)
1 <∞, (11.11)

while the objective is to seek the maximum, expected current value

v∗(x, t) = max
U1

[
V [X, U1](x, t)

]

“bk0allfinal”
2007/1/7
page 356

i

i

i

i

i

i

i

i

356 Chapter 11. Applications in Mathematical Biology and Medicine

and the optimal feedback effort control

u∗1(x, t) = argmax
U1

[
V [X, U1](x, t)

]

for 0 ≤ t < tf . Again, the present values v∗(x, t) are transformed present values
V∗(x, t),

v∗(x, t) = exp(−δt)V∗(x, t).

The present value Hamiltonian H(x, u1, t) related to the current value Hamiltonian
H(x, u1, t) is

H(x, u1, t) ≡ e+δtH(x, u1, t)

= (p0 + p1q1u1x1)x2 − c1u1 − c2u
2
1

+(r1x1(1 − x1/K1) − q1u1x1)V∗
x1

(x, t) + r2x2V∗
x2

(x, t)

+
1

2
σ2

1x
2
1V∗

x1,x1
(x, t) +

1

2
σ2

2x
2
2V∗

x2,x2
(x, t)

+

n1∑

i=1

λi,1(t) (V∗(1 + νi,1)x1, x2, t) − V∗(x, t))

+

n2∑

i=1

λi,2(t) (V∗(x1, (1 + νi,2)x2, t) − V∗(x, t)) .

Upon cancelling out the discount factor exp(−δt) and separating out the control
dependence from the Hamiltonian, the HJB equation is

0 = V∗
t (x, t) − δV∗(x, t) + p0x2 + r1x1(1 − x1/K1)V∗

x1
(x, t) + r2x2V∗

x2
(x, t)

+
1

2
σ2

1x
2
1V∗

x1,x1
(x, t) +

1

2
σ2

2x
2
2V∗

x2,x2
(x, t)

+

n1∑

i=1

λi,1(t) (V∗((1 + νi,1)x1, x2, t) − V∗(x, t)) (11.12)

+

n2∑

i=1

λi,2(t) (V∗(x1, (1 + νi,2)x2, t) − V∗(x, t))

+ Ŝ∗(x, t)

where the control switching term has the quadratic form:

Ŝ(x, u1, t) ≡ p1q1u1x1x2 − c1u1 − c2u
2
1 − q1u1x1V∗

x1
(x, t),

including only the control dependent terms. The interior critical point of Ŝ(x, u, t)
with respect to the control u is the regular optimal control,

u
(reg)
1 (x, t) =

0.5

c2

((
p1x2 − V∗

x1
(x, t)

)
q1x1 − c1

)
, (11.13)

“bk0allfinal”
2007/1/7
page 357

i

i

i

i

i

i

i

i

11.2. Stochastic Biomedical Applications 357

since c2 > 0, with the regular control being easily computed in terms of the gradient
V∗

x(x, t) due to the quadratic cost assumption. As in the case of many applications,
the control is constrained like in (11.11), so the constrained optimal control is the
composite bang-regular-bang control function,

u∗1(x, t) =

U
(min)
1 , u

(reg)
1 (x, t) ≤ U

(min)
1

u
(reg)
1 (x, t), U

(min)
1 ≤ u

(reg)
1 (x, t) ≤ U

(max)
1

U
(max)
1 , U

(max)
1 ≤ u

(reg)
1 (x, t)

. (11.14)

The temporal side condition for the backward HJBE (11.12) is the final con-
dition V∗(x, tf) = 0 in absence of any terminal conditions for the first quadrant of
state space and the natural corner condition

V∗(0, 0, t) = −
(
c1 + c2U

(min)
1

)
U

(min)
1 (1 − exp(−δ(tf − t))/δ

at the origin (0, 0) for 0 < t < tf , since U
(min)
1 ≥ 0. On the edge (x1, 0) for x1 > 0,

the boundary condition is similar to solving the pure jump optimal resource HJBE
of Subsection 11.1.1 except that there is an additional diffusion term. On the edge
(0, x2) for x2 > 0, the boundary condition also involves solving an even less similar
HJBE since in this case the deterministic inflationary growth is exponential rather
than logistic.

In [115], data of the International Pacific Halibut Commission (IPHC) annual
reports [148] are used since the catch and price data were readily available over a
long period of time. Other data came from Clark [56]. The hybrid exptrapolated-
predictor-corrector Crank-Nicolson method similar to that described in the previous
section and in Section 8.1was used. The major result was that large inflationary
increases had a very strong effect on the optimal return but not on the optimal
effort.

Another multidimensional optimal harvesting problem can be found in the
Lake Michigan salmon-alewife predator-prey model of Hanson in [105], where the
alewife suffered large scale die-offs every several years. The model was also mixed
economically, since the salmon are fished recreationally while the alewife were fished
in a commercial fishery, now disbanded. Multidimentional visualization and parallel
processing for renewable resources are developed by developed Practico et al. [228]
and Hanson et al. in [112].

11.2 Stochastic Biomedical Applications

Variability plays an important role in medicine. Discussing critical care, Buch-
man [45] emphasizes that variability is normal for the individual patient and that
illness is often accompanied by loss of individual variability. For instance, Boker et
al. [36] find a variable ventilator improved lung function during surgery and recov-
ery more than a controlled constant ventilator. Priplata et al. [231] find that input
noise enhances balance, particulary for the elderly. Ashkenazy et al. [14] present
a stochastic model to portray the variation in an individual’s gait showing that

“bk0allfinal”
2007/1/7
page 358

i

i

i

i

i

i

i

i

358 Chapter 11. Applications in Mathematical Biology and Medicine

variability changes with maturation and aging. Moss et al. [211] find increased sen-
sitivity in detecting threshold levels with stochastic noise for stochastic resonance
to occur for nonlinear neural systems during information processing.

Swan [261] presents many applications of optimal control to biomedicine in
his book, but the emphasis is on deterministic compartment or ODE models. One
chapter is on cancer therapy control and another is on drug administration control.
Murray’s [213, 214] two volumes on models of mathematical biology has information
on cancer and other models, but no real optimal control models.

According to Steel [255], and Goldie and Coldman [99] stochastic effects play
a important role in the stages of development of cancer, the subsequent growth
and the invasiveness of tumors or the more liquid lymphomas. Mutations can be
induced by environmental chemical agents or ionizing radiation, while spontaneous
mutations are more rare, usually without obvious cause [99].

11.2.1 Diffusion Approximation of Tumor Growth and Tumor
Doubling Time Application

Tumor Growth Branching Process

Sometimes approximating a discrete stochastic process by a diffusion process can
be useful. Hanson and Tier [117] present an example for branching process for
modeling the growth tumor cells. This discrete model is then approximated as a
diffusion process for the purposes of analysis and computation.

Let Bi be the branching process, in the ith generation for i = 1, 2, 3, · · · , such
that there are three possible transitions in the time interval (t, t+∆t) for generation
i,

Bi =

0, if cell death
1, if no cell change
2, if cell division

 , (11.15)

similar to a birth-death model, but with a middle state of no change. This yields a
total cancer cell count change from N(t) at time t to

N(t+ ∆t) =

N(t)∑

i=1

Bi , (11.16)

with the cell count change in (t, t+ ∆t) being

∆N(t) =

N(t)∑

i=1

Bi −N(t) =

N(t)∑

i=1

(Bi − 1) .

The Bi are assumed to be independent, identically distributed (IID) random vari-
ables with basic conditional moments that are dependent on N(t), i.e., density
dependent,

E[Bi | N(t) = n] = m(n; ∆t)

“bk0allfinal”
2007/1/7
page 359

i

i

i

i

i

i

i

i

11.2. Stochastic Biomedical Applications 359

and

Var[Bi | N(t) = n] = v(n; ∆t) .

The higher moments

E[(Bi −m(N(t),∆t)k | N(t) = n] = mk(n; ∆t) ,

will also be needed to demonstrate that they will be small for k ≥ 3.
Thus, the basic conditional moments of the tumor cell count change ∆N(t)

are

E[∆N(t) | N(t) = n] =

n∑

i=1

E[Bi | N(t) = n] − n = n(m(n; ∆t) − 1)

and

Var[∆N(t) | N(t) = n] = E[(∆N(t) − n(m(n; ∆t) − 1))2 | N(t) = n]

= E[(

n∑

i=1

(Bi −m(n; ∆t))2 | N(t) = n]

=

n∑

i=1

n∑

j=1

E[(Bi −m(n; ∆t))(Bj −m(n; ∆t)) | N(t) = n]

= =

n∑

i=1

E[(Bi −m(n; ∆t))2 | N(t) = n] = nv(n; ∆t) ,

where the usual diagonalization technique has been used to apply the IID property
of the Bi.

Diffusion Approximation of the Tumor Branching Process

Using some additional assumptions, a diffusion approximation will be constructed.
Suppose T is some reference generation time such as the threshold for detection so

τ = t/T

is a new scaled time and let a new scaled stochastic process be

X(τ) = N(t)/T,

since the tumor will grow roughly as the number of generations. In order, for the
model to be consistent with these scalings, the basic moments have to be refined
so that the changes in X(τ) are small for small changes in τ . The basic idea of the
diffusion approximation is that it will not work well unless the order of the state
changes are the same order as the time changes, i.e., ∆X(τ) = O(∆τ). Hence, let
the infinitesimal mean be of the near-replacement form,

m(N(t),∆t) = 1 + (m1(X(τ)) + o(1))∆τ as ∆τ → 0 ,

“bk0allfinal”
2007/1/7
page 360

i

i

i

i

i

i

i

i

360 Chapter 11. Applications in Mathematical Biology and Medicine

where m1(x) is a function to be specified, and let the infinitesimal variance be of
the form

v(N(t),∆t) = (v1(X(τ)) + o(1))T∆τ as ∆τ → 0 ,

where v1(x) is a function to be specified. In addition, the higher moments should
satisfy the form,

mk(N(t),∆t) = o(∆τ) as ∆τ → 0 .

First for the diffusion approximation, the infinitesimal moments of X(τ), with
∆X(τ) = ∆N(t)/T are computed as in (7.64-7.65),

µ(x) = lim
∆τ→0

E[∆X(τ) | X(τ) = x]

∆τ
= lim

∆τ→0

E[∆N(Tτ)/T | N(Tτ) = Tx]

∆τ

= lim
∆τ→0

x(m(Tx, T∆τ) − 1)

∆τ
= lim

∆τ→0
[x(m1(x) + o(1))] = xm1(x) (11.17)

and

σ2(x) = σ1,1(x) = lim
∆τ→0

Var[∆X(τ) | X(τ) = x]

∆τ
= lim

∆τ→0
[x(v1(x) + o(1))] = xv1(x). (11.18)

In addition, the higher moment condition (7.66) when k = 3 is used (since any
k ≥ 3 can be used) in place of the continuity condition (7.63) due to the Chebyshev
inequality (7.67). Hence,

lim
∆τ→0

E[|∆X(τ) − x(m(Tx, T∆τ) − 1)|3 | X(τ) = x]

∆τ
= lim

∆τ→0

n ·m3(Tx, T∆τ)

T 3∆τ

= lim
∆τ→0

x · o(∆τ)

T 2∆τ
= 0,

completing the verification of the diffusion approximation and going substantially
beyond the justification in [117].

For this particular application, the deterministic growth is chosen to be the
Gompertz growth model [255, 99]

µ(x) = xm1(x) = µ1x ln(K/x) , (11.19)

where µ1 is a constant growth coefficient andK is the carrying capacity or saturation
level. Note that the Gompertz growth is singular as x→ 0+, in that its derivative is
unbounded as x→ 0+, since d(µ1x ln(k/x))/dx = −µ1 ln(ex/K) → +∞. However,
the Gompertz model is often used in analyzing cancer experiments, although other
models are also used, such as the simpler exponential growth model in shorter
clinical trials [99]. In addition, the infinitesimal variance is taken to be purely
linear, i.e.,

σ2(x) = xv1(x) = σ1x ,

where σ1 > 0 is a constant.
In summary, the backward operator in this time homogeneous case is

Bx0 [u](x0) =
1

2
σ1xu

′′(x0) + µ1x0 ln(K/x0)u
′(x0) . (11.20)

“bk0allfinal”
2007/1/7
page 361

i

i

i

i

i

i

i

i

11.2. Stochastic Biomedical Applications 361

Expected Tumor Doubling Time

The interest here is in the tumor doubling time, so suppose the tumor start is at
the observed size c and then find the time it takes the tumor to double in size
to X(t) = 2c. However, due to the stochastic nature of cancer, the tumor could
become extinct, X(t) = 0 before it doubles in size. Hence, the proper problem is
one of conditional probabilities, with the condition that the tumor doubles before
it becomes extinct.

First consider the exit time at 2c starting at the general size x0 > 0 at time
t0,

τ (2c)
e (x0, t0) = inf

t
[t | X(t) = 2c,X(s) ∈ (0+, 2c), t0 ≤ s < t,X(t0) = x0] , (11.21)

so the backward formulation of Subsection 7.7.1 can be used with variable x0, here
with b = 2c. Again let the exit time distribution function be

Φ
τ
(2c)
e (x0,t0)

(t) = Prob[τ (2c)
e (x0, t0) < t]

with corresponding density φ
τ
(2c)
e (x0,t0)

(t) and let the ultimate probability of exit at

X(t) = 2c be

Φ(2c)
e (x0, t0) =

∫ ∞

0

φ
τ
(2c)
e (x0,t0)

(t)dt .

Consequently, the final answer will be the expected doubling time

Φdbl(c) = Φ(2c)
e (c, 0) ,

eventually using the initial values x0 = c and t0 = 0.

Now let u = u0(x0) = Φ
(2c)
e (x0, 0) and this satisfies the homogeneous backward

equation

Bx0[u0](x0) =
1

2
σ1xu

′′
0 (x0) + µ1x0 ln(K/x0)u

′
0(x0) = 0 , (11.22)

from (11.20) in particular and (7.59) in general, but with boundary conditions,

u0(0
+) = 0 and u0(2c) = 1,

since an exit at X(0) = 0+ is excluded under the conditioning and an exit at
X(t) = 2c is a certain conditional exit. Eq. (11.22) is integrable in u and x0 > 0
by using an integrating factor or its inverse called the Wronskian (also called the
diffusion scale density),

W (x0) ≡ exp

(
−2

∫ x0 µ(x)

σ2(x)
dx

)
= exp

(
−2

µ1

σ1

∫ x0

ln

(
K

x

)
dx

)

= exp

(
−2

µ1x0

σ1
ln

(
K

ex0

))
= (β1x0)

γ1x0 (11.23)

“bk0allfinal”
2007/1/7
page 362

i

i

i

i

i

i

i

i

362 Chapter 11. Applications in Mathematical Biology and Medicine

here for the Gompertz model, where γ1 = 2µ1/σ1 and β1 = e/K > 0. Thus, (11.22)
simplifies to

(u′0/W)′(x0) = 0.

Thus, after two integrations and boundary condition substitutions lead to the solu-
tion of the boundary value problem,

Φ(2c)
e (x0, 0) = u0(x0) =

∫ x0

0+ W (x)dx
∫ 2c

0+ W (y)dy
. (11.24)

Since as x→ 0+, W (x) = (β1x)
γ1x ∼ 1 + γ1x ln(β1x) and then

∫ x

0+

dyW (y) ∼ x+ 0.5γ1x
2(ln(β1x) − 0.5),

W (x) is integrable as x → 0+ so that (11.24) is well defined, all other points on
(0, 2c) being obviously regular or non-singular points. Thus, setting x0 = c as

the initial size gives the ultimate probability of a tumor doubling in size, Φ
(2c)
e (c, 0).

More results by way of numerical and asymptotic approximations are given in [117].
The expected doubling time from (7.61) is

T (2c)
e (c) = M (2c)

e (c)/Φ(2c)
e (c, 0), (11.25)

normalizing the first moment from (7.60), which here is

M (2c)
e (x0) ≡

∫ +∞

0

tφ
τ
(2b)
e (x0,0)

(t)dt,

for general initial size x0 and satisfying the backward equation from (7.62)

Bx0

[
M (2c)

e

]
(x0) = −Φ(2c)

e (x0, 0) . (11.26)

The backward equation for the moment is easier to solve than the one derived for the
expected time quotient (11.25) since the quotient leads to a much more complicated
equation. The boundary conditions are homogeneous,

M (2c)
e (0+) = 0 and M (2c)

e (2c) = 0,

but for different reasons, the first because 0+ is the excluded exit and the second
because it means an instant exit.

The solution can again utilize the Wronskian as a reciprocal integrating factor,
such that

(u′0/W)′(x0) = −2V (x0)u0(x0) ,

where

V (x) ≡ 1

σ2(x)W (x)
=

1

σ1x(β1x)γ1
,

here for the Gompertz model, is called the speed density. As x→ 0+,

V (x) ∼ 1

σ1x
(1 − γ1x ln(β1x)),

“bk0allfinal”
2007/1/7
page 363

i

i

i

i

i

i

i

i

11.2. Stochastic Biomedical Applications 363

so that for 0 < ǫ≪ x≪ 1,

∫ x

ǫ

dyV (y) ∼ σ−1(ln(x/ǫ) + γ1ǫ ln(β1ǫ) + 1))

and is not integrable as ǫ→ 0+. The integrability of both W (x) and V (x), as well
as that of some other functions, plays role in the Feller classification of boundaries
for the Kolmogorov equations in one-dimension [31, 162]. Since a boundary is called
a regular boundary if both W (x) and V (x) are integrable as the boundary point
is approached from the interior of the domain, then 0+ is a non-regular or singular
boundary [162].

After two integrations, substitution of the boundary conditions to eliminate
constants of integration and some manipulation of the integral forms, the solution
of (11.26) can be written in the form

u1(x0) = 2(1 − u0(x0))

∫ x0

0+

dyW (y)

∫ 2c

y

dzV (z)u0(z)

−2u0(x0)

∫ 2c

x0

dyW (y)

∫ 2c

y

dzV (z)u0(z) , (11.27)

provided the integrals exist. Letting x0 = c, the expected doubling time is given by
the formula in (11.25) or more simply by.

T (2c)
e (c) = u1(c)/u0(c) .

The multiple integral form of the solution (11.27) is too complicated to analyze
further here, but additional numerical and asymptotic results are given in the paper
of Hanson and Tier [117], including deterministic results. The application in [117]
is based upon Fortner plasmacytoma data of Simpson-Herren and Lloyd [249]. The
presentation here is somewhat different since it needed to be consistent with the
notation and analytical formulation of this text.

Related formulation and results for other optimal stopping problem are some
extinction problems for stochastic populations. They are examined for both diffu-
sion in [116] and Poisson noise in [119, 121].

11.2.2 Optimal Drug Delivery to Brain PDE Model

In many applications, the control problem is formulated in terms of partial dif-
ferential equations (PDEs), not ordinary differential equations (ODEs), since the
problem depends on spatial variations and not just time variations. The ODE
driven control problem is usually called lumped parameter control, sometimes
arising from compartmental models lumping the spatial variables so that a PDE
is not used, while the PDE driven control model is called distributed parameter
control. The parameters in this latter case refer to the spatial variables in the
background of the control problem. The mathematical background to this problem
can be found in Section A.5 or in Gunzberger [101] in much more detail for flow
problems.

“bk0allfinal”
2007/1/7
page 364

i

i

i

i

i

i

i

i

364 Chapter 11. Applications in Mathematical Biology and Medicine

Cancer drug delivery to eliminate or reduce tumors is usually based upon ex-
pensive sets of experiments using animal and later human subjects to determine a
fixed dose size and dose period to fit general patient, tumor and drug characteristics.
Brain tumors can be very invasive and deadly, especially gliomas [262, 214]. When
possible, the most of the mass of the tumor is removed (also called resectioned),
but drug chemotherapy or radiotherapy is used in an attempt to kill any remaining
cancer cells, including mobile metastases [80]. Gliomas can also be very diffu-
sive [214], so reaction-diffusion equations may be used to model the drug delivery
to the brain [262, 214, 92]. However, these reaction-diffusion investigations are
only studies of the behavior of the solutions. No control of the drug delivery is
involved. In this subsection, the paper of Chakrabarty and Hanson [48] on the con-
trol of reaction diffusion equations for optimal drug delivery to the brain is briefly
summarized.

Optimal Control Problem for Drug Delivery Reaction-Diffusion Equations

Consider a reaction-diffusion model of a three-state system consisting of tumor cells,
normal cells and cancer drug concentration in a brain. Let y1(x, t) be the density
of remaining tumor cells, y2(x, t) be the density of normal cells and y3(x, t) be the
concentration of the drug at time t in time horizon [0, tf] and position x in the
brain domain Dx. Let y(x, t) = [y3(x, t)]3×1 be the global state vector.

The tumor cell density satisfies the coupled reaction-diffusion equation

∂y1
∂t

(x, t) = D1∇2
x[y1](x, t) + a1y1g1(y1) − (α1,2y2 + κ1,3y3)y1 (11.28)

and the normal cells satisfy a similar equation

∂y2
∂t

(x, t) = D2∇2
x[y3](x, t) + a2y2g2(y2) − (α2,1y1 + κ2,3y3)y2 , (11.29)

where Di is the diffusion coefficient for the ith state, the aiyigi(yi) is the growth
law for the ith state, the interaction coefficient αi,j > 0 signifies a constant death
rate of tissue of state i due to tissue state j and the coefficient κi,3 > 0 denotes a
constant death rate due to the drug. For concreteness, the growth terms are taken
to be logistic, i.e., aiyigi(yi) = aiyi(1 − yi/Ki), where ai is a constant intrinsic
growth coefficient and Ki > 0 is a constant carrying-capacity or saturation level.
Thus, there can be a strong interaction between the tumor and normal tissues, but
the drug interaction is uni-directional. The drug concentration y3(x, t) diffuses, gets
absorbed and is controlled according to this reaction diffusion equation,

∂y3
∂t

(x, t) = D3∇2
x[y3](x, t) + a3y3g3(y3) + u(x, t) , (11.30)

where a3y3g3(y3) is the drug absorption loss term and u(x, t) is the drug input con-
trol variable. For simplicity, the absorption term is taken to be exponential decay,
so a3y3g3(y3) = a3y3, where a3 < 0 is the negative of the absorption coefficient and
is assumed constant.

“bk0allfinal”
2007/1/7
page 365

i

i

i

i

i

i

i

i

11.2. Stochastic Biomedical Applications 365

The vector reaction-diffusion PDE form merging (11.28,11.29,11.30) corre-
sponding to (A.138) is

∂y

∂t
(x, t) = D∇2

x[y](x, t)+B(y(x, t),x, t)+Au(x, t) , (11.31)

where D = [Diδi,j]3×3 is the diffusion coefficient,

B(y(x, t),x, t) = (a1y1(1 − y1) − (α1,2y2 + κ1,3y3)y2) e1e
⊤
1

+ (a2y2(1 − y2) − (α2,1y1 + κ2,3y3)y2) e2e
⊤
2 (11.32)

+a3y1e3e
⊤
3

is the bilinear reaction term with unit vectors ek = [δi,k]3×1 for k = 1:3, A = e3e
⊤
3 is

the unit drug control coefficient and the drift term does not appear since C ≡ 0
here. The initial conditions for the vector PDE (11.31) is the vector

y(x, 0) = y0(x), for x ∈ Dx (11.33)

and the boundary condition is a no-flux condition,

−(n̂⊤∇x)[y](x, t) = 0 , (11.34)

where n̂ = n̂(x, t) is the outward normal to the boundary ∂Dx.
An objective in space-time is the minimization of the quadratic costs form,

V [y,u] =
1

2

∫ tf

t0

dt

∫

Dx

dx
(
y⊤Qy+(u− u0)

⊤R(u − u0)
)
(x, t)

+
1

2

∫

Dx

dx
(
y⊤Sy

)
(x, tf) , (11.35)

which is a slight variation in the control of the form (A.139), where the quadratic
coefficients are R = r3e3e

⊤
3 for the tumor burden cost, S = s1e1e

⊤
1 for the drug

delivery costs and Q = q1e1e
⊤
1 + q3e3e

⊤
3 for the terminal costs, while the target

threshold control value is u0 = u0,3e3.

Hamiltonian Variational Formulation

The optimization problem above has three sets of constraints: the dynamics (11.31),
the initial condition (11.33) and the boundary condition (11.34), so requires three
Lagrange multipliers λ(x, t), µ(x, t) and ν(x) (without t since t = 0 for the initial
condition), respectively, to form the pseudo-Hamiltonian as in (A.140),

H(y,u,λ,µ,ν) = V [y,u] +

∫ tf

t0

dt

∫

Dx

dx λ
⊤(yt−D∇2

x[y]−B−Au
)
(x, t)

+

∫ tf

t0

dt

∫

∂Dx

dΓµ⊤(−
(
n̂⊤∇x

)
[y]
)
(x, t) (11.36)

+

∫

Dx

dx ν⊤(y(x, 0+) − y0(x)
)
.

“bk0allfinal”
2007/1/7
page 366

i

i

i

i

i

i

i

i

366 Chapter 11. Applications in Mathematical Biology and Medicine

The main idea is that the Lagrange multipliers extend the three-vector state space
to an extended six-vector state space

z(x, t) ≡ {y(x, t),u(x, t),λ(x, t),µ(x, t),ν(x)}

to make the variations δz(x, t) about zbf∗(x, t) in the extended objective systematic.
Hence,

H(z∗(x, t) + δz(x, t)) = H(z∗(x, t)) + δH(z∗(x, t), δz(x, t)) + O(|δz|2(x, t)) ,

assuming that z∗(x, t) exists and is a unique optimal solution under sufficient dif-
ferentiability assumptions on H(z(x, t)). Critical to these assumptions is that the
perturbation of the nonlinear reaction term B(y,x, t) has a quadratic approxima-
tion, but that is trivial for this application since B is quadratic in y.

Skipping the details contained in Subsection A.5.2, something very similar to
the first variation δH(z∗(x, t), δz(x, t)) in (A.142) is found. Setting the coefficients
of δλ⊤(x, t), δν⊤(x) and δµ⊤(x, t) (only for x ∈ Dx), respectively, to zero confirms
that the PDE (11.31), initial condition (11.33) and boundary condition (11.34) hold
with the optimal state y∗(x, t) replacing for the state y(x, t) of the original problem.

The final-boundary value PDE problem for the optimal adjoint state λ∗(x, t)
comes from setting the coefficients for δy⊤(x, tf), δy⊤(x, tf) and δy⊤(x, t) (only
for x ∈ Dx), respectively, to zero, producing

(
λ∗

t + ∇2
x[Dλ∗] −∇y[B⊤]∗λ∗ −Qy∗) (x, t) = 0 , x ∈ Dx, t ∈ [0, tf) , (11.37)

with final condition,

(λ∗ + Sy∗) (x, tf) = 0, x ∈ Dx , (11.38)

and boundary condition

(
n̂⊤∇x

)
[Dλ∗](x, t) = 0 , x ∈ ∂Dx, t ∈ (0, tf) , (11.39)

which is the corresponding no-flux condition in backward form.
Setting the coefficient of δu(x, t) to zero leads to

R(u∗(x, t) − u∗
0(x, t)) = A⊤λ(x, t) ,

which reduces to

u∗3(x, t) = u∗0,3(x, t) + λ∗3(x, t)/r3 , x ∈ Dx, t ∈ [0, tf) , (11.40)

There are other optimality conditions that interrelate the Lagrange multipli-
ers,

ν∗(x) = λ∗(x, 0+) for x ∈ Dx

and
µ∗(x, t) = Dλ∗(x, t) , x ∈ ∂Dx, t ∈ [0, tf) ,

which will not be needed in the computations.

“bk0allfinal”
2007/1/7
page 367

i

i

i

i

i

i

i

i

11.2. Stochastic Biomedical Applications 367

Forward-Backward Computational Iterations

The presence of nonlinear reaction terms in the forward state equation (11.31) using
y∗(x, t) with u∗(x, t) and in the corresponding backward co-state equation (11.37)
for λ∗(x, t) make computational methods essential. The computational method
of Chakrabarty and Hanson [48, 49, 50] employs a forward state integration of
(11.31) and a backward integration of (11.37) with sufficient iterations until the
norm of the iteration difference is small enough. The forward equation (11.31) is
independent of the co-state λ∗(x, t) but depends on the optimal control u∗(x, t)
which is a critical objective to be determined, so a starting guess for u∗(x, t) is
needed to start the forward integration, until a backward itegration generates a
better guess using (11.40). On the other hand, the backward equation (11.37)
depends strongly on the state distribution y∗(x, t) as well as on its final values from
(11.38), so that iterations, each consisting of a double-shot of both a forward
interation followed by a backward iteration, are required for reasonable accuracy.
This double shot method is similar to the opposite directions multiple shooting
method of Hackbusch [103] for parabolic equations. Gunzberger [101] calls many
such methods one-shot methods and give more rigorous justification of them.

In order to keep the computational presentation manageable, let the forward
and backward PDEs be represented in the more compact notation:

y∗
t (x, t) = F(x, t,y∗(x, t),u∗(x, t)),

0 = λ
∗
t (x, t) + G(x, t,λ∗(x, t),y∗(x, t)),

with general vector functions F and G for the forward and backward equations,
respectively. Let the space vector x be replaced by the discrete representation,

xj ≡ [xji,1 + (ji − 1) · ∆xi]3×1

where ∆xi is the step size in the ith direction, j = [ji]3×1 where, ji = 1:Mi nodes
per direction, i = 1:3. Let the time t be replaced by the forward discretization

tk ≡ k∆t,

for k = 0:K time steps where ∆t is the forward time step size, t0 = 0 and tK = tf .

The backward discrete time will be of the form t
(b)
k ≡ tf −k∆t = (K−k)∆t = tK−k.

The corresponding discretization of the dependent vectors will be

y(xj, tk) ≃ Yj,k ,λ(xj, tk)≃Λj,k and u(xj, tk) ≃ Uj,k .

The numerical procedure used is the Crank-Nicolson method for second or-
der accuracy in both space and time, but modified with additional extrapolation,
prediction and correction techniques to accommodate nonlinear terms and multi-
dimensions. The forward and backward discrete versions are written,

Y
(γ+1,ℓ)
j,k+1 = Y

(ℓ)
j,k + ∆tF

(γ,ℓ)
j,k+0.5 , (11.41)

Λ
(γ+1,ℓ)
j,k−1 = Λ

(ℓ)
j,k + ∆tG

(γ,ℓ)
j,k−0.5 , (11.42)

“bk0allfinal”
2007/1/7
page 368

i

i

i

i

i

i

i

i

368 Chapter 11. Applications in Mathematical Biology and Medicine

for γ = 0 :nc corrections (γ = 0 is the prediction step) in each time step k until a

relative stopping criterion for corrections in the tumor cell state component Y
(γ+1,ℓ)
1,j,k+1

is satisfied,

∣∣∣
∣∣∣Y (γ+1,ℓ)

1,j,k+1 − Y
(γ,ℓ)
1,j,k+1

∣∣∣
∣∣∣ < toly

∣∣∣
∣∣∣Y (γ,ℓ)

1,j,k+1

∣∣∣
∣∣∣ (11.43)

for every state index j, for k = 0 : K − 1 and during all double shot iterations

ℓ = 1:L, provided ||Y (γ,ℓ)
1,j,k+1|| 6= 0. The general notation means that

F
(γ,ℓ)
j,k+0.5 = F

(
xj, tk+0.5,Y

(γ,ℓ)
j,k+0.5,U

(γ,ℓ)
j,k+0.5

)

and similarly for G
(γ,ℓ)
j,k−0.5. The relative tolerance in Y

(γ,ℓ)
1,j,k is toly. The Crank-

Nicolson midpoint values are ordinarily approximated by the average,

Y
(γ,ℓ)
j,k+0.5 ≃ 0.5

(
Y

(γ,ℓ)
j,k+1 + Y

(ℓ)
j,k

)

for k = 0:K − 1 and

Λ
(γ,ℓ)
j,k−0.5 ≃ 0.5

(
Λ

(γ,ℓ)
j,k−1 + Λ

(ℓ)
j,k

)
,

for k = K : −1 : 1, where Y
(ℓ)
j,k and Λ

(ℓ)
j,k are the final corrections for each time

step k given shot ℓ, consistent with the second order Crank-Nicolson accuracy and

implicitness reduction. A similar form is used for U
(γ,ℓ)
j,k+0.5. Second order central

finite differences are used for all derivatives and based upon Y
(γ,ℓ)
j,k+0.5 or Λ

(γ,ℓ)
j,k−0.5.

The final stopping criterion for the convergence of the double shot iterations
ℓ = 2:L is the pair of norms,

∣∣∣
∣∣∣U (ℓ)

3,j,k − U
(ℓ−1)
3,j,k

∣∣∣
∣∣∣ < tolu

∣∣∣
∣∣∣U (ℓ−1)

3,j,k

∣∣∣
∣∣∣ and

∣∣∣
∣∣∣Y (ℓ)

1,j,k − Y
(ℓ−1)
1,j,k

∣∣∣
∣∣∣ < toly

∣∣∣
∣∣∣Y (ℓ−1)

1,j,k

∣∣∣
∣∣∣, (11.44)

where the norm is over all j and k, for ℓ = 2:L until satisfied, provided ||U (ℓ−1)
3,j,k || 6= 0

and ||Y (ℓ−1)
1,j,k || 6= 0, where tolu > 0 and toly > 0 are some specified tolerances.

The treatment of the bilinear reaction term (11.32) requires careful consider-
ation to accommodate the usual linear framework of the Crank-Nicolson method.
Since this term has the pure bilinear form,

B(y,x, t) = B̂(y)y ,

in this application, this quasi-linear approximation is very appropriate

B̂
(
Y

(γ,ℓ)
j,k+0.5

)
Y

(γ,ℓ)
j,k+0.5 ≃ B̂

(
Y

(γ−1,ℓ)
j,k+0.5

)
Y

(γ,ℓ)
j,k+0.5 ,

in the forward equation for corrections γ ≥ 1 and time steps k ≥ 1.
Another special treatment needed is that of the no-flux boundary condition

since central differences are inappropriate at the boundary, but backward and for-

“bk0allfinal”
2007/1/7
page 369

i

i

i

i

i

i

i

i

11.2. Stochastic Biomedical Applications 369

ward differences of the same second order accuracy work very well, e.g.,

0 = −
(
(n̂⊤∇x)[Y∗]

)(γ,ℓ)

j,k
≃ −

(
3Y

(γ,ℓ)
j,k − 4Y

(ℓ)
j−bn,k + Y

(γ,ℓ)
j−2bn,k

)

(2|n̂⊤∆x|) ,

0 =
(
(n̂⊤∇x)[(Λ)∗]

)(γ,ℓ)

j,k
≃ +

(
3Λ

(γ,ℓ)
j,k − 4Λ

(γ,ℓ)
j−bn,k + Λ

(γ,ℓ)
j−2bn,k

)

(2|n̂⊤∆x|) ,

respectively, where n̂ ≡ n̂j,k, ∆x = [∆xi]3×1 > 0 and, e.g.,

Y
(γ,ℓ)
j−bn,k = Y(γ,ℓ)(xj − |n̂⊤∆x|n̂, tk).

A sample output of the computations in Fig. 11.1 shows significant decrease
in tumor size in one space dimension for a five day drug treatment trial. For
information on the parameters used see Chakrabarty and Hanson [48]. For the
corresponding two-dimensional space model of drug delivery see [49].

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

x 10
−3

x
1
, Space in cm.

Y
1* (x

1,t)

Optimal Relative Tumor Density Y
1
* (x

1
,t)

Y
1
(x

1
,0)

Y
1
* (x

1
,t

q1
)

Y
1
* (x

1
,t

mid
)

Y
1
* (x

1
,t

q3
)

Y
1
* (x

1
,t

f
)

Figure 11.1. Optimal tumor density Y ∗
1 (x1, t) in the one-dimensional case

with time as a parameter rounded at quartile values {0, tq1 = tf/4, tmid = tf/2, tq3 =
3tf/4, tf}, where tf = 5 days. The total tumor density integral is reduced by 29%
in the 5-day simulated drug treatment trial.

Suggested References for Further Reading

• Anderson and Sutinen, 1984 [9].

• Ashkenazy et al., 2002 [14].

• Bharucha-Reid, 1960 [31].

“bk0allfinal”
2007/1/7
page 370

i

i

i

i

i

i

i

i

370 Chapter 11. Applications in Mathematical Biology and Medicine

• Boker et al., 2004 [36].

• Buchman, 2004 [45].

• Chakrabarty and Hanson, 2005a [48], 2005b [49] and 2006 [50].

• Clark, 1976 and 1990 [56].

• Clark and Lamberson, 1982 [57].

• Engelhard, 2000 [80].

• Goel and Dyn, 1974 [98].

• Goldie and Coldman, 1998 [99].

• Gunzberger, 2003 [101].

• Hackbusch, 1978 [103].

• Hanson, 1987 [105] and 1996 [108].

• Hanson et al., 1993 [112].

• Hanson and Ryan, 1988 [113] and 1998 [115].

• Hanson and Tier, 1981 [116] and 1982 [117].

• Hanson and Tuckwell, 1978 [118], 1981 [119], 1983 [120] and 1997 [121].

• Hennemuth et al., 1980 [138].

• Karlin and Taylor, 1975 [161, I] and 1981 [162, II].

• Kamien and Schwartz, 1981 [158].

• Kushner and Dupuis, 2001 [179].

• Ludwig, 1974 [187] and [188].

• Mangel, 1985 [193].

• Moss et al., 2004 [211].

• Murray, 2002 [213, I] and 2003 [214, II].

• Nisbet and Gurney, 1982 [219].

• Practico et al., 1992 [228].

• Priplata et al., 2002 [231].

• Ryan and Hanson, 1958 [241] and 1986 [242].

• Simpson-Herren and Lloyd, 1970 [249].

“bk0allfinal”
2007/1/7
page 371

i

i

i

i

i

i

i

i

11.2. Stochastic Biomedical Applications 371

• Steel, 1977 [255].

• Swan, 1984 [261].

• Swanson, 1999 [262].

• Taylor and Karlin, 1998 [265].

• Tuckwell, 1989 [269] and 1995 [270].

“bk0allfinal”
2007/1/7
page 372

i

i

i

i

i

i

i

i

372 Chapter 11. Applications in Mathematical Biology and Medicine

“bk0allfinal”
2007/1/7
page 373

i

i

i

i

i

i

i

i

Chapter 12

Applied Guide to Abstract
Theory of Stochastic
Processes:

Mathematicians are like Frenchmen: Whatever you say
to them they translate into their own language
and forthwith it is something entirely different.
—Johann Wolfgang von Goethe.

Since the mathematicians have invaded the theory of
relativity, I do not understand it myself anymore.
—Albert Einstein (1879-1955),
http://en.wikiquote.org/wiki/Mathematics .

Martingale (1589): Any of several systems of betting
in which a player increases his stake,
usually by doubling each time he loses a bet.
—Digital Webster, definition 3, 1992.

Martingales are treated because of their great importance,
but they are not used as a tool in this book.
—William (Willy) Feller (1906-1970), p. 209 in [84].

The concept of martingales is due to P. Lévy,
but it was J. L. Doob who realized its unexpected potential
and developed the theory.
—William (Willy) Feller (1906-1970), p. 210 in [84].

Our view of Brownian motion never focused too closely
on the underlying measure space, and, by and large,
we have profited from keeping a respectful distance.
—J. Michael Steele, p. 218 in [256].

373

“bk0allfinal”
2007/1/7
page 374

i

i

i

i

i

i

i

i

374 Chapter 12. Applied Guide to Abstract Stochastic Processes

This chapter briefly introduces more of the abstract analytical methods, such
as measure theoretic methods, Martingale methods, Radon-Nikodým derivatives,
Girsanov’s theorem, Itô processes, Lévy processes, characteristic functions and ex-
ponents, Lévy-Klintchine formula, jump-diffusion process comparisons and other
topics from the applied point of view as a bridge to more abstract methods.

The purpose of this chapter is to supply some insightful and useful background
to make the more abstract literature on stochastic processes and control more ac-
cessible to general students in applied mathematics, statistics, computer science,
applied science and engineering. The overall approach in this book is designed to
start from the common calculus and analysis constructs of entry level graduate
students in these applied areas by evolving these constructs to those of applied
stochastic processes and control, much as genes have evolved by small but power-
ful changes. However, students still need to understand the important results that
come from using more abstract methods.

The applied motivation is to solve problems with a combination of analytical
and computational methods. These problems may have great complexity in terms
on nonlinearities in the state and other dependencies. It is necessary to train both
students and researchers from a broad range of areas in science and engineering to
solve large scale problems. In the abstract approach the emphasis is not necessarily
to solve applied problems, but to prove existence, uniqueness and convergence, often
in very abstract language. However, sometimes the conditions of the proofs are too
restrictive, so as to exclude many complex and large scale applications. Proofs as
such are not given in this chapter, but some formal applied derivations are given
and readers can refer to the list of references at the end of the chapter for more
rigorous treatments.

12.1 Very Basic Probability Measure Background

In order to keep things simple and concise, it will be necessary to compromise on
completeness, but keep sufficient detail for a coherent story. The notation will be
somewhat different from the usual, if there is such a thing as usual notation, so
that we can avoid conflict with the stochastic process notation where possible. The
symbols are also selected so that they are related to what the quantity signifies,
where possible.

12.1.1 Mathematical Measure Theory Basics

The starting point will be some notions of measure theory and its algebra, called
σ-algebra. Measure theory provides an abstract generalization of integration the-
ory including expectations, and distributions that are based on counts, intervals,
areas, volumes and mass to that of general sets. The ultimate goal is probability
measure, but the presentation begins with the foundations in the more general
mathematical measure theory.

“bk0allfinal”
2007/1/7
page 375

i

i

i

i

i

i

i

i

12.1. Very Basic Probability Measure Background 375

Measure σ-Algebra Definition:

Let U be a nonempty set called the universe, but really is only the principal set of
interest. Let Σ be a collection of subsets on U .

Definition 12.1. Σ is a σ-algebra if

• ∅ ∈ Σ, i.e., the empty set ∅ is included.

• U ∈ Σ, i.e., the universe U is included.

• The set S ∈ Σ =⇒ Sc ∈ Σ, i.e., its complement Sc with respect to U is
included too, i.e., verifying that S ∪ Sc = U .

• If {Si ∈ Σ : i = 1 :n} is a sequence of subsets, then the union
⋃n

i=1 Si ∈ Σ,
i.e., additive closure under unions.

• If so, then {U ,Σ} is called a measurable space.

Often the symbol Ω is used for the general universe U and the symbol F is
used for the σ-algebra Σ. Recall that the union of two sets

S1 ∪ S2 = {points X : X ∈ S1 OR X ∈ S2},

the logical OR playing an important role when translated to probability measures.
A Borel set Σ = B = B(Rnx) is the σ-algebra of open sets on U = R

nx, so
B(Rnx) automatically contains all closed sets of R

nx by complementarity.

Measure Definition:

Definition 12.2. The measure M is a function on the measurable space
{U ,Σ} that maps Σ −→ [0,∞), such that

• M(∅) = 0, i.e., the empty set ∅ has measure zero.

• If for any subset S ∈ Σ, then M(S) ≥ 0, i.e., nonnegativity, as in mass.

• If {Si ∈ Σ : i = 1, 2, . . . ,} is any countable sequence of disjoint subsets (i.e.,
Si

⋂Sj = ∅, i 6= j, the intersection is empty), then the measure of the union
is the sum of the measures,

M
(∞⋃

i=1

Si

)
=

∞∑

i=1

M(Si), (12.1)

i.e., countable additivity, as in preserving mass under partitioning.

“bk0allfinal”
2007/1/7
page 376

i

i

i

i

i

i

i

i

376 Chapter 12. Applied Guide to Abstract Stochastic Processes

The triplet {U ,Σ,M} is called a measure space. Often the symbol µ is used
for the general measure symbol M used here, but the former conflicts with the use
of µ as the mean or drift in this book. Recall that the intersection of two sets

S1 ∩ S2 = {points X : X ∈ S1 AND X ∈ S2},

the logical AND playing an important role when translated to probability mea-
sures.

The nonnegativity measure property M(S) ≥ 0 means that positive mea-
sure has been defined. Positive meaures, among other things, facilitate convergence
proofs, i.e., monotone convergence. However, if for any subset S ∈ Σ and M(S) ≤ 0,
then M(S) would be a negative measure and negative measure may be needed
for some applications in spite of the added awkwardness of the proofs.

Lebesgue Measure Introduction:

If the set S is measurable, the M(S) is called the total mass of the set, e.g., if
S is an interval [a, b] then it is the length (b − a), if a rectangle [a, b] × [c, d] then
it is its area (b − a) · (d − c), or if a cube [a, b] × [a, b] × [a, b] then it is its volume
(b − a)3. The closed intervals [a, b], open intervals (a, b) and semi-open intervals
[a, b) or (a, b], have the same measure or mass or length of (b− a), since they differ
only by points of zero measure.

In general, a Lebesgue measure is a measure on an nx dimensional space of
real vectors, so the universe is U = R

nx, a representative set is a hypercube

S = (a,b) ≡ (a1, b1) × (a2, b2) × · · · × (anx
, bnx

),

such that −∞ < ai < bi < +∞ and the measure has the form

M(S) =

nx∏

i=1

(bi − ai).

Alternatively,

M(S) =

∫

S
dx.

Lebesgue measure is a special case of Borel measure specialized to R
nx.

Often, the infinitesimal hypercube measure between vector positions from x
to x + dx is abbreviated as

M(dx) = M((x,x + dx)),

for compact notation, letting dx represent the vector-interval set (x,x + dx). This
also recognizes the translation invariance of the measure of a generalized interval
(x,x+dx), since its generalized length

∏nx

i=1 dxi is independent of the interval start
at x.

“bk0allfinal”
2007/1/7
page 377

i

i

i

i

i

i

i

i

12.1. Very Basic Probability Measure Background 377

Dirac Measures:

Another measure that complements the Lebesgue measure is the Dirac measure
δx, for some point in U , having the properties that for some set S ⊆ U ,

δx(S) =

{
1, x ∈ S
0, x /∈ S

}
. (12.2)

This is the set version of the Dirac delta function and apparently the same basic
definition as the indicator function 1x∈S , except without the measure infrastructure.

Counting Measures:

For Poisson processes and other discrete applications, there are also counting mea-
sures, i.e., when

M(S) = N(S) ≡ number of elements in set S. (12.3)

This includes the points of zero measure that do count.

Some Properties of Measures:

• The measure space {U ,Σ,M} is finite if M(U) <∞ and real.

• The measure space {U ,Σ,M} is σ-finite if there exists a countable sequence
of measurable sets {Si ∈ Σ : i = 1, 2, . . . ,} such that M(Si) <∞ and real for
all i, i.e., sets of finite measure, and

U =

∞⋃

i=1

Si,

the union of a countable number of sets of finite measure. Note that σ-finite is
not necessarily finite, since the set of real intervals [i, i+1], have unit measure
which is finite (a Lebesgue measure), but their union is the real line, U = R

1,
which is infinite, so U is σ-finite while not finite.

• The measure M is a montonic function since if measurable sets S1 and S2

ordered S1 ⊆ S2 then M(S1) ≤ M(S2).

• If {Si ∈ Σ : i = 1, 2, . . . ,} is any countable sequence of subsets that are not
necessarily disjoint, then the measure of the union is only bounded by the
sum of the measures,

M
(∞⋃

i=1

Si

)
≤

∞∑

i=1

M(Si),

unlike the lack of redundancies of disjoint sets given in (12.1).

“bk0allfinal”
2007/1/7
page 378

i

i

i

i

i

i

i

i

378 Chapter 12. Applied Guide to Abstract Stochastic Processes

• If {Si ∈ Σ : i = 1, 2, . . . ,} is any countable sequence of subsets that are
forward nested so that Si ⊆ Si+1, then the limit of the measure of the
union has the limiting measure,

M
(∞⋃

i=1

Si

)
= lim

n→∞
M(Sn),

noting that M(Si ∪ Si+1) = M(Si+1).

• If {Si ∈ Σ : i = 1, 2, . . . ,} is any countable sequence of subsets that are
backward nested so that Si+1 ⊆ Si, then the limit of the measure of the
intersection has the limiting measure,

M
(∞⋂

i=1

Si

)
= lim

n→∞
M(Sn),

noting that M(Si ∩ Si+1) = M(Si+1).

• A null set N ∈ Σ is a measurable set such that M(N) = 0, a negligible set
is a subset of a null set and a measure M is complete if every negligible set
is measurable. A σ-algebra Σ can always be completed by adding any missing
null sets to it.

• A property P holds almost everywhere (a. e.) if the set of elements S in
Σ for which the property does not hold is a null set, i.e., S = N is a set with
measure zero such that M(N) = 0.

• Given the measure space {U ,Σ,M1}, another measure M2 on the measur-
able space {U ,Σ} is absolutely continuous with respect to M1 if for any
measurable set S ∈ Σ

M1(S) = 0 =⇒ M2(S) = 0,

Absolute continuity is written symbolically asM2(S) ≺ M1(S) (or as M2(S) ≪
M1(S), but this conflicts with asymptotic notation). This property permits
defining the ratio M2(S)/M1(S) for comparison between two measures of a
set.

If M2(S) ≺ M1(S) and M1(S) ≺ M2(S), i.e., both are mutually absolutely
continuous with respect to the other, then the measures M1 and M2 are said

to be equivalent (M1(S)
a.c.≡ M1(S)). As Cont and Tankov [59] suggest, the

term equivalence is perhaps misleading and should be called something like
comparable.

Many of these properties are needed for proofs of existence and convergence, as well
as for constructing stochastic processes.

“bk0allfinal”
2007/1/7
page 379

i

i

i

i

i

i

i

i

12.1. Very Basic Probability Measure Background 379

Measurable Functions:

A prerequisite that a function f is integrable is that f is a measurable function.

Definition 12.3. Given two measurable spaces, (U1,Σ1) and (U2,Σ2), a mapping
of the function f from U1 to U2 is measurable with respect to (Σ1,Σ2) if the
inverse (preimage) f−1(S2) ∈ Σ1 for all S2 ∈ Σ2, i.e., there is a S1 ∈ Σ1 such
that f(S1) = S2.

Just as in Riemann integration for general Riemann integrable functions, the
integral is built up from the limit of finite Riemann sums, the integral with respect
to a measurable function is built-up from sums of step functions called a simple
function.

Definition 12.4.

• A simple function is a finite linear combination of set indicator functions
{1x∈Si

} of measurable sets Si for i = 1:n on a measurable space (U ,Σ), with
real coefficients (could also be complex) ci, having the form

f(x) =

n∑

i=1

ci1x∈Si
,

where x ∈ U .

• The integral with respect to the measure M for such a simple function
is

IM[f] =

n∑

i=1

ciM(Si),

provided all the measures M(Si) are finite, i.e., providing the analogy to the
Riemann sums.

• For a general, positive measurable function f , integrability can be extended
to f by comparison to simple measurable functions on U , such as

IM[f] = sup
g

{
IM[g] : g(x) =

n∑

i=1

ci1x∈Si
, g(x) ≤ f(x), x ∈ U

}
,

provided IM[f] is finite. For functions that change sign, i.e., signed func-
tions, the positive-negative decomposition f(x) = f+(x)− f−(x) with the
f±(x) ≡ (|f |(x) ± f(x))/2 for x ∈ U , such that

IM[f] = IM[f+] − IM[f−],

provided the IM[f±] are finite. (The positive-negative decomposition is used
in Chapt. 8 for numerical up-winding to ensure stability.)

“bk0allfinal”
2007/1/7
page 380

i

i

i

i

i

i

i

i

380 Chapter 12. Applied Guide to Abstract Stochastic Processes

• If M is a Lebesgue measure, then the Lebesgue of the measure function f on
S ∈ U can be written,

IM[f] =

∫

S
f(x)M(dx) =

∫

U
1x∈S f(x)M(dx),

where recall dx symbolizes the set (x, x+ dx).

• Monotone Convergence Theorem:
Given the measure space (U ,Σ,M), if {fn(x), fn(x) ≥ 0 for n = 1, 2, . . .} is
a countable sequence of 1-dimensional (non-negative) measurable functions on
U that is a. e. monotone increasing and converging pointwise to f(x) a. e.,
then

lim
n→∞

∫

U
fn(x)M(dx) =

∫

U
fn(x)M(dx).

This basic convergence theorem leads to several others.

12.1.2 Change of Measure: Radon-Nikodým Theorem and
Derivative:

The abstract analog of the change of variables, chain rule and Jacobian techniques
for Riemann or Riemann-Stieltjes integral is the change of measures and the Radon-
Nikodým derivative.

Theorem 12.5. Radon-Nikodým Change of Measures:
Given the measure space {U ,Σ,M1} with σ-finite measure M1, if M2 is a finite
measure that is absolutely continuous with respect to M1 (M2 ≺ M1) then there
exists a measurable real function D(x) > 0 for x ∈ U such that for each measurable
set S ∈ Σ

M2(S) = IM1 [D1∗∈S] =

∫

U
D(x)1x∈SdM1(x) =

∫

S
D(x)dM1(x), (12.4)

where dMi(x) = Mi(dx) is equivalent notation for i = 1:2. The function D is the
Radon-Nikodým derivative of M2 with respect to M1, i.e.,

D(x) =
dM2

dM1
(x) or D(S) =

dM2

dM1
(S). (12.5)

Further, if η is integrable with respect to the measure M2, then

IM2 [η] =

∫

U
η(x)dM2(x) =

∫

U
η(x)

dM2(x)

dM1(x)
dM1(x)

= IM2 [ηD] =

∫

U
η(x)D(x)M1(x),

i.e., using the Radon-Nikodým derivative in a measure-theoretic chain rule.

“bk0allfinal”
2007/1/7
page 381

i

i

i

i

i

i

i

i

12.1. Very Basic Probability Measure Background 381

Thus, the Radon-Nikodým derivative is the analog of the Jacobian of the
transformation (9.56) in an integral change of variables and leads to the absolutely
continuous measure chain rule, symbolically substituting for D,

dM2 =
dM2

dM1
dM1.

If dM2 and dM1 are mutually absolutely continuous, i.e., equivalent (M1(S)
a.c.≡

M1(S)), the Radon-Nikodým derivatives are mutual reciprocals,

dM1

dM2
= 1

/
dM2

dM1
,

formally justified by common null sets.
See the probability measure Examples 12.13 illustrations of applied-oriented

calculations for Radon-Nikodým derivatives in Subsect. 12.2.1.

12.1.3 Probability Measure Basics

Since the probability distribution function for the real random variable X on the
real set S ⊆ R

nx has the property that

ΦX(S) = Prob[X ∈ S] ∈ [0, 1],

it is a natural candidate for a measure and the density φX(x) could play the role of
the Radon-Nikodým derivative. According to convention, we reset the universe as
U = Ω, the σ-algebra as Σ = F and the measure as M = P. For the jump part of
jump-diffusions, counting or jump measures will also be needed.

Definition 12.6. Probability Measure:
A probability space (Ω,F ,P) is a measure space with elements ω ∈ Ω called
sample points of random events in the sample space Ω, elements Fi ∈ F called
random events and any probability measure P on the measurable space (Ω,F)
has total mass of one, i.e., P(Ω) = 1.

Summarizing the Kolmogorov axioms [33] of a probability space (Ω,F ,P):

• P(∅) = 0 and P(Ω) = 1.

• P(S) ≥ 0 for all S ∈ Ω.

• P(∪∞
i=1Si) = ∪∞

i=1P(Si), assuming the {Si} are disjoint and countable, i.e.,
there is countable additivity, so that if S∪Sc = Ω, then the complementarity
property also holds, P(Sc) = P(Ω) + P(S).

• If S2 ⊆ S2 and P(S1) = 0, then P(S2) = 0, i.e., the probability space is
complete.

Some additional properties and nomenclature:

“bk0allfinal”
2007/1/7
page 382

i

i

i

i

i

i

i

i

382 Chapter 12. Applied Guide to Abstract Stochastic Processes

• The ω ∈ Ω are also called scenarios as well as outcomes, the underlying or
background random variables, e.g., like the mark variable of the compound
Poisson process or Poisson random measure.

• An event set S with probability P(S) = 1 is said to happen almost surely
(a.s.) or with probability one (w.p.o.), equivalent to almost everywhere
(a.e.) for mathematical measures. If an event S has probability P(S) = 0, the
event is said to be impossible.

• Given a probability space (Ω,F ,P), then a (real) random variable X(ω) is a
measurable mapping from Ω to R

nx such that the inverse (preimage) X−1(S) =
{ω ∈ Ω : X(ω) ∈ S} is F-measurable for Borel (open) sets S ∈ B(Rnx), i.e.,
X(ω) is the realization X upon event ω. If f is a (real) measurable function,
then f(X(ω)) will also be a random variable.

• If the problem involves only a single probability measure P for the single ran-
dom variable ω, then we can write in more usual notation,

X ≡ ω, Prob[X ∈ S] = Pr[X ∈ S] ≡ P(S),

i.e., the probability measure is the distribution Φω(S) = P(S) for S ⊆ Ω.

• In general, if X = X(ω) ∈ R
nx for ω ∈ Ω, then let ω ∈ Sω ⊆ Ω, X(ω) ∈

SX = X(Sω) and assuming the preimage Sω = X−1(SX) exists, then the
distribution of X is the probability measure

ΦX(SX) = P(X−1(SX)),

so ΦX(x) = P({ω ∋ X ≤ x}), the inequality (X ≤ x) meant element-wise.

• The expectation for a measurable real function f of X ∈ R
nx with ω ∈ Ω is

then

E[f(X)] =

∫

Ω

f(X(ω))P(dω) =

∫

Ω

f(X(ω))dP(ω) =

∫

Rnx

f(x)ΦX(dx),

provided f is absolutely integrable,

∫

Ω

|f(X(ω))|P(dω) <∞,

noting that the dω argument of P is an abbreviation for the interval (ω, ω+dω)
and that dP(ω) and P(dω) will be assumed to be equivalent notation.

• Almost Sure Equivalence: Let X1(ω) and X2(ω) be two random variables

for ω ∈ Ω, then X1
a.s.
= X2 if

P({ω ∈ Ω,X1(ω) = X2(ω)}) = 1.

“bk0allfinal”
2007/1/7
page 383

i

i

i

i

i

i

i

i

12.1. Very Basic Probability Measure Background 383

• Equivalence in Distribution: Let X1(ω) and X2(ω) be two random vari-
ables for ω ∈ Ω. If the distribution satisfy

ΦX1 = ΦX2 ,

then X1(ω) and X2(ω) are called equal in distribution and we write

X1
dist
= X2.

(Also called equal in law or identically distributed; the notation X1
d
= X2

is also used.)

• The set of n random variables {Xi} are independent with respect to the
measurable sets Si for i = 1:n if the probability of the union is the product of
the probabilities,

P

(
n⋃

i=1

{Xi ∈ Si}
)

=

n∏

i=1

P({Xi ∈ Si}),

where the underlying random variable ω has been suppressed. A more concrete
and useful form as distribution in the vector X = [Xi]n×1 is

ΦX(x) = P

(
n⋃

i=1

{Xi ≤ xi}
)

=

n∏

i=1

P({Xi ≤ xi}) =

n∏

i=1

ΦXi
(xi).

An immediate corollary is the multiplication rule for the expectation of a set
of independent random variables,

E

[
n∏

i=1

Xi

]
=

n∏

i=1

E[Xi],

assuming finite expectations, E[|Xi|] <∞ for i = 1:n.

For more background information, see Applebaum [12], Billingsley [32], Bing-
ham and Kiesel [33], Cont and Tankov [59]. Cyganowski, Kloeden and Ombach [66],
Øksendal [222] and Øksendal and Sulem [223].

Much of the further results, such as conditional expectations, follow the ap-
plied path in this book, except that matters like that of positivity and changes
in sign have to be treated with care to account for particular abstract constructs
and conditions that are designed to facilitate proofs rather than the wide variety of
problem applications.

12.1.4 Stochastic Processes in Continuous Time on Filtered
Probability Spaces

Since the emphasis of this book is on jump-diffusions, stochastic processes in con-
tinuous time are treated and the relatively simpler, but not simple, discrete time

“bk0allfinal”
2007/1/7
page 384

i

i

i

i

i

i

i

i

384 Chapter 12. Applied Guide to Abstract Stochastic Processes

stochastic processes are omitted (see Pliska’s [225] book or Bingham and Kiesel’s [33,
Chapt. 3] chapter devoted to discrete time processes). The main additional diffi-
culty treating stochastic processes in continuous time is extending the notion of a
single probability space to a family of probability spaces over the continuous time
variable t which often has infinite range.

Definition 12.7. Filtered Probability Space:

• Based upon a probability space (Ω,F ,P), a filtration is a family of increasing
σ-algebras

F = {Ft : t ≥ 0; Fs ⊆ Ft, 0 ≤ s ≤ t <∞}
and the extended space (Ω,F ,P,F) is called a filtered probability space.
The sub-σ-algebra Ft represents the known information of the system on (0, t]
at time t.

• The usual filtration conditions (with jump-diffusions in mind) are

◦ The initial sub-σ-algebra F0 the P-null-sets of F .

◦ The filtration F is right-continuous with left limits (RCLL or
cádlág in French), i.e., Ft = Ft+ = limǫ→0+ Ft+ǫ for the RC part
and Ft− = limǫ→0+ Ft−ǫ for the LL part exists. The jump in the sub-σ-
algebra at time t is [F]t = Ft+ −Ft− . If only continuous processes such
as diffusions are under consideration, then right continuity (RC) is
sufficient.

Definition 12.8. Stochastic Process:

• Given the filtered probability space (Ω,F ,P,F), a stochastic process in con-
tinuous time X = {X(t) : t ≥ 0} and X is Ft-adapted to the filtration F

if X(t) is Ft-measurable (X(t) ∈ Ft) for each t.

• The natural filtration for the stochastic process X(t) can be written as

Ft,X = σ̂(X(s), 0 ≤ s ≤ t),

with σ̂ signifying the σ-field of X(t), or more loosely the information or history
of the process X(t) up until time t.

• Including the dependence on the underlying random variable, ω ∈ Ω, the
X(t;ω) defines a random function of time, called the sample path and is
a mapping from [0, t]×Ω to R

nx. Usually, X(t;ω) is denoted by Xt(ω) or just
Xt, however in this book real subscripts are reserved to denote partial deriva-
tives, except for algebraic quantities like Ft that are not genuine functions.

• If X is adapted, i.e., Ft-adapted to F, for t ≥ 0, then the conditional expec-
tation satisfies

E[X(t) | Ft]
a.s.
= X(t),

“bk0allfinal”
2007/1/7
page 385

i

i

i

i

i

i

i

i

12.1. Very Basic Probability Measure Background 385

since X(t) is known from Ft (recall the symbol
a.s.
= denotes equals almost

surely). Saying that X or X(t) is Ft-adapted to F means the same as
saying that X(t) is nonanticipating.

• Two stochastic processes X1 and X2 are the same with respect to a set of
finite-dimensional distributions if for some positive integer n and discrete
time points {ti : i = 1 : n}, the random vectors Xj = [Xi,j]n×1 for j = 1 :
2 have the same n-dimensional distribution, corresponding to the stochastic
processes Xj for j = 1:2, respectively.

12.1.5 Martingales in Continuous Time

Martingales are processes with the property that the best predictor of the process
future value is the present value given present knowledge, i.e., it represents a fair
game of gambling, rather than a favorable or unfavorable one.

Definition 12.9. MartingaleProperties in Continuous Time:

• Given a filtered probability space (Ω,F ,P,F) and Ft-adapted process X(t) on
[0, T], T <∞, then X(t) is a martingale if

E[X(t) | Fs]
a.s.
= X(s), t > s ≥ 0, (12.6)

provided X(t) is absolutely integrable, E[|X(t)|] < ∞ on [0, T], i.e., the best
predictor of X(t) with respect to the filter Fs is X(s).

• If instead of (12.6),

E[X(t) | Fs]
a.s.
≤ X(s), t > s ≥ 0,

then X(t) is a supermartingale,
but if

E[X(t) | Fs]
a.s.
≥ X(s), t > s ≥ 0,

then X(t) is a submartingale. (The submartingale corresponds to the fa-
vorable game and the supermartingale corresponds to the unfavorable game,
provided X(t) −X(s) represents the gain.)

• Two martingales M1(t) and M2(t) which are also equivalent or mutually ab-

solutely continuous measures, i.e., M1(t)
a.c.≡ M2(t), are called equivalent

martingale measures (EMM) and they play an important role in mathe-
matical finance.

Examples 12.10. Diffusion, Jump and other Martingales:
For this set of examples, the time interval [0, T] as well as the coefficients will
be finite, so there is no question that the stochastic processes will be absolutely
integrable.

“bk0allfinal”
2007/1/7
page 386

i

i

i

i

i

i

i

i

386 Chapter 12. Applied Guide to Abstract Stochastic Processes

1. Let X(t) be a {µ0, σ0}-constant coefficient, diffusion process with SDE,

dX(t) = µ0dt+ σ0dW (t),

and it is of interest to know for what values of µ0 is X(t) a martingale, a
supermartingale or a submartingale.

The solution by integrating over [s, t] is

X(t) = X(s) + µ0(t− s) + σ0(W (t) −W (s)),

noting that (W (t)−W (s))
dist
= W (t−s) by stationary property and is indepen-

dent of W (s) and E[W (t − s)|W (s)] = 0, so with Ft = σ̂(X(r), 0 ≤ r ≤ t),
the natural filtration for X(t),

E[X(t) | Fs] = X(s) + µ0(t− s),

0 ≤ s < t. Hence, X(t) is a martingale if µ0 = 0 (the case of the zero-mean

infinitesimal diffusion, denoted by dX̂(t) = σ0dW (t)), a supermartingale if
µ0 < 0 or a submartingale if µ0 > 0. Alternatively, the translated process

X̃(t) ≡ X(t) − µ0t
dist
= X̃(s) + σ0W (t− s)

is a martingale.

2. Let X(t) be a {µ0, σ0}-constant coefficient, geometric diffusion process,

dX(t) = X(t)(µ0dt+ σ0dW (t)),

which has the Itô calculus solution,

X(t)
dist
= X(s) exp((µ0 − σ2

0/2)(t− s) + σ0W (t− s)),

so
E[X(t) | Fs] = X(s) exp(µ0(t− s)),

0 ≤ s < t. Again, X(t) is a martingale if µ0 = 0, a supermartingale if µ0 < 0
or a submartingale if µ0 > 0. Alternatively, the scaled process

X̃(t) ≡ exp(−µ0t)X(t)
dist
= X̃(s) exp(σ0(W (t− s) − σ0(t− s)/2)

is martingale, or more specifically an exponential martingale [22] and the
scaling corresponds to the Girsanov transformation of W (t) that will be dis-
cussed in Subsect. 12.2.2.

3. Let X(t) be a simple Poisson process P (t) with additional drift and con-
stant coefficients, {µ0, ν0, λ0},

dX(t) = µ0dt+ ν0dP (t),

“bk0allfinal”
2007/1/7
page 387

i

i

i

i

i

i

i

i

12.1. Very Basic Probability Measure Background 387

where E[dP (t)] = λ0dt = Var[dP (t)]. The solution is

X(t) = X(s) + µ0(t− s) + ν0(P (t) − P (s)),

where (P (t) − P (s))
dist
= P (t− s) and the conditional expectation is

E[X(t) | Fs] = X(s) + (µ0 + λ0ν0)(t− s),

so X(t) is a martingale if µ0 = −λ0ν0 (the zero-mean infinitesimal jump

process, denoted by dX̂(t) = ν0dP̂ (t), using the zero mean Poisson dP̂ (t) ≡
dP (t) − λ0dt), a supermartingale if µ0 < −λ0ν0 or a submartingale if µ0 >
−λ0ν0. Alternatively, the translated process

X̃(t) ≡ X(t) − (µ0 + λ0ν0)t
dist
= X̃(s) + ν0P̂ (t− s)

is a martingale.

4. Let X(t) be a compound Poisson process with additional drift and constant
coefficients, {µ0, ν0, λ0, µQ},

dX(t) = µ0dt+ ν0

dP (t)∑

i=1

Qi,

where E[dP (t)] = λ0dt = Var[dP (t)] and the Qi are IID random marks with
mean µQ and variance σ2

Q which will not be needed (also note that the zero-one
law has not been applied to dP (t)). The solution is

X(t)
dist
= X(s) + µ0(t− s) + ν0

P (t−s)∑

i=1

Qi

and the conditional expectation, by iterated conditional expectations between
the Poisson counting process and the marks, is

E[X(t) | Fs] = X(s) + (µ0 + λ0ν0µQ)(t− s),

so X(t) is a martingale if µ0 = −λ0ν0µQ (the zero-mean infinitesimal com-

pound Poisson, dX̂(t) = ν0µQdP̂ (t)+ ν0
∑dP (t)

i=1 Q̂i where P̂ (t) ≡ (P (t)−λ0t)

and Q̂i ≡ (Qi −µQ)), a supermartingale if µ0 < −λ0ν0µQ or a submartingale
if µ0 > −λ0ν0µQ. The alternative process

X̃(t) = X(t) − (µ0 + λ0ν0µQ)t = X̃(s) + ν0µQP̂ (t− s) + ν0

P (t−s)∑

i=1

Q̂i

is a martingale, such that the difference X̃(t) − X̃(s) is a linear combination

of zero-mean random processes, or variables as in the case of Q̂i, counting
only the jumps in (s, t].

“bk0allfinal”
2007/1/7
page 388

i

i

i

i

i

i

i

i

388 Chapter 12. Applied Guide to Abstract Stochastic Processes

5. As an exercise the reader can find the similar martingale properties as a func-
tion of the additional drift for the geometric jump diffusion problem with
constant coefficients,

dX(t) = X(t)

µ0dt+ σ0dW (t) + ν0

dP (t)∑

i=1

(exp(Qi) − 1)

 ,

where again the marks are IID with mean µQ and variance σ2
Q, with the am-

plitude in the log-ready exponential form.

6. The simplest, but trivial, example is the constant process X(t) = c0 for
t ≥ 0, i.e., dX(t) = 0, so X(t) is a martingale since E[X(t)|Fs] = c0 = X(s)
for s < t.

7. Another example is the closed martingale that is constructed from an abso-
lutely integrable random variable Y , independent of t, on the filtered probability
space, such that a stochastic process is defined as

X(t) ≡ E[Y | Ft], t ≥ 0.

Thus, by the tower law ([22, p. 34], [209, Rule 6, p. 72]),

E[X(t) | Fs] = E[E[Y | Ft] | Fs] = E[Y | Fs] ≡ X(s),

for s < t, since the conditioning on Ft followed by the conditioning on Fs is
the same as the original conditioning on Fs, i.e., dependence is on the smaller
of the conditioning filters.

12.1.6 Jump-Diffusion Martingale Representation:

For hedging in financial applications, martingale representations are heavily relied
upon. There are many versions of martingale representation in the literature. Some
have useful and elementary presentations. Many are restricted to diffusions except
for a mention of jump processes. A selected sample is given by the references:
Baxter and Rennie [22], Duffie [74], Glasserman [96], Øksendal [222] and Steele [256].
Here, a form of the martingale repesentation theorem is given for marked-jump-
diffusion processes following Applebaum [12] and, particularly, Runggaldier [239].
Their formulation, after Jacod and Shiryaev [152], and Kunita and Watanabe [172],
respectively, uses Poisson random measure P(dt,dq) defined beginning in (5.1) on
page 132 and whose integrals are related to compound Poisson processes (5.6) on
mark-sample-space Q by

∫

Q
h(t, q)P(dt,dq) =

dP (t)∑

i=1

h(T−
i , Qi), (12.7)

“bk0allfinal”
2007/1/7
page 389

i

i

i

i

i

i

i

i

12.1. Very Basic Probability Measure Background 389

without using the zero-one law for dP (t), where the T−
i are the pre-jump-times and

the Qi are the IID sampled marks, but often found in martingale form by using the
centered or mean-zero Poisson random measure,

P̃(dt,dq) ≡ P(dt,dq) − E[P(dt,dq)] = P(dt,dq) − φQ(q; t)dqλ(t)dt,

where ΦQ(dq; t) = φQ(q; t)dq is jump-amplitude probability measure and λ(t) is
the Poisson jump-rate. The mean-zero relationship corresponding to the original
relationship (12.7) is then

∫

Q
h(t, q)P̃(dt,dq) =

dP (t)∑

i=1

h(T−
i , Qi) − EQ[h(t, Q)]λ(t)dt, (12.8)

where EQ[h(t, Q)] =
∫
Q h(t, q)φQ(q; t)dq.

Theorem 12.11. Marked-Jump-Diffusion Martingale Representation
Theorem:
Given the Wiener process W (t) and compound Poisson triplet

{dP (t), λ(t), φQ(q; t)}

or else a Poisson random measure P(dt,dq) on the sigma-field

F = F (W,P,Q)
t = σ̂{W (s), P (t),SQ, SN : 0 ≤ s ≤ t, SQ ∈ Q, SN ∈ N1},

N1 is the collection of null-sets of P. Then, any (P,F)-martingale M(t) has the
representions

M(t) = M(0) +

∫ t

0

Γ(D)(s)dW (s) +

∫ t

0

∫

Q
Γ(MJ)(s, q)P̃(ds,dq)

= M(0) +

∫ t

0

Γ(D)(t)dW (s) +

P (t)∑

i=1

Γ(MJ)
(
T−

i , Qi

)

−EQ

[
Γ(MJ)(t, Q)

]
Λ(t),

(12.9)

where Γ(D)(t) is a predictable (measurable with respect to P), square-integrable pro-

cess, while Γ(MJ)(t, q) is a F (W,P,Q)
t -predictable, Q-marked process, such that

EQ

[
Γ(MJ)(t, Q)

]
=

∫

Q
Γ(MJ)(t, q)φQ(q; t)dq <∞

and Λ(t) ≡
∫ t

0
λ(s)ds is the mean jump count.

The martingale representation theorem is used in the following Subsect. 12.2.2
for two versions of Girsanov’s stochastic process transformation theorem, one for
the diffusion process alone, i.e., without the Poisson terms in (12.9), and another
for marked-jump-diffusion processes using the full form in (12.9).

“bk0allfinal”
2007/1/7
page 390

i

i

i

i

i

i

i

i

390 Chapter 12. Applied Guide to Abstract Stochastic Processes

The martingale approach may be a favored approach to solving SDE problems,
but Heath and Schweizer [135] show the equivalence of the martingale and PDE
approaches for a number of financial applications. The Feynmann-Kac formula (see
(7.71) in the item on p. 219 here or the appendix of Duffie [74, Appendix E.] for
more background) is used to solve the corrresponding PDE problem that is derived
from the SDE.

12.2 Change in Probability Measure:
Radon-Nikodým Derivatives and Girsanov’s
Theorem

12.2.1 Radon-Nikodým Theorem and Derivative for Change of
Probability Measure:

Here, a version of the Radon-Nikodým Theorem 12.5 and derivative is formulated
especially for probability measures and expectations. The abstract analog of the
change of distribution corresponding to a change in random variables presented in
Eq. (B.5) for the distribution and (B.6) for the density on p. B4 in preliminaries
Chapt. B.

Theorem 12.12. Radon-Nikodým Change of Probability Measures:
Given a filtered probability space (Ω,F ,P,F) with σ-finite measure P1, if P2 is a

finite measure that is mutually absolutely continuous with P1 (equivalent, P2
a.c.≡ P1)

then there exists a positive measurable real function

D(x) =
dP2

dP1
(x) or D(S) =

dP2

dP1
(S). (12.10)

called the Radon-Nikodým derivative of P2 with respect to P1, for x ∈ Ω such
that for each measurable set S ∈ F

P2(S) = EP1 [D(X)1X∈S] =

∫

Ω

D(x)1x∈SdP1(x) =

∫

S
D(x)dP1(x), (12.11)

where dPi(x) = Pi(dx) is equivalent notation for i = 1:2.
Further, if η is absolutely integrable with respect to the measure P2, then

EP2 [η(X)] =

∫

Ω

η(x)dP2(x) =

∫

Ω

η(x)
dP2(x)

dP1(x)
dP1(x)

= EP2 [η(X)D(X)] =

∫

Ω

η(x)D(x)P1(x),

i.e., using the Radon-Nikodým derivative in a measure-theoretic chain rule.

Thus, the Radon-Nikodým derivative is the analog of the Jacobian of the
transformation (9.56) in an integral change of variables and leads to the absolutely

“bk0allfinal”
2007/1/7
page 391

i

i

i

i

i

i

i

i

12.2. Change in Probability Measure: Radon-Nikodým and Girsanov’s 391

continuous measure chain rule, symbolically substituting for g,

dP2 =
dP2

dP1
dP1.

If dP2 and dP1 are mutually absolutely continuous, i.e., equivalent (P1(S)
a.c.≡

P1(S)), the Radon-Nikodým derivatives are mutual reciprocals,

dP1

dP2
= 1

/
dP2

dP1
,

formally justified by common null sets.

Examples 12.13. Radon-Nikodým Derivative Calculations:

• Normal distributions:
Suppose a transformation from a standard normal distribution with density

φ1(x) = exp
(
−x2/2

)/√
2π

to a mean-µ, variance-σ2 normal distribution with density,

φ2(x) = exp
(
−(x− µ)2/

(
2σ2
))/√

2πσ2 .

The change in measure coincides with a change of drift and a change of scale.
Thus, P1(x) = Φ1(x) is the first probability measure and the second is

P2(x) = Φ2(x) =

∫ ∞

−∞
D(y)φ1(y)dy =

∫ ∞

−∞
D(y)φ1(y)dy,

or φ2(x) = D(x)φ1(x) upon differentiating according to the fundamental the-
orem of integral calculus and the Radon-Nikodým derivative is

D(x) =
dP2(x)

dP1(x)
=
dΦ2(x)

dΦ1(x)
=
φ2(x)

φ1(x)
=

exp
(
−(x−µ)2/

(
2σ2
))/√

2πσ2

exp (−x2/2)
/√

2π

=
1

σ
exp

(
−
(
1 − σ2

)
x2 − 2µx+ µ2

2σ2

)
. (12.12)

Hence, under measure P1 the random variable X has mean 0 and variance 1,
but under measure P2 the random variable X has mean µ and variance σ2.

If σ = 1, then there is only a change of drift and the Radon-Nikodým derivative
is simpler:

D(x) =
dP2(x)

dP1(x)
= exp

(
µ(2x− µ)

2

)
.

“bk0allfinal”
2007/1/7
page 392

i

i

i

i

i

i

i

i

392 Chapter 12. Applied Guide to Abstract Stochastic Processes

The more general form (12.12), formally justified here, can be transformed
to the form in a proposition of Cont and Tankov [59, p. 306, Prop. 9.7] for
two diffusion or Brownian motion processes, both denoted by X = X(T),
with parameters µ → µjT for the drifts and σ2 → σ2

1T = σ2T = σ2
2T for a

common variance on (Ω,FT ,Pj ,F) for j = 1 : 2. Hence, using the fact the
Radon-Nikodým derivative is the ratio of the two densities,

D(X(T), T) =
dP2(X(T), T)

dP1(X(T), T)

=
exp

(
−(X(T)− µ2T)2/

(
2σ2

2T
))/√

2πσ2
2T

exp (−(X(T) − µ1T)2/ (2σ2
1T))

/√
2πσ2

1T

= exp

(
2(µ2 − µ1)X(T) − (µ2

2 − µ2
1)T

2σ2

)
. (12.13)

This corrects an error in [59, p. 306, Prop. 9.7]. They also convert this to
the Cameron-Martin theorem form, by letting X(T) = µ1T + σW1(T), in the
notation here, so

D(T) =
dP2(T)

dP1(T)
= exp

(
2(µ2 − µ1)σW1(T) − (µ2 − µ1)

2T

2σ2

)
, (12.14)

which is correct in [59, p. 306, following Prop. 9.7].

• Sets of Independent Random Variables:
Let X = [Xi]n×1 be a set on n independent random variables with vector mean

µ(1) =
[
µ

(1)
i

]

n×1
and variance vector V(1) =

[
σ

(1)
i

]

n×1
, with product density

φ(1)(x) =
n∏

i=1

φ
(1)
i (xi),

due to the independence property. The relationship between the measure, the
distribution

Φ(1)(x) = ProbP1 [X ≤ x]

and the density can be written formally as

dP1(x)

dx
=

(
n∏

i=1

∂

∂xi

)
Φ(1)(x) = φ(1)(x),

where X ≤ x means Xi ≤ xi for i = 1:n and dx =
∏n

i=1 dxi is the infinitesi-
mal n-dimensional Euclidean measure, not a vector differential.

“bk0allfinal”
2007/1/7
page 393

i

i

i

i

i

i

i

i

12.2. Change in Probability Measure: Radon-Nikodým and Girsanov’s 393

Let there be a function D(x) that generates a second distribution or measure,

Φ(2)(x) = ProbP2 [X ≤ x] =

(
n∏

i=1

∫ xi

−∞
dyiφ

(2)
i (yi)

)

=

(
n∏

i=1

∫ xi

−∞
dyiφ

(1)
i (yi)

)
D(y),

so

dP2(x)

dx
=

(
n∏

i=1

∂

∂xi

)
Φ(2)(x) =

n∏

i=1

∫ xi

−∞
dyiφ

(2)
i (xi) = φ

(2)
i (x)

= D(x)

n∏

i=1

∫ xi

−∞
dyiφ

(1)
i (xi) = D(x)φ(1)(x).

Solving produces

D(x) =
dP2(x)

dP1(x)
=
φ

(2)
i (x)

φ(1)(x)
=

n∏

i=1

φ
(2)
i (xi)

φ
(1)
i (xi)

. (12.15)

This result is important for stochastic processes X(t) for t ∈ [0, T], since a
Radon-Nikodým derivative cannot be computed for a random variable over an
infinite-dimensional interval, but it is possible to sample X(t) at sample times
ti = (i−1)T/n using Xi = X(ti) for i = 1:n, assuming the process of interest
has independent increments.

As a more concrete example, suppose that the Xi have a standard normal

distribution, i.e., IID with µ
(1)
i = 0 and

(
σ

(1)
i

)2

= 1, and a nonstandard dis-

tribution is sought with mean µ
(2)
i = µi and

(
σ

(2)
i

)2

= σ2
i , then using (12.12),

D(x) =
dP2(x)

dP1(x)
=

1∏n
j=1 σj

exp

(
−

n∑

i=1

((
1−σ2

i

)
x2

i −2µixi+µ
2
i

2σ2
i

))
. (12.16)

This example is similar to one in Glasserman [96], except there the σi ≡ 1.

• Poisson Distribution, a Discrete Analogy:
Next consider a Poisson cumulative distribution with parameter Λ1 for the
discrete variable N1,

Φ(1)
n = Prob[N1 < n] = e−Λ1

n∑

k=0

Λn
1

n!

which has increment (discrete derivative analog)

∆Φ
(1)
n−1 ≡ Φ(1)

n − Φ
(1)
n−1 = e−Λ1

Λn
1

n!
,

“bk0allfinal”
2007/1/7
page 394

i

i

i

i

i

i

i

i

394 Chapter 12. Applied Guide to Abstract Stochastic Processes

the numerical forward difference notation, corresponding to a discrete density
and consistent with Itô rules. The change of measure from variable N1 with
parameter Λ1 to variable N2 with parameter Λ2 is given by

Φ(2)
n = Prob[N2 < n] = e−Λ2

n∑

k=0

Λn
2

n!
= e−Λ1

n∑

k=0

Dn
Λn

1

n!
,

with the Radon-Nikodým discrete derivative satisfying

∆Φ
(2)
n−1 = e−Λ2

Λn
2

n!
= Dne

−Λ1
Λn

1

n!
,

and solving yields

Dn =
∆P2(n− 1)

∆P1(n− 1)
=

∆Φ
(2)
n−1

∆Φ
(2)
n−1

= eΛ1 − Λ2

(
Λ2

Λ1

)n

= eΛ1 − Λ2 + n ln (Λ2/Λ1). (12.17)

Thus, with the change in measure from P1 to P2, the mean or average jump
count changes from Λ1 to Λ2.

• Poisson Distribution with Fixed Size Jumps:
Now, consider a Poisson distribution for discrete variable N1 with parameter
Λ1 and constant jump size ν1 6= 0, so

X = ν1N1.

Given the primary measure

P1(x) = Prob[X ≤ x] = Prob[N1 ≤ x/ν1] = e−Λ1

∞∑

k=0

Λk
1

k!
1{k≤x/ν1},

a change in measure with parameters {Λ2, ν2} is sought such that

P2(x) = Prob[X ≤ x] = Prob[N2 ≤ x/ν2] = e−Λ2

∞∑

k=0

Λk2
2

k2!
1{k2≤x/ν2}

= e−Λ1

∞∑

k=0

Λk1
1

k1!
1{k1≤x/ν1}Dk1 .

In lieu of a proper derivative for the indicator functions 1{kj≤x/νj} for j = 1:2,
consider the increment at x = (n− 1)ν2,

∆P2((n− 1)ν2) = P2((n− 1)ν2 + ∆x) − P2((n− 1)ν2)

= e−Λ2

∞∑

k=0

Λk2
2

k2!
1{n−1<k2≤n−1+∆x/ν2}

= e−Λ1

∞∑

k=0

Λk1
1

k1!
1{(n−1)ν2/ν1<k1≤(n−1)ν2/ν1+∆x/ν1}Dk1 .

“bk0allfinal”
2007/1/7
page 395

i

i

i

i

i

i

i

i

12.2. Change in Probability Measure: Radon-Nikodým and Girsanov’s 395

Aside from the coupling of the potential Radon-Nikodým discrete derivatives
Dk1 , as Cont and Tankov [59, Prop. 9.5] state that the two measures will not
be equivalent since their null sets will in general not coincide unless the jump
sizes are the same, ν2 = ν1.

Thus, with ν2 = ν1 and ∆x = ν1 for a semi-open unit step (n− 1, n], the new
measure increment becomes

∆P2((n− 1)ν1) = P2(nν1) − P2((n− 1)ν1)

= e−Λ2

∞∑

k=0

Λk2
2

k2!
1{n−1<k2≤n} = e−Λ2

Λn
2

n!

= e−Λ1

∞∑

k=0

Λk1
1

k1!
1{n−1<k1≤n}Dk1 = e−Λ1

Λn
1

n!
Dn,

so obtaining the same Radon-Nikodým discrete derivative as in the previous
unit step example (12.17)

Dn =
∆P2(n− 1)

∆P1(n− 1)
= eΛ1 − Λ2 + n ln (Λ2/Λ1). (12.18)

Note that although the original measures Pj(nνj) are RCLL as they should
be, inherited from the indicators 1{k≤n}, the increment ∆P1((n − 1)ν1) is
LCRL (left continuous, right limits) due to the indicator increments
1{n−1<k2≤n}, but they precisely allow the selection of just the nth jump term
in the Poisson distribution sum since the indicator increments are closed at n
and open at n− 1.

This Poisson distribution example is an applied justification of the proposition
in Cont and Tankov [59, Prop. 9.5] for two Poisson processes n = Nj =
P (T) = N(T) with parameters Λj = λjT on (Ω,FT ,Pj,F) for j = 1:2, i.e.,

∆P2(N(T) − 1)

∆P1(N(T) − 1)
= e(λ1 − λ2)T +N(T) ln (λ2/λ1), (12.19)

but only for the same size, ν2 = ν1, which has an explicit form as given here.

12.2.2 Change in Measure for Stochastic Processes: Girsanov’s
Theorem

There are many versions of Girsanov’s theorem for changing a probability measure
to change the drift of a stochastic diffusion process and some of these variants are
not very distinguishable from the Radon-Nikodým theorem. Here, a modification
of Runggaldier’s [239] (see also Brémaud [43] for even more details) version will
be followed since it has been found to be the most useful, the Radon-Nikodým
derivative being relatively easy to calculate and comes with an extension to jump-
diffusions. The application of this theorem is determining the measure change for

“bk0allfinal”
2007/1/7
page 396

i

i

i

i

i

i

i

i

396 Chapter 12. Applied Guide to Abstract Stochastic Processes

a relative change γ(t) of the drift from µ1(t) to a drift µ2(t) appropriate for the
problem of interest, e.g., the change of the drift coefficient µ1(t) = µ in the Black-
Scholes [34] method to the current market rate µ2(t) = r.

Diffusion Girsanov Transformations

Let the reference P1-SDE for a state diffusion process X(t) be

dX(t) = µ1(t)dt + σ(t)dW1(t) (12.20)

with time-dependent coefficients {µ1(t), σ(t)}, whose integrabilities are implied by
the following Girsanov diffusion theorem, on a finite time interval [0, T] on the
filtered probability space (Ω,Ft,P1,F) with W1(t) being a P1-Wiener process. In
addition, let the target P2-SDE objective for this state diffusion process X(t) be

dX(t) = µ2(t)dt + σ(t)dW2(t) (12.21)

with the same volatility σ(t) but changed to drift µ2(t), integrability also implied,
on the finite time interval [0, T] on the filtered probability space (Ω,Ft,P2,F) with
W1(t) being a corresponding P2-Wiener process.

Theorem 12.14. Girsanov’s Theorem for Changing the Probability Mea-
sure of a Diffusion Process to Change the Drift:
Let (Ω,Ft,P1,F) be a filtered probability space with F = ∪tFt, symbolically over
t. Let γ(t) be a square integrable predictable (measurable with respect to P1, i.e.,
knowable given Ft) drift process

∫ t

0

γ2(s)ds <∞

for all t ∈ [0, T]. Then, the Radon-Nikodým derivative D(t) at time t for the process
X(t) is given by the martingale representatiion (12.9),

dD(t) = D(t)γ(t)dW1(t), D(0)
w.p.o.

= 1, (12.22)

supposing that EP1 [D(t)] = 1 and there exists a second probability measure P2 on F

that is equivalent to P1 (mutually absolutely continuous, P2
a.c.≡ P1), such that

dP2 = D(t)dP1

and

dW2(t) = dW1(t) − γ(t)dt, (12.23)

where W1(t) is a P1-Wiener process as in (12.20) while W2(t) is a P2-Wiener process
as in (12.21).

The Radon-Nikodým derivative is explicitly given by

D(t) =
dP2(t)

dP1(t)
= exp

(∫ t

0

γ(s)

(
dW1(s) −

1

2
γ(s)ds

))
(12.24)

“bk0allfinal”
2007/1/7
page 397

i

i

i

i

i

i

i

i

12.2. Change in Probability Measure: Radon-Nikodým and Girsanov’s 397

and the relative drift change is

γ(t) =
µ2(t) − µ1(t)

σ(t)
. (12.25)

If the filtration

F = F (W1)
t = σ̂{W1(s), SN : 0 ≤ s ≤ t, SN ∈ N1},

N1 is the collection of null-sets of P1, then conversely every probability measure

P2
a.c.≡ P1 has the same Radon-Nikodým derivative structure.

Substituting (12.23) the Wiener process shift into the original SDE,

dX(t) = µ1(t)dt+ σ(t)dW1(t) = (µ1(t) + σ(t)γ(t))dt + σ(t)dW2(t),

so comparing to the second SDE µ2(t) = µ1(t) + σ(t)γ(t) and (12.25) for γ(t) is
immediate, given common volatilities σ1(t) = σ(t) = σ2(t).

Upon applying the Itô stochastic chain rule to solve the D-SDE (12.22),

d ln(D(t))
dt
=
γDdW1

D
− (γD)2dt

2D2
= γ

(
dW1 −

1

2
γdt

)
,

integrating with D(0) = 1 and inverting the logarithm, the answer for D(t) in (12.24)
follows. Note that the assumption of common volatility is essential for obtaining the
simple linear SDE in D(t) given in (12.22), since from just one of the independent
example terms i in (12.16) it is seen that there is a quadratic term in x of the

ith exponent unless σ
(2)
i = σi = σ

(1)
i = 1, the common σ in this example. Hence,

this Girsanov theorem is quite simple and special. The crudely derived constant
coefficient case in (12.14), as an example for Radon-Nikodým derivatives, can be
properly recovered from the Girsanov form (12.24) by setting t = T and replacing
the time-dependent coefficients by constants, i.e., µj(s) → µj for j = 1 : 2 and
σ(s) → σ.

Note that the relative drift shift (12.25), being state independent, is also the
same for the linear diffusion case,

dX(t) = X(t) (µ1(t)dt+ σ(t)dW1(t)) , (12.26)

which is important for applications in finance. This is a linear SDE for geometric
Brownian motion (GBM) or multiplicative diffusion noise of the Black-
Scholes-Merton[34, 201] option pricing model, while the reference SDE 12.26 for
the Theorem 12.14 is for arithmetic Brownian motion (ABM) or additive
diffusion noise of the historic 1900 Bachelier [16] model. The multiplicative model
is better for compounded effects, while the additive model is better for strictly cu-
mulative effects. It is well-known that the multiplicative model can be transformed
into an additive one by the logarithmic transformation using Itô rules,

d ln(X(t)) =
(
µ1 − σ2(t)/2

)
dt+ σ(t)dW1(t). (12.27)

“bk0allfinal”
2007/1/7
page 398

i

i

i

i

i

i

i

i

398 Chapter 12. Applied Guide to Abstract Stochastic Processes

Since the diffusion coefficient shift, σ2(t)/2, of the drift would be the same for the
GBM target model (2) as for the GBM reference model (1), it is clear that the
diffusion Girsanov transformation of the drift will be the same as for the ABM
model, i.e.,

γ(GBM)(t) =
µ2(t) − µ1(t)

σ(t)
. (12.28)

Marked-Jump-Diffusion Girsanov Transformations

Now consider the case of marked-jump-diffusions or compound-jump-diffusion. Let
the reference P1-SDE for a state marked-jump-diffusion process X(t) be

dX(t) = µ1(t)dt+ σ(t)dW1(t) +

∫

Q1

h1(t, q)P1(dt,dq), (12.29)

with P1-Wiener process W1(t), P1-Poisson process P1(t), EP1[dP1(t)] = λ1(t)dt
defines the jump-rate, integrable time-dependent coefficients {µ1(t), σ(t), λ1(t)},
(time, mark)-dependent jump-amplitude h1(t, q), whose integrability is implied by
the following theorem, P1-Poisson jump-times Ti and IID sample marks Qi dis-

tributed with density φ
(1)
Q (q; t) on the filtered probability space (Ω,Ft,P1,F) with

W1(t) over on a finite time-interval [0, T]. Several forms of the Poisson measure
integrals,

∫

Q1

h1(t, q)P1(dt,dq) =

dP1(t)∑

k=1

h1(T
−
k , Qk)

dt
= h1(t, Q)dP1(t),

will be used here, sometimes one form being more convenient than the other.
In addition, let the target P2-SDE objective for this state marked-jump-

diffusion process X(t) be

dX(t) = µ2(t)dt+ σ(t)dW2(t) +

∫

Q2

h2(t, q)P2(dt,dq), (12.30)

with P2-Wiener process W2(t), P2-Poisson process P2(t), EP2 [dP2(t)] = λ2(t)dt de-
fines the jump-rate, the same volatility σ(t) but changed to drift µ2(t) and changed
jump-rate λ2(t), (time, mark)-dependent jump-amplitude h2(t, q), integrability also
implied, P2-Poisson jump-times Ti and IID sample marks Qi distributed with den-

sity φ
(2)
Q (q; t) on the finite time interval [0, T] on the filtered probability space

(Ω,Ft,P2,F).
The following theorem follows Runggaldier [239, Theorem 2.4], but is also

presented more in the notation of this book.

Theorem 12.15. Girsanov’s Theorem for Changing the Probability Mea-
sure of a Jump-Diffusion Process to Change the Drift, the Jump-Rate
and Mark-Density:

“bk0allfinal”
2007/1/7
page 399

i

i

i

i

i

i

i

i

12.2. Change in Probability Measure: Radon-Nikodým and Girsanov’s 399

Let (Ω,Ft,P1,F) a filtered probability space on the finite time-interval [0, T] with
the mark space Q = R. and the (jump-rate, mark-density)-characteristics

(λ1(t),ΦQ(dq; t)
gen
= (λ1(t), φQ(q; t)dq).

Let γ(D)(t) be the square integrable diffusion drift change given in (12.25)

γ(D)(t) =
µ2(t) − µ1(t)

σ(t)
(12.31)

of Theorem 12.14. Let γ(J)(t) be a nonnegative, Ft-predictable jump-rate user-
defined scaling process such that

Λ2(t) ≡
∫ t

0

λ2(s)ds =

∫ t

0

γ(J)(s)λ1(s)ds <∞

for all t ∈ [0, T], i.e., the transformed mean jump count is finite, and let γ(M)(q; t)
be a nonnegative, Ft-predictable, Q-space dependent mark-distribution user-defined
scaling process such that

∫

Q2

φ
(2)
Q (q; t)dq =

∫

Q1

γ(M)(q; t)φ
(1)
Q (q; t)dq = 1,

i.e., transformed mark-space probability is conserved.
Let

D(t) = D
(D)(t)D(MJ)(t),

where the diffusion martingale representation factor D
(D)(t) is given in (12.24) with

stochastic differential in (12.22) and the marked-jump factor D
(MJ)(t) is given by

the marked-jump martingale representation (12.9),

dD(MJ)(t) = D
(MJ)(t)

∫

Q1

(
γ(J)(t)γ(M)(q; t) − 1

)
P̂(dt,dq), (12.32)

subject to the side condition

EP1 [D
(MJ)] = 1,

where

P̂(dt,dq) ≡ P(dt,dq) − E[P(dt,dq)] = P(dt,dq) −
(
γ(J)(t) − 1

)
λ1(t)dt,

so the solution to the SDE in (12.32) is

D
(MJ)(t) = exp

„Z t

0

„Z

Q1

ln
“
γ(J)(s)γ(M)(q; s)

”
−
“
γ(J)(s) − 1

”
λ1(s)ds

««

= exp

„Z t

0

−
“
γ(J)(s) − 1

”
λ1(s)ds

« P1(t)Y

k=1

γ(J)(T−
k)γ(M)(Qk; T−

k).

(12.33)

“bk0allfinal”
2007/1/7
page 400

i

i

i

i

i

i

i

i

400 Chapter 12. Applied Guide to Abstract Stochastic Processes

The transformed quantities are

dW2(t) = dW1(t) − γ(D)(t)dt, (12.34)

λ2(t) = γ(J)(t)λ1(t) (12.35)

φ
(2)
Q (q; t) = γ(M)(q; t)φ

(1)
Q (q; t). (12.36)

Thus, the explicit form of the marked-jump-diffusion Radon-Nikodým deriva-
tive is

D(t) =
dP2(t)
dP1(t)

= exp
(∫ t

0

(
γ(D)(s)

(
dW1(s) − γ(D)(s)ds/2

)
−
(
γ(J)(s) − 1

)
λ1(s)ds

))

·
P1(t)∏

i=1

γ(J)(T−
k)γ(M)(Qk;T−

k).

(12.37)

If the filtration

F = F (W1,P1,Q)
t = σ̂{W1(s), P1(t),SQ, SN : 0 ≤ s ≤ t, SQ ∈ Q1, SN ∈ N1},

N1 is the collection of null-sets of P1, then conversely every probability measure

P2
a.c.≡ P1 has the same Radon-Nikodým derivative structure.

Note that the Wiener processW1 is independent of the marked Poisson process
double (P1, Q), but the mark random variablesQ are only conditionally independent
of P1 and that condition is that there exists a jump of the state X in time, so the
factoring D(t) = D

(D)(t)D(MJ)(t) into only two parts makes sense. Also, using the
product form of Itô’s stochastic chain rule,

dD(t) = D
(MJ)(t)dD(D)(t) + D

(D)(t)dD(MJ)(t) + dD(D)(t)dD(MJ)(t)

dt
= D

(MJ)(t)dD(D)(t) + D
(D)(t)dD(MJ)(t)

= D(t)

(
γ(D)(t)dW1(t) +

∫

Q1

(
γ(J)(t)γ(M)(q; t) − 1

)
P̂1(dt,dq)

)
.

Since (12.32) for D
(MJ) is linear, in formal dt-precision notation,

d ln
(
D

(MJ)(t)
)

= −
(
γ(J)(t) − 1

)
λ1(t)dt+ ln

(
γ(J)(t)γ(M)(q; t)

)
dP1(t),

since if dP1 jumps, then the jump is given by

[
D

(MJ)
]
(t) =

(
γ(J)(t)γ(M)(q; t) − 1

)
dP1(t)

“bk0allfinal”
2007/1/7
page 401

i

i

i

i

i

i

i

i

12.2. Change in Probability Measure: Radon-Nikodým and Girsanov’s 401

and the jump of the logarithm is

[
ln
(
D

(MJ)
)]

(t) =
(
ln
(
D

(MJ) +
(
γ(J)(t)γ(M)(q; t) − 1

)
D

(MJ)
)
− ln

(
D

(MJ)
))
dP1(t)

= ln
(
γ(J)(t)γ(M)(q; t) − 1

)
dP1(t),

so

D
(MJ)(t) = exp

“
−
R t

0

“
γ(J)(s) − 1

”
λ1(s)ds +

PP1(t)
i=1 ln

“
γ(J)(t)γ(M)(q; t)

””

= exp
“
−
R t

0

““
γ(J)(s) − 1

”
λ1(s)ds +

R
Q1

ln
“
γ(J)(s)γ(M)(q; s)

”
P1(ds,dq)

””
.

(12.38)

Finally, combining equations (12.22), (12.24), (12.32) and (12.38), along with con-
verting the exponential of a sum to a product yields the result (12.37) for D(t) for
the marked-jump-diffusion change from measure P1 to P2 according to the recipe
(12.34) to (12.36).

For the geometric or linear marked-jump-diffusion,

dX(t) = X(t)

µ1(t)dt + σ(t)dW1(t) +

dP1(t)∑

i=1

h1(Ti, Qi)

 , (12.39)

the logarithmic change of variable can transform the geometric model to an arith-
metic one like (12.29),

d ln(X(t)) =
(
µ1(t)−σ2(t)/2

)
dt+σ(t)dW1(t)+

dP1(t)∑

i=1

ln (h1(Ti, Qi)+1) . (12.40)

Again assuming a common volatility σ(t), the Itô rule diffusion coefficient shift of
the drift coefficient will be common in both target (2) and reference (1) models,
while the jump-rate λ1(t) and jump-amplitude distribution is unchanged, then the
Girsanov tranformation triplet,

dW2(t) = dW1(t) − γ(D)(t)dt,

λ2(t) = γ(J)(t)λ1(t)

φ
(2)
Q (q; t) = γ(M)(t)φ

(1)
Q (q; t),

(12.41)

will be preserved for the geometric case.
Also, see Øksendal and Sulem’s Lévy process book [223] for a combined jump-

rate and mark distribution scaling, with some financial examples.

Example 12.16. Two State, 2 Noise Model Girsanov Application:

In order to determine both the diffusive scaling γ(D)(t) and the jump scaling γ(J)(t),
at least two states (assets in financial applications) are needed to handle two sources
of random noise. Following a financial example of Runggaldier [239], let X1(t) and
X2(t) be two states with the same jump-diffusion noise, W1(t) and P1(t), but the

“bk0allfinal”
2007/1/7
page 402

i

i

i

i

i

i

i

i

402 Chapter 12. Applied Guide to Abstract Stochastic Processes

jump-amplitude is assumed to be deterministic in magnitude given a Poisson jump-
time, so γ(M)(q; t) ≡ 1 here since there are no marks in the problem. The SDE
dynamics are given by

dXi(t) = Xi(t) (µi(t)dt+ σi(t)dW1(t) + νi(t)dP1(t)) , (12.42)

for i = 1 : 2 and where E[dP1(t)] = λ1(t)dt.
Let the 2nd measure transformed noise be given by

dW2(t) = dW1(t) − γ(D)(t)dt, dP2(t) = dP1(t) − γ(J)(t)λ1(t)dt.

Hence, the dynamics are transformed to

dXi(t)=Xi(t)
““

µi(t)+γ(D)(t)σi(t)+γ(J)(t)νi(t)λ1(t)
”
dt+σi(t)dW2(t)+νi(t)dP2(t)

”
,

such that the common Radon-Nikodým derivative from (12.37)

D(t) = exp
(∫ t

0

(
γ(D)(s)

(
dW1(s) − γ(D)(s)ds/2

)
−
(
γ(J)(s) − 1

)
λ1(s)ds

)

+γ(J)(t)P1(t)
)
,

(12.43)

depending only on the given, common noise, so yields an equivalent martingale
measure P2(t) transformed from P1(t).

For convenience in applications, a scaling of the state X̃i(t) = Xi(t)/B(t) is
introduced using a deterministic process

dB(t) = r(t)B(t)dt,

B(0) > 0 and r(t) ≥ 0 that in finance would be called discounting if B(t) were a
riskless asset like a zero-coupound bond such that B(t) is called the numeraire, the
most common one. Thus by the chain rule,

d eXi(t)=
“
d(cont)Xi(t)

”.
B(t) − Xi(t)dB(t)/B2(t) + [Xi/B] (t)dP1(t)

= eXi(t)
““

µi(t)+γ(D)(t)σi(t)+γ(J)(t)νi(t)λ1(t) − r(t)
”
dt

+σi(t)dW2(t)+νi(t)P2(t)

«
.

Selecting the common diffusion scaling γ(D)(t) for both Xi(t)’s and consequently get
the common jump scaling γ(J)(t), so

γ(D)(t) =
(
r(t) − µi(t) − γ(J)(t)νi(t)λ1(t)

)/
σi(t),

for i = 1 : 2. Solving simultaneously for the two scalings produces solutions explicit
in the given parameters,

γ(J)(t) =
σ1(t)(r(t) − µ2(t)) − σ2(t)(r(t) − µ1(t))

(σ1(t)ν2(t) − σ2(t)ν1(t))λ1(t)
(12.44)

“bk0allfinal”
2007/1/7
page 403

i

i

i

i

i

i

i

i

12.3. Itô, Lévy and Jump-Diffusion Comparisons 403

and

γ(D)(t) =
ν1(t)(µ2(t) − r(t)) + ν2(t)(r(t) − µ1(t))

(σ1(t)ν2(t) − σ2(t)ν1(t))
, (12.45)

provided (σ1(t)ν2(t) − σ2(t)ν1(t)) 6= 0 and γ(J)(t)λ1(t) > 0. This produces a unique
martingale measure and in finance the measure uniqueness is required for the com-
pleteness of the market [239, 133]. The presence of an infinite number of mark IID
random variables requires an infinite number of states or assests to exactly show
uniqueness of the transformed martingale measure P2(t).

Refer to Runggaldier’s jump-diffusion handbook article [239] for more infor-
mation and examples on the multidimensional case, Poisson random measure for-
mulation and financial applications.

12.3 Itô, Lévy and Jump-Diffusion Comparisons

12.3.1 Itô Processes and Jump-Diffusion Processes

Many authors, Bingham and Kiesel [33] Duffie [74], Glasserman [96], Hull [147],
Merton [203], Mikosch [209], Øksendal [222] and others, mostly refer to Brown-
ian motion or Wiener-driven processes with Wiener scaling by a factor σ(t) and
translated by drift µ(t),

dX(t) = µ(t)dt + σ(t)dW (t), (12.46)

at least as basic definition of an Itô process. Some such as Glasserman [96],
Hull [147], Merton [203] and Mikosch [209] would explicitly allow the composite
interpretation of the coefficient functions in the basic definition (12.46) to include
dependence on the state X(t), such that µ(t) = f(X(t), t), σ(t) = g(X(t), t) and

dX(t) = f(X(t), t)dt+ g(X(t), t)dW (t). (12.47)

Others extend the basic Itô process (12.46) to include (12.47) by application of the

Itô chain rule using a transformation like X̂(t) = F (X(t), t) to obtain

dX̂(t) = f(X(t), t)dt+ g(X(t), t)dW (t),

where

f(X(t), t) =

(
Ft + µ(t)Fx +

1

2
σ2(t)F 2

xx)

)
(X(t), t)

and
g(X(t), t) = σ(t)Fx(X(t), t).

Thus, state dependent formula (12.47) will be taken as an acceptable definition of
the Itô process.

However, in his stochastic differential equation classic 1951 memoir [149], Itô
also correctly includes jumps in his discussion of simple Markov processes. Itô

“bk0allfinal”
2007/1/7
page 404

i

i

i

i

i

i

i

i

404 Chapter 12. Applied Guide to Abstract Stochastic Processes

referred to simple Markov processes, specified by a stochastic differential equation,
which for general Poisson noise with distributed jump-amplitudes might be called
stochastic integral differential equations,

dX(t) = f(X(t), t)dt+ g(X(t), t)dW (t) +

∫

Q
h(X(t), t, q)P(dt, dq) , (12.48)

in our notation, or preferably by a stochastic integral equation,

X(t) = X(t0) +

∫ t

t0

[
f(X(s), s)ds+ g(X(s), s)dW (s)

+

∫

Q
h(X(s), s, q)P(ds, dq)

]
, (12.49)

again in our notation. Hence, there is a historical basis for calling the jump-diffusion
processes that are the focus of this book as Itô processes.

Still others, for instance, Tavella and Randall [264] refer to a jump-diffusion
processes as a superposition of an Itô process and a Poisson jump process, while
Øksendal and Sulem [223] refer to a similar combination as an Itô-Lévy process, but
see the next subsection on Lévy processes for the differences between jump-diffusion
and Lévy processes. Applebaum [12] and others more precisely call diffusion pro-
cesses like (12.47) Itô diffusion processes.

Although diffusion processes are easier to treat since they have continuous
sample paths, jump processes and jump-diffusion processes have discontinuous sam-
ple paths so are relatively more difficult to prove theorems for. Some of the most
significant changes occur with jumps, such as extreme financial crashes and natural
disasters.

Hence, according to the more of less standard Itô process usage (12.47),

Itô processes ⊂ Jump-diffusion processes . (12.50)

12.3.2 Lévy Processes and Jump-Diffusion Processes

Lévy processes are essentially jump-diffusion processes, but extended to processes
with infinite jump rates. There have been much recent efforts in the literature study-
ing and applying Lévy processes, such as Carr, Geman, Madan and Yor (CGMY
model) [46], Carr and Madan (VG model) [47] and Rydberg (NIG model) [243].
Sometimes the term non-Gaussian processes is used as in Barndorff-Nielsen and
Shepherd (GIG model) [20], but may not necessarily mean strict Lévy processes.
There also several recent books on Lévy processes such as that of Applebaum [12],
as well as others on Lévy processes but with jump processes or jump-diffusions in
the titles such as those of Cont and Tankov [59] and Øksendal and Sulem [223]. As
with other abstract concepts, there are many different definitions of a Lévy process,
and some attempt has been made to merge them within the spirit of this book.

Definition 12.17. Basic Lévy Process Conditions:
A Lévy process satisfies the following conditions:

“bk0allfinal”
2007/1/7
page 405

i

i

i

i

i

i

i

i

12.3. Itô, Lévy and Jump-Diffusion Comparisons 405

• RCLL stochastic process: {X(t), t ≥ 0} on the probability space (Ω,F ,P)
with values in R

nx (the term cádlág means RCLL in French but is used in
English probability texts too).

• Initial condition: X(0)
a.s.
= 0.

• Independent increments: for every partition 0 = t0 < t1 < t2 < · · · <
tnt

<∞, the increments

∆X(tj) ≡ X(tj+1) − X(tj), for j = 0:n− 1 (12.51)

are independent.

• Stationary increments: Together with independence,

∆X(tj)
dist
= X(∆tj), (12.52)

where ∆tj ≡ tj+1 − tj.

• Stochastic Continuity: The increments of X(t) satisfy,

lim
∆t→0

Prob[X(t+ ∆t) − X(t)| ≥ ǫ] = 0, ∀ ǫ > 0 and t ≥ 0. (12.53)

All but the last condition (12.53) are standard for the processes dealt with
here when the coefficients are constant, so it is usually sufficient to show stochas-
tic continuity (note that continuous in probability is not the same as continuous).
However, when the process coefficients are not constant, then the process will in
general not be stationary as Lévy condition (12.52) requires. For many real prob-
lems the process coefficients, as in financial markets, time-dependence is important
(for instance, see Hanson and Westman [126]), so (12.52) will not be valid in these
problems. It is clear that the IID Wiener vector process W(t) or the Wiener driven
vector Gaussian process with constant coefficients

G(t) = µ0t+ σ0W(t)

and the Poisson vector process P(t) with constant jump rates λ(t) = λ0 will all
be Lévy processes, as well as any linear combination that is the simple constant
coefficient jump-diffusion nx-vector process,

X(t) = µ0t+ σ0W(t) + ν0P(t),

where σ0 ∈ R
nx×nw and ν0 ∈ R

nx×np consistent with IID W(t) ∈ R
nw and IID

P(t) ∈ R
np . Adding the compound Poisson process to the combination will be

discussed in the sequel.
There are some preliminary definitions that are important for further proper-

ties of Lévy processes.

“bk0allfinal”
2007/1/7
page 406

i

i

i

i

i

i

i

i

406 Chapter 12. Applied Guide to Abstract Stochastic Processes

Definition 12.18. Infinitely Divisible Distribution:
A probability distribution ΦX on R

nx is infinitely divisible if for each positive integer
n there exists of a set of IID random variable Yj for j = 1:n such that the sum

Sn =
n∑

j=1

Yj
dist
= X,

where X has distribution ΦX.

Infinitely Divisibility can be related to the central limit theorem and is closely
connected to Lévy processes via compound Poisson processes as follows [59].

Proposition 12.19. Lévy processes and Infinitely Divisibility:
Let X(t) be a Lévy process for t ≥ 0 on R

nx, then for every t, X(t) has an infinitely
divisible distribution. Conversely, if Φ is an infinitely divisible distribution, then
there exists a Lévy process X(t) with the distribution Φ.

The compound Poisson process is included firmly as a Lévy process by the
following result proved in Cont and Tankov [59],

Proposition 12.20. Compound Poisson Processes as Lévy Processes:
The process CP(t) for t ≥ 0 is a compound Poisson process, i.e.,

CP(t) =

P (t)∑

j=1

Qi, (12.54)

where P (t) is a simple Poisson process with constant rate λ0 and the Qj are
IID random jump-amplitudes with common distribution ΦY (y) such that λ0 are
independent of the Qi,

if and only if

CP(t) is a Lévy process and its sample paths are piecewise constant functions.

Characteristic Functions and Lévy Characteristic Exponents

Definition 12.21. Characteristic Function:
The characteristic function of a random vector X on R

nx is the complex-valued
function,

CX(z) ≡ EX

[
exp
(
iz⊤X

)]
(12.55)

for all z ∈ R
nx and i is the imaginary unit.

Clearly, the characteristic function of a continuous random variable X is
the Fourier transform of the density of X, i.e.,

CX(z) =

∫

Rnx

eiz
⊤xφX(x)dx,

“bk0allfinal”
2007/1/7
page 407

i

i

i

i

i

i

i

i

12.3. Itô, Lévy and Jump-Diffusion Comparisons 407

while if X is a discrete scalar random variable with distribution given by the
countable sequence of probabilities πk = Prob[X = k], then the characteristic
function is the discrete Fourier transform,

CX(z) =
∞∑

k=0

eizk · πk.

This is the basic random vector definition, but here the interest will be the
same definition when the random vector is a function of time t, i.e., a stochastic
process X(t),

CX(t)(z) ≡ EX(t)

[
exp
(
iz⊤X(t)

)]
.

One of the most important features of a Lévy process is that the characteristic
function has relatively simple form [59, 12]

Proposition 12.22. Lévy Characteristic Functions and Exponents:
If X(t) is a Lévy process for t ≥ 0 on R

nx, then there exist a real-valued continuous
function η

X(t)
(z) of the characteristic vector z ∈ R

nx, called the characteristic
exponent, such that

CX(t)(z) = EX(t)

[
exp
(
iz⊤X(t)

)]
= exp

(
itη

X(t)
(z)
)
. (12.56)

However, for nonstationary problems without the Lévy stationarity condition
(12.53), then it would be expected that in general the exponent will not be linear
in t,

CX(t)(z) = exp
(
iη

X(t)
(z; t)

)
.

It is well-known that Fourier transforms, and the characteristic function, is mainly
useful for constant coefficients, with few exceptions.

Examples 12.23. Characteristic Functions and Exponents of Lévy Pro-
cesses:

• Standard Wiener Process W (t) on R:

CW (t)(z) = EW (t)

[
eizW (t)

]
=

1√
2πt

∫ ∞

−∞
eizwe−w

2/(2t)dw

= e−(tz)2/(2t) 1√
2πt

∫ ∞

−∞
e−(w − itz)2/(2t)dw = e−tz

2/2,

using the completing the square technique, so the Lévy characteristic exponent
is

η
W (t)

(z) = −1

2
z2. (12.57)

“bk0allfinal”
2007/1/7
page 408

i

i

i

i

i

i

i

i

408 Chapter 12. Applied Guide to Abstract Stochastic Processes

• IID Wiener Vector Process W(t) on R
nw

with Cov[W(t),W⊤(t)] = tInw
:

CW(t)(z) = EW(t)

[
eiz

⊤W(t)
]

=

nw∏

j=1

1√
2πt

∫ ∞

−∞
eizjwje−w

2
j /(2t)dwj

=

nw∏

j=1

CWj(t)(zj) = exp

−t

nx∑

j=1

z2
j /2

 = exp

(
−t|z|2/2

)
,

so the Lévy characteristic exponent is

η
W(t)

(z) = −1

2
|z|2. (12.58)

• IID Gaussian Vector Process G(t) = µ0t+ σ0W(t) on R
nx

with Cov[W(t),W⊤(t)] = tInw
, Constant µ0 ∈ R

nx

and Constant σ0 ∈ R
nx×nw :

CG(t)(z) = EW(t)

[
eiz

⊤(µ0t+ σ0W(t))
]

= eiz
⊤µ0t

nw∏

k=1

1√
2πt

∫ ∞

−∞
exp

i
nw∑

j=1

zjσ0,j,kwk

 e−w
2
k/(2t)dwk

= exp

itz⊤µ0 −

nx∑

j=1

zj

nx∑

ℓ=1

zℓ

nw∑

k=1

σ0,j,kσ0,ℓ,k/2

= exp
(
itz⊤µ0 − tz⊤(σ0σ

⊤
0)z

)
,

so the Lévy characteristic exponent is

η
G(t)

(z) = iz⊤µ0 −
1

2
z⊤(σ0σ

⊤
0)z/2. (12.59)

• Simple Poisson Process P (t) on R with Constant Jump-Rate λ0:

CP (t)(z) = EP (t)

[
eizP (t)

]
= e−λ0t

∞∑

k=0

(λ0t)
k

k!
eizk

= e−λ0t
∞∑

k=0

(
λ0te

iz
)k

k!
= e−λ0t+ λ0te

iz
= eλ0t (e

iz − 1),

so the Lévy characteristic exponent is

η
P (t)

(z) = λ0(e
iz − 1). (12.60)

“bk0allfinal”
2007/1/7
page 409

i

i

i

i

i

i

i

i

12.3. Itô, Lévy and Jump-Diffusion Comparisons 409

• Centered or Martingale Form of Poisson Process
P̃ (t) ≡ P (t) − λ0t on R with Constant Jump-Rate λ0:

C eP (t)(z) = EP (t)

[
eiz(P (t) − λ0t)

]
= e−λ0t

∞∑

k=0

(λ0t)
k

k!
eiz(k − λ0t)

= e−λ0t(1 + iz)CP (t)(z) = eλ0t(e
iz − 1 − iz),

so the Lévy characteristic exponent is

η eP (t)
(z) = λ0(e

iz − 1 − iz). (12.61)

• Simple Poisson Vector Process P(t) on R
np with Independent Com-

ponents and Constant Jump-Rate Vector λ0 = [λ0,j]np×1:

CP(t)(z) = EP(t)

[
exp

(
iz⊤P(t)

)]
=

np∏

j=1

e−λ0,jt
∞∑

kj=0

(λ0,jt)
kj

kj !
eizjkj

=

np∏

j=1

exp(λ0,jt (exp(izj) − 1)) = exp

t

np∑

j=1

λ0,j (exp(izj) − 1)

= exp
(
tnp

(
λ0 exp(iz)− λ0

))
,

where λ0 ≡ ∑np

j=1 λ0,j/np and λ0 exp(iz) ≡ ∑np

j=1 λ0,j exp(izj)/np, so the
Lévy characteristic exponent is

η
P(t)

(z) = np

(
λ0 exp(iz) − λ0

)
. (12.62)

• Simple Compound Poisson Process CP(t) =
∑P (t)

ℓ=1 Qℓ on R with Con-
stant Jump-Rate λ0 and IID Jump-Amplitudes Qℓ with Distribution
ΦQ(q):

CCP(t)(z) = EP (t),Q

[
eizX(t)

]
= e−λ0t

∞∑

k=0

(λ0t)
k

k!
EQ

[
exp

(
iz

k∑

ℓ=1

Qℓ

)]

= e−λ0t
∞∑

k=0

(λ0t)
k

k!

k∏

ℓ=1

EQ [exp(izQℓ)]

= e−λ0t
∞∑

k=0

(λ0t)
k

k!
Ek

Q [exp(izQ)] = exp (λ0t (EQ [exp(izQ)]− 1)) ,

using the iterated conditional expectation technique and IID, so the Lévy char-
acteristic exponent, substituting EQ [exp(izQ)] = CQ(z), is

η
CP(t)

(z) = λ0(CQ(z) − 1) (12.63)

“bk0allfinal”
2007/1/7
page 410

i

i

i

i

i

i

i

i

410 Chapter 12. Applied Guide to Abstract Stochastic Processes

and the simple Poisson process exponent is recovered if Qℓ
w.p.o.

= 1 ∀ℓ ≥ 1.

• Vector Compound Poisson Process CP(t) =
∑P (t)

ℓ=1 Qℓ on R
nx with

Constant Jump-Rate λ0 and IID Vector Jump-Amplitudes Qℓ with
Distribution ΦQ(q): Note that the Qℓ are IID as vectors not necessarily as
components, thus,

CCP(t)(z) = EP (t),Q

[
eiz

⊤CP(t)
]

= e−λ0t
∞∑

k=0

(λ0t)
k

k!
EQ

[
exp

(
iz⊤

k∑

ℓ=1

Qℓ

)]

= e−λ0t
∞∑

k=0

(λ0t)
k

k!

k∏

ℓ=1

EQ

[
exp

(
iz⊤Qℓ

)]

= e−λ0t
∞∑

k=0

(λ0t)
k

k!
Ek

Q

[
exp

(
iz⊤Qℓ

)]

= exp
(
λ0t
(
EQ

[
exp

(
iz⊤Qℓ

)]
− 1
))
,

using the iterated conditional expectation technique and IID again, so the Lévy
characteristic exponent, substituting EQ

[
exp(iz⊤Q)

]
= CQ(z), is

η
CP(t)

(z) = λ0(CQ(z) − 1). (12.64)

Lévy-Klintchine Jump-Diffusion Formula

In these examples, the ingredients for the fundamental theorem of the Lévy-
Klintchine representation formula specialized to jump-diffusion processes has
been derived, based on the vector Gaussian process exponent result in (12.59) and
the vector compound Poisson process exponent result in (12.64).

Theorem 12.24. Lévy-Klintchine Formula for Jump-Diffusion Processes:
Let X(t) be the jump-diffusion process on R

nx for t ≥ 0,

X(t) = X(0) + µ0t+ σ0W(t) +

P (t)∑

ℓ=1

Qℓ, (12.65)

with Lévy characteristic triplet (σ0σ
⊤
0 , λ0ΦQ(dq)dt,µ0), where µ0 ∈ R

nx is a
constant, σ0 ∈ R

nx×nw is a constant, W(t) ∈ R
nw is a vector Wiener process,

P(t) ∈ R is a simple Poisson process with constant and finite jump-rate λ0 ∈ R and
compounded with IID vector jump-amplitudes Qℓ ∈ R

nx with distribution ΦQ(q).
The random triplet (W(t), P (t), Q) are independent variables, except that the jump-
amplitude Q requires the existence of a jump of the Poisson process.

Then, the characteristic function with z ∈ R
nx for the initial condition trans-

lated process

Y(t) ≡ X(t) − X(0) (12.66)

“bk0allfinal”
2007/1/7
page 411

i

i

i

i

i

i

i

i

12.3. Itô, Lévy and Jump-Diffusion Comparisons 411

is
CY(t)(z) = EY(t)

[
exp(iz⊤Y(t)

]
= exp

(
tη

Y(t)
(z)
)
,

where the Lévy characteristic exponent is

η
Y(t)

(z) = iµ0t−
1

2
z⊤σ0σ

⊤
0 z + λ0

∫

Rnx

(
exp(iz⊤q) − 1

)
φQ(q)dq. (12.67)

Except for the technical details, the Lévy characteristic exponent result (12.67)
follows from (12.59) for G(t) and from (12.64) for CP(t) by the independence
properties between G(t) and (P (t), Q) and by iterative conditional expectation
between P (t) and Q that is conditioned on the existence of a jump as for (12.64).
Thus,

CY(t)(z) = EY(t)

[
exp
(
iz⊤Y(t)

)]

= EW(t)

[
exp
(
iz⊤G(t)

)]
· EP (t),Q

[
exp
(
iz⊤CP(t)

)]

= CG(t)(z) · CP(t)(z)

= exp
(
tη

G(t)
(z)
)
· exp

(
tη

CP(t)
(z)
)

= exp
(
t
(
η

G(t)
(z) + η

CP(t)
(z)
))

so substituting (12.59) and (12.64) and expanding the expectations leads directly to
the main result (12.67). It should be noted that embedded in this derivation is the
semi-group property [12, 59] of the characteristic function in the case of constant
coefficients.

In the case to the geometric or linear jump-diffusion process (5.42) with con-
stant rate coefficients for X(t) ∈ R with SDE,

dX(t) = X(t)

µ0dt+ σ0dW (t) +

dP (t)∑

k=1

(
eQk − 1

)

 ,

the solution is exponential via a logarithmic change of variable technique,

X(t) = X(0) exp

(µ0 − σ2

0/2)t+ σ0W (t) +

P (t)∑

k=1

Qk

 , (12.68)

with X(0) > 0, is obviously not a Lévy process due to the exponential time-
dependence, without further transformation:

Corollary 12.25. Lévy-Klintchine Transformed Geometric
Jump-Diffusion Formula:
Assuming the hypotheses of Th. 12.24, except that, nx = 1, nw = 1 and that

the Lévy characteristic triplet is (σ2
0 , λ0ΦQ(dq)dt, µ0 − σ2

0), then the characteristic
function with z ∈ R of the the logarithmic-translated process Y (t).,

Y (t) ≡ ln(X(t)/X(0)), (12.69)

“bk0allfinal”
2007/1/7
page 412

i

i

i

i

i

i

i

i

412 Chapter 12. Applied Guide to Abstract Stochastic Processes

corresponding to the geometric process (12.68), is

CY (t)(z) = EY (t)[exp(izY (t)] = exp
(
tη

Y (t)
(z)
)
,

where the Lévy characteristic exponent is

η
Y (t)

(z) = i(µ0 − σ2
0/2)t− 1

2
σ2

0z
2 + λ0

∫

R

(exp(izq) − 1)φQ(q)dq. (12.70)

Lévy-Klintchine Lévy Process Formula including Infinite Rate Processes

So far the jump-rate λ0 has been assumed to be constant and either explicitly or
implicitly finite in this Subsection on Lévy processes. However, the infinite jump-
rates is a distinguishing feature of Lévy processes, so that, in general, it is not valid
to write the jump-rate symbol λ0 in Lévy process formulas. Instead, it is necessary
to refer to the number of jumps rather than to the jump-rate.

Recall the definition (B.180) on page B64 of the jump function of a process:

[X](t) ≡ X(t) − X(t−),

written here for RCLL vector processes (caution: in some of the literature ∆X(t) is
used, but can be confused with the analytic or numerical time increment, ∆X(t) ≡
X(t+ ∆t) − X(t)). At points where X(t) is continuous, then [X](t) = 0.

Definition 12.26. Number of Jumps of a Process, Poisson Random Mea-
sure and Lévy Measure: The number of jumps in the open set S, assuming a
bounded number of jumps and excluding zero jumps (0 /∈ S) on the interval (0, t],
is

P((0, t],S) =
∑

s∈(0,t]

1[X](s)∈S . (12.71)

Here, P((0, t],S) is the Poisson random or jump measure [223]. The differential
form is denoted by P(dt, dq) = P((t, t+dt, (q,q+dq]), as previous used in Chapt. 5.
An alternate form [232] uses a sequence of stopping or jump times,

Tk+1(S) = inf{t | t > Tk(S), [X](t) ∈ S}; T0(S) ≡ 0,

such that

P((0, t],S) =
∞∑

k=1

1Tk(S)≤t.

The zero-mean (centered or Martingale) form is denoted by

P̃(dt,q) = P(dt, dq) − ν(L)(dq)dt, (12.72)

where now ν(L)(dq)dt = E[P(dt, dq)] and ν(L) is called the Lévy measure in
general .

“bk0allfinal”
2007/1/7
page 413

i

i

i

i

i

i

i

i

12.3. Itô, Lévy and Jump-Diffusion Comparisons 413

A fundamental tool for separating out the large jumps in the presence of
infinite jump-rates is the following decomposition after the concise form of Øksendal
and Sulem [223]:

Theorem 12.27. Lévy-Itô Decompsition: Let 0 ≤ R <∞ be a jump-amplitude
cutoff, then a Lévy process X(L)(t) on R

nx has the decomposition,

X(L)(t) = µ̃0,Rt+ σ0W(t) +

∫

|q|<R

qP̃(t, dq) +

∫

|q|≥R

qP(t, dq), (12.73)

where W(t) ∈ R
nw is an independent vector Wiener process, µ̃0,R ∈ R

nx is a
constant adjusted with R from the original drift µ0 ∈ R

nx, σ0 ∈ R
nx×nw is a constant

.

In particular, the Lévy-Itô decomposition states that the Lévy process is, as
is the jump-diffusion, decomposable into a continuous process and a discontinuous
process,

X(L)(t) = X(cont)(t) + X(discont)(t);

X(cont)(t)) = µ̃0,Rt+ σ0W(t);

X(discont)(t)) = X(L)(t) − X(cont)(t).

One consequence of this Lévy-Itô decomposition is another fundamental re-
sult [223, 232]:

Theorem 12.28. Lévy-Klintchine Representation Formula for Lévy Pro-
cesses: Let X(L)(t) be a Lévy process for t ≥ 0 with Lévy measure ν(L) on R

nx,
given constants µ̃0,R ∈ R

nx and σ0 ∈ R
nx×nw , then the jump-count satisfies

∫

Rnx

min(|q|2, R)ν(L)(dq) <∞

and the characteristic function on z ∈ R
nx for X(t) = X(L)(t) is

CX(t)(z) = EX(t)

[
exp
(
iz⊤X(t)

)]
= exp

(
tη

X(t)
(z)
)
,

where the Lévy characteristic exponent is

η
X(t)

(z) = iµ̃0,R t− 1
2z

⊤σ0σ
⊤
0 z

+
∫
|q|<R

(
exp
(
iz⊤q

)
− 1 − iz⊤q

)
ν(L)(dq)

+
∫
|q|≥R

(
exp
(
iz⊤q

)
− 1
)
ν(L)(dq).

(12.74)

Conversely, given constants µ̃0,R ∈ R
nx and σ0 ∈ R

nx×nw , along with the Lévy

measure ν(L) on R
nx such that the jump-count satisfies

∫

Rnx

min(|q|2, R)ν(L)(dq) <∞,

“bk0allfinal”
2007/1/7
page 414

i

i

i

i

i

i

i

i

414 Chapter 12. Applied Guide to Abstract Stochastic Processes

then there exists a Lévy process X(L) that is unique in distribution such that the
Lévy characteristic is (12.74) for z ∈ R

nx.

Note that the extra linear term iz⊤q in the first or inner integral of (12.74) is

related to the zero-mean Poisson P̃ (t) form iz found in (12.61) but not in (12.60)
for P (t).

Although jump processes time-dependent coefficients, like drift and volatility
coefficients, do not strictly satisfy the stationary increment condition (12.52) for
a Lévy process, Øksendal and Sulem [223] define Lévy-driven processes which
satisfy the Lévy-Itô decomposition formula (12.73), but not the constant coefficient
condition. For example, analogous to the Wiener-driven Itô process (12.47),
there is the Lévy-driven Itô-Lévy process [223, Th. 1.14, p. 6] on R with time-
random coefficients,

dX(t) = µ̃0,R(t;ω)dt+ σ0(t;ω)dW (t)

+
∫
|q|<R h(t, q;ω)P̃(dt, dq) +

∫
|q|≥R h(t, q;ω)P(dt, dq),

(12.75)

for some R ∈ [0,∞), (µ̃0,R(t;ω), σ0(t;ω), h(t, qω) are integrable function and ω is
some background random variable.

The Lévy-driven geometric Lévy process [223, Example 1.15, p. 7] is
similarly defined,

dX(t) = X(t)

(
µ̃0,R(t;ω)dt+ σ0(t;ω)dW (t)

+
∫
|q|<R h(t, q;ω)P̃(dt, dq) +

∫
|q|≥R h(t, q;ω)P(dt, dq)

)
,

(12.76)

where, in addition, the jump-amplitude h(t, q;ω) ≥ −1 to preserve positivity as-
suming X(0) > 0, with more potential uses in financial applications.

In general, these processes are special cases of what Øksendal and Sulem [223,
Th. 1.19,p. 10] call Lévy diffusions governed by Lévy stochastic differential
equations,

dX(t) = µ̃(t,X(t))dt + σ(t,X(t))dW(t)

+
∫
|q|<R h(t, q;ω)P̃(dt, dq) +

∫
|q|≥R h(t,X(t), q)P(dt, dq),

(12.77)

where 0 ≤ t ≤ T , X ∈ R
nx, µ̃ ∈ R

nx, W ∈ R
nw , σ ∈ R

nx×nw , P ∈ R
np , Q ∈ R

nx and
h ∈ R

nx×np , subject to the usual linear growth and Lipschitz continuity conditions.
For many other Lévy process models, including models which push the limits

of the assumptions here, see Applebaum [12, Subsect. 5.4.7, p. 286ff]
Concluding this subsection like the last, the size of the Lévy processes is

compared to that of jump-diffusions. According to the strict Lévy process definition
leading to a restriction to constant coefficients,

{
constant coefficient

jump-diffusion processes

}
⊂ Lévy processes , (12.78)

“bk0allfinal”
2007/1/7
page 415

i

i

i

i

i

i

i

i

12.4. Exercises 415

since ordinarily jump-diffusions based upon Poisson processes do not allow for in-
finite jump-rates on [0, t]. However, if the infinite jump activity is controlled for,
then

{
finite jump-rate
Lévy processes

}
⊂ jump-diffusion processes , (12.79)

since jump-diffusions in general include variable coefficients and nonlinear terms.
If the comparison is made to the Lévy-driven processes discussed by Øksendal

and Sulem [223] and summarized here, then

{jump-diffusion processes} ⊂ Lévy-driven processes , (12.80)

due to the inclusion of infinite jump-rates with nonlinear and time-dependent coef-
ficients in Lévy-driven processes.

12.4 Exercises

1. Similar to the Examples 12.10, find the martingale properties as a function of
the additional drift for the geometric jump diffusion problem with constant
coefficients,

dX(t) = X(t)

µ0dt+ σ0dW (t) + ν0

dP (t)∑

i=1

(
eQi − 1

)

 ,

where again the marks are IID with mean µQ and variance σ2
Q.

Suggested References for Further Reading

• Applebaum, 2004 [12].

• Bain, 2006 [17].

• Baxter and Rennie, 1996 [22].

• Billingsley, 1986 Billingsley86.

• Bingham and Kiesel, 2004 [33]

• Bossaerts, 2002 [41].

• Brémaud, 1981 [43].

• Cont and Tankov, 2004 [59].

• Cyganowski, Kloeden and Ombach, 2002 [66].

• Doob, 1953 [69].

• Duffie, 1992 [74].

“bk0allfinal”
2007/1/7
page 416

i

i

i

i

i

i

i

i

416 Chapter 12. Applied Guide to Abstract Stochastic Processes

• Gihman and Skorohod, 1972 [94].

• Glasserman, 2003 [96].

• Harrison and Pliska, 1981, [132].

• Harrison and Pliska, 1983, [133].

• Heath and Schweizer, 2000 [135].

• Hull, 2000 [147].

• Itô, 1951 [149].

• Karatzas and Shreve, 1998 [160].

• Karlin and Taylor, 1981 [162].

• Klebaner, 1998 [164].

• Mikosch, 1998 [209].

• Neftci, 2000 [217].

• Øksendal, 1998 [222].

• Øksendal and Sulem, 2005 [223].

• Pliska, 1997 [225].

• Protter, 2004 [232].

• Runggaldier, 2003 [239].

• Rogers and Williams, 2000 [236].

• Shreve, 2004 [248].

• Steele, 2001 [256].

• Yong and Zhou, 1999 [288].

“bk0allfinal”
2007/1/7
page 417

i

i

i

i

i

i

i

i

Bibliography

[1] M. L. Abell and J. P. Braselton, The Maple V Handbook, Academic
Press, New York, NY, 1994.

[2] M. Abramowiitz and I. A. Stegun, (eds.), Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables, Applied Mathe-
matics Series 55, National Bureau of Standards, Washington, DC, 1964.

[3] R. M. Abu-Saris and F. B. Hanson, Computational Suboptimal Filter for
a Class of Wiener-Poisson Driven Stochastic Process, Dynamics and Control,
vol. 7, no. 3, 1997, pp. 279-292.

[4] N. Ahmed and K. Teo, Optimal Control of Distributed Parameter Systems,
North Holland, New York, NY, 1981.

[5] Y. Aı̈t-Sahalia, Disentangling Diffusion from Jumps, J. Financial Eco-
nomics, vol. 74, 2004, pp. 487–528.

[6] T. G. Andersen, L. Benzoni and J. Lund, An Empirical Investigation
of Continuous-Time Equity Return Models, J. Finance, vol. 57, no. 3, 2002,
pp. 1239-1284.

[7] B. D. O. Anderson and J. B. Moore, Optimal Filtering, Prentice-Hall,
Englewood Cliffs, NJ, 1979.

[8] B. D. O. Anderson and J. B. Moore, Optimal Control: Linear Quadratic
Methods, Prentice-Hall, Englewood Cliffs, NJ, 1990.

[9] P. Andersen and J. G. Sutinen, Stochastic Bioeconomics: A Review of
Basic Methods and Results, Marine Res. Econ., vol. 1, 1982, pp. 1-10.

[10] H. L. Anderson, Metropolis, Monte Carlo Method, and the MANIAC, Los
Alamos Science, Fall 1986, pp. 96-107.

[11] C. A. Aourir, D. Okuyama, C. Lott and C. Eglinton, Exchanges - Cir-
cuit Breakers, Curbs, and Other Trading Restrictions, http://invest-faq.
com/articles/exch-circuit-brkr.html .

[12] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge Univer-
sity Press, Cambridge, UK, 2004.

417

“bk0allfinal”
2007/1/7
page 418

i

i

i

i

i

i

i

i

418 Bibliography

[13] L. Arnold, Stochastic Equations: Theory and Applications, John Wiley, New
York, NY, 1974.

[14] Y. Ashkenazy, J. M. Hausdorff, P. C. Ivanov and H. E. Stanley, A
Stochastic Model of Human Gait Dynamics, Physica A, vol. 316, 2002, pp. 662-
670.

[15] M. Athans and P. L. Falb, Optimal Control: An Introduction to the Theory
and Its Applications, McGraw-Hill Book Co., New York, NY, 1966.

[16] L. Bachelier, Théorie de la Spéculation, Annales de l’Ecole Normale
Supérieure, vol. 17, 1900, pp. 21-86. English translation by A. J. Boness in
The Random Character of Stock Market Prices, P. H. Cootner (Editor), MIT
Press, Cambridge, MA, 1967, pp. 17-78.

[17] A. Bain, Stochastic Calculus, http://www.chiark.greenend.org.uk/
∼alanb/stoc-calc.pdf .

[18] C. A. Ball and W. N. Torous, On Jumps in Common Stock Prices and
Their Impact on Call Option Prices, J. Finance, vol. 40, 1985, pp. 155-173.

[19] M. S. Bartlett, Stochastic Equations: Theory and Applications, 3rd ed.,
Cambridge University Press, Cambridge, UK, 1978.

[20] O. E.. Barndorff-Nielsen and N. Shepherd, Non-Gaussian Ornstein-
Uhlenb6eck-Based Models and Some of their Uses in Financial Economics,
ser. B, vol. 3, part. 2, 2001, pp. 167-241.

[21] T. Basar, Twenty-five Seminal Papers in Control, IEEE Control Systems
Magazine, vol. 20, no. 1, February 2000, pp. 69-70.

[22] M. Baxter and A. Rennie, Financial Calculus: An Introduction to Deriva-
tive Pricing, Cambridge University Press, Cambridge, UK, 1996.

[23] I. Beichl and F. Sullivan, The Metropolis Algorithm, Computng in Sci. &
Engineering, vol. 2, no. 1, 2000, pp. 65-69.

[24] D. J. Bell and D. H. Jacobson, Singular Optimal Control Problems, Aca-
demic Press, New York, NY, 1994.

[25] R. E. Bellman, Dynamic Programming, Princeton University Press, Prince-
ton, NJ, 1957.

[26] R. E. Bellman, Adaptive Control Processes: A Guided Tour, Princeton Uni-
versity Press, Princeton, NJ, 1961.

[27] R. Bellman and R. Kalaba, Selected Papers on Mathematical Trends in
Control Theory, Dover Publications, New York, NY, 1964.

[28] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for
Scientists and Engineers, McGraw-Hill Book Co., New York, NY, 1978.

“bk0allfinal”
2007/1/7
page 419

i

i

i

i

i

i

i

i

Bibliography 419

[29] D. S. Bernstein, Feedback Control: An Invisible Thread in the History of
Technology, IEEE Control Systems Magazine, vol. 22, no. 2, April 2002, pp. 53-
68.

[30] J. T. Betts, Practical Methods for Optimal Control Using Nonlinear Pro-
gramming, SIAM, Philadelphia, PA, 2001.

[31] A. T. Bharucha-Reid, Elements of the Theory of Markov Processes and their
Applications, McGraw-Hill Book Co., New York, NY, 1960.

[32] P. Billingsley, Probability and Measures, 2nd Edition, John Wiley, New
York, NY, 1986.

[33] N. H. Bingham and R. Kiesel, Risk-Neutral Valuation: Pricing and Hedging
of Financial Derivatives, Springer-Verlag, New York, NY, 2004.

[34] F. Black and M. Scholes, The Pricing of Options and Corporate Liabilities,
J. Political Economy, vol. 81, 1973, pp. 637-659.

[35] F. Black, How We Came Up with the Option Formula, J. Portfolio Mgmt.,
vol. 15, Winter 1989, pp. 4-8.

[36] A. Boker, C. J. Haberman, L. Girling, R. P.Guzman, G. Louridas,
J. R. Tanner, M. Cheang. M. Math, B. W. Maycher, D. D. Bell
and G. J. Doak, Variable Ventilation Improves Perioperative Lung Function
in Patients Undergoing Abdominal Aortic Aneurysmectomy, Anesthesiology,
vol. 100, no. 3, 2004, pp. 608-616.

[37] G. E. P. Box and M. E. Muller, A Note on the Generation of Random
Normal Deviates, Ann. Math. Stat., vol. 29, 1958, pp. 610-611.

[38] P. Boyle, Options: A Monte Carlo Approach, J. Financial Economics, vol. 4,
1977, pp. 323-338.

[39] P. Boyle, M. Broadie and P. Glasserman, Monte Carlo Methods for
Security Pricing, J. Economic Dynamics and Control, vol. 21, 1997, pp. 1267-
1321.

[40] G. A. Bliss, Lectures on the Calculus of Variations, University Chicago Press,
Chicago, IL, 1946.

[41] P. Bossaerts, The Paradox of Asset Pricing, Princeton University Press,
Princeton, NJ, 2002.

[42] P. W. Bridgeman, Dimensional Analysis, Yale University Press, New Haven,
CT, 1963.

[43] P. Brémaud, Point Processes and Queues: Martingale Dynamics, Springer-
Verlag, New York, NY, 1981.

“bk0allfinal”
2007/1/7
page 420

i

i

i

i

i

i

i

i

420 Bibliography

[44] A. E. Bryson and Y. C. Ho, Applied Optimal Control, John Wiley, New
York, NY, 1975.

[45] T. G. Buchman, Nonlinear Dynamics, Complex Systems, and the Pathobiol-
ogy of Critical Illness, Curr. Opin. Crit. Care, vol. 10, no. 5, 2004, pp. 378-382.

[46] P. Carr, H. Geman, D. B. Madan and M. Yor, Stochastic Volatility for
Lévy Processes, Math. Fin., vol. 13, no. 3, 3003, pp. 345-382.

[47] P. Carr and D. B. Madan, Option Valuation Using the Fast Fourier Trans-
form, J. Comp. Fin., vol. 2, 1999, pp. 61-73.

[48] S. P. Chakrabarty and F. B. Hanson, Optimal Control of Drug Delivery
to Brain Tumors for a Distributed Parameters Model, in Proc. 2005 American
Control Conference, 2005, pp. 973-978.

[49] S. P. Chakrabarty and F. B. Hanson, Optimal Control of Drug Delivery
to Brain Tumors for a PDE Driven Model Using the Galerkin Finite Element
Method, in Proc. 44nd IEEE Conference on Decision and Control and European
Control Conference 2005, 2005, pp. 1613-1618.

[50] S. P. Chakrabarty and F. B. Hanson, Cancer Drug Delivery in Three Di-
mensions For a Distributed Parameter Control Model Using Finite Elements,
in Proc. 45th IEEE Conference on Decision, 23 February 2006, pp. 1-8, sub-
mitted for review; URL:http://www.math.uic.edu/∼hanson/pub/CDC2006/
cdc06spcfhweb.pdf .

[51] G. Chichilnisky, Fischer Black: The Mathematics of Uncertainty, Notices of
the AMS, vol. 43 (3), 1996, pp. 319-322.

[52] S.-L. Chung and F. B. Hanson, Optimization Techniques for Stochastic Dy-
namic Programming, in Proc. 29th IEEE Conference on Decision and Control,
vol. 4, 1990, pp. 2450-2455.

[53] S.-L. Chung and F. B. Hanson, Parallel Optimizations for Computational
Stochastic Dynamic Programming, in Proc. 1990 International Conference on
Parallel Processing, vol. 3: Algorithms and Applications, P.-C. Yew, ed., 1990,
pp. 254-260.

[54] S.-L. Chung, F. B. Hanson and H. H. Xu, Parallel Stochastic Dynamic
Programming: Finite Element Methods, Lin. Alg. Applic., vol. 172, 1992,
pp. 197-218.

[55] E. Çinlar, Introduction to Stochastic Processes, Prentice-Hall, Englewood
Cliffs, NJ, 1975.

[56] C. W. Clark, Mathematical Bioeconomics: The Optimal Management of Re-
newable Resources, 1st and 2nd Editions, John Wiley, New York, NY, 1976
and 1990.

“bk0allfinal”
2007/1/7
page 421

i

i

i

i

i

i

i

i

Bibliography 421

[57] C. W. Clark and R. Lamberson, An Economic History and Analysis of
Pelagic Whaling, Marine Policy, vol. 6, 1982, pp. 103-120.

[58] J. E. Cohen, Mathematics Is Biology’s Next Microscope, Only Better; Biology
Is Mathematics’ Next Physics, Only Better, PLoS Biology, vol. 2, issue 12, 2004,
p. 2017-2023.

[59] R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chap-
man & Hall/CRC, Boca Raton, FL, 2004.

[60] E. T. Copson, Asymptotic Expansions, Cambridge University Press, Cam-
bridge, UK, 1965.

[61] J. M. Courtault, Y. Kabanov, B. Bru, P. Crépel, I. Lebon and A. L.
Marchand, Louis Bachelier on the centenary of Théorie De La Spéculation,
Mathematical Finance, vol. 10, No. 3, 2000, pp. 341-353.

[62] D. R. Cox and H. D. Miller, The Theory of Stochastic Processes, Chapman
and Hall, London, UK, 1965.

[63] J. C. Cox and M. Rubinstein, Options Markets, Prentice-Hall, Englewood
Cliffs, NJ, 1985.

[64] S. Cyganowski, L. Grüne and P. Kloeden, Maple for Jump-Diffusion
Stochastic Differential Equations in Finance, Programming Languages
and Systems in Computational Economics and Finance, S. S. Nielsen
(Editor), Kluwer Academic Publishers, Amsterdam, 2002, pp. 233-269;
URL:http://www.uni-bayreuth.de/departments/math/∼lgruene/papers/
jumpfin.html .

[65] S. Cyganowski and P. Kloeden, Maple Schemes for Jump-Diffusion
Stochastic Differential Equations, Proc. 16th IMACS World Congress, Lau-
sanne 2000, M. Deville, R. Owens (Editors), Dept. Computer Science, Rut-
gers University, 2000, CD-ROM Paper 216-9, pp. 1-16; http://www.math.

uni-frankfurt.de/∼numerik/maplestoch/jumpdiff.pdf .

[66] S. Cyganowski, P. Kloeden and J. Ombach, Elementary Probability to
Stochastic Differential Equations with Maple, Springer-Verlag, New York, NY,
2002.

[67] B. N. Datta, Numerical Linear Algebra and Applications, Brooks/Cole, New
York, NY, 1995.

[68] J. Dongarra and F. Sullivan, Guest Editor’s Introduction: The Top Ten
Algorithms, Computng in Sci. & Engineering, vol. 2, no. 1, 2000, pp. 22-23.

[69] J. L. Doob, Stochastic Processes, John Wiley, New York, NY, 1953.

[70] G. D. Doolen and John Hendricks, Monte Carlo at Work, Los Alamos
Science, Special Issue Dedicated to S. Ulam, 1987, pp. 142-143; composite
http://www.fas.org/sgp/othergov/doe/lanl/pubs/00326867.pdf .

“bk0allfinal”
2007/1/7
page 422

i

i

i

i

i

i

i

i

422 Bibliography

[71] P. Dorato, C. Abdallah and V. Cerone, Linear-Quadratic Control: An
Introduction, Prentice-Hall, Englewood Cliffs, NJ, 1995.

[72] J. Douglas Jr. and T. Dupont, Galerkin Methods of Parabolic Equations,
SIAM J. Numerical Analysis, vol. 7, 1970, pp. 575-626.

[73] J. Douglas Jr., Time Step Procedures of Nonlinear Parabolic PDEs in Math-
ematics of Finite Elements and Applications, MAFELAP, J. Whiteman (Edi-
tor), Academic Press, London, 1979, pp. 289-304.

[74] D. Duffie, Dynamic Asset Pricing Theory, Princeton University Press,
Princeton, NJ, 2001.

[75] D. Düvelmeyer Untersuchungen zu Chancen und Risiken von Anti-Trend-
Strategien am Beispiel des DAX-Futures, Thesis, Facultät für Mathe-
matik, Technische Universität Chemnitz, Chemnitz, 2001; URL:http://

www-usercgi.tu-chemnitz.de/{\sim}dana\diplom\ pdf\ dd.zip .

[76] P. Dyer and S. R. McReynolds, The Computation and Theory of Optimal
Control, Academic Press, New York, NY, 1970.

[77] E. B. Dykin, Markov Processes I and II, Academic Press, New York, NY,
1965.

[78] R. Eckhardt, Ulam, John von Neumann, and the Monte Carlo Method, Los
Alamos Science, Special Issue Dedicated to S. Ulam, 1987, pp. 131-137. http:
//www.fas.org/sgp/othergov/doe/lanl/pubs/00326867.pdf .

[79] P. Embrechts , Multivariate Extremes and Market Risk Scenarios, Bachelior
Finance Society Third World Congress, Chicago, July 2004.

[80] H. H. Engelhard, Brain Tumors and the Blood-Brain Barrier, Neuro-
Oncology: The Essentials, Thieme Medical Publishers, Inc., New York 2000,
pp. 49-53.

[81] J. D. Esary, F. Proschan and D. W. Walkup, Association of Random
Variables, with Applications, Annals of Mathematical Statistics, vol. 38, 1967,
pp. 1466-1474.

[82] M. Evans, N. Hastings and B. Peacock, Statistical Distributions, 3rd ed.,
John Wiley, New York, NY, 2000.

[83] W. Feller, An Introduction to Probability Theory and Its Application, vol. 1,
3rd ed., John Wiley, New York, NY, 1968.

[84] W. Feller, An Introduction to Probability Theory and Its Application, vol. 2,
2nd ed., John Wiley, New York, NY, 1971.

[85] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal
Control, Springer-Verlag, New York, NY, 1975.

“bk0allfinal”
2007/1/7
page 423

i

i

i

i

i

i

i

i

Bibliography 423

[86] J. J. Florentin, Optimal Control of Systems with Generalized Poisson Inputs,
ASME Trans., vol. 85D (also J. Basic Engr., vol. 2), 1963, pp. 217-221.

[87] G. E. Forsythe, M. A. Malcolm and C. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, Englewood Cliffs, NJ, 1977.

[88] B. Friedman, Principles and Techniques of Applied Mathematics, John Wiley,
New York, NY, 1956.

[89] Future Directions in Control Theory Panel, Report of the Panel on
Future Directions in Control Theory: A Mathematical Perspective, W. H. Flem-
ing (Chairman), Society for Industrial and Applied Mathematics, Philadelphia,
PA, 1988.

[90] Future Directions in Control, Dynamics, and Systems Panel, Future
Directions in Control in an Information Rich World: Report of the Panel on
Future Directions in Control, Dynamics, and Systems, R. M. Murray (Editor),
Society for Industrial and Applied Mathematics, Philadelphia, PA, July 2003.

[91] T. C. Gard, Introduction to Stochastic Differential Equations, Marcel-Dekker,
New York, NY, 1988.

[92] R. A. Gatenby and E. T. Gawlinski, A Reaction-Diffusion Model of Can-
cer Invasion, Cancer Research, vol. 56, 1996, pp. 5745-5753.

[93] S. B. Gershwin, Manufacturing Systems Engineering, Prentice-Hall, Engle-
wood Cliffs, NJ, 1994.

[94] I. I. Gihman and A. V. Skorohod, Stochastic Differential Equations,
Springer-Verlag, New York, NY, 1972.

[95] I. I. Gihman and A. V. Skorohod, Controlled Stochastic Processes,
Springer-Verlag, New York, NY, 1979.

[96] P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer-
NY, New York, NY, 2003.

[97] P. W. Glynn and W. Whitt, The Asymptotic Efficiency of Simulation
Estimators, Operations Research, vol. 40, no. 3, 1992, pp. 505-520.

[98] N. S. Goel and N. Richter-Dyn, Stochastic Models in Biology, Springer-
NY, New York, NY, 2003.

[99] J. H. Goldie and A. J. Coldman, Drug Resistance in Cancer: Mechanisms
and Models, Cambridge University Press, Cambridge, UK, 1998.

[100] M. S. Grewal and A. P. Andrews, Kalman Filtering: Theory and Prac-
tice, Prentice-Hall, Englewood Cliffs, NJ, 1993.

[101] M. D. Gunzburger, Perspectives in Flow Control and Optimization, SIAM,
Philadelphia, PA, 2003.

“bk0allfinal”
2007/1/7
page 424

i

i

i

i

i

i

i

i

424 Bibliography

[102] R. Haberman, Elementary Applied Partial Differential Equations with
Fourier Series and Boundary Value Problems, Prentice-Hall, Englewood Cliffs,
NJ, 1983.

[103] W. Hackbusch, A Numerical Method for Solving Parabolic Equations with
Opposite Orientations, Computing, vol. 20, 1978, pp. 229-240.

[104] J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods,
Methuen, London, UK, 1964.

[105] F. B. Hanson, Bioeconomic Model of the Lake Michigan Alewife Fishery,
Canadian Journal of Fisheries and Aquatic Sciences, vol. 44, suppl. 2, 1987,
pp. 298-305.

[106] F. B. Hanson, Stochastic Dynamic Programming: Advanced Computing
Constructs, in Proc. 28th IEEE Conference on Decision and Control, vol. 1,
1989, pp. 901-903.

[107] F. B. Hanson, Computational Dynamic Programming on a Vector Multipro-
cessor, IEEE Transactions on Automatic Control, vol. 36, no. 4, 1991, pp. 507-
511.

[108] F. B. Hanson, Computational Stochastic Dynamic Programming in Stochas-
tic Digital Control System Techniques, within series Control and Dynamic
Systems: Advances in Theory and Applications, vol. 76, C. T. Leondes, ed.,
Academic Press, New York, NY, 1996, pp. 103-162.

[109] F. B. Hanson, Local Supercomputing Training in the Computational Sci-
ences Using Remote National Centers, Future Generation Computer Systems:
Special Issue on Education in the Computational Science, vol. 19, 2003, pp.
1335-1347.

[110] F. B. Hanson, Computational Stochastic Control: Basic Foundations, Com-
plexity and Techniques, in Proc. 42nd IEEE Conference on Decision and Con-
trol, 2003, pp. 3024-3029.

[111] F. B. Hanson and K. Naimipour, Convergence of Numerical Method for
Multistate Stochastic Dynamic Programming, in Proc. Int. Federation of Au-
tomatic Control 12th World Congress, vol. 9, 1993, pp. 501-504.

[112] F. B. Hanson, C. J. Pratico, M. S. Vetter, and H. H. Xu, Multidi-
mensional Visualization Applied to Renewable Resource Management, in Proc.
Sixth SIAM Conference on Parallel Processing for Scientific Computing, vol. 2,
1993, pp. 1033-1036.

[113] F. B. Hanson and D. Ryan, Optimal Harvesting with Density Dependent
Random Effects, Natural Resource Modeling, vol. 2, 1988, pp. 439-455.

[114] F. B. Hanson and D. Ryan, Mean and Quasideterministic Equivalence for
Linear Stochastic Dynamics, Mathematical Biosciences, vol. 93, 1989, pp. 1-14.

“bk0allfinal”
2007/1/7
page 425

i

i

i

i

i

i

i

i

Bibliography 425

[115] F. B. Hanson and D. Ryan, Optimal Harvesting with Both Population and
Price Dynamics, Mathematical Biosciences, vol. 148, 1998, pp. 129-146.

[116] F. B. Hanson and C. Tier, An Asymptotic Solution to the First Passage
Time Problem for Singular Diffusion Arising in Population Biology, SIAM J.
Appl. Math., vol. 40, 1981, pp. 113-132.

[117] F. B. Hanson and C. Tier, A Stochastic Model of Tumor Growth, Mathe-
matical Biosciences, vol. 61, 1982, pp. 73-100.

[118] F. B. Hanson and H. C. Tuckwell, Persistence Times of Populations with
Large Random Fluctuations, Theor. Population Biol., vol. 14, 1978, pp. 46-61.

[119] F. B. Hanson and H. C. Tuckwell, Logistic Growth with Random Density
Independent Disasters, Theor. Population Biol., vol. 19, 1981, pp. 1-18.

[120] F. B. Hanson and H. C. Tuckwell, Diffusion Approximations for Neu-
ronal Activity including Reversal Potentials, J. Theoretical Neurobiology, vol. 2,
1983, pp. 127-153.

[121] F. B. Hanson and H. C. Tuckwell, Population Growth with Randomly
Distributed Jumps, J. Mathematical Biology, vol. 36, no. 2, 1997, pp. 169-187.

[122] F. B. Hanson and J. J. Westman, Optimal Consumption and Portfolio
Policies for Important Jump Events: Modeling and Computational Considera-
tions, in Proc. American Control Conference, 2001, pp. 4456-4661.

[123] F. B. Hanson and J. J. Westman, Optimal Consumption and Portfolio
Control for Jump-Diffusion Stock Process with Log-Normal Jumps, in Proc.
American Control Conference, July 2002, pp. 4256-4261; for corrected version
see ftp://www.math.uic.edu/pub/Hanson/ACC02/acc02webcor.pdf .

[124] F. B. Hanson and J. J. Westman, Stochastic Analysis of Jump-Diffusions
for Financial Log-Return Processes, in Stochastic Theory and Control, Pro-
ceedings of a Workshop held in Lawrence, Kansas, October 18-20, 2001, Lec-
ture Notes in Control and Information Sciences, vol. 280, B. Pasik-Duncan
(Editor), Springer- Verlag, New York, pp. 169-184, 2002; for corrected version
see ftp://www.math.uic.edu/pub/Hanson/KU01/ku02hwfmcor.pdf .

[125] F. B. Hanson and J. J. Westman, Jump-Diffusion Stock Return Mod-
els in Finance: Stochastic Process Density with Uniform-Jump Amplitude, in
Proc. 15th Int. Sympos. Mathematical Theory of Networks and Systems, Au-
gust 2002, pp. 1-7.

[126] F. B. Hanson and J. J. Westman, Portfolio Optimization with Jump–
Diffusions: Estimation of Time-Dependent Parameters and Application, in
Proc. 41st Conference on Decision and Control, December 2002, pp. 377–382.

[127] F. B. Hanson and J. J. Westman, Jump-Diffusion Stock-Return Model
with Weighted Fitting of Time-Dependent Parameters, in Proc. American Con-
trol Conference, 2003, pp. 4869-4874.

“bk0allfinal”
2007/1/7
page 426

i

i

i

i

i

i

i

i

426 Bibliography

[128] F. B. Hanson, J. J. Westman and Z. Zhu, Maximum Multinomial Like-
lihood Estimation of Market Parameters for Stock Jump-Diffusion Models, in
Mathematics of Finance: Proc. 2003 AMS-IMS-SIAM Joint Summer Research
Conference on Mathematics of Finance, AMS Contemporary Mathematics,
vol. 351, G. Yin and Q. Zhang (Editors), 2004, pp. 155-169.

[129] F. B. Hanson and J. J. Westman, Optimal Portfolio and Consumption
Policies Subject to Rishel’s Important Jump Events Model: Computational
Methods, IEEE Transactions on Automatic Control, vol. 48, no. 3, Special Issue
on Stochastic Control Methods in Financial Engineering, 2004, pp. 326-337.

[130] F,B. Hanson and G. Yan, American Put Option Pricing for Stochastic-
Volatility, Jump-Diffusion Models, Proc. 2007 American Control Conference,
2007, pp. 1-6, submitted invited paper; http://www.math.uic.edu/∼hanson/
pub/GYan/ACC07fhgywebpub.pdf .

[131] F. B. Hanson and Z. Zhu, Comparison of Market Parameters for Jump-
Diffusion Distributions Using Multinomial Maximum Likelihood Estimation,
in Proc. 42nd IEEE Conference on Decision and Control, December 2004,
pp. 3919-3924.

[132] J. M. Harrison and S. R. Pliska, Martingales and Stochastic Integrals
in the Theory of Continuous Trading, Stochastic Processes & Appl., vol. 11,
pp. 215-260, 1981.

[133] J. M. Harrison and S. R. Pliska, A Stochastic Calculus Model of Con-
tinuous Trading: Complete Markets, Stochastic Processes & Appl., vol. 15,
pp. 313-316, 1983.

[134] M. B. Haugh and A. W. Lo, Computational Challenges in Portfolio Man-
agement, Computing in Sci. &. Engr., pp. 54l-59, May/June 2000.

[135] D. Heath and M. Schweizer, Martingales versus PDEs in Finance: An
Equivalence Result with Examples, J. Appl. Prob., vol. 37, pp. 947-957, 2000.

[136] J. W. Helton and O. Merino, Classical Control Using H∞ Methods: An
Introduction to Design, SIAM, Philadelphia, PA, 1998.

[137] J. W. Helton and O. Merino, Classical Control Using H∞ Methods: The-
ory, Optimization, and Design, SIAM, Philadelphia, PA, 1998.

[138] R. C. Hennemuth, J. E. Palmer and B. E. Brown, A Statistical De-
scription of Recruitment in Eighteen Selected Fish Stocks, J. Northw. Alt. Fish
Sci., vol. 1, pp. 101-111, 1980.

[139] D. J. Higham, An Algorithmic Introduction to Numerical Simulation of
Stochastic Differential Equations, SIAM Review, vol. 43, no. 3, 2001, pp. 525-
546.

“bk0allfinal”
2007/1/7
page 427

i

i

i

i

i

i

i

i

Bibliography 427

[140] D. J. Higham, An Introduction to Financial Option Valuation: Mathematics,
Stochastics and Computation, Cambridge University Press, Cambridge, UK,
2004.

[141] D. J. Higham, Black-Scholes for Scientific Computing Students, Computing
in Science & Engineering, vol. 6, no. 6, pp. 72-79, November/December 2004.

[142] D. J. Higham and N. J. Higham, MATLAB Guide, SIAM, Philadelphia,
PA, 2000.

[143] D. J. Higham and P. E. Kloeden, Maple and MATLABfor Stochastic
Differential Equations in Finance, in Programming Languages and Systems in
Computational Economics and Finance, S. S. Neilsen (Editor), Kluwer, 2002,
pp. 233-270. http://www.maths.strath.ac.uk/∼aas96106/algfiles.html .

[144] D. J. Higham and P. E. Kloeden, Numerical Methods for Nonlinear
stochastic differential equations with jumps, Numerische Mathematik, vol. 101,
2005, pp. 101-119.

[145] D. J. Higham and P. E. Kloeden, Convergence and Stability of Implicit
Methods for Jump-Diffusion Systems, Numerische Mathematik, vol. 101, 2005,
pp. 101-119.

[146] D. J. Higham, X. Mao and A. M. Stuart, Strong Convergence of Euler-
Type Methods for Nonlinear Stochastic Differential Equations, SIAM J. Numer.
Anal., vol. 40, no. 3, 2002, pp. 1041-1063.

[147] J. C. Hull, Options, Futures, & Other Derivatives, 4th Edition, Prentice-
Hall, Englewood Cliffs, NJ, 2000.

[148] International Pacific Halibut Commission, Annual Reports, Seattle,
WA , 1984-1985.

[149] K. Itô, On Stochastic Differential Equations, Mem. Amer. Math. Soc., no. 4,
1951, pp. 1-51.

[150] P. Jäckel, Monte Carlo Methods in Finance, John Wiley, New York, NY,
2002.

[151] D. H. Jacobson and D. Q. Mayne, Differential Dynamic Programming,
American Elsevier, New York, NY, 1970.

[152] J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes,
Springer-Verlag, Berlin, 1987.

[153] R. A. Jarrow and E. R. Rosenfeld, Jump Risks and the Intertemporal
Capital Asset Pricing Model, J. Business, vol. 57 (3), 1984, pp. 337-351.

[154] A. H. Jazwinski, Stochastic Processes and Filtering Theory, Academic Press,
New York, NY, 1970.

“bk0allfinal”
2007/1/7
page 428

i

i

i

i

i

i

i

i

428 Bibliography

[155] P. Jorion, On Jump Processes in the Foreign Exchange and Stock Markets,
Rev. Fin. Studies, vol. 88, no. 4, 1989, pp. 427-445.

[156] R. E. Kalman, Contributions to the Theory of Optimal Control, Bol. Soc.
Mat. Mex., vol. 5, 1960, pp. 102-119.

[157] M. H. Kalos and P. A. Whitlock, Monte Carlo Methods, Volume I:
Basics, John Wiley and Sons, NY, 1986.

[158] M. I. Kamien and N. L. Schwartz, Dynamic Optimization: The Calculus
of Variations and Optimal Control in Economics and Management, North-
Holland, New York, NY, 1981.

[159] I. Karatzas, J. P. Lehoczky, S. P. Sethi and S. E. Shreve, Explicit
Solution of a General Consumption/Investment Problem, Math. Oper. Res.,
vol. 11, 1986, pp. 261–294. (Reprinted in Sethi [245, Chapter 2].)

[160] I. Karatzas and S. E. Shreve, Methods of Mathematical Finance,
Springer-Verlag, New York, NY, 1998.

[161] S. Karlin and H. M. Taylor, A First Course in Stochastic Processes, 2nd
ed., Academic Press, New York, NY, 1975.

[162] S. Karlin and H. M. Taylor, A Second Course in Stochastic Processes,
Academic Press, New York, NY, 1981.

[163] D. E. Kirk, Optimal Control Theory: An Introduction, Prentice-Hall, Engle-
wood Cliffs, NJ, 1970. (Reprinted by Dover Publications, Mineola, NY, 2004.)

[164] F. C. Klebaner, Introduction to Stochastic Calculus with Applications, Im-
perial College Press, London, UK, 1998.

[165] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differen-
tial Equations, Springer-Verlag, New York, NY, 1992.

[166] P. E. Kloeden, E. Platen and H. Schurz, Numerical Solution of SDE
Though Computer Experiments, Springer-Verlag, New York, NY, 1994.

[167] P. Kokotović, H. K. Khalil and J. O’Reilly, Singular Perturbation
Methods in Control: Analysis and Design, Academic Press, New York, NY,
1986.

[168] A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis, R. A.
Silverman (Translator), Dover Publications, New York, NY, 1970.

[169] S. G. Kou, A Jump Diffusion Model for Option Pricing, Management Sci-
ence, vol. 48, 2002, pp. 1086–1101.

[170] S. G. Kou and H. Wang, Option Pricing Under a Double Exponential Jump
Diffusion Model, Management Science, vol. 50 (9), 2004), pp. 1178–1192.

“bk0allfinal”
2007/1/7
page 429

i

i

i

i

i

i

i

i

Bibliography 429

[171] K. Koya, H. Kimura and M. Kawato, Neural Mechanisms of Learning
and Control IEEE Control Systems Magazine, vol. 21, no. 4, August 2001,
pp. 42-54.

[172] H. Kunita and S. Watanabe, On Square-Integrable Martingales, Nagoya
Math. J., vol. 30, 1967, pp. 209-245.

[173] H. J. Kushner, Stochastic Stability and Control, Academic Press, New York,
NY, 1967.

[174] H. J. Kushner, A Survey of Some Applications of Probability and Stochas-
tic Control Theory to Finite Difference Methods for Degenerate Elliptic and
Parabolic Equations, SIAM Review, vol. 18, 1976, pp. 545-577.

[175] H. J. Kushner, Numerical Methods for Stochastic Control in Continuous
Time, SIAM J. Control and Optimizations, vol. 28, 1990, pp. 999-1048.

[176] H. J. Kushner, Numerical Methods for Stochastic Control in Continuous
Time, SIAM J. Control and Optimizations, vol. 28, 1990, pp. 999-1048.

[177] H. J. Kushner, Jump-Diffusions with Controlled Jumps: Existence and Nu-
merical Methods, J. Math. Anal. Applic., vol. 249, no. 1, 2000, pp. 179-198.

[178] H. J. Kushner amd G. DiMasi, Approximation for Functionals and Opti-
mal Control Problems on Jump Diffusions Processes, J. Math. Anal. Applic.,
vol. 63, 1978, pp. 772-800.

[179] H. J. Kushner and P. G. Dupuis, Numerical Methods for Stochastic Con-
trol Problems in Continuous Time, 2nd Edition, Springer-Verlag, New York,
NY, 2001, .

[180] H. J. Kushner and D. J. Jarvis, Large-Scale Computations for High Di-
mension Control Systems, in Proc. 33rd IEEE Conference on Decision and
Control, vol. 1, 1994, pp. 461-465.

[181] H. J. Kushner and G. G. Yin, Stochastic Approximation Algorithms Re-
cursive Algorithms and Applications, Springer-Verlag, New York, NY, 2003.

[182] R. E. Larson, A Survey of Dynamic Programming Computational Proce-
dures, IEEE Transactions on Automatic Control, vol. AC-16, 1967, pp. 767-
774.

[183] G. P. Lepage, A New Algorithm for Adaptive Multidimensional Integration
, Journal of Computational Physics, vol. 27, no. 2, 1978, pp. 192-203.

[184] F. L. Lewis, Optimal Estimation with an Introduction to Stochastic Control
Theory, John Wiley, New York, NY, 1986.

[185] M. J. Lighthill, Introduction to Fourier Analysis and Generalised Func-
tions, Cambridge University Press, Cambridge, UK, 1964.

“bk0allfinal”
2007/1/7
page 430

i

i

i

i

i

i

i

i

430 Bibliography

[186] A. Lipton, Mathematical Methods for Foreign Exchange: A Financial Engi-
neer’s Approach , World Scientific, Singapore, 2001.

[187] D. Ludwig, Stochastic Population Theories, Springer-Verlag, New York, NY,
1974.

[188] D. Ludwig, Persistence of Dynamical Systems Under Random Perturbations,
SIAM Review, vol. 17, 1979, pp. 605-640.

[189] D. Ludwig, Optimal Harvesting of a Randomly Fluctuating Resource. I: Ap-
plication of Perturbation Methods, SIAM J. Applied Mathematics, vol. 37, 1979,
pp. 166-184.

[190] D. Ludwig and J. M. Varah, Optimal Harvesting of a Randomly Fluctu-
ating Resource. II: Numerical Methods and Results, SIAM J. Applied Mathe-
matics, vol. 37, 1979, pp. 185-205.

[191] Y. Maghsoodi, Mean Square Efficient Numerical Solution of Jump-Diffusion
Stochastic Differential Equations, Sankhyā: Indian J. Stat., vol. 58, ser. A,
pt. 1, 1996, pp. 25-47.

[192] Y. Maghsoodi and C. J. Harris, In-Probability Approximation and Sim-
ulation of Nonlinear Jump-Diffusion Stochastic Differential Equations, IMA J.
Math Control & Info., vol. 4, 1996, pp. 65-492.

[193] M. Mangel, Decision and Control in Uncertain Resource Systems, Academic
Press, New York, NY, 1985.

[194] M. Mariton, Jump Linear Systems in Automatic Control, M. Dekker, New
York, NY, 1990.

[195] G. Marsaglia and T. A. Bray, A Convenient Method for Generating
Normal Variables, SIAM Rev., vol. 6, 1964, pp. 260-264.

[196] D. Q. Mayne, A Second–Order Gradient Method for Determining Optimal
Control of Non–Linear Discrete Time Systems, International Journal of Con-
trol. vol. 3, 1966, pp. 85-95.

[197] D. Q. Mayne, Differential Dynamic Programming — A Unified Approach
to the Optimization of Dynamical Systems, Control and Dynamical Systems:
Advances in Theory and Applications, vol. 10, C. T. Leondes, ed., Academic
Press, New York, NY, 1973, pp. 179-254.

[198] R. C. Merton, Lifetime Portfolio Selection Under Uncertainty: The
Continuous-Time Case, Rev. Econ. and Stat., vol. 51, 1969, pp. 247-257.
(Reprinted in Merton [203, Chapter 4].)

[199] R. C. Merton, Optimum Consumption and Portfolio Rules in a Continuous-
Time Model, J. Econ. Theory, vol. 3 (4), 1971, pp. 373-413. (Reprinted in
Merton [203, Chapter 5].)

“bk0allfinal”
2007/1/7
page 431

i

i

i

i

i

i

i

i

Bibliography 431

[200] R. C. Merton, Eratum, J. Econ. Theory, vol. 6, no. 2, 1973, pp. 213-214.

[201] R. C. Merton, Theory of Rational Option Pricing, Bell J. Econ. Mgmt. Sci.,
vol. 4, 1973 (Spring), pp. 141-183. (Reprinted in Merton [203, Chapter 8].)

[202] R. C. Merton, Option Pricing When Underlying Stock Returns are Dis-
continuous, J. Financial Economics, vol. 3, 1976, pp. 125-144. (Reprinted in
Merton [203, Chapter 9].)

[203] R. C. Merton, Continuous Time Finance, Blackwell Publishers, Cambridge,
MA, 1992.

[204] R. C. Merton and M. S. Scholes, Fischer Black, J. Finance, vol. 50,
no. 5, 1996, pp. 1359-1369.

[205] W. C. Messner and D. M. Tilbury, Control Tutorials for MATLAB And
Simulink: User’s Guide, Addison-Wesley Publ. Co., 2002; see also http://

www.engin.umich.edu/group/ctm/ .

[206] N. Metropolis, The Beginning of the Monte Carlo Method, Los Alamos
Science, Special Issue Dedicated to S. Ulam, 1987, pp. 125-130. http://www.
fas.org/sgp/othergov/doe/lanl/pubs/00326866.pdf .

[207] N. Metropolis, A. N. Rosenbluth, M. N. Rosenbluth, A. H. Teller,
and E. Teller’ Equation of State Calculation by Fast Computing Machines,
J. Chem. Phys., vol. 21, no. 6, 1953, 10871092.

[208] N. Metropolis and S. Ulam, The Monte Carlo Method, J. Amer. Stat.
Assoc., vol. 44, no. 247, 1949, pp. 335-341.

[209] T. Mikosch, Elementary Stochastic Calculus: with Finance in View, World
Scientific, Singapore, 1998.

[210] C. Moler, et al., Using MATLAB, vers 6., Mathworks, Natick, MA, 2000.

[211] F. Moss, L. M. Ward and W. G. Sannita, Stochastic Resonance and Sen-
sory Information Processing, Clinical Neurophysiology, vol. 115, 2004, pp. 267-
281.

[212] G. I. Murphy., Clupeoids, in Fish Population Dynamics, J. A. Gulland (Ed-
itor), John Wiley, New York, NY, 1977, pp. 283-308.

[213] J. D. Murray., Mathematical Biology, I: An Introduction, Springer-NY, New
York, NY, 2002.

[214] J. D. Murray., Mathematical Biology, II: Spatial Models and Biomedical
Applications, Springer-NY, New York, NY, 2003.

“bk0allfinal”
2007/1/7
page 432

i

i

i

i

i

i

i

i

432 Bibliography

[215] R. M. Murray, K. J. Aström, R. W. Brockett and G. Stein, Fu-
ture Directions in Control in an Information Rich World: A Summary of the
Report of the Panel on Future Directions in Control, Dynamics, and Systems,
IEEE Control Systems Magazine, vol. 23, no. 2, April 2003, pp. 20-33; see
also URL:http://www.cds.caltech.edu/∼murray/cdspanel/, California In-
stitute of Technology, April 2002.

[216] K. Naimipour and F. B. Hanson, Convergence of a Numerical Method for
the Bellman Equation of Stochastic Optimal Control with Quadratic Costs and
Constrained Control, Dynamics and Control, vol. 3, no. 3, 1993, pp. 237-259.

[217] S. N. Neftci, Introduction to the Mathematics of Financial Derivative, 2nd
ed., Academic Press, New York, NY, 2000.

[218] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo
Methods, SIAM, Philadelphia, PA, 1989.

[219] R. M. Nisbet and W. S. C. Gurney, Modelling Fluctuating Populations,
John Wiley, New York, NY, 1982.

[220] N. S. Nise, Control Systems Engineering, John Wiley, New York, NY, 2000.

[221] J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag,
New York, NY, 1999.

[222] B. Øksendal, Stochastic Differential Equations: An Introduction with Ap-
plications, Fifth ed., Springer-Verlag, New York, NY, 1998.

[223] B. Øksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions,
Springer-Verlag, Berlin, 2005.

[224] E. Parzen, Stochastic Processes, Holden-Day, San Francisco, CA, 1962.

[225] S. R. Pliska, Introduction to Mathematical Finance: Discrete Time Models,
Blackwell Publishers, Cambridge, MA, 1997.

[226] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and
E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Wiley-
Interscience Publishers, New York, NY, 1962.

[227] E. Polak, An Historical Survey of Computational Methods in Optimal Con-
trol, SIAM Review, vol. 15, 1973, pp. 553-584.

[228] C. J. Pratico, F. B. Hanson, H. H. Xu, D. J. Jarvis and M. S.
Vetter, Visualization for the Management of Renewable Resources in an Un-
certain Environment, in Proc. Supercomputing ’92, 1992, pp. 258-266, color
plates p. 843.

[229] W. H. Press and G. R. Farrar, Recursive Stratified Sampling for Multidi-
mensional Monte Carlo Integration, Computers in Physics, vol. 4, no. 2, 1990,
pp. 190-195.

“bk0allfinal”
2007/1/7
page 433

i

i

i

i

i

i

i

i

Bibliography 433

[230] W. H Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flan-
nery, Numerical Recipes in C++: The Art of Scientific Computing, 2nd ed.,
Cambridge University Press, Cambridge, UK, 2002.

[231] A. Priplata, J. Niemi, M. Salen, J. Harry L. A. Lipsitz and J. J.
Collins, Noise-Enhanced Human Balance Control, Phys. Rev. Let., vol. 89,
no. 23, 2002, pp. 2381011-2381014.

[232] P. Protter, Stochastic Integration and Differential Equations: A New Ap-
proach, Springer-Verlag, Berlin, 2004.

[233] D. W. Repperger, Celebrating the 100th Anniversary of Controlled, Sus-
tained, and Powered Air Flight, in IEEE Control Systems Magazine, vol. 23,
no. 6, 2003, pp. 12-16.

[234] Research Directions in Distributed Parameter Systems, R. C. Smith and M. A.
Demetriou (Editors), SIAM, Philadelphia, PA, 2003.

[235] R. Rishel, Modeling and Portfolio Optimization for Stock Prices Dependent
on External Events, in Proc. 38th IEEE Conference on Decision and Control,
1999, pp. 2788-2793.

[236] L. C. G. Rogers and D. Williams, Diffusions, Markov Processes and
Martingales, Cambridge University Press, Cambridge, UK, 2000.

[237] S. M. Ross, Stochastic Processes, John Wiley, New York, NY, 1983.

[238] S. M. Ross, Introduction to Probability Models, 7th ed., Academic Press,
2000.

[239] W. J. Runggaldier, Jump-Diffusion Models, in Handbook of Heavy Tailed
Distributions in Finance, S. T. Rachev (Editor), Handbooks in Finance,
Elsevier/North-Holland, New York, NY, 2003, pp. 169-209.

[240] D. Rust, Do People Behave According to Bellman’s Principle Optimality?,
Hoover Institution Working Paper E-92-10, 65 pages, 1994.

[241] D. Ryan and F. B. Hanson, Optimal Harvesting with Exponential Growth in
an Environment with Random Disasters and Bonanzas, Math. Biosci., vol. 74,
1985, pp. 37-57.

[242] D. Ryan and F. B. Hanson, Optimal Harvesting of a Logistic Population in
an Environment with Stochastic Jumps, J. Math. Biol., vol. 24, 1986, pp. 259-
277.

[243] T. H. Rydberg, The Normal Inverse Gaussian Lévy Process: Simulation
and Approximation, Comm. Stat. Stoch. Models, vol. 13, 1997, pp. 887-910.

[244] Z. Schuss, Theory and Applications of Stochastic Differential Equations,
John Wiley, New York, NY, 1980.

“bk0allfinal”
2007/1/7
page 434

i

i

i

i

i

i

i

i

434 Bibliography

[245] S. P. Sethi, Optimal Consumption and Investment with Bankruptcy Kluwer
Academic Publishers, Boston, MA, 1997.

[246] S. P. Sethi and M. Taksar, A Note on Merton’s ”Optimum Consumption
and Portfolio Rules in a Continuos-Time Model” J. Econ. Theory, vol. 46 (2),
1988, pp. 395-401. (Reprinted in Sethi [245, Chapter 3].)

[247] S. P. Sethi and Q. Zhang, Hierarchical Decision Making in Stochastic
Manufacturing Systems Birkhäuser, Boston, MA, 1994.

[248] S. E. Shreve, Stochastic Calculus Models for Finance II: Continuous-Time
Models, Springer-Verlag, New York, NY, 2004.

[249] L. Simpson-Herren and H. H. Lloyd, Kinetics Parameters and Growth
Curves for Experimental Tumor Systems, Cancer Chemo. Reps., vol. 54, 1970,
pp. 143-174.

[250] C. Sindermann, Principal Diseases of Marine Fish and Shellfish, Academic
Press, New York, NY, 1970.

[251] I. N. Sneddon, Elements of Partial Differential Equations, McGraw-Hill
Book Co., New York, NY, 1957.

[252] D. L. Snyder and M. I. Miller, Random Point Processes in Time and
Space, 2nd ed., Springer-Verlag, New York, NY, 1991.

[253] I. M. Sobol’, On the Distribution of Points in a Cube and the Approximate
Evaluation of Integrals Comp. Math. and Math. Physics (Engl. Transl.), vol. 7,
1967, pp. 784–802.

[254] H. W. Sorensen (ed.), Kalman Filtering: Theory and Application, IEEE
Press, New York, NY, 1985.

[255] G. G. Steel, Growth Kinetics of Tumors, Clarendon Press, Oxford, UK,
1977.

[256] J. M. Steele, Stochastic Calculus and Financial Applications, Springer-NY,
New York, NY, 2001.

[257] R. B. Stein, Nerve and Muscle: Membranes, Cells, and Systems, Plenum
Press, New York, NY, 1980.

[258] R. Stengel, Stochastic Optimal Control: Theory and Application, Dover
Publications, New York, NY, 1994.

[259] S. Stojanovic, Computational Financial Mathematics using Mathematica:
Optimal Trading in Stocks and Options, Birkhäuser, Boston, MA, 2002.

[260] R. L. Stratonovich, A New Representation for Stochastic Integrals and
Equations, SIAM J. Control, vol. 4, 1966, pp. 362-371.

“bk0allfinal”
2007/1/7
page 435

i

i

i

i

i

i

i

i

Bibliography 435

[261] G. W. Swan, Applications of Optimal Control in Biomedicine, Marcel
Dekker, New York, NY, 1984.

[262] K. R. Swanson, Mathematical Modeling of the Growth and Control of Tu-
mors, Ph.D. Thesis, University of Washington, Seattle, 1999.

[263] A. E. Taylor and W. R. Mann, Advanced Calculus, 2nd ed., Xerox College
Publishing, Lexington, MA, 1972.

[264] D. Tavella and C. Randall, Pricing Financial Instruments: The Finite
Difference Method, John Wiley, New York, NY, 2000.

[265] H. M. Taylor and S. Karlin, An Introduction to Stochastic Modeling, 3rd
ed., Academic Press, New York, NY, 1998.

[266] C. Tier and F. B. Hanson, Persistence in Density Dependent Stochastic
Populations, Mathematical Biosciences, vol. 53, 1981, pp. 89-117.

[267] H .C. Tijms, Stochastic Modelling and Analysis: A Computational Approach,
John Wiley, New York, NY, 1986.

[268] D. M. Tilbury and W. C. Messner, Control Tutorials for Software In-
struction over the World Wide Web, IEEE Trans. Automatic Control, vol. 42,
no. 4, 1999, pp. 237-246.

[269] H .C. Tuckwell, Stochastic Processes in the Neurosciences, SIAM, Philadel-
phia, PA, 1989.

[270] H .C. Tuckwell, Elementary Applications of Probability Theory, Chapman
and Hall, London, UK, 1995.

[271] M. Turelli, Random Environments and Stochastic Calculus, Theor. Popu-
lation Biol., vol. 12, 1977, pp. 140-178.

[272] W. T. Vetterling, S. A. Teukolsky, W. H Press and B. P. Flan-
nery, Numerical Recipes: Example Book [C++], 2nd ed., Cambridge Univer-
sity Press, Cambridge, UK, 2002.

[273] J. von Neumann, Various Techniques Used in Connection with Random Dig-
its, in Applied Mathematics Series, vol. 12, U. S. National Bureau of Standards,
1951, pp. 36-38.

[274] J. J. Westman and F. B. Hanson, The LQGP Problem: A Manufacturing
Application, in Proc. American Control Conference, 1997, pp. 566-570.

[275] J. J. Westman and F. B. Hanson, Nonlinear State Dynamics: Computa-
tional Methods and Manufacturing Example, International Journal of Control,
2000, vol. 73, pp. 464-480.

[276] J. J. Westman and F. B. Hanson, State Dependent Jump Models in Op-
timal Control, in Proc. 38th IEEE Conference on Decision and Control, 1999,
pp. 2378-2383.

“bk0allfinal”
2007/1/7
page 436

i

i

i

i

i

i

i

i

436 Bibliography

[277] J. J. Westman and F. B. Hanson, Nonlinear State Dynamics: Computa-
tional Methods and Manufacturing Example, International Journal of Control,
vol. 73, 2000, pp. 464-480.

[278] J. J. Westman and F. B. Hanson, MMS Production Scheduling Subject
to Strikes in Random Environments, in Proc. American Control Conference,
2000, pp. 2194-2198.

[279] J. J. Westman, F. B. Hanson and E. K. Boukas, Optimal Production
Scheduling for Manufacturing Systems with Preventive Maintenance in an Un-
certain Environment, in Proc. American Control Conference, 2001, pp. 1375-
1380.

[280] N. Wiener, Differential Space, Journal of Math. and Physics, vol. 2, 1923,
pp. 132-174.

[281] N. Wiener, Generalized Harmonic Analysis, Acta Mathematica, vol. 55,
1930, pp. 117-258.

[282] P. Wilmott, S. Howison and J. Dewynne, The Mathematics of Financial
Derivatives: A Student Introduction, Cambridge University Press, Cambridge,
UK, 1996.

[283] P. Wilmott, Paul Wilmott on Quantitative Finance, vols. 1 & 2, John Wiley,
New York, NY, 2000.

[284] S. Wolfram, Mathematica: A System for Doing Mathematics by Computer,
Addison-Wesley, Reading, MA, 1988.

[285] W. M. Wonham, Random Differential Equations in Control Theory, in Prob-
abilistic Methods in Applied Mathematics, vol. 2, Academic Press, New York,
NY, 1970, pp. 131-212.

[286] Yahoo! Finance, Historical Quotes, S & P 500 Symbol ̂SPC, URL:http:
//chart.yahoo.com/ , February 2001.

[287] G. Yan and F. B. Hanson, Option Pricing for a Stochastic-Volatility Jump-
Diffusion Model with Log-Uniform Jump-Amplitudes, Proc. 2006 American
Control Conference, 2006, pp. 2989-2994.

[288] J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and
HJB Equations, Springer-Verlag, New York, NY, 1999.

[289] Z. Zhu, Option Pricing and Jump-Diffusion Models, Ph.D. Thesis in Mathe-
matics, Univ. Illinois at Chicago, Chicago, IL, 17 October 2005, 165 pages.

[290] Z. Zhu and F. B. Hanson, A Monte-Carlo Option-Pricing Algorithm for
Log-Uniform Jump-Diffusion Model in Proc. 44nd IEEE Conference on Deci-
sion and Control and European Control Conference, 2005, pp. 5221-5226.

“bk0allfinal”
2007/1/7
page 437

i

i

i

i

i

i

i

i

Bibliography 437

[291] Z. Zhu and F. B. Hanson, Optimal Portfolio Application with Double-
Uniform Jump Model in Control Theory Applications in Financial Engineering
and Manufacturing, International Series in Operations Research and Manage-
ment Sciences, Springer/Kluwer, New York, NY, 2006, 28 pages, invited chap-
ter.

“bk0allfinal”
2007/1/7
page 438

i

i

i

i

i

i

i

i

Index

(2k − 1)!!, double factorial, 7
(f ∗ g)(x), convolution, B32
A−1, inverse, B42
A⊤, transpose, B41
Fx(x), gradient, B45
H(x), step function, B32
HR(x), RC step function, B59
P (t), Poisson process, 1, 2, B21
P (t)-stochastic integration, 65
P (t;Q), marked Poisson process, 133
Sn, partial sum, B65
Tj, jump time, 14
U(x; a, b), step function, 16, 115, 123,

124
W (t), Wiener process, 1, 2
W (t)-stochastic integration, 35
[F](X(t), t), 105
[F](X(t), t), jump in F , 105
Bx, backward operator, 195, 196, 201(
n
k

)
, binomial coefficient, B49

CX(u), characteristic function, B34
CX(z), characteristic function, 406
Cov[X,Y], covariance, B24
∆P (t), Poisson process increment, 12
∆P (t;Q), marked Poisson increment,

134
∆W (t), Wiener process increment, 3
∆Λ(t), jump count increment, 21
∆h, h-jump, 196
Det[A], determinant, B43
. /, element-wise division, 234
. ∗, element-wise multiplication, 186
E[X], expectation, B18
E[X |Y], conditional expectation, B28
EX,Y [f(X,Y)], joint expectation, B24
Fx, forward operator, 201

Γ(x), gamma function, 6, B53
Λ(t), time-dependent jump count, 21

M1(S)
a.c.≡ M1(S), equivalent mea-
sure, 378

M2(S) ≺ M1(S), absolutely contin-
uous, 378

O, big oh, B51
1S , indicator function, 244, 270, 280

1x∈A, indicator function, B54
ord, same order, B51

P(dt,dq), Poisson
random measure, 132

Φ(x), probability distribution, B2

ΦG(t)(x), Gaussian distribution, B11
ΦP (t)(k; Λ(t)), temporal Poisson dis-

tribution, 21
ΦP (t)(k;λt), simple Poisson distribu-

tion, 13
ΦX,Y (x, y), continuous joint distribu-

tion, B22

ΦX,Y (x, yj), mixed joint distribution,
B22

Φ∆P (t)(k; ∆Λ(t)), temporal Poisson in-
crement distribution, 21

Φ∆P (t)(k;λ∆t),simple Poisson incre-
ment distribution, 13

Φ∆Tj |Tj
(∆t), inter-jump time distri-
bution, 23

ΦX|Y (x|y), conditional distribution, B26
ΦdP (t)(k;λ(t)dt), differential Poisson

distribution, 21
ΦdP (t)(k;λdt), differential simple Pois-

son distribution, 13
ΦdP (t)(k; dλ(t)), differential Poisson dis-

tribution, 23
Φe(t;µ), exponential distribution, B15

438

“bk0allfinal”
2007/1/7
page 439

i

i

i

i

i

i

i

i

Index 439

Φln, lognormal distribution, B12
Φn(x;µ, σ2), normal distribution, B9
Φu(x; a, b), uniform distribution, B5
Prob, probability, B18
Trace[A], trace, B41
Var[X], variamce, discrete case, B19
Var[X], variance, B5
δP (t;Q), marked Poisson differential,

133, 134
δR(x), RC delta function, B60
δi,j , Kronecker delta, B20
δ(x), Dirac delta function, B55
∂F

∂x
(x), gradient, B45

dt
=, equals in dt-precision, 42
dt
=
ms

, equals in mean square dt-precision,

42
erf, error function, B9
erfc, complementary error function, B9
η3[X], skewness coefficient, B5
η4[X], kurtosis coefficient, B5
gen
= , generalized equality, B56
∇x[F](x), gradient, B45
ims
= , Itô mean square equals, 37, 65
ims
=

sym
, symbollically equals in Itô mean

square, 42∫
h(P)dP , jump integral, 70∫
h(X, t)dP , jump integral, 72

λ, Poisson jump rate, 2, B21
λ(t), time-dependent jump rate, 21
condp[A], condition number, B43
limmean

n→∞, limit in the mean, 37
|| A ||p, matrix p-norm, B42
|| x ||, vector norm, B42
min, minimum, 4, 10
limms

n→∞, mean square limit, 37, 65
µ, mean, B4
o, little oh, B51
φ(x), probability density, B3
φW (t)(w), Wiener process density, 3
φX,Y (x, y), continuous joint distribu-

tion, B22
φX,Y (x, yj), hybrid joint density-distribution,

B22

φ∆W (t)(w), Wiener process increment
density, 4

φX|Y (x|y), conditional density, B28
φdW (t)(w), Wiener process differential

density, 4
φe(t;µ), exponential density, B15
φln, lognormal distribution, B11
φn(x;µ, σ2), normal density, B8
φsn, secant-normal density, 159
φu(x; a, b), uniform density, B6
πk, discrete distribution, B18
πX,Y (xi, yj), discrete joint distribution,

B22
πX,Y (xi, yj), joint discrete distribution,

B25
πX|Y (x|y), conditional discrete distri-

bution, B26
ρi,j , correlation coefficient, 163, B46
ŝ2n, sample variance unbiased estimate,

B38
σ, standard deviation, B5
σ-algebra, 375
σ2, variance, B5
∼, asymptotic, B51
τe(x0, t0), exit time, 211
x!, factorial function, 6, B53
dP (t), Poisson process differential, 2
dP (t;Q), Compound Poisson process

differential, 136
dW (t), Wiener process differential, 2
dΛ(t), jump count differential, 21
f (m)(x), mth order derivative, B65
k = m1 : m2

colon notation, B18
definition, B18
loop notation, B65

mn, sample mean, B38
p(f ; π), multinomial joint probability,

B48
p(f1, f2;π1, π2). binomial distribution,

B48
pk(Λ), Poisson distribution, B19
pk(λt), simple Poisson distribution, B21
s2n, sample variance, B38
t-stochastic integration, 34
⌊x⌋, floor function, B59

“bk0allfinal”
2007/1/7
page 440

i

i

i

i

i

i

i

i

440 Index

rand

’state’, B8
MATLAB uniform RNG, 14, B7

randn

’state’, 5
MATAB normal RNG, B10
MATLAB normal RNG, 5

fzero, MATLAB zero finder, A11
hist, MATLAB histogram, B7
log, MATLAB natural logarithm, 14
plot, MATLAB plot function, 14
sqrt, MATLAB square root function,

5

control
bang-regular-bang, 352, 357

decomposition
Lévy-Itô, 413

Lévy process
geometric, 414

a. e., 378
ABM, 397
absolute extrema, B69
absolutely continuous, 378
absorbing boundary conditions, 208
acceptance-rejection method, 15, 278
adapted, 41
additive

Brownian motion, 299
noise, 96, 97, 299

adjoint
formal, 203
operator, 201
state, A7

algebra
matrix, B40

algorithm
Box-Muller, 280

almost
everywhere, 378
surely (a.s.), 382

amplitude
jump, 106

analysis, B1
matrix, B40

antithetic variates, 287
applications

biology, 349
biomedicine, 357
financial engineering, 295
financial mathematics, 295
mathematical biology, 349

approximation
diffusion, 204, 359
normal, B21
Poisson, B50
Taylor, B65
Taylor remainder, B65

arbitrage
profits, 305

arithmetic
Brownian motion, 397

assumption
piece-wise-constant approximation,

48
asymptotic

∼, B51
expansion, B52
notation, B51

O, B51
ord, B51
o, B51
∼, B51

sequence, B52

backward
equation, 195
Euler method, 264
Euler’s method, 33
finite difference, 232
Kolmogorov equation, 198
operator, 195, 196, 198, 201

bang control, A20
bang-bang control, 354
bang-regular-bang control, 352, 357
bankruptcy, 326
Bayes’ rule, B72
Bellman

principle of optimality, 174, 177,
A31

Bellman’s curse of dimensionality, 235

“bk0allfinal”
2007/1/7
page 441

i

i

i

i

i

i

i

i

Index 441

Bernoulli
distribution, 20
trials, B49

BFD, 232
bias, 269
big oh, O, B51
binomial(

n
k

)
, B49

p(f1, f2;π1, π2), B48
coefficient, B49
distribution, B75

Bernoulli trials, B49
normal approximation, B50
Poisson approximation, B50

expansion, B49
expectation, B49
theorem, B49

biomass, 350, 354
biomedical

applications, 357
variability, 357

bivariate normal
density, B47
distribution, B47

Black-Scholes
fraction, 307
Merton fraction, 307
model, 296
option pricing PDE, 308
PDE, 299

Black-Scholes-Merton model, 300
Bolza form, A2
bond, 330
boundary

absorbing, 331
extrema, B70
regular, 363
singular, 363

boundary condition
absorbing, 208
derivative, 231
no-flux, 231
reflecting, 209

boundary point, A3
Box-Muller algorithm, 280

brain tumors, 363
branching process, 358
Brownian motion, 2

additive, 299
geometric, 99, 297

budget equation, 305

calculus of variations, A4
fundamental lemma, 204, A6
fundamental theorem, A6

call option, 296, 300
cancer

drug, 363
growth, 358

carrying capacity, 350
catchability, 350
Cauchy-Binet formula, B43
Cauchy-Schwarz inequality, 50, B72
centered Poisson process

characteristic function, 409
central

finite difference, 232, 234
finite differences, 227
limit theorem, B40
moments

fourth, B5
kurtosis, B5
second, B5
skew, B5
third, B5
variance, B5

CFD, 227, 232
chain rules

G(W (t)), 86
G(W (t), t), 87
H(P (t), t), 103, 104
diffusion F (X(t), t), 100
Itô, 86
jump F (X(t), t), 105
jump-diffusion, 108

change of index, 36
Chapman-Kolmogorov equation, 208
characteristic function, 406, B34

centered Poisson process, 409
compound Poisson process, 409
Gaussian process, 408

“bk0allfinal”
2007/1/7
page 442

i

i

i

i

i

i

i

i

442 Index

jump-diffusion process, 410
Poisson process, 408
Wiener process, 408

chattering control, 186
cheap control, 354
Chebyshev inequality, 38, 218, 360,

B71
closed loop control, A24
co-state, A3
coefficient

binomial, B49
correlation, 163, B46
diffusion, B11
excess kurtosis, B5
kurtosis, B5
skewness, B5
variation, 113

coefficient of variation, 113, 213
colon notation, k = m1 : m2, B18
colored noise, 123
completing the square, 93, 113, B14
complexity

computational, A12
compound Poisson process, 133, 137,

138, 406
characteristic function, 409

computational
complexity, A12
cost, A12
method

stochastic dynamic programming,
223

stochastic simulations, 247
concave, A10
condition

Legendre-Clebsch, A9
necessary, A3
number, B43
sufficient for optimum, A9

conditional
density, B28
distribution, B26
exit, 215
expectation, B28
infinitesimal moments, 143
probability, B26

confidence interval, 271
confidence level, 271
conjunct, 201, 203
conservation

probability, B15
constant of integration

genuine, 92
consumption

optimal, 335
regular, 334
wealth, 330

continuity, B63
continuous

absolutely, 378
control, 171

bang, A20
bang-bang, 354
bang-regular-bang, A13
bang-singular-bang, A21
closed loop, A24
corner, A20
deterministic, A1
distributed parameter, 363, A35
drug delivery, 363
feedback, A24
impulse, A22
law, A24
normal, A9
open loop, A24
optimal, 171, A4
reaction-diffusions, 363
regular, A13
stochastic, 171
variates, 289

convergence
hierarchy, 38
mean, 37
mean square, 37
probability, 37

convex, A10
function, B72

convolution, B31
density, B32
normal densities, B74
uniform densities, B75

corner, A20

“bk0allfinal”
2007/1/7
page 443

i

i

i

i

i

i

i

i

Index 443

correlation, 163
coefficient, B46
ρi,j , 163, B46
bounds, B47

cosine transform, B35
cost

Bolza form, A2
instantaneous, A2
Lagrangian, A2
objective, A2
running, A2
terminal, A2

counting
measure, 377
process, 2, 11

covariance, B24
P (t), 16
W (t), 4
Cov[X,Y], B24

Crank-Nicolson method, 227
critical

point, A9, B70
critical point, A3
crude Monte Carlo method, 282
cumulative Poisson count, 277
current value, 352, 356
curse of dimensionality, 235
CV, 213

DDE, 28
decomposition rule

integration, A30
minimization, A30

delta
function
δR(x), B60
δ(x), B55
Dirac, B55
Kronecker, B20

hedge, 321
hedging, 298, 309
portfolio, 298

delta-correlated, 124
Gaussian white noise, 124
Poisson white noise, 125

delta-density, 26

φdW (t)(w), 26
demographic stochasticity, 99
density

φ(x), B3
φTj |Tj−1

(∆t), 23
φW (t)(w), 3
φX,Y (x, y), B22
φ∆Tj |Tj

(∆t), 23
φ∆W (t)(w), 4
φX|Y (x|y), B28
φdW (t)(w), 4
φe(t;µ), B15
φln, B11
φn(x; µ,Σ), B46
φn(x;µ, σ2), B8
φu(x; a, b), B6
bivariate normal, B47
conditional, B28
convolution, B32
differential Wiener process, 4
exponential, B15
joint, B22
lognormal, B11
marginal, B23
φX(x), B24
φY (y), B23

multidimensional, 208
multivariate normal, B46
normal, B8

product, B74
Poisson process, B60
probability, B3
secant-normal, 159, 160, 329
φsn, 159

sum, B32
total probability, B30
transition, 200
triangular, 329
uniform, B6
Wiener process, 3
Wiener process increment, 4

density-distribution
hybrid
φX,Y (x, yj), B22

derivative
f (m)(x), B65

“bk0allfinal”
2007/1/7
page 444

i

i

i

i

i

i

i

i

444 Index

boundary condition, 231
partial, 88

determinant, B43
deterministic

control, A1
dynamic programming, A31
integration

Riemann integral, 33
optimal control, A1
process, B61

differential, B63
mean square, 42
process
dW (t), 2
Wiener, 2

differential-difference equation, 28
diffusion

approximation, 204, 216, 237, 358,
359

coefficient, 96, B11
differential dW (t), 2
equation, B11
increment ∆W (t), 3
process, 1

diffusion, W (t), 1
diffusion-dominated, 231
dimension-less groups, 313
dimensional analysis, 313
Dirac delta function, B55
discontinuity

jump, B63
discontinuous process

Poisson, 12
discount factor, 192
discount rate, 331, 341

cumulative, 331, 341
discrete

distribution, B18
πk, B18

Hessian, 234
distributed parameter systems, 363,

A35
distribution

Φ(x), B2
ΦG(t)(x), B11
ΦP (t)(k; Λ(t)), 21

ΦP (t)(k;λt), 13
ΦX,Y (x, y), B22
ΦX,Y (x, yj), B22
Φ∆P (t)(k; ∆Λ(t)), 21
Φ∆P (t)(k;λ∆t), 13
Φ∆Tj |Tj

(∆t), 23
ΦX|Y (x|y), B26
ΦdP (t)(k;λ(t)dt), 21
ΦdP (t)(k;λdt), 13
ΦdP (t)(k; dΛ(t)), 23
Φe(t;µ), B15
Φln, B12
Φn(x;µ, σ2), B9
Φu(x; a, b), B6
πk, B18
πX,Y (xi, yj), B22
πX|Y (x|y), B26
pk(Λ), B19
Bernoulli, 20
binomial, B48
bivariate normal, B75
conditional, B26
discrete, B18
exponential, B15
Gaussian, B8
independent random variable, B25
infinitely divisible, 406
joint, B21
lognormal, 99, 100, 114, B11
marginal, B23

ΦX(x), B23
πX(xi), B23
πY (yj), B23

multinomial, B48
multivariate, B46
multivariate normal, B46
normal, B8
piecewise quadratic, B75
Poisson, 13, B19
Poisson process, B21
probability, B2
proper, B2
right-continuous, B60
sum, B31
total probability, B30
transition, 199

“bk0allfinal”
2007/1/7
page 445

i

i

i

i

i

i

i

i

Index 445

triangular, B74
uniform, 328, B5

dot product, B41
double A : B, 166

double factorial, 7
(2k − 1)!!, 7

double-dot product
A : B, 180, 181, 183
A : B, 166

doubling time, 361
DPS, A35
drift, 95, 106, B11
drug delivery, 363
dynamic programming, 180, A31

Bellman’s, A29
deterministic, A29

Dynkin’s
equation, 212
formula, 195, 211

eigenvalue, B44
element-wise

division . /, 234
multiplication, . ∗, A27

environmental stochasticity, 99
equation

Bernoulli, 335
growth, 350
Hamilton-Jacobi-Bellman, 178
HJB, 178
logistic, 350, 354

equivalence
quasi-deterministic, 113, 148

equivalent
martingale measures, 385
measure, 378

Euler’s
explicit method, 33
method, 33, 250

jump-adapted, 264
Euler-Maruyama method, 250
European option, 296, 300
exercise price, 296, 300
exit

conditional, 215
time, 211

times, 210
expansion

asymptotic, B52
binomial, B49
multinomial, B50

expectation, B24
E[X], B4
E[X |Y], B28
EX,Y [f(X,Y)], B24
P(dt,dq), 135
µ, B4
dP (t;Q), 136
binomial, B49
conditional, B28
P , 142

continuous random variables, B4
discrete set, B18
iterated, B29
joint random variables, B24
total probability, B30

expectation-integration interchange, 58
expected

exit times, 210
rate of return, 301
return, 301

expiration
condition, 308
time, 296, 300

exponential
density, B15
φe(t;µ), B15

distribution, B15
Φe(t;µ), B15

growth, 350, 357
random variables, 275
RNG, 275
series, B19

Poisson distribution, B19
stochastic, 90

exponentially distributied
inter-jump time, 13

extrema, B69
boundary, B70
local, B70
relative, B70

extremal principle, B69

“bk0allfinal”
2007/1/7
page 446

i

i

i

i

i

i

i

i

446 Index

factorial
x!, 6
function, 6, B53

fat tails, 318
feedback

control, A24
gain, A24

Feynman-Kac formula, 219
FFD, 232
final

condition, 174, 308, A7
value problem, 308

financial engineering
applications, 295

financial mathematics
applications, 295

finite
difference

backward, 232
central, 227, 232
forward, 232
upwind, 232

difference methods, 224
element method, 232

finite difference
central, 234

first passage time, 210
floor function, ⌊x⌋, B59
Fokker-Planck equation, 201
formula

Cauchy-Binet, B43
Dynkin’s, 195
Feynman-Kac, 219
Lévy-Klintchine, 410
Stirling’s, B53
Taylor’s, B65

forward
equation, 195
finite difference, 232
integration, 33
Kolmogorov equation, 201
operator, 201, 204

Fourier transform, B34
fourth central moment, B5
fractional sampling, 286
Fubini’s theorem, B32

function
(2k − 1)!!, 7
H(x), B54
Γ(x), 6, B53
δR(x), B60
erf, B9
erfc, B9
min, 4, 10
x!, 6, B53
⌊x⌋, B59
Dirac delta, B55
double factorial, 7
factorial, 6, B53
floor, B59
gamma, 6, B53
generalized, B53
impulse, B55
indicator, B54
jump, 73, B64
of integration, 91
step, B54

functional PDE, 180
FVP, 308

gain
feedback, A24

gamma
function, 6, B53

Gauss-statistics rules, 228
Gaussian

G(t), B10
ΦG(t)(x), B11
distribution, B11
process, 405, B8

characteristic function, 408
white noise, 123

GBM, 397
general Markov SDEs, 131
generalized

equality, B56
gen
= , B56

function, B53
right-continuous step-function, B59

generating function, B35
geometric

Brownian motion, 99, 397

“bk0allfinal”
2007/1/7
page 447

i

i

i

i

i

i

i

i

Index 447

Lévy process, 414
geometric Brownian motion, 297
Girsanov

example, 401
Girsanov’s theorem, 395

diffusion, 396
jump-diffusion, 399

global
extrema, B69
maximum, B69
minimum, B69

Gompertz model, 360
gradient, B45

matrix-vector product, B45
quadratic form, B45

Greenspan process, 338
growth

logistic, 350, 357

h-jump, 196, 198
Hamilton’s

equations, A2
Hamilton-Jacobi-Bellman equation, 178
Hamiltonian, A3

current value, 352, 356
distributed parameter, A36
present value, 352, 356

harvest effort, 350
Heaviside step function, B54
Hessian

discrete, 234
matrix, B46

quadratic form, B46
histogram, B7
HJB equation, 178
homogeneous options, 306
hybrid

density-distribution
φX,Y (x, yj), B22

stochastic system, B61

i-PWCA, 48
I.I.D., B38
IID, B38
ill-conditioned, B44
importance sampling, 266, 282

VEGAS, 284
impulse

ßcontrol, A22
function, B55

increment, B63
independent, B62

indentity, B41
independent, B25

increments, 3, 134, B62
∆P (t), 12
Poisson process, 12
Wiener process, 3

random variable, B25
indicator function, B54

1S , 244, 270, 280
1x∈A, B54

inequality
Cauchy, B42
Cauchy-Schwarz, 50, B72
Chebyshev, 38, 218, 360, B71
Jensen’s, B72
Schwarz, 50, B72
triangular, B42

infinitely divisible distribution, 406
infinitesimal mean

E[dX(t) | X(t) = x], 109
diffusion, 96
jump exponent, 107
jump-diffusion, 109

infinitesimal variance
Var[dX(t) | X(t) = x], 109
diffusion, 96
jump exponent, 107
jump-diffusion, 109

instantaneous cost, A2
integral

Itô, 35
Itô, 40
Riemann-Stieltjes, 34
Stieltjes, 34

integration
additive decomposition rule, A30
Itô, 35
Itô, 40
Riemann, 32
rule

“bk0allfinal”
2007/1/7
page 448

i

i

i

i

i

i

i

i

448 Index

left rectangular, 33
midpoint, 34
right rectangular, 33
trapezoidal, 61

Stieltjes, 34
inter-arrival time, 13, B21

Tk+1 − Tk, B21
inter-jump time, 13

exponentially distributed, 13
simulation, 14

intrinsic growth rate, 350
inverse, B42

method, 275
transformation method, 275, B16

inverse Poisson method, 277
isometry

Itô, 51, 79
martingale, 51, 79

Itô
mean square differential, 42
process, 403
stochastic chain rule, 86, 87
stochastic integral, 40

Itô-Lévy process, 414
Itô-Taylor expansion, 255
iterated

expectation, 152, B29
probability, B27

Jacobian, 281
Jensen’s inequality, B72
JLQG, 182, 186
joint

density, B22
φX,Y (x, y), B22

distribution, B21
ΦX,Y (x, y), B22
ΦX,Y (x, yj), B22
πX,Y (xi, yj), B22

probability, B21
Prob[X ≤ x, Y ≤ y], B22
Prob[X = xi, Y = yj], B22
Prob[X ≤ x, Y = yj], B22

jump, B64
∆P (t), 12
amplitude, 106

condition, 342
counter

indicator function, 110
discontinuity, B64
function, 73, B64
functions, 102

[h](dP (t)), 102
integral∫

(PdP)(t), 67
number, 412
process, 1

∆P (t), 12
process, dP (t), 2
process, P (t), 1
time, B21
time, Tj , 14
time, Tk, B21

jump time
simulation, 14

jump-adapted Euler method, 264
jump-diffusion, 108

density, 114, 155
process, 83, 108

characteristic function, 410
state dependent, 141

jump-risk, 321

Kolmogorov
backward equation, 195
equation

backward, 195, 198, 206
forward, 195, 201, 206
multi-dimensional, 206

forward equation, 195
Kronecker delta, B20

δi,j , B20
kurtosis, B5

coefficient, B5
η4[X], B5

Lévy
diffusions, 414
jump number, 412
process, 404, B37

characteristic exponents, 407
characteristic functions, 407

“bk0allfinal”
2007/1/7
page 449

i

i

i

i

i

i

i

i

Index 449

definition, 404
stochastic differential equations,

414
Lévy-driven process, 414
Lévy-Itô decomposition, 413
Lévy-Klintchine

formula, 410
geometric jump-diffusion, 411
jump diffusion, 410
Lévy process, 413

representation, 410
Lagrange multiplier, A3
Lagrangian, A2
Laplace’s method, B53
large numbers

law, B39
law

control, A24
large numbers, B39
power, A9
total probability, 113, B29
transformation of probabilities, B16
zero-one jump, 20

LCRL, 395
Legendre-Clebsch conditions, A9
leptokurtic, 318, B5
limit

in probability, 37
limprob

n→∞, 37
in the mean, 37

limmean
n→∞, 37

mean square, 37
limms

n→∞, 37
linear

discrete mark-jump-diffusion
expectation, 145

mark-jump
expectation, 145

mark-jump-diffusion
simulation, 145

quadratic
jump-diffusion problem, 182, 186
problem, A23

SDEs
diffusion transformations, 94
jump transformations, 106

jump-diffusion, 111
little oh, o, B51
local

extrema, B70
maximum, B70
minimum, B70

local optimum, A3
logistic

equation, 350, 354
growth, 350

lognormal, 99
density, B11
φln, B11

distribution, 100, 114, B12
Φln, B12

mean/mode, B72
mode, B72
moment, B13
random number generator, B14

loop notation, k = m1 : m2, B18
LQ, A33
LQGP, 182, 186
LQJD, 182, 225
LQJD/U, 225, 233
lumped parameter systems, 363, A35

machine epsilon, 16
marginal

density, B23
φX(x), B24
φY (y), B23

distribution, B23
ΦX(x), B23
πX(xi), B23
πY (yj), B23

mark space, 132
mark-time Poisson

process, 132, 141
Markov

P (t), 12
chain, B62
chain approximation, 235
Poisson process, 12
process, 2, B61

stationary, B62
Wiener process, 3

“bk0allfinal”
2007/1/7
page 450

i

i

i

i

i

i

i

i

450 Index

martingale, 10, 25, 79, 385
equivalent measures, 385
methods, 373
representation theorem, 389
sub-, 385
super-, 385

mathematical biology
applications, 349

matrix
algebra, B40
analysis, B40
equality, B41
Hessian, B46
identity, B41
notation, B41
positive definite, B45
positive semi-definite, B45

maxima, B69
maximum

local, B70
necessary condition, A3
principle

Pontryagin, A14
relative, B70
sufficient condition, A8

MCA, 235
consistency conditions

diffusion, 237
jump-diffusion, 243

mean, B18
E[X], B4
µ, B4
continuous random variables, B4
convergence, 37
discrete set, B18
sample, B38

mean square
convergence, 37
deviation, B5
differential, 42

(WdW)(t), 42
(dP dW)(t), 74
(dW)2(t), 42
(dt)k((dP)m(dW)n)(t), 76
d(W 2)(t), 42
dt dP (t), 74

(dP)m(t), 81
limit, 37
P(dt,dq), 138
limms

n→∞, 37
random measure
P(dt,dq), 138

measurable
function, 379
space, 375

measure, 374, 375
absolutely continuous, 378
counting, 377
equivalence, 378
space, 375
total mass, 376

Merton fraction
Black-Scholes, 307
volatility, 306

mesokurtic, 318
method

acceptance-rejection, 15, 278
backward Euler, 264
backward Euler’s, 33
change of index, 36
characteristics, 310
completing the square, 93, 113,

B31
computational, 223
Crank-Nicolson, 227
Euler’s, 33, 250
Euler-Maruyama, 250
finite element, 232
forward integration, 33
inverse, 275
inverse transformation, B16
Laplace’s, B53
left rectangular rule, 33
midpoint rectangular rule, 34
Milstein’s, 255, 256
rejection, 15
right rectangular rule, 33
simulations, 247
stochastic Euler, 250
stochastic theta , 261, 264
tangent-line, 33
trapezoidal rule, 61

“bk0allfinal”
2007/1/7
page 451

i

i

i

i

i

i

i

i

Index 451

Metropolis algorithm, 265, 266
midpoint rule, 34, 227
Milstein’s method, 255, 256
minima, B69
minimization decomposition rule, A30
minimum

function
min, 4, 10

local, B70
necessary condition, A15
principle

Pontryagin, A14
relative, B70
sufficient condition, A8

MISER, 287
mode, B72

most likely value, B72
model

Black-Scholes, 296
Black-Scholes-Merton, 300
Gompertz, 360
option pricing, 296

moment
log-jump-diffusion, 149
lognormal, B13

Monte Carlo
acceptance-rejection, 278
antithetic variates, 287
basic method, 267
computational costs ratio, 274
confidence interval, 271
control variates, 289
efficiency, 275
estimator, 269, 283
importance sampling, 282
inverse method, 275
methods, 265
MISER, 287
stratified sampling, 284
variance ratio, 274
VEGAS, 284

most likely value, B72
multinomial

p(f ; π), B48
distribution, B48

multinomial expansion, B50

expansion theorem, B50
joint probability, B48

multiplicative noise, 95, 98, 99, 299,
338

multivariate
distribution, B46
normal

density, B46
distribution, B46

necessary conditions, A3
neutral risk, A10
no-flux boundary condition, 231
noise, 123

additive, 96, 97
colored, 123
multiplicative, 95, 98, 99, 338
white, 123
white Gaussian, 123
white Poisson, 123
word, 95

non-anticipatory, 41
non-differentiability, 9

W (t), 9
non-Gaussian process, 404
non-smooth process, B65
non-smoothness, 9, B63
non-stationary Poisson process, 21
norm, B42

matrix, B42
normal

approximation, B21
control, A9
density, B8
φn(x;µ, σ2), B8
product, B74

distribution, B8
Φn(x;µ, σ2), B9
skewless, B9

random number generator, B10
variate RNG, 280

null set, 378

ODE problem, 311
deterministic, 311
stochastic, 311

“bk0allfinal”
2007/1/7
page 452

i

i

i

i

i

i

i

i

452 Index

open loop control, A24
operator

adjoint, 201
backward, 195, 196, 198, 201
forward, 201, 204

optimal
control, 171
portfolio, 330
sampling allocation, 286

optimality
principle, A30

optimum
condition

sufficient, A9
necessary condition, A3

option
Black-Scholes pricing PDE, 308
call, 296, 300
European, 296, 300
European , 296, 300
exercise price, 296, 300
expiration time, 296, 300
pricing

Bachelier, 299
pricing model, 296
pricing PDE, 308
put, 296, 300
risk-neutral, 320

orderliness, 19
orthogonal, B44
orthonormal, B44

parabolic mesh ratio, 231
CFD, 231
UFD, 233

partial derivatives, 88
partial differential equation

diffusion, B11
partial sum, B65
partial sum, Sn, B65
PDE, B11

driven dynamics, 363, A35
option pricing, 308
partial differential equation, B11
problem, 308

stochastic dynamic programming,
182

performance index, A2
PIDCP, partial integral-differential com-

plementary problem, 325
PIDE, 180, 182

partial integral-differential equa-
tion, 180

piece-wise-constant, 48
plant function, A2
platokurtic, B5
point

interior critical, B70
process, 11
stationary, B70

Poisson
P (t), 1
approximation, B50
compound process, 406
counting

process, B30
counting process, 11
distributed, 13
distribution, 13, B19
pk(Λ), B19
exponential series, B19

distribution, pk(λt), B21
inverse, 277
jump rate, λ, B21
mark space, 132
point process, 11
random measure, 132, 412

notation, 134
random measure, P(dt,dq), 132
simple process, 406
white noise, 123

Poisson distribution
Poisson random measure
P(∆ti,∆qj), 135

Poisson process, 1, B19
P (t), 1
∆P (t), 12
dP (t), 2
characteristic function, 408
compound, 131, 133
count, ∆Λ(t), 21

“bk0allfinal”
2007/1/7
page 453

i

i

i

i

i

i

i

i

Index 453

density, B60
differential, 2
discontinuity, 12
distribution, 13
increments ∆P (t), 12
inter-arrival time, B21
interarrival time, 14
jump rate, λ(t), 21
jump time, 14, B21

simulation, 14
marked point process, 131
Markov, 12
non-stationary, 21
orderliness, 19
right-continuity, 12
space-time, 131
state-dependent, 131
stationary process, 12
temporal, 21
time-inhomogeneous, 21
unit jumps, 12
zero-one jump law, 20

Pontryagin, A14
optimum principles, A15

portfolio
budget equation, 305
delta, 298
self-financing, 305
zero aggregate, 304

power law, A9
Preface, xvii
preliminaries, B1
present value, 352, 356
principle

maximum, A15
minimum, A15
of optimality, 174, A30
optimum, A15

probability, B1
Prob, B26
conditional, B26
conservation, B18
convergence, 37
density, B3
φ(x), B3

distribution, B2

Φ(x), B2
distributions

Φ(x), B2
inversion, 100, 113, B12
joint, B21
measure, 374, 381
non-negativity, B18
terated, B27
transition, 208, B62

problem
canonical LQJD, 186
eigenvalue, B44
JLQG, 182, 186
linear quadratic, A23
linear quadratic jump-diffusion, 182,

186
LQGP, 182, 186
LQJD, 182, 186
LQJD in control only, 182
LQJD/U, 182

process
branching, 358
Brownian motion, 2
compound Poisson, 406
continuous, B64
counting, 2
deterministic, B61
diffusion, 1
diffusion, W (t), 1
discontinuous, 12, B64
Gaussian, 405, B8
geometric Poisson, 338
Greenspan, 338
Itô, 403
Itô-Lévy, 414
jump, 1
jump, P (t), 1
jump-diffusion, 83, 108
Lévy, 404, B37
Lévy-driven, 414
Markov, 2, B61

stationary, B62
non-Gaussian, 404
non-smooth, B65
Poisson, 1, 2, B19

,mark-time , 132

“bk0allfinal”
2007/1/7
page 454

i

i

i

i

i

i

i

i

454 Index

compound, 137, 138
space-time , 132

quasi-deterministic, 338, 340
random, 1, B61
right-continuous, B64
simple Poisson, 406
smooth, B65
stochastic, 1, B61
Wiener, 1, 2

product
dot, B41
double dot, B69
double-dot, 166, 180, 181, 183
matrix-matrix, B42
matrix-vector, B41
trace, B69

programming
dynamic, 180, A31
stochastic dynamic, 180, A31

proper distribution, B2
proportional sampling, 285
pseudo random number generator, B7
pseudo-Hamiltonian, A31
put option, 296, 300
PWCA, 48, 65

quadratic form
symmetry, B45

quasi-deterministic
approximation, 353
equivalence, 113, 148, 149
process, 338, 340

Radon-Nikodým
derivative, 380, 390
theorem, 380, 390

random, 1
bonanza, 108
disaster, 108
process, 1, B61
seed, B8
state, B8
stochastic, 1
variable

continuous, B2
discrete, B18

I.I.D., B38
IID, B38
independent, B25
independent, identically distributed,

B38
sum, B31

random number generator, B7
rand, B8
randn, B10
x=exp(mu+sigma*randn), B14
diffusion, 5
exponential, B16
jump-diffusion additive noise, 115
linear diffusion SDE, 116
linear jump SDE, 116
linear jump-diffusion SDE, 116
linear mark-jump-diffusion, 161,

263
lognormal, B14
normal, B10
Poisson jump time, 14
pseudo, B7
RNG, B7
seed, B8
simple Poisson process, 14
state, B8
uniform, B8
Wiener process, 5
zero-one jump law, 15

RC, right-continuous, B59
RCLL, 384, 395, 412
reaction-diffusion equations, 363
recursive stratified sampling, 287
reflecting boundary conditions, 209
reflection principle, 209
regular

point, A3
regular boundary, 363
regular control, A3
rejection method, 15

zero-one jump law, 15
relative extrema, B70
representation

Lévy-Klintchine, 410
return

expected rate, 301

“bk0allfinal”
2007/1/7
page 455

i

i

i

i

i

i

i

i

Index 455

Riccati equation, A25
matrix, 190, A35
scalar, A25

Riemann
integral, 33
integration, 32
sum, 33

Riemann-Stieltjes integral, 34
right-continuous, B59

P (t), 12
distribution, B60
Poisson process, 12
process, B64

Poisson, 12
risk, 302

aversion, 334, 341
more risky, 302, 345
neutral, A10
risk-free, 302
risk-less, 302
riskier, 302, 345
riskiness measure, 302

risk-neutral, 320
option, 320

risky asset, 301
RMS, 2
RNG

exponential, 275
normal variate, 280

RNG random number generator, B7
rule

Bayes’, B72
left rectangular, 33
midpoint, 34
right rectangular, 33
trapezoidal, 61

running cost, A2

sample
mean, 269, 283, B38
mn, B38
variance, B38

variance, 283, B38
s2n, B38
unbiased estimate, B38
unbiased estimate ŝ2n, B38

sampling
fractional, 286
importance, 282

VEGAS, 284
optimal allocation, 286
proportional, 285
recursive stratified, 287

MISER, 287
stratified, 284

scale density, 361
Schwarz inequality, 50, B72

E[| XY |], 50
expectation, 50

SDE
backward Euler, 264
diffusion, 94
Euler’s method, 250
general Markov, 131
jump, 106
jump-diffusion, 108
mark-time Poisson, 131
Milstein’s method, 255, 256
multi-dimensional, 131
problem, 308
simulation, 247
simulations, 247
space-time Poisson, 131
state dependent, 141
state-dependent, 131, 143
Taylor expansion, 255
theta method, 261

SDP, 180
secant-normal density, 159, 160
second central moment, B5
self-financing portfolio, 305
self-similar solution, 313
sequence

asymptotic, B52
series

exponential, B19
sgn, sign function, 186
shadow price, 353
simple function, 379
simulataions

SDEs, 247
simulation

“bk0allfinal”
2007/1/7
page 456

i

i

i

i

i

i

i

i

456 Index

(dW)2(t), 44
diffusion, 5
Euler-Maruyama SDE, 252
jump-diffusion additive noise, 115
linear diffusion SDE, 116
linear jump SDE, 116
linear jump-diffusion SDE, 116
linear mark-jump-diffusion, 145,

161, 263
Milstein SDE, 256
Poisson jump time, 14
simple Poisson process, 14
Wiener, 45
Wiener process, 5
zero-one jump law, 15

Simulink, A12
sine transform, B35
singular boundary, 363
singular point, A3
singular solution, A20
skewness, 318

coefficient, B5
η3[X], B5

negative, 318
smooth process, B65
space-time Poisson

noise, 131
process, 132, 141

speed density, 362
split-step backward Euler method, 264
stability criteria, 231
standard deviation, B5

σ, B5
standard Wiener process, 3

W (t), 3
state

space, B61
state-dependent SDEs, 143
stationary, B62

Markov process, B62
point, A9, B70
process, 3
P (t), 12
W (t), 3
Markov, B62
Poisson process, 12

Wiener process, 3
step function

H(x), B32
HR(x), B59
U(x; a, b), 16, 115, 123
Heaviside, B54

step function,
U(x; a, b), 124

Stieltjes
integral, 34, B3∫

f(X(t), t)dX(t), 34
Stirling’s formula, B53
stochastic

calculus, 83
general, 131

chain rule
state-dependent, 144

chain rules
G(W (t)), 86
G(W (t), t), 87
diffusion F (X(t), t), 100
Itô, 86, 87

diffusion integration, 35, 58
diffusion process, 1, 31
dynamic programming, 171, 180

PDE, 182
PIDE, 182

Euler’s method, 250
integral∫

(PdP)(t), 67∫
(WdW)(t), 42∫
(dW)2(t), 41

mean, 48
integration, 31, 65
P (t), 65, 77
W (t), 35
ims
= , 65∫
f(W (t), t)dt, 34∫
f(X(t), t)dt, 34∫
g(W (t), t)dt, 40∫
hdP , 80

limms
n→∞, 65

t, 34
diffusion, 31, 58
Euler’s method, 40, 58

“bk0allfinal”
2007/1/7
page 457

i

i

i

i

i

i

i

i

Index 457

forward integration, 40, 58
Itô, 35, 58
Itô, 40
jump, 65, 80
left rectangular rule, 40, 58
midpoint rule, 57
Stratonovich, 57
trapezoidal, 61

jump
integral, 65
integral expectation, 77
integral rule, 77
integration, 65, 80
process, 1, 65

jump-diffusion processes, 83
natural exponential, 90
optimal control, 171
Poisson jump

integration, 65
process, 1, B61

continuous-time, 1
diffusion, 1, 31
jump, 1, 65

processes
abstract theory, 373
jump-diffusion, 83

random, 1
system

hybrid, B61
Taylor expansion, 255
theta method, 261, 264

stochasticity
demographic, 99
environmental, 99

stock fraction, 330
stopping times, 210
stratified sampling, 284

recursive, 287
Stratonovich

stochastic integration, 57∫
(WdW)(t), 57

mean, 57
submartingale, 385
substitution test, 92
super-triangular numbers, 70
supermartingale, 385

SVJD, stochastic-volatility, jump-diffusion,
325

tangent-line method, 33
Taylor approximation, B65

jump, B69
remainder, B65

Taylor expansion
stochastic, 255

Taylor’s formula, B65
temporal Poisson process, 21
terminal cost, A2
test

substitution, 92
theorem

binomial, B49
central limit, B40
Fubini’s, B32
Girsanov’s, 395
gradient peel, B45
martingale representation, 389
multinomial expansion, B50

third central moment, B5
time

doubling, 361
inter-arrival, B21
jump, B21

time-homogeneous, B62
time-inhomogeneous, 21
times

exit, 210
first passage, 210
stopping, 210

total probability
density, B30
distribution, B30
expectation, B30
law, 113, B29

trace, B41
transformation of probabilities law, B16
transition

density, 200
distribution, 199
probability, 237, B63

matrix, B63
transpose, B41

“bk0allfinal”
2007/1/7
page 458

i

i

i

i

i

i

i

i

458 Index

transversality, A8
trapezoidal rule, 61
triangular number, 69

n(n+ 1)/2, 69
tumor growth, 358

UFD, 232
unbiased estimate, 269, B38

ŝ2n, B38
uniform

density, B6
φu(x; a, b), B6

distribution, B5
Φu(x; a, b), B6

random number generator
seed, B8
state, B8

upwind
finite difference, 232

utility
consumption, 331
CRRA, 334, 341
HARA, 326, 334
marginal, 334
power, 334, 341
terminal, 331

variance, B19
Var[X], B19
σ2, B5
dP (t;Q), 136
continuous random variables, B5
discrete set, B19
product, B71
sample, B38
sum, B71

variance-expectation identity, B71
variation

coefficient, 213
vector notation, B40
VEGAS, 284
volatility, 95, 301

fraction, 306
smile, 318

volatility-risk, 321

wealth

consumption, 330
equation, 330, 340

weighted sampling, 266
well-conditioned, B44
white noise, 123

delta-correlated, 124
Gaussian, 123
Poisson, 123

Wiener process, 1
characteristic functions, 408
continuity, 3
density, 3
differential, 4

density, 4
differential dW (t), 2
increment, 4

density, 4
independent increments, 3
Markov, 3
non-differentiability, 9
non-smoothness, 9
stationary process, 3

with probability one, B75
(w.p.o.), 382

Wronskian, 361

zero-one jump law, 20
dP (t), 20
approximate, 18
Bernoulli distribution, 20
mean square limit, 76
Poisson process, 20

“bk0allfinal”
2007/1/7
page A1

i

i

i

i

i

i

i

i

Appendix A

Deterministic Optimal
Control

As far as the laws of mathematics refer to reality,
they are not certain;
and as far as they are certain,
they do not refer to reality.
—Albert Einstein (1879-1955) [quoted by J.R. Newman
in The World of Mathematics].

m = L/c2,
—Albert Einstein (1879-1955), the original form
of his famous energy-mass relation E = mc2,
where L is the Lagrangian, sometimes a form of energy
and the cost part of the Hamiltonian
in deterministic control theory.

It probably comes as a surprise to many Americans that the Wright brothers,
Orville and Wilbur, did not invent flying, but they developed the first free, con-
trolled and sustained powered flight by man as reviewed in Repperger’s historical
perspective on their technical challenges [233]. Indeed, control is embedded in many
modern appliances working silently in computers, motor vehicles and other useful
appliances. Beyond engineering design there are natural control systems like the
remarkable human brain together with other components of the central nervous sys-
tem [171]. Basar [21] lists twenty-five seminal papers in control and Bernstein [29]
reviews control history through feedback control. The state and future directions of
control of dynamical systems were summarized in the 1988 Fleming panel report [89]
and more recently in the 2003 Murray panel report [90].

This chapter provides summary background as a review to provide a basis
for examining the difference between deterministic optimal control and stochastic
optimal control, treated in Chapter 6. Summarized with commentary are Hamil-

A1

“bk0allfinal”
2007/1/7
page A2

i

i

i

i

i

i

i

i

A2 Appendix A. Appendix: Deterministic Optimal Control

ton’s equations, the maximum principle and dynamic programming formulation. A
special and useful canonical model, the linear quadratic (LQ) model, is presented.

A.1 Hamilton’s Equations: Hamiltonian and
Lagrange Multiplier Formulation of
Deterministic Optimal Control

For deterministic control problems [163, 44], many can be cast as systems of ordinary
differential equations so there are many standard numerical methods that can be
used for the solution. For example, if X(t) is the state nx-vector on the state space
X in continuous time t and U(t) is the control nu-vector on the control space U ,
then the differential equation for the deterministic system dynamics is

dX

dt
(t) = f(X(t),U(t), t), X(t0) = x0 . (A.1)

Here, f(x,u, t) is called the plant function and may be nonlinear. The cost
objective functional or performance index is to achieve the minimal cumula-
tive running or instantaneous costs C(x,u, t) on (t0, ff) plus terminal cost
function S(x, t), that is,

V [X,U, tf](x0, t0) =

∫ tf

t0

C (X(t),U(t), t) dt+ S (X(tf), tf) . (A.2)

Often in deterministic control theory and the calculus of variations, the cost
function is also called the Lagrangian, i.e., L(x,u, t) = C(x,u, t), from analogy
with classical mechanics. The notation V [X,U, tf](x0, t0) means that the cost is a
functional of the state and control trajectory functions V [X,U, tf], i.e., a function
of functions, but also is a function of the values of the initial data (x0, t0), i.e., a
function dependence in the ordinary sense. This fairly general functional form with
running and terminal costs is called the Bolza form of the objective functional.
However, the notation C(x,u, t) will be used for the instantaneous component of
the objective even when it is not a cost and the overall objective is maximization
rather than minimization, e.g., the maximization of profit.

Here, the value of the minimum total costs with respect to the control space
U will be considered,

v∗(x0, t0) = min
U∈U

[V [X,U, tf](x0, t0)] , (A.3)

unless otherwise specified, subject to the initial value problem for the controlled
dynamics in (A.1). The is very little difference between the global minimum and
the global maximum problem, the smallest value is found in the former and the
largest value in the latter. The search in both cases is over all critical points,
which consist of the set of all regular points or local optima which here are points
where the control derivative or gradient is zero, boundary points of the control
domain and singular points or other irregular points. If the control space U is the

“bk0allfinal”
2007/1/7
page A3

i

i

i

i

i

i

i

i

A.1. Hamilton’s Equations A3

whole space R
nu the control problem is said to be unconstrained or in absence of

constraints and then the problem is mainly searching for regular points, assuming
there are no singular points, so

v∗(x0, t0) = v(reg)(x0, t0) = min
U∈Rnu

[V [X,U, tf](x0, t0)] . (A.4)

In the Hamiltonian formulation [163], the Bolza form of optimization objec-
tive is replaced by a running cost optimal objective extended to include the state
dynamics and the new optimization objective function is called the Hamiltonian:

H(X(t),U(t),λ(t), t) ≡ C(X(t),U(t), t) + λT (t)f(X(t),U(t), t) , (A.5)

where λ(t) is the nx-vector Lagrange multiplier, also called the adjoint state
or co-state or auxiliary vector. The Lagrange multiplier provides the objective
extension for including the state dynamics. The symbol λ should not be confused
with the Poisson rate use in stochastic jump modeling, since the jump rate does
not appear in deterministic problems, but both deterministic and stochastic uses
are standard notations in the appropriate context.

Theorem A.1. Gradient necessary conditions for a regular control opti-
mum – Interior point optimum principle:
Let the Hamiltonian H have continuous first order derivatives in the state, co-state
and control vectors, {x,u,λ}. Then the necessary conditions for an interior
point optimum (maximum or minimum) of the Hamiltonian H at the optimal
set of three vectors, {X∗(t),U∗(t),λ∗(t)}, marked with an asterisk (∗), are called
Hamilton’s equations:

dX∗

dt
(t)=

(
∂H
∂λ

)∗
≡
(
∂H
∂λ

)
(X∗(t),U∗(t),λ∗(t), t) = f(X∗(t),U∗(t), t) , (A.6)

−dλ
∗

dt
(t)=

(
∂H
∂x

)∗
≡
(
∂H
∂x

)
(X∗(t),U∗(t),λ∗(t), t)=

(
∂C

∂x
+
∂fT

∂x
λ

)∗
, (A.7)

0=

(
∂H
∂u

)∗
≡
(
∂H
∂u

)
(X∗(t),U∗(t),λ∗(t), t) =

(
∂C

∂u
+
∂fT

∂u
λ

)∗
, (A.8)

where from the critical condition (A.8) , the optimal control is the regular control,
i.e.,

U∗(t) = U(reg)(t),

at a regular or interior point and U(reg)(t) is called a regular control, so
critical condition (A.8) does not necessarily apply to boundary points or singular
points of the control, but certainly does apply to the case of unconstrained control.
The associated final conditions are listed in Table A.1 below.

Proof. The proof is a standard optimization proof in the calculus of variations
[40, 15, 163, 44] and is a significant generalization of the usual first derivative optima

“bk0allfinal”
2007/1/7
page A4

i

i

i

i

i

i

i

i

A4 Appendix A. Appendix: Deterministic Optimal Control

test. Our formal justification is a brief formulation after Kirk’s description [163],
but in our notation.

Note that the gradient,
(
∂H
∂x

)∗
≡ ∇x[H](X∗(t),U∗(t),λ∗(t), t) =

[
∂H
∂xi

(X∗(t),U∗(t),λ∗(t), t)

]

nx×1

,

so is the x-gradient and is a column nx-vector like X itself here (elsewhere row
vector gradients may be used, e.g., [44]), and so forth, including the gradients of C
and f . The triple set (A.6, A.7, A.8) of equations form a set of three vector ordinary
differential equations for the optimal trajectory under the optimal control U∗(t).
The first equation (A.6) merely reaffirms the specified state dynamical system (A.1)
and that the inclusion with the Lagrange multiplier λ∗(t) is proper. The prefix
minus on the time-derivative of the Lagrange multiplier in (A.7) indicates that it is
a backward-time ODE, in contrast the the forward-time state ODE (HamEqX).

For the calculus of variations, the objective (A.2) is extended in two ways.
First, the terminal cost is absorbed in the integral of running costs using the fun-
damental theorem of calculus,

S(X(tf), tf) = S(x0, t0) +

∫ tf

t0

dS

dt
(X(t), t)dt

= S(x0, t0) +

∫ tf

t0

(
∂S

∂t
(X(t), t) + Ẋ⊤(t)

∂S

∂x
(X(t), t)

)
dt,

noting that the initial condition S(x0, t0) is fixed, so can be ignored in the opti-
mization, but the final time tf will be allowed to be free rather than fixed.

Second, the negative of the state derivative, −Ẋ(t), is included in the Lagrange
coefficient of the Hamiltonian. Thus, the extended or augmented objective is

V +[Z, Ẋ, tf] ≡
∫ tf

t0

C+(Z(t), Ẋ(t), t)dt, (A.9)

where for brevity an extended state vector is defined as

Z(t) ≡

X(t)
U(t)
λ(t)

 (A.10)

and the extended cost function is

C+(Z(t), Ẋ(t), t)≡H(Z(t), t)+
∂S

∂t
(X(t), t)+Ẋ⊤(t)

(
∂S

∂x
(X(t), t)−λ(t)

)
. (A.11)

The objective extension also enables the optimal treatment of the final or stopping
time tf when tf is a free variable.

Next, the variations of the independent variables about potential optima, e.g.,
Z∗(t), are introduced,

Z(t) ≡ Z∗(t) + δZ(t);

Ẋ(t) ≡ Ẋ∗(t) + δẊ(t);

tf ≡ t∗f + δtf ,

“bk0allfinal”
2007/1/7
page A5

i

i

i

i

i

i

i

i

A.1. Hamilton’s Equations A5

the latter permitting optimal stopping times t∗f in addition to free final states for
generality. Assuming all variations are small and neglecting higher order variations,
i.e., O(|δZ(t)|2), a preliminary form of the first variation of the extended objective

V +[Z, Ẋ, tf] ≃ V +[Z∗, Ẋ∗, t∗f] + δV +[Z, Ẋ, tf]

is

δV +[Z, Ẋ, tf] ≃
∫ t∗f

t0

(
δZ⊤

(
∂C+

∂z

)∗
+δẊ⊤

(
∂C+

∂ẋ

)∗)
dt+δtf (C+)∗

∣∣∣∣∣
t=t∗

f

,

where the latter term derives from a forward approximation of the final integral
fragment on [t∗f , t

∗
f + δtf] for small first variation δtf , ignoring second variations.

Also, the shorthand notation such as (∂C+/∂z)∗ = (∂C+/∂z)(Z∗(t), Ẋ∗(t), t) has
been used.

Since

δX(t) = δX(t0) +

∫ t

t0

δẊ(s)ds,

the variation δẊ(t) is not independent of its integral δX(t), but this dependence
can be removed by a primary applied mathematics technique of integration by parts.
So, replacing the objective variation δV + by δV † without δẊ(t),

δV †[Z, tf] ≃
∫ t∗f

t0

(
δZ⊤

(
∂C+

∂z

)∗
−δX⊤ d

dt

(
∂C+

∂ẋ

)∗)
dt

+

(
δtf (C+)∗+δX⊤

(
∂C+

∂ẋ

)∗)∣∣∣∣∣
t=t∗

f

.

However, the variation
δX(t∗f) ≡ X(t∗f) − X∗(t∗f)

is only the variation at t = t∗f and not the total final variation required, which is

δX̂(t∗f) ≡ X(t∗f + δtf) − X∗(t∗f),

the difference between a final trial value at tf = t∗f + δtf and an final optimal state
value at the optimal stopping time t = t∗f . By using a tangent line approximation,
the former can be converted to the other with sufficient first variation accuracy,

δX̂(t∗f) ≃ X(t∗f) + Ẋ(t∗f)δtf − X∗(t∗f) ≃ δX̂(t∗f) + Ẋ∗(t∗f)δtf ,

where Ẋ(t∗f)δtf ≃ Ẋ∗(t∗f)δtf within first variation accuracy. Hence, the proper

final first variation δX̂(t∗f) with tangent correction can be substituted for δX̂(t∗f),
yielding

δV †[Z, tf] ≃
∫ t∗f

t0

(
δZ⊤

(
∂C+

∂z

)∗
−δX⊤ d

dt

(
∂C+

∂ẋ

)∗)
dt

+

(
δtf

(
C+−

(
Ẋ
)⊤(∂C+

∂ẋ

)∗)
+δX̂⊤

(
∂C+

∂ẋ

)∗)∣∣∣∣∣
t=t∗

f

.
(A.12)

“bk0allfinal”
2007/1/7
page A6

i

i

i

i

i

i

i

i

A6 Appendix A. Appendix: Deterministic Optimal Control

The Fundamental Theorem of the Calculus of Variations [163] states that
the first variation, here δV †[Z, tf], must vanish for all admissible variations, here
assuming δZ(t) is continuous, on an optimal trajectory, here Z∗(t). Thus,

δV †[Z, tf] = 0.

Further, the Fundamental Lemma of the Calculus of Variations [163] states
that given a continuous function Fi(t) and

∫ tf

t0

δXi(t)Fi(t)dt = 0

for every continuous trajectory δXi(t) on [t0, tf], then

Fi(t) = 0

on [t0, tf]. For multidimensional trajectories and independent component variations
δXi(t) for i = 1:nx, then the result holds for all components.

Using the definition of the extended cost C+ in (A.11), extended state Z in
(A.10) and the Hamiltonian (A.5) with the first variation δV †[Z, tf] in (A.12), we
have

• Coefficient of δλ⊤(t) =⇒
(
∂C+

∂λ

)∗
=

(
∂H
∂λ

)∗
− Ẋ∗(t) = 0 =⇒

Ẋ∗(t) =

(
∂H
∂λ

)∗
= f(X∗(t),U∗(t), t) on t0 < t ≤ tf .

• Coefficient of δX⊤(t) =⇒
(
∂C+

∂x

)∗
− d

dt

(
∂C+

∂ẋ

)∗
=

(
∂H
∂x

)∗
+ λ̇

∗
(t) = 0 =⇒

λ̇
∗
(t) = −

(
∂H
∂x

)∗
=−

(
∂C

∂x
+
∂fT

∂x
λ

)∗
, on t0 ≤ t < tf .

• Coefficient of δU⊤(t) =⇒
(
∂C+

∂u

)∗
=

(
∂H
∂u

)∗
=

(
∂C

∂u
+
∂fT

∂u
λ

)∗
= 0, on t0 ≤ t < tf .

Cautionary Remark: This critical point result is only valid for isolated,
interior critical optima, so it would not be valid for the case that H is linear

in U or a singular case. However, the equations for Ẋ∗(t) and λ̇
∗
(t) remain

valid.

“bk0allfinal”
2007/1/7
page A7

i

i

i

i

i

i

i

i

A.1. Hamilton’s Equations A7

• Coefficient of δtf =⇒
If tf is fixed, then δtf ≡ 0 and no information can be implied about the
coefficient, else if tf is free and if δtf 6= 0 is otherwise arbitrary then

(
(C+)∗−

(
Ẋ∗
)⊤(∂C+

∂ẋ

)∗)∣∣∣∣∣
t=t∗

f

=

(
H∗ +

(
∂S

∂t

)∗)∣∣∣∣∣
t=t∗

f

= 0.

• Coefficient of δX̂⊤(t∗f) =⇒
If X(tf) is fixed and tf fixed, then δX̂⊤(t∗f) ≡ 0 and no information can
be implied about the coefficient, else if X(tf) is free and tf is fixed, then

δX̂⊤(t∗f) 6= 0 and

(
∂C+

∂ẋ

)∗
∣∣∣∣∣
t=t∗

f

=

((
∂S

∂x

)∗
− λ∗

)∣∣∣∣∣
t=tf

= 0 =⇒

λ∗(tf) =
∂S

∂x
(X∗(tf), tf),

or else if both X(tf) and tf are free, then the combined conditions are

λ∗∗
f ≡ λ∗(t∗f) =

∂S

∂x
(X∗(t∗f), t∗f),

(
H +

∂S

∂t

)∗∗
≡
(
H∗ +

(
∂S

∂t

)∗)∣∣∣∣∣
t=t∗

f

= 0,

the double asterisk notion denoting the optimal stopping time on the optimal
path.

The first three items complete the proof of the theorem, while the last two items
complete the justifications of the final conditions listed in Table A.1 below.

The state vector X∗(t) satisfies specified initial conditions X∗(t0) = x∗
0 at

t0. The final conditions for the state X∗(tf) and co-state or adjoint state
λ
∗(tf), if any, depend on the application and a fairly complete set is tabulated

in Kirk [163], Bryson-Ho [44] and Athans-Falb [15]. The final conditions depend
on whether the final time tf is fixed (specified) or free (unspecified) and whether
the corresponding final state vector xf = X(tf) is fixed or free. A partial list of
some of the conditions is given in Table A.1: See the classical sources of Athans-
Falb [15], Kirk [163] and Bryson-Ho [44] for additional final conditions such as
moving boundaries Γ(X(t)) = 0 or Γ(X(t), t) = 0 and other variants that enter
into the final conditions. For other variants with more economic interpretations,
the bio-economics book of Clark [56] is very readable and useful. Other condition
variants include a multitude of mixed and hybrid cases that are vector component
combinations of the purely fixed and free vector cases presented in the Table A.1.
Some of these final conditions arise as natural boundary conditions because they

“bk0allfinal”
2007/1/7
page A8

i

i

i

i

i

i

i

i

A8 Appendix A. Appendix: Deterministic Optimal Control

Table A.1. Some final conditions for deterministic optimal control.

X(tf) = xf Fixed X(tf) Free & tf -Independent

tf Fixed x∗
f = X∗(tf) = xf λ∗

f = λ∗(tf) = ∇x[S](x∗
f , tf)

at t = tf at t = tf

x∗∗
f = X∗(t∗f) = xf λ∗∗

f = λ∗(t∗f) = ∇x[S](x∗∗
f , t∗f)

tf Free (H + St)
∗∗
f = 0 (H + St)

∗∗
f = 0

at t = t∗f at t = t∗f

Notation: x∗
f ≡ X∗(tf), u∗

f ≡ U∗(tf), λ∗
f ≡ λ∗(tf) and H∗

f ≡ H(x∗
f ,u

∗
f ,λ

∗
f , tf) in

the case of fixed final time tf , while x∗∗
f ≡ X∗(t∗f), u∗∗

f ≡ U∗(t∗f), λ∗∗
f ≡ λ∗(t∗f) and

H∗∗
f ≡ H(x∗∗

f ,u∗∗
f ,λ

∗∗
f , t

∗
f) in the case of free final time with optimal final time t∗f .

can not be independently specified but follow from the structure of the optimal
control problem by the method of calculus of variations [40, 15, 163, 44].

The final conditions for the free terminal time and free terminal state case

λ∗∗
f = λ∗(t∗f) = ∇x[S](x∗∗

f , t∗f) , (A.13)

0 = H(x∗∗
f ,u∗∗

f ,λ
∗∗
f , t

∗
f) + St(x

∗∗
f , t∗f) , (A.14)

in Table A.1 are a good example of the results the calculus of variations. The
equation (A.13) is the final or transversality condition for the optimal Lagrange
multipier that usually accompanies the stationary point Euler-Lagrange equations
(A.7) for the optimal multiplier and (A.8) for the optimal control [44]. The Euler-
Lagrange equations along with the dynamic constraint equation and initial condition
(A.1) satisfy a two-point boundary value problem, also called a final-initial value
problem.

Theorem A.2. Legendre-Clebsch sufficient conditions for regular control
optimum:
If the Hamiltonian H (A.5) has continuous second order derivatives in the control
vector u, then the sufficient condition for a regular point maximum is that
the Hessian matrix must be negative definite, i.e., H is concave at the regular
point,

H∗
uu = ∇u

[
∇⊤

u [H]
]
(X∗(t),U∗(t),λ∗(t), t) < 0 . (A.15)

and the sufficient condition for a regular control minimum is that the Hessian
matrix must be positive definite, i.e., H is convex at the regular control,

H∗
uu = ∇u

[
∇⊤

u [H]
]
(X∗(t),U∗(t),λ∗(t), t) > 0 . (A.16)

These sufficient conditions are called the (strengthened) Legendre-Clebsch condi-
tions.

The proof is a standard optimization proof in multivariate calculus ([263, 221,
44]) and is a general form of the so-called 2nd Derivative Optimum Test.

“bk0allfinal”
2007/1/7
page A9

i

i

i

i

i

i

i

i

A.1. Hamilton’s Equations A9

If the Legendre-Clebsch conditions do not hold, then extra conditions usually
are needed. For example, if H is linear in the control u, then the control problem
may be singular [24] and more basic optimization principles may be needed.

See the next section for how to handle some of these exceptions to regular
control or normal control with the critical, stationary condition with respect to
the control u here, using basic optimization principles in terms of a maximum or
minimum principle.

Example A.3. Regular Control Problem: This problem is a simplified fragment
of a financial portfolio application. Let the dynamics be linear in the positive scalar
state X(t) > 0, denoting the measure of the wealth at time t, but bi-linear in the
control-state, such that

Ẋ(t) ≡ dX

dt
(t) = (µ0 − U(t))X(t) , X(0) = x0 > 0 , 0 ≤ t ≤ tf , (A.17)

where µ0 is a fixed mean production rate of the wealth and U(t) is the control
variable that is a measure of the rate of consumption of the wealth at time t. The
consumption is constrained to be non-negative and bounded above

U (min) = 0 ≤ U(t) ≤ U (max) . (A.18)

The objective is to maximize the cumulative utility of instantaneous consumption
where the utility is a power law,

C(x, u, t) = uγ/γ , (A.19)

for positive powers γ > 0, but in the following analysis we will exclude the linear
case γ = 1 to keep this a regular or normal control problem. In addition, let there
be terminal wealth utility using the same power law,

S(x, t) = xγ/γ . (A.20)

Thus, this is a Bolza problem described above, but here the maximum utility is sought
rather than the minimum cost. The difference between solving a maximum versus
a minimum problem is trivial, as can be seen from the Legendre-Clebsch sufficient
conditions, (A.15) and (A.16), with only a difference in the sign of the inequality.
Solution: The Hamiltonian is then

H(x, u, λ, t) = uγ/γ + λ(µ0 − u)x . (A.21)

Hamilton’s equations for a regular control solution are

Ẋ∗(t) = +H∗
λ = (µ0 − U (reg)(t))X∗(t) , (A.22)

λ̇∗(t) = −H∗
x = −(µ0 − U (reg)(t))λ∗(t) , (A.23)

0 = H∗
u = (U (reg))γ−1(t) − λ∗(t)X∗(t) , (A.24)

the latter equation yields the regular control,

U (reg)(t) = (λ∗(t)X∗(t))1/(γ−1) , (A.25)

“bk0allfinal”
2007/1/7
page A10

i

i

i

i

i

i

i

i

A10 Appendix A. Appendix: Deterministic Optimal Control

provided that γ 6= 1, as promised, i.e., excluding the what is called the neutral risk
case. Since the control is a regular control, then, strictly speaking, X∗(t) = X(reg)(t)
and λ∗(t) = λ(reg)(t).

Before designating the regular control as the optimal control, the Legendre-
Clebsch second derivative sufficient conditions are examined:

Huu = (γ − 1)uγ−2 , (A.26)

it is seen from the Legendre-Clebsch sufficient condition for a maximum, that H is
concave or (Huu)(reg) < 0, is only satisfied for γ < 1, the “low” risk adverse
case. Hence, U∗(t) = U (reg).

However, for γ > 1 and risk-seeking utility, the regular control (A.25) yields
a minimum since H is convex or (Huu)(reg) > 0, but it would not be rational to get
a minimum utility. If maximizing the utility is needed when γ > 1 then the control
constraints must be used. See Exercise 6 for how to obtain the proper maximum
utility solution when γ > 1.

The first two of Hamilton’s equations, though seemingly complicated, can be
solved by dividing both sides of the equations and examining them in the phase plane
without the time dependence,

dX∗

dλ∗
= −X

∗

λ∗
, (A.27)

which is just the product rule of differentiation, (dX∗λ∗)/dt = 0, slightly rearranged
and the solution is

X∗λ∗ = K , (A.28)

where K is a constant of integration. Consequently, our optimal control is the
regular control and must be a constant as well,

U∗(t) = U (reg) = K1/(γ−1) ≡ K0 , (A.29)

provided 0 ≤ U (reg) ≤ U (max). Constant control means that the state and co-state
equations here are equations of simple exponential growth, so

X∗(t) = x0e
(µ0−K0)t , (A.30)

λ∗(t) = λ∗(tf)e−(µ0−K0)(t−tf) , (A.31)

where the constant K0 and the final adjoint value λ∗(tf) = λ∗f need to be deter-
mined. By the transversality condition in Table A.1 for tf fixed and X∗(tf) = x∗f
unspecified,

λ∗f = Sx(x∗f , tf) = (x∗f)γ−1 =
(
x0e

(µ0−K0)tf

)γ−1

, (A.32)

using the derivative of the terminal utility S(x, t) (A.20) and the state solution
X∗(t) in (A.30). Finally, the definitions of K in (A.28) and K0 in (A.29) yield a
nonlinear equation for the control constant U∗(t) = K0 using (A.28-A.32),

K0 = K
1

γ−1 = (x∗fλ
∗
f)

1
γ−1 = (x∗f)

γ
γ−1 =

(
x0e

(µ0−K0)tf

) γ
γ−1

, (A.33)

“bk0allfinal”
2007/1/7
page A11

i

i

i

i

i

i

i

i

A.1. Hamilton’s Equations A11

in terms of the specified X0, µ0 and γ < 1.
We are assuming that the control constraint U (max) is sufficiently larger than

K0, so that the control remains regular. Control constraint violations, bang control
and linear or singular control are treated in the next section.

Some sample optimal wealth state X∗(t) and co-state λ∗(t) solutions are dis-
played in Fig. A.1 for maximum utility with γ = 0.5 in Subfigure A.1(b).The ter-
minal wealth at the terminal time tf = 1.0 starting from x0 = 10.0 is S = 1.038
for γ = 0.5. The mean production rate was µ0 = 0.10 or 10% in absence of con-
sumption. MATLAB’s modification of Brent’s zero finding algorithm fzero [87] is
used to find the control constant U∗(t) = K0 whose approximate value is 3.715 when
γ = 0.5 to accuracy of order 10−15 in satisfying (A.33).

For completeness and to provide a contrasting illustration with a non-regular,
bang control case for a power utility with γ = 2.0, the Hamiltonian and optimal paths
are displayed in Subfigures A.2(a)-A.2(b), respectively. The control constant U∗(t)
has an approximate value of 10.0 when γ = 2.0. The terminal wealth is S = 5.02e-4
at the terminal time tf = 1.0 starting from x0 = 10.0 for γ = 2.0. See Exercise 6
for obtaining proper maximum utility solution when γ > 1.

0 2 4 6 8 10
0

0.5

1

1.5

2
Hamiltonian Regular Example

H
c(

u)
, H

am
ilt

on
ia

n

u, Control

(a) Hamiltonian for regular maximum utility
example for power γ = 0.5.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10
Regular Control Maximum Example (a)

X
* (t

)
an

d
λ* (t

),
 O

pt
im

al
 S

ta
te

s

t, time

X*(t) Optimal Wealth State
λ*(t) Optimal Co−State

(b) Optimal paths for regular maximum util-
ity example for power γ = 0.5.

Figure A.1. Hamitonian and optimal solutions for regular control problem
example from (A.30) for X∗(t) and (A.31) for λ∗(t). Note that the γ = 0.5 power
utility is only for illustration purposes.

Remark A.4. Many control problems are not this easy, since they may require
much more analysis, especially in multiple dimensions, and often numerical ap-
proximation is needed. For more information on optimal finance portfolios with
consumption, see Section 10.4 in Chapter 10 on financial applications.

A.1.1 Deterministic Computation and Computational
Complexity

Except for simple or analytical homework problems, usually numerical discretization
and iterations are required until the solution (X∗(t),U∗(t),λ∗(t)) converges to some

“bk0allfinal”
2007/1/7
page A12

i

i

i

i

i

i

i

i

A12 Appendix A. Appendix: Deterministic Optimal Control

0 2 4 6 8 10
0

10

20

30

40

50
Hamiltonian Bang Example

H
c(

u)
, H

am
ilt

on
ia

n

u, Control

(a) Hamiltonian for endpoint maximum util-
ity example for power γ = 2.0.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10
Bang Control Maximum Example (b)

X
ba

ng
(t

)
an

d
λba

ng
(t

),
 B

an
g

S
ta

te
s

t, time

Xbang (t) Bang Wealth State
λbang (t) Bang Co−State

(b) Optimal paths for endpoint maximum
utility example for power γ = 2.0.

Figure A.2. Hamiltonian and optimal solutions for bang control problem
example from (A.30) for X∗(t) and (A.31) for λ∗(t). Note that the γ = 2.0 power
utility is only for illustration purposes.

prescribed accuracy. If there are nt discrete time nodes, Tk = t0 + (k − 1)∆T for
k = 1 : Nt with ∆T = (tf − t0)/(Nt − 1), then the nx dimensional state vector
X∗(t) is discretized into X∗(Tk) = Xk = [Xi,k]nx×Nt

or nx · Nt discrete variables.
For the three vector solution the computational complexity or the order of the
computational cost [110] is

CC(nx, nt) = O(3nx ·Nt) (A.34)

per iteration, i.e., bi-linear in the dimension and number of time nodes, a very
manageable computational problem, even for today’s powerful personal computers.

In addition, MATLABTM [210] has a good number of control Toolboxes to
handle problems. There are also several good on-line tutorials available, such as
Tilbury and Messner’s [268, 205] Control Tutorials for MATLAB And Simulink.

Some early surveys on computational methods for optimal control problems
are by Larson [182], Dyer and McReynolds [76], and Polak [227].

A.2 Optimum Principles: The Basic Principles
Approach

For many problems, as discussed in Section B.15 of Chapter B of preliminaries, the
unconstrained or regular control conditions expressed by Hamilton’s equations (A.6,
A.7, A.8) are in general inadequate. The inadequacy arises in problems for which
the optima are not located at interior points but are located at the boundaries of
the state and control domains, such as when the domains have bounded constraints
in addition to dynamical constraints like (A.1). One exceptional case is the linear
control problem. Another exception is when the optima are at interior points at
which the derivatives in Hamilton’s equations cease to exist, or any of the multitude
of combinations of these exceptions depending on all or a subset of the components

“bk0allfinal”
2007/1/7
page A13

i

i

i

i

i

i

i

i

A.2. Optimum Principles: The Basic Principles Approach A13

of the variables involved.
Basic Optimum Principle: Hence, for general optimization theory and its

application, it is essential to return to basic optimization principles, that the global
minimum is the smallest or that the global maximum is the biggest.

Example A.5. Simple static example of state dependent control with
quadratic costs and control constraints:
Consider the following static quadratic cost function with scalar control u and state
x,

H(x, u) = C(x, u) = 2 + x+
1

2
x2 − xu+

1

2
u2 = 2 + x+

1

2
(u − x)2 , (A.35)

with control constraints,

−1 ≤ u ≤ +1 , (A.36)

but without any dynamical constraints like (A.1). The objective is to find the optimal
control law and optimal cost.
Solution: The control gradient or derivative is

∂C

∂u
(x, u) = −x+ u ,

yielding the critical, stationary point with respect to the control, called a regular
control in control theory,

U (reg)(x) = x ,

which would be the global minimum in absence of control constraints since the second
partial with respect to the control is positive, Cuu(x, u) = +1 > 0 with corresponding
regular cost

C(reg)(x) ≡ C(x, u(reg)(x)) = 2 + x ,

that is linear (affine) in the state variable.
However, this example has control constraints (A.36) which forces the cor-

rect optimal control to assume the constrained values when the regular control goes
beyond those constraints, i.e.,

U∗(x) =

−1, x ≤ −1
x, −1 ≤ x ≤ +1

+1, +1 ≤ x

 . (A.37)

This type of optimal control could be called a bang-regular-bang control, where the
term bang signifies hitting the control constraints, the control boundaries becoming
active. The corresponding correct optimal cost is

C∗(x) = C(x, u∗(x)) =

2 + x+ 1
2 (x+ 1)2, x ≤ −1

2 + x, −1 ≤ x ≤ +1
2 + x+ 1

2 (x− 1)2, +1 ≤ x

 . (A.38)

“bk0allfinal”
2007/1/7
page A14

i

i

i

i

i

i

i

i

A14 Appendix A. Appendix: Deterministic Optimal Control

For this example, C∗(x) is continuous and continuously differentiable, but not twice
continuously differentiable. However, optimal controls and optimal costs of some
problems can have much worse analytic properties. The optimal solution (A.38)
for this simple, somewhat artificial, static optimal control problem is illustrated
in Fig. A.3 with the optimal control in Subfigure A.3(a) and the optimal cost in
Subfigure A.3(b). This simple example provides an example motivating why the
stationary optimality condition (A.8) for the optimal control is not generally valid.

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Static Optimal Example Control

u
* (x

),
 O

pt
im

al
 C

on
tr

ol

x, State

(a) Optimal control u∗(x).

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

7
Static Optimal Example Cost

C
* (x

),
 O

pt
im

al
 C

os
t

x, State

(b) Optimal cost C∗(x).

Figure A.3. Optimal solutions for a simple, static optimal control problem
represented by (A.35) and (A.36), respectively.

The basic optimum principle is just the underlying principle for optimiza-
tion, but the rigorous justification is beyond the scope of this text. In control theory
the optimum principle is associated with the name Pontryagin maximum prin-
ciple [226] in the Russian literature, where the Hamiltonian is formed with an extra
multiplier λ0 to include the objective functional as the 0th dynamical constraint

Ẋ0(t) = C(X(t), U(t), t),

so the maximum refers to the Hamiltonian when the objective is minimum costs and
λ0 must be non-positive (see also (A.39) below). Often the optimum principle is
called the minimum principle in the English literature [163, 44, 258], particularly
when dealing with minimum cost problems, though not exclusively. The difference
between a maximum and a minimum principle is essentially a difference in the sign
of the Hamiltonian and the fact that the conversion from a maximum objective to
a minimum objective problem is quite simple:

max
u

[F (u)] = −min
u

[−F (u)] . (A.39)

With regard to applications, which version of the optimum principle is used
depends on the whether the optimal objective is minimum costs or maximum profit.

“bk0allfinal”
2007/1/7
page A15

i

i

i

i

i

i

i

i

A.2. Optimum Principles: The Basic Principles Approach A15

minimum energy or maximum energy, minimum time or maximum speed, and there
are many other objective choices:

• Minimum time (C = 1 and S = 0).

• Minimum control (C = |u| and S = 0).

• Minimum fuel (C = |u|, i.e., thrust measure of fuel consumption, and S = 0).

• Minimum energy (C = u2, i.e., energy, and S = 0).

• Minimum net profit (C = p0X − c0, i.e., profit less cost, and S = 0).

• Maximum utility of consumption (C = U(u), i.e., utility of consumption, and
S = U(x), i.e., utility of portfolio wealth).

• Maximum thrust angle (C = sin(θ(t)) and S = 0).

• Minimum distance.

• Minimum surface area.

Here, the maximum and minimum principles are only stated, but see the ref-
erences at the end of the chapter for more information, such as Anderson-Moore [8],
Athans-Falb [15], Bryson-Ho [44], Kirk [163], Pontryagin et al. [226] and Bell-
Jacobson [24]. While the statement of the principle seems very intuitive, the rigorous
proof is far from easy.

Theorem A.6. Optimum Principles:
The necessary condition for a maximum or maximum principle, is

H∗ = H(X∗(t),U∗(t),λ∗(t), t) ≥ H(X∗(t),U(t),λ∗(t), t), (A.40)

but the necessary condition for a minimum or minimum principle is

H∗ = H(X∗(t),U∗(t),λ∗(t), t) ≤ H(X∗(t),U(t),λ∗(t), t) , (A.41)

in general replacing (A.8), where X∗(t) and λ∗(t) are candidates for optimal state
or co-state, respectively. The optimal state X∗(t) must satisfy the dynamical con-
straint Ẋ∗(t) = (Hλ)∗ (A.6) and the co-state λ

∗(t) must satisfy the co-state equa-

tion λ̇
∗
(t) = −(Hx)∗ (A.7). The optimal control U∗(t) is the argument of the

corresponding maximum in (A.40) or minimum in (A.41).

Remarks A.7.

• Note that the optimal principles (A.40) and (A.41) as in the basic optimizing
principles are used as a general replacement for the necessary conditions for a
regular point H∗

u = 0 (A.8) and the Legendre-Clebsch second order sufficient
conditions H∗

uu < 0 (A.15) for a maximum and (A.16) H∗
uu > 0 for a min-

imum. However, these first and second order derivative conditions are still
valid for interior or regular points.

“bk0allfinal”
2007/1/7
page A16

i

i

i

i

i

i

i

i

A16 Appendix A. Appendix: Deterministic Optimal Control

• In fact, Pontryagin et al. [226] justify briefly that the optimum principles are
sufficient conditions as they are more basic conditions.

• If we let the control perturbation be

δU(t) ≡ U(t) − U∗(t) , (A.42)

then the corresponding perturbation or variation in the Hamiltonian is

∆uH(X∗(t),U∗(t),λ∗(t), t) ≡ H(X∗(t),U∗(t) + δU(t),λ∗(t), t) (A.43)

−H(X∗(t),U∗(t),λ∗(t), t)

and the maximum principle can be reformulated as

∆uH(X∗(t),U∗(t),λ∗(t), t) ≤ 0 , (A.44)

while the minimum principle can be reformulated as

∆uH(X∗(t),U∗(t),λ∗(t), t) ≥ 0 . (A.45)

In the language of the calculus of variations, the optimum principles are that
the first variation of the Hamiltonian is negative semi-definite for a maximum,
while it is positive semi-definite for a minimum.

• Concerning the simple static example A.5, the perturbation form of the min-
imum principle (A.45) can be used to justify the choice of the bang controls
given in (A.37). The perturbation for the example is

∆uH∗ = (U∗ − x)δU∗ +
1

2
(δU∗)2 ,

where only the linear term need be considered for its contribution to the non-
negativity of the perturbation since the quadratic term is never negative. When
there in minimal bang control, U∗ = −1, then the perturbation δU∗ must
necessarily be non-negative, otherwise the control constraints (A.36) would
be violated, so for non-negativity of the Hamiltonian perturbation the control
perturbation coefficient (−1 − x) must also be non-negative or that x ≤ −1.
Similarly, when there is maximal bang control, U∗ = +1, then the perturbation
has to be non-positive, δU∗ ≤ 0, to avoid violating the control constraints. So
∆uH∗ ≥ 0 (A.45) implies that the coefficient (1 − x) of δU∗ must be non-
positive or that x ≥ +1.

• Similar techniques work with the application of the optimum principles to the
case where the Hamiltonian is linear in the control. For example, consider the
scalar, linear control Hamiltonian,

H(x, u, λ, t) = C0(x, t) + C1(x, t)u + λ(F0(x, t) + F1(x, t)u) ,

subject to control constraints,

U (min) ≤ U(t) ≤ U (max) ,

“bk0allfinal”
2007/1/7
page A17

i

i

i

i

i

i

i

i

A.2. Optimum Principles: The Basic Principles Approach A17

and such that

Hu(x, u, λ, t) = C1(x, t) + λF1(x, t) = Hu(x, 0, λ, t) ,

so no regular control exists. However, the perturbed Hamiltonian has the form,

∆uH(X∗, U∗, λ∗, t) = Hu(X∗, 0, λ∗, t)δU∗ ,

so optimal control is of the bang-bang form, which for a minimum of H using
∆uH ≥ 0 yields the composite form,

U∗(t) =

{
U (min), (Hu)∗ = C1(X

∗(t), t) + λ∗(t)F1(X
∗(t), t) > 0

U (max), (Hu)∗ = C1(X
∗(t), t) + λ∗(t)F1(X

∗(t), t) < 0

}
,(A.46)

since for (Hu)∗ > 0 then δU∗ ≥ 0 or equivalently U∗(t) = U (min). Similarly
when (Hu)∗ < 0 then δU∗ ≤ 0 or equivalently U∗(t) = U (max), but if (Hu)∗ =
0 no information on either δU∗ or U∗(t) can be determined.

Example A.8. Bang-Bang Control Problem: Consider a simple lumped model
of a leaky reservoir (after Kirk [163]) given by

Ẋ(t) = −aX(t) + U(t), X(0) = x0,

where X(t) is the depth of the reservoir, U(t) is the net inflow of water at time t
and a > 0 is the rate of leakage as well as usage. The net inflow is constrained
pointwise 0 ≤ U(t) ≤M for all 0 < t ≤ tf and also cumulatively by

∫ tf

0

U(t)dt = K > 0, (A.47)

where K, M and tf are fixed constants, such that K ≤M · tf for consistency. Find
the optimal control law that maximizes the cumulative depth,

J [X] =

∫ tf

0

X(t)dt

and optimal depth X∗(t).
Solution: The extra integral condition (A.47) presents a variation on our standard
control problem, but can be treated nicely by extending the state space letting X1(t) =
X(t) and Ẋ2(t) = U(t) starting at X2(0) = 0, so that X2(tf) = K is precisely the
constraint (A.47). Thus, the Hamiltonian is

H(x1, x2, u, λ1, λ2, t) = x1 + λ1(−ax1 + u) + λ2u, (A.48)

where λ1 and λ2 are Lagrange multipliers. The Hamilton equations for the optimal
state and co-state solutions are

Ẋ∗
1 (t) = H∗

λ1
= −aX∗

1 (t) + U∗(t), X∗
1 (0) = x0;

Ẋ∗
2 (t) = H∗

λ2
= U∗(t), X∗

2 (0) = 0;

λ̇∗1(t) = −H∗
x1

= −1 + aλ∗1(t);

λ̇∗2(t) = −H∗
x2

= 0.

“bk0allfinal”
2007/1/7
page A18

i

i

i

i

i

i

i

i

A18 Appendix A. Appendix: Deterministic Optimal Control

Consequently, λ∗2(t) = C2, a constant, and X∗
2 (tf) = K is fixed. Also, λ∗1(t) =

C1 exp(at) + 1/a with the constant determined from the transversality condition
λ∗1(tf) = 0 of Table A.1 with X∗

1 (tf) free and no terminal cost, i.e., S(x) ≡ 0, so
C1 = − exp(−atf)/a and

λ∗1(t) =
1

a

(
1 − e−a(tf−t)

)
. (A.49)

Since
H∗

u = λ∗1(t) + λ∗2(t) 6= 0

in general, the usual critical point condition will not directly produce an optimal
control U∗(t), but a bang-bang control will work. By applying the essential Pon-
tryagin maximum principle (first derivative test) in the form (A.43-A.44) with
δU(t) = U(t) − U∗(t),

∆uH(X∗(t),U∗(t),λ∗(t), t) = (λ∗1(t) + λ∗2(t))(U(t) − U∗(t)) ≤ 0,

so if (λ∗1(t) + λ∗2(t)) > 0 then U(t) − U∗(t) ≤ 0 and U∗(t) = max[U(t)] = M ,
but if (λ∗1(t) + λ∗2(t)) < 0 then U(t) − U∗(t) ≥ 0 and U∗(t) = min[U(t)] = 0.
If (λ∗1(t) + λ∗2(t)) = 0, then U∗(t) cannot be determined. Now, U∗(t) can not be
zero on all of [0, tf] or be M on all of [0, tf], because both options would violate
the constraint (A.47) in the strict case K < M · tf . In this case and noting that
λ∗1(t) is decreasing in time, there must be a switch time ts on [0, tf] such that
λ∗1(ts) + λ∗2(ts) = 0, C2 = λ∗2(ts) = −λ∗1(ts) = −(1 − exp(−a(tf − ts))/a < 0 and

X∗
2 (tf) = K =

∫ ts

0

Mdt+

∫ tf

ts

0dt = Mts,

so ts = K/M . The composite bang-bang control law is then

U∗(t) =

{
M, 0 ≤ t < ts

0, ts < t ≤ tf

}
, (A.50)

and the corresponding state trajectory is given by

X∗
1 (t) = X∗(t) = x0 e

−at +
M

a

{
(1 − e−at) , 0 ≤ t ≤ ts

e−at (e+ats − 1) , ts < t ≤ tf

}
. (A.51)

The optimal control (A.50), state (A.51) and the switch time indicator multiplier
sum (A.49), λ∗1(t) + λ∗2(t), are plotted together in Fig. A.4 with sample numerical
parameter values.

Example A.9. Singular Control Problem: Consider the scalar dynamical
system for a natural resource with state or mass X(t)

Ẋ(t) ≡ dX

dt
(t) = (µ0 − U(t))X(t) , X(t0) = x0 > 0 , t0 ≤ t ≤ tf , (A.52)

“bk0allfinal”
2007/1/7
page A19

i

i

i

i

i

i

i

i

A.2. Optimum Principles: The Basic Principles Approach A19

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

2.5
Bang−Bang Control Example

U
* ,

X
* ,

λ 1* +λ
2*

t, Time

t
s

U*(t), Control

X*(t), State
λ

1
*+λ

2
*

Figure A.4. Optimal control, state and switch time multiplier sum are
shown for bang-bang control example with sample parameter values t0 = 0, tf = 2.0,
a = 0.6, M = 2, K = 2.4 and x0 = 1.0. The computed switch time ts is also
indicated.

where µ0 is the natural growth rate and U(t) is the harvest rate or effort that will
be taken as the control variable. Thus, (A.52) represents exponential growth of the
resource whose growth rate is modified by the control. Let the running “cost” for
the objective functional be

C(x, u, t) = e−δ0t max [p0x− c0, 0]u(t) , (A.53)

where p0 > 0 is the fixed price per unit effort per unit mass and c0 > 0 is the fixed
cost per unit effort, so p0X(t) − c0 is the net instantaneous profit at time t.

Note that only positive profit is considered to avoid the possibility of loss, so
X(t) > c0/p0 needs to be maintained. Since the objective concerns profit rather that
costs, the objective will be the maximization of profit and the maximum version of
the optimum principle is applicable here. The factor δ0 > 0 is the fixed discount
rate or time value of money, but δ0 > µ0 is also assumed as a result of the analysis.
There is no terminal cost S. Since real applications have constraints, let the control
domain be defined by

0 ≤ U(t) ≤ U (max) , (A.54)

where U (max) is positive but whose value is left open for the moment. Since the
dynamics are linear and the initial condition is positive, the state domain will also
be positive values X(t) > 0.
Solution: In order to find the solution, the Hamiltonian is written

H(x, u, λ, t) = C(x, u, t) + λẊ = e−δ0t(p0x− c0)u + λ(µ0 − u)x ,

assuming a positive profit. Prior to applying basic optimization principles, we first
seek critical, stationary solutions in the control dependence. The control derivative

“bk0allfinal”
2007/1/7
page A20

i

i

i

i

i

i

i

i

A20 Appendix A. Appendix: Deterministic Optimal Control

is

Hu(x, u, λ, t) = e−δ0t(p0x− c0) − λx , (A.55)

which is independent of the control u and when set to zero for stationarity yields
the optimal candidate for the adjoint variable, say,

λ̂(t) = e−δ0t (p0 − c0/x̂(t)) .

However, the other Hamilton’s equations specify the potential optimal dynamics of
the adjoint and state variables,

˙̂
λ(t) = −Hx = −e−δ0tp0û(t) − λ̂(t)(µ0 − û(t)) , (A.56)

˙̂x(t) = Hλ = (µ0 − û(t))x̂(t) . (A.57)

So, combining the last three equations, it is found that the control terms û cancel
out exactly. Consequently, this yields a singular solution for the state,

X(sing) = x̂(t) = (c0/p0)/(1 − µ0/δ0) . (A.58)

This singular solution leads to the requirement that δ0 > µ0 to maintain the profit
restriction that X(t) > c0/p0. Note that the singular solution in this case is also a
constant. The solution (A.58) is called a singular solution, rather that a regular or
normal solution, since (A.55) does not define a stationary point or regular control
and by the way the control cancels out due to the linear dependence on control.
However, the singular control can be recovered from inverting the state dynamics,

U (sing) = û(t) = µ0 − Ẋ(sing)/X(sing) = µ0 .

For the optimal solution, the control constraints and the initial condition X(0) = x0

need to be considered.
If U (max) ≥ µ0, then U∗(t) = U (sing) = µ0 and X∗(t) = X(sing) on 0 < t∗ ≤

t ≤ T
(max)
0 where T

(max)
0 is a transition time where the initial trajectory connects to

the singular trajectory at point that is called a corner. The initial trajectory must
be chosen using the control bound that allows the singular path to be reached and
this control trajectory could be called a bang control trajectory.

If X(sing) < x0 and U (max) > µ0, then U∗(t) = U (max) on [0, T
(max)
0] where

the maximal state trajectory starting from x0 at t = 0 integrating (A.57) is

X
(max)
0 (t) = x0 exp

((
µ0 − U (max)

)
t
)
, 0 ≤ t ≤ T

(max)
0 ,

T
(max)
0 = − ln

(
X(sing)/x0

)
(
U (max) − µ0

) > 0 .

If X(sing) > x0, then U∗(t) = 0 on [0, T
(min)
0] where the minimal state trajec-

tory starting from x0 at t = 0 integrating (A.57) is

X
(min)
0 (t) = x0e

µ0t , 0 ≤ t ≤ T
(min)
0 ,

T
(min)
0 = +

ln
(
X(sing)/x0

)

µ0
> 0 .

“bk0allfinal”
2007/1/7
page A21

i

i

i

i

i

i

i

i

A.2. Optimum Principles: The Basic Principles Approach A21

At the final time the adjoint final or transversality condition must be used as a
final value condition for the adjoint dynamics (A.56), which from the scalar version
of the entry for fixed tf and free X(tf) in Table A.1 on page A8 is

λ∗(tf) = Sx(x∗
f , tf) = 0 ,

since there is no terminal value S in this example. Note that this is consistent with
the maximum principle using the calculus of variation and that the regular, critical
relation Hu = 0 can not be used as it was for the singular path. Obviously, it is
necessary to use the maximal control in (A.56) to reach the condition λ∗(tf) = 0
from the singular path,

λ(sing)(t) = e−δ0tp0µ0/δ0 ,

since that leads to a positive running cost and the minimum control cannot be used
to physically reach λ∗(tf) = 0. Letting λf (t) = λ̂(t) be the solution of the adjoint

dynamics equation (A.56) with conditions λ̂(T) = 0 and connection or corner time

Tf such that λf (Tf) = λ̂(Tf) = λ(sing)(Tf), thus

Tf = tf +
ln
(
1 − µ0(δ0 + U (max) − µ0)/(δ0U

(max))
)

(δ0 + U (max) − µ0)
.

Given the value of Tf , the corresponding state trajectory is

Xf (t) = X(sing)e−(U(max)−µ0)(t−Tf) ,

on [Tt, tf].
Thus, the composite optimal control might be called bang-singular-bang with

the form

U∗(t) =

{
U (max), 0 ≤ t ≤ T

(max)
0

U (sing) = µ0, T
(max)
0 ≤ Tf

}
, x0 > X(sing)

{
0, 0 ≤ t ≤ T

(min)
0

U (sing) = µ0, T
(min)
0 ≤ Tf

}
, x0 < X(sing)

U (max), Tf ≤ t ≤ tf

(A.59)

and a composite optimal state trajectory is

X∗(t) =

{
X

(max)
0 (t), 0 ≤ t ≤ T

(max)
0

X(sing) T
(max)
0 ≤ Tf

}
, x0 > X(sing)

{
X

(min)
0 (t), 0 ≤ t ≤ T

(min)
0

X(sing), T
(min)
0 ≤ Tf

}
, x0 < X(sing)

Xf (t), Tf ≤ t ≤ tf

, (A.60)

“bk0allfinal”
2007/1/7
page A22

i

i

i

i

i

i

i

i

A22 Appendix A. Appendix: Deterministic Optimal Control

where it has been assumed for both U∗(t) in (A.59) and X∗(t) in (A.60) that

T
(min)
0 < Tf or T

(max)
0 < Tf so that there is a non-trivial singular path. Thus,

the possibility of a pure bang-bang control is excluded, for example when a mini-

mal bang path X
(min)
0 (t) from x0 intersects the maximal bang path Xf(t) from x∗f

before hitting the singular path X(sing).
Note that this solution is for the case, U (max) > µ0, the case for U (max) ≤ µ0

is left as an open problem in Exercise 7 for the reader, who should realize that some
parameter values fail to lead to a control problem solution. One possible reason for
this failure is the realistic assumption that the control is bounded does not allow the
state to jump from the initial condition to the singular path and unbounded control
that could do that is called impulse control. Impulse control could be implemented
as a Dirac delta function in the differential equation and more on this matter and
similar examples can be found in Clark [56] and Bryson-Ho [44].

Some sample results for this singular control example are displayed in Fig. A.5
using model parameters µ0 = 0.08, δ0 = 0.144, p0 = 5.0, c0 = 12.0, t0 = 0 and
tf = 15.0. In Subfig. A.5(a) the optimal state trajectory starts out from x0 = 10.0
at t = 0 using maximal bang control with U (max) = 0.16 moving down to reach

the singular path at X(sing) = 9.0 below when T
(max)
0 = 1.317, proceeding along the

singular path until the singular-bang final corner when Tf = 8.285 and then moving
down the maximal bang path using U (max) until reaching the end of the time horizon
at t = tf = 15.0. The trajectory displayed in Subfig. A.5(b) is similar except it starts
at x0 = 8.0 and moves up to the singular path until reaching the singular path at

(X(sing), T
(min)
0) = (9.0, 1.472); the rest of the path is the same for this example as

for the maximal initial bang trajectory.

0 5 10 15
0

2

4

6

8

10

Singular Control Example (a)

X
* (t

),
 O

pt
im

al
 S

ta
te

t, time

X*(t) Optimal State

(a) Singular control optimal state X∗(x)
when x0 = 10.0.

0 5 10 15
0

2

4

6

8

10

Singular Control Example (b)

t, time

X
* (t

),
 O

pt
im

al
 S

ta
te

X*(t) Optimal State

(b) Singular control optimal state X∗(x)
when x0 = 8.0.

Figure A.5. Optimal state solutions for singular control example leading
to a bang-singular-bang trajectory represented by (A.60). Subfigure (a) yields a max-
imal bang trajectory from x0 using U (max), where as Subfigure (b) yields a minimal
bang trajectory from x0 using U (min).

“bk0allfinal”
2007/1/7
page A23

i

i

i

i

i

i

i

i

A.3. Linear Quadratic (LQ) Canonical Models A23

A.3 Linear Quadratic (LQ) Canonical Models

The linear dynamics, quadratic costs or (LQ) problem has the advantage that the
regular control can be found fairly explicitly in terms of the state or the co-state,
thus avoiding the singular complications of linear control problems.

A.3.1 Scalar, Linear Dynamics, Quadratic Costs (LQ)

In the scalar, constant coefficient case the linear dynamics is given by

Ẋ(t) = a0X(t) + b0U(t) , t0 ≤ t ≤ tf , X(t0) = x0 6= 0 , (A.61)

where a0 6= 0 and b0 6= 0 are assumed so the dynamics is assumed to be non-trivial.
The quadratic cost objective is given by

V [X,U, tf](x0, t0) =

∫ tf

t0

C (X(t), U(t), t) dt+ S (X(tf), tf) , (A.62)

with the quadratic running cost in state and control,

C(x, u, t) =
1

2
q0x

2 +
1

2
r0u

2 , (A.63)

where r0 > 0 for minimum costs and q0 ≥ 0, while the terminal quadratic cost is
quadratic in the state only

S(x, t) =
1

2
s0x

2 , (A.64)

where s0 ≥ 0. It is assumed there are no bounds on the control U(t) to preserve
the nice canonical features of the LQ model. Otherwise the model features would
have much more complexity.

Consequently, the Hamiltonian has the form,

H(x, u, t) =
1

2
q0x

2 +
1

2
r0u

2 + λ(a0x+ b0u) . (A.65)

Without control constraints and with quadratic control costs, the regular control
policy is the optimal one, governed by the corresponding Hamilton’s equations,

Ẋ∗(t) = +(Hλ)∗ = a0X
∗(t) + b0U

∗(t) , (A.66)

λ̇∗(t) = −(Hx)∗ = −q0X∗(t) − a0λ
∗(t) , (A.67)

0 = +(Hu)∗ = r0U
∗(t) + b0λ

∗(t) . (A.68)

The Legendre-Clebsch 2nd order minimum condition is satisfied, since

(Huu)∗ = r0 > 0 (A.69)

by the positive definite assumption on r0. Thus, the optimal control is

U∗(t) = U (reg)(t) = −b0λ∗(t)/r0 , (A.70)

“bk0allfinal”
2007/1/7
page A24

i

i

i

i

i

i

i

i

A24 Appendix A. Appendix: Deterministic Optimal Control

while using (A.70) both the state and co-state optimal dynamics satisfies a linear
first order matrix system of differential equations,

Ż(t) ≡
[
Ẋ∗(t)
λ̇∗(t)

]
= MZ(t) ≡

[
a0 −b20/r0
−q0 −a0

]
Z(t) . (A.71)

The matrix differential equation (A.71) has the general eigen-solution,

Z(t) = c1e
µ1(t−t0)

[
1

(a0 − µ1)r0/b
2
0

]
+ c2e

−µ1(t−t0)

[
1

(a0 + µ1)r0/b
2
0

]
.(A.72)

where c1 and c2 are constants of integration, and

µ1 =
√
a2
0 + q0b20/r0 (A.73)

is the principal eigenvalue of the matrix M defined in (A.71). This eigenvalue must
be real by the coefficient assumptions, but q0 > −r0a2

0/b
2
0 would be a sufficient

condition for for µ1 to be real instead of the condition q0 > 0.
The constants of integration (c1, c2) are determined by the initial condition

X∗(t0) = x0

from the first component of Z(t) in (A.72) and since tf is fixed but not X(tf),
the final or transversality condition in Table A.1 on page A8 provides a second
condition,

λ∗(tf) = Sx(X∗(tf), tf) = s0X
∗(tf) (A.74)

from the second component of Z(t) in (A.72). Upon substitution of the constants
of integration, the solution (X∗(t), λ∗(t)) can be found explicitly, say by symbolic
computation systems such as Maple or Mathematica, but is too long and compli-
cated to present here. However, an important property is that both X∗(t) and λ∗(t)
are proportional to the initial state. The linear feedback relationship between the
optimal control and the optimal state can be found from these two solutions and
the linear relationship between the optimal control and the co-state in (A.70) yields
a linear feedback control law,

U∗(t) = K(t)X∗(t) , (A.75)

where

K(t) = −(b0/r0)λ
∗(t)/X∗(t) , (A.76)

which is called the feedback gain coefficient and is independent of the initial state
x0 since it cancels out of the co-state to state ratio. The linear feedback control
law (A.75) with (A.76) is called feed back or closed loop control because it uses
state information. However, if the control law is just time-dependent and state-
independent, then the law would be called an open loop control.

“bk0allfinal”
2007/1/7
page A25

i

i

i

i

i

i

i

i

A.3. Linear Quadratic (LQ) Canonical Models A25

If the plant manager is just concerned with what optimal control input is
needed to achieve optimal control in the next time step, then only the feedback
gain is required assuming the current state output X∗(t) is known. This gain K(t)

(sometimes the control law is expressed with a minus sign, U∗(t) = −K̂(t)X∗(t)) can
be found directly from a bilinear (quadratic) first order equation, called a Riccati
equation,

K̇(t) = −b0K2(t) − 2a0K(t) + b0q0/r0 , (A.77)

using a numerical differential equation solver backward in time, with just knowledge
of the system and cost parameters, as well as the final condition,

K(tf) = −b0s0/r0 , (A.78)

from (A.76) and (A.74).

A.3.2 Matrix, Linear Dynamics, Quadratic Costs (LQ)

In general, LQ control problems will have time-dependent matrix coefficients, and
will have both multi-dimensional vector states and controls. Again, let X(t) be
nx-dimensional and U(t) be nu-dimensional. With some more effort the matrix
form of the LQ problem can be solved, using the symbolic tools of Maple and
Mathematica or the numerical tools of MATLAB.

Let the matrix form of the linear (L) state dynamics be

Ẋ(t) = A(t)X(t) +B(t)U(t) , t0 ≤ t ≤ tf , X(t0) = x0 , (A.79)

where the coefficient matrices are A(t) = [ai,j]nx×nx
and A(t) = [bi,j]nx×nu

, com-
mensurate in matrix-vector multiplication. The quadratic (Q) cost objective is

V [X,U, tf](x0, t0) =
1

2

∫ tf

t0

[
X⊤(t)Q(t)X(t) + U⊤(t)R(t)U(t)

]
dt (A.80)

+
1

2
X⊤(tf)Sf (tf)X(tf) ,

where the cost coefficient matrices are all symmetric, nx ×nx state cost coefficients
Q(t) and Sf (t) are positive semi-definite (Q(t) ≥ 0, Sf (t) ≥ 0), while the nu × nu

control cost coefficients must be positive definite, R(t) > 0 to insure minimum costs.
The Hamiltonian auxiliary objective is

H(x,u,λ, t) =
1

2

(
x⊤Q(t)x + u⊤R(t)u

)
+ λ⊤ (A(t)x +B(t)u) , (A.81)

where λ = [λi]nx×1 is the auxiliary co-state vector used to include the dynamical
constraints to the running cost objective. In absence of control constraints and with
R(t) > 0, the regular control is the optimal control and Hamilton’s equations are

Ẋ∗(t) = +(Hλ)∗ = A(t)X∗(t) +B(t)U∗(t) , (A.82)

λ̇
∗
(t) = −(Hx)∗ = −Q(t)X∗(t) −A⊤(t)λ∗(t) , (A.83)

0 = (Hu)∗ = R(t)U∗(t) +B⊤(t)λ∗(t) , (A.84)

“bk0allfinal”
2007/1/7
page A26

i

i

i

i

i

i

i

i

A26 Appendix A. Appendix: Deterministic Optimal Control

where by the gradient peel theorem (B.133) the transposes of A(t) and B(t) multiply
λ∗(t) in (A.83) and (A.84), respectively.

Since R(t) > 0, i.e., R(t) is positive definite and has positive R(t) eigenvalues,
it is invertible (B.136). Hence, the optimal control in absence of control constraints
is proportional to the co-state vector,

U∗(t) = −R−1(t)B⊤(t)λ∗(t) . (A.85)

As in the scalar case, we seek to show, as least formally, that the optimal
control is also feedback control depending on the state vector X∗(t). Our approach
will resemble the 2×2 scalar solution, but using (2nx)× (2nx) matrices partitioned
into nx ×nx sub-matrices to keep the analysis compact and close to the scalar case
as much as possible. Thus, our system has the form

Ż(t) = M(t)Z(t) , (A.86)

where the partitioned forms are

Z(t) ≡
[

X∗(t)

λ∗(t)

]
(A.87)

which has dimension (2nx) and

M(t) ≡
[

A(t) −B(t)R−1(t)B⊤(t)

−Q(t) −A⊤

]
(A.88)

which has dimension (2nx)×(2nx). The multiplication of partitioned matrices works
essentially the same way that multiplication of non-partitioned matrices works.

Since the ordinary differential equation system in (A.87) for Z(t) is linear,
then the usual exponential approximations works. So let a simple trial exponential
solution form be

Z(t) = Ceµtζ , (A.89)

where C is a constant of integration, µ is a constant exponent coefficient and ζ is
a constant vector with the same (2nx) dimension as Z(t). Upon substitution into
(A.87) yields the (2nx) dimensional eigenvalue problem (B.131)

M(t)ζ = µζ , (A.90)

so there should be (2nx) eigenvalues [µi](2nx)×1 and (2nx) associated eigenvectors

ζj = [ζi,j](2nx)×1

which are represented as columns of the matrix

Ψ =
[
ζj

]
1×(2nx)

≡ [ζi,j](2nx)×(2nx) . (A.91)

“bk0allfinal”
2007/1/7
page A27

i

i

i

i

i

i

i

i

A.3. Linear Quadratic (LQ) Canonical Models A27

Linear superposition of these (2nx) eigen-solutions yields the general solution,

Z(t) =

2nx∑

k=1

Cke
µktζk = (Ψ. ∗E(t))C ≡ Ψ̂(t)C , (A.92)

where E(t) ≡ [exp(µit)](2nx)×1 is the exponential growth vector at the eigen-mode
rate, the symbol pair . ∗ is MATLAB’s dot-multiplication notation for element-
wise multiplication (e.g., x. ∗y = [xiyi]nx×nx

for vector-vector multiplication or
A. ∗x = [ai,jxj]nx×nx

in matrix-vector multiplication), and

Ψ̂(t) =

[
Ψ̂11(t) Ψ̂12(t)

Ψ̂21(t) Ψ̂22(t)

]
≡ Ψ. ∗E(t) =

[
Ψ11e

µ1t Ψ12e
µ2t

Ψ21e
µ1t Ψ22e

µ2t

]
, (A.93)

is a convenient abbreviation for the coefficient matrix of C, also given partitioned
into 4 nx × nx submatrices. The constant of integration vector

C =

[
C1

C2

]
(A.94)

is determined from the initial state condition

[Zi(0)]nx×1 = Ψ̂11(0)C1 + Ψ̂12(0)C2 = X∗(0) = x0 (A.95)

and the final co-state or transversality condition for free X∗(tf) from Table A.1 on
page A8,

[Zn+i(tf)]nx×1 = Ψ̂21(tf)C1 + Ψ̂22(tf)C2

= λ∗(tf) =
1

2
∇x

[
X⊤SfX

]
(tf) = Sf (tf)X(tf) (A.96)

= Sf (tf)
(
Ψ̂11(tf)C1 + Ψ̂12(tf)C2

)
.

So this final condition is an algebraic equation that is homogeneous in C. Upon
rearranging the initial and final conditions, (A.95) and (A.96), the complete linear
algebraic problem for C becomes

GC ≡
[

Ψ̂11(0) Ψ̂12(0)

Ψ̂21(tf) − Sf(tf)Ψ̂11(tf) Ψ̂22(tf) − Sf (tf)Ψ̂12(tf)

]
C (A.97)

=

[
x0

0

]
.

Assuming that the constant coefficient matrix G is invertible (this can be tested by
one of the numerical or symbolic toolboxes), then the solution, using partitioning

“bk0allfinal”
2007/1/7
page A28

i

i

i

i

i

i

i

i

A28 Appendix A. Appendix: Deterministic Optimal Control

and simplification due the homogeneity of the final condition, will formally be of
the form:

C = Ĝ−1

[
x0

0

]
=

[
Ĝ−1

11 Ĝ−1
12

Ĝ−1
21 Ĝ−1

22

] [
x0

0

]
=

[
Ĝ−1

11

Ĝ−1
21

]
x0 , (A.98)

where Ĝ−1 is the inverse of G, i.e., Ĝ−1G = I2nx×2nx
. The same relation does not

necessarily hold for the nx × nx partitioned matrices, so Ĝ−1
i,j is not necessarily the

inverse of Gi,j . Hence, the state and co-state solutions will be linear in the initial
condition vector x0,

X∗(t) =
(
Ψ̂11(t)Ĝ

−1
11 + Ψ̂12(t)Ĝ

−1
21

)
x0 , (A.99)

λ∗(t) =
(
Ψ̂21(t)Ĝ

−1
11 + Ψ̂22(t)Ĝ

−1
21

)
x0 . (A.100)

Assuming that the coefficient matrix in (A.99) can be inverted so the backward
evolution of the state is

x0 =
(
Ψ̂11(t)Ĝ

−1
11 + Ψ̂12(t)Ĝ

−1
21

)−1

X∗(t) , (A.101)

then the optimal control is a feedback control, i.e., linear in the state vector, and is
given by

U∗(t) = K(t)X∗(t) , (A.102)

where the gain matrix, using (A.85) with (A.99-A.102). The initial state thus far
has been arbitrary and is

K(t) = −R(t)−1B⊤(t)
(
Ψ̂21(t)Ĝ

−1
11 + Ψ̂22(t)Ĝ

−1
21

)
(A.103)

(
Ψ̂11(t)Ĝ

−1
11 + Ψ̂12(t)Ĝ

−1
21

)−1

.

Note that other texts may define the gain matrix differently, some using the state to
co-state relation, but here we take the view that the user is the plant manager, who
would be interested in the relation between the optimal control and the state. See
Kalman [156] for justification of (A.103). An alternative to the eigenvalue problem
approach to the solution of the dynamic equations, provided that the gain matrix
is the main interest, is the Riccati differential equation approach. Using the state
to co-state relation,

λ∗(t) = J(t)X∗(t) , (A.104)

where the matrix J(t) is defined so that

K(t) = −R−1(t)B⊤J(t) , (A.105)

“bk0allfinal”
2007/1/7
page A29

i

i

i

i

i

i

i

i

A.4. Deterministic Dynamic Programming (DDP) A29

and to avoid having to differentiate the variable coefficients. By differentiating both

sides of (A.104) with respect to t, substituting for λ̇
∗
(t) from (A.83), Ẋ∗(t) from

(A.82), λ∗(t) from (A.104) and U∗(t) from (A.85), and setting the common coeffi-
cient of X∗(t) equal to zero produces the quadratic, matrix Riccati equation,

J̇(t) =
[
JBR−1B⊤J − JA−A⊤J −Q

]
(t) (A.106)

with the final condition

J(tf) = Sf (tf) (A.107)

from the final condition λ∗(tf) = Sf (tf)X(tf) in (A.96). Hence, J(t) is just an
extension of the terminal cost quadratic coefficient Sf (t) for 0 ≤ t < tf . This
makes the Riccati problem (A.106) a final value problem rather than an initial
value problem. It can be shown that J(t) is symmetric from (A.106) and Sf (tf) is
assumed to be symmetric, so only the upper or lower half of J(t) plus its diagonal
need be calculated. The control gain matrix K(t) can be recovered using (A.105).
Numerical approximation is almost always needed using methods of ordinary dif-
ferential equations solvers in the numeric and symbolic computational toolboxes or
elsewhere.

Once the feedback gain, either asK(t) or J(t), and the optimal state trajectory
X∗(t) are obtained, the corresponding optimal control trajectory can be computed
and then the optimal total cost value v∗(x0, t0) = minU [V [X,U](x0, t0)] can be
computed from (A.3) by integrating the running cost and adding the sum to the
terminal cost term.

In the case where the cost function is a full quadratic polynomial in x and u,
i.e., with linear (affine) cost terms, then the control has X∗(t)-independent terms
requiring another companion ordinary differential equation for J(t).

A.4 Deterministic Dynamic Programming (DDP)

Dynamic programming is another approach to the optimal control problem whose
aim is to obtain the feedback optimal control u∗(x, t) and the optimal value v∗(x, t),
rather than primarily seeking the optimal trajectory set {X∗(t),λ∗(t),U∗(t)} using
Hamilton’s equations (A.6,A.7,A.8). The dynamic programming approach is prin-
cipally due to Bellman [25] and begins with a slightly different formulation of the
Bolza problem designed for better analytical manipulation using an arbitrary initial
state X(t) = x in the state domain. The deterministic dynamical system (A.1) is
reformulated as

dX

ds
(s) = f(X(s),U(s), s), X(t) = x , (A.108)

and the objective value functional as

V [X,U, tf](x, t) =

∫ tf

t

C (X(s),U(s), s) ds+ S (X(tf), tf) , (A.109)

“bk0allfinal”
2007/1/7
page A30

i

i

i

i

i

i

i

i

A30 Appendix A. Appendix: Deterministic Optimal Control

with total minimum costs or optimal value starting from (x, t)

v∗(x, t) = min
U(t,tf]

[V [X,U, tf](x, t)] (A.110)

and optimal terminal value,

v∗(x, tf) = S (x, tf) . (A.111)

When t = tf the running cost integral vanishes leaving only the terminal cost
term and since the initial state is reduced to the final state when t = tf then
the minimization is no longer operative. The x in (A.111) thus can be arbitrary,
coinciding with the fact that X(tf) is unspecified in this optimal control formulation.

A.4.1 Deterministic Principle of Optimality

Dynamic programming relies crucially on a recursion for the current optimal value
in terms of a future optimal value called Bellman’s Principle of Optimality.
The basic concept is the assumption that the minimization operation in (A.110)
can be decomposed over the control path U(s) for the time variable s on (t, tf],
open on the left since the state x at time t is given, into a product over increments
in time using the minimization operator multiplicative decomposition rule:

min
U(t,tf]

op
= min

U(t,t+∆t]
min

U(t+∆t,tf]
. (A.112)

for some positive time increment ∆t such that t < t + ∆t < tf and with an anal-
ogous rule for maximization. Using this rule and the fact that an integral has a
corresponding additive decomposition rule:

∫ tf

t

C(X(s),U(s), s)ds =

∫ t+∆t

t

C(X(s),U(s), s)ds (A.113)

+

∫ tf

t+∆t

C(X(s),U(s), s)ds .

Application of the minimization and integration decompositions leads to

v∗(x, t) = min
U(t,t+∆t]

[∫ t+∆t

t

C(X(s),U(s), s)ds

+ min
U(t+∆t,tf]

[∫ tf

t+∆t

C(X(s),U(s), s)ds

]
+ S(X(tf), tf)

]

= min
U(t,t+∆t]

[∫ t+∆t

t

C(X(s),U(s), s)ds + v∗(X(t+ ∆t), t+ ∆t)

]
,(A.114)

where the optimal value v∗(x, t) definition (A.110,A.109) has been reused when
starting at the future state X(t + ∆t) = x + ∆X(t) at time t + ∆t. Thus, the
following form of the optimality principle has been formally derived:

“bk0allfinal”
2007/1/7
page A31

i

i

i

i

i

i

i

i

A.4. Deterministic Dynamic Programming (DDP) A31

Lemma A.10. Bellman’s Deterministic Principle of Optimality:
Under the assumptions of the operator decomposition rules (A.112, A.113),

v∗(x, t) = min
U(t,t+∆t]

[∫ t+∆t

t

C(X(s),U(s), s)ds + v∗(x + ∆X(t), t+ ∆t)

]
. (A.115)

A.4.2 Hamilton-Jacobi-Bellman (HJB) Equation of
Deterministic Dynamic Programming

In the derivation of the partial differential equation of deterministic dynamic pro-
gramming or Hamilton-Jacobi-Bellman (HJB) equation, Bellman’s principle of op-
timality is applied for small increments ∆t, so ∆tis replaced by the differential dt.
The future state is approximated by a first order Taylor approximation,

X(t+ dt)
dt
= X(t) +

dX

dt
(t)dt = x +

dX

dt
(t)dt , (A.116)

provided the state vector X(t) is continuously differentiable. Consequently, the
first order approximation for the optimal value v∗(x, t) according to the principle
of optimality with X(t) = x is

v∗(x, t)
dt
= min

U(t,t+dt]

[
C(x,U(t), t)dt + v∗(x, t) + v∗t (x, t)dt (A.117)

+∇⊤
x [v∗](x, t) · f(x,U(t), t)dt

]
,

provided v∗(x, t) is continuously differentiable in x and t and C(x,u, t) is continuous
so that o(dt) can be neglected. Note that the optimal value v∗(x, t) appears alone on
both sides of (A.117), so both of these v∗(x, t) terms can be cancelled. Upon letting
U(t) ≡ u and replacing the vector set U(t, t + dt] by u the PDE of deterministic
dynamic programming can be summarized as the following result:

Theorem A.11. Hamilton-Jacobi-Bellman Equation (HJBE) for Deter-
ministic Dynamic Programming)
If v∗(x, t) is once differentiable in x and once differentiable in t, while the decom-

position rules (A.112,A.113) are valid, then

0 = v∗t (x, t) + min
u

[H(x,u, t)] ≡ v∗t (x, t) + H∗(x, t) , (A.118)

where the Hamiltonian (technically a pseudo-Hamiltonian) functional is given
by

H(x,u, t) ≡ C(x,u, t) + ∇⊤
x [v∗](x, t) · f(x,u, t) . (A.119)

The optimal control, if it exists, is given by

u∗(x, t) = argmin
u

[H(x,u, t)] . (A.120)

“bk0allfinal”
2007/1/7
page A32

i

i

i

i

i

i

i

i

A32 Appendix A. Appendix: Deterministic Optimal Control

This Hamilton-Jacobi-Bellman equation (HJBE) (A.118, A.119) is no or-
dinary PDE, but has the following properties or attributes:

Properties A.12.

• The HJBE is a functional PDE due to the presence of the minimum operator
min.

• The HJBE is a scalar valued equation, but solution output has dimen-
sion (nu + 1) consisting of the scalar optimal value function v∗ = v∗(x, t)
and the optimal control vector u∗ = u∗(x, t) as well. These dual solutions
are generally tightly coupled in functional dependence. In general, this tight
coupling requires a number of iterations between v∗ and u∗ to obtain a rea-
sonable approximation to the (nu+1)-dimensional solution over the (nx +1)-
dimensional space of independent variables (x, t). However, it should be noted
that the optimal control u(x, t) in (6.18) is also feedback optimal control if the
x dependence is genuine.

• In contrast to the Hamilton’s equations formulation, the dynamic program-
ming solution does not give the state trajectory directly but the state dynamics
(A.108) must be solved using the feedback optimal control u∗(X(t), t) using
(A.120). If the optimal control solution is computational, which is usual ex-
cept for special or canonical problems, then the state dynamic solution would
also be computational.

A.4.3 Computational Complexity for Deterministic Dynamic
Programming

The state-time vector valued form of the solution set, {v∗(x, t),u∗(x, t)}, given
independent state and time variables, x and t, makes the dynamic programming
quite different from the Hamilton’s equations for optimal time-dependent vector
trajectories {X(t),λ(t),U(t)}. If time is fixed at a single discrete value Tk = t0 +
(k − 1)∆T for some k where k = 1 : Nt with ∆T = (tf − t0)/(Nt − 1), then
the independent discretization of the nx-dimensional state vector x is replaced by
Xj = [Xi,ji

]nx×1 where j = [ji]nx×1, ji = 1 : Nx for i = 1 : nx andNx is the common
number of state nodes, simply taken to be the same for each component (otherwise,
Nx could be the geometric mean of nx node counts Ni for i = 1 : nx). However, Xj

only represents one point in state space and there are a totalNnx
x numerical nodes or

points in nx state-dimensions. Thus, total numerical representation optimal value
v(x, Tk) is

V (k) = [V
(k)
j1,j2,...,jnx

]Nx×Nx×···×Nx
, (A.121)

per time step k, so that the computational complexity is

CC(Nx, nx) = O(Nnx
x) = O(exp(nx ln(Nx))) , (A.122)

“bk0allfinal”
2007/1/7
page A33

i

i

i

i

i

i

i

i

A.4. Deterministic Dynamic Programming (DDP) A33

which by the law of exponents is exponential in the dimension with an exponent
coefficient depending on the logarithm of the common number of nodes Nx, sym-
bolizing the exponential computational complexity of Bellman’s Curse of Dimen-
sionality. This is also the exponential order of the complexity for solving multi-
dimensional PDEs. For the optimal control vector, the order is nx times this order,
but that does not change the exponential order dependency. The deterministic dy-
namic programming exponential complexity (A.122) should be compared with the
deterministic Hamilton’s equation formulation in (A.34) with its linear or bilinear
complexity O(3nx ·Nt).

Further, for second order finite difference errors, the total error for one state
dimension (nx = 1) will be by definition

ET (Nx, 1) = O(N−2
x). (A.123)

So even if the order of the complexity is fixed in state dimension nx > 1, i.e.,
N = Nnx

x is a constant, then Nx(N) = N1/nx and

ET (Nx(N), nx) = O
(
N−2/nx

)
→ O(1) (A.124)

as nx → +∞ for fixed N and accuracy, i.e., diminishing accuracy in the limit of
large dimension.

There are many other computational issues but there is not enough space here
to discuss them. Many of these are covered in the author’s computational stochastic
dynamic programming chapter [108] and more recently in [110].

A.4.4 Linear Quadratic (LQ) Problem by Deterministic Dynamic
Programming

The linear quadratic problem is also a good demonstration of the method of dynamic
programming as it was as an application of Hamilton’s equations and the optimum
principle. Using the same formulation, but modified for dynamic programming
analysis to start at an arbitrary time t rather than a fixed time t0, with the dynamics
linear in both the control vector U(t) and the state vector X(t), the state dynamics
is given by

Ẋ(s) = A(s)X(s) +B(s)U(s) , t ≤ s ≤ tf , X(t) = x. (A.125)

The objective cost functional is given by

V [X,U, tf](x, t) =
1

2

∫ tf

t

[
X⊤(s)Q(s)X(s) + U⊤(s)R(s)U(s)

]
ds (A.126)

+
1

2
X⊤(tf)Sf (tf)X(tf) .

The total minimum cost is again from (A.110)

v∗(x, t) = min
U(t,tf]

[V [X,U, tf](x, t)] , (A.127)

“bk0allfinal”
2007/1/7
page A34

i

i

i

i

i

i

i

i

A34 Appendix A. Appendix: Deterministic Optimal Control

provided mainly that the quadratic cost matrix R(t) > 0, i.e., is positive definite.
The HJB equation is

0 = v∗t (x, t) + min
u

[H(x,u, t)] , (A.128)

where the pseudo-Hamiltonian functional simplifies to

H(x,u, t) =
1

2

(
x⊤Q(t)x + u⊤R(t)u

)
+ ∇⊤

x [v∗](x, t) (A(t)x +B(t)u) . (A.129)

Comparing the dynamic programming pseudo-Hamiltonian (A.119) with the stan-
dard Hamiltonian in (A.81) shows that the optimal value gradient ∇x[v∗](x, t) (the
marginal value or shadow value in economics) plays the same role as the Lagrange
multiplier vector λ in (A.81).

Although the decomposition of the optimal value can be rigorously proven, it
is sufficient for the purposes here to propose the decomposition is a quadratic form,

v∗(x, t) =
1

2
x⊤J(t)x , (A.130)

and justify it heuristically, i.e., by showing the form (A.130) works. The quadratic
coefficient J(t) is a (nx × nx) matrix and since the quadratic form ignores the
asymmetric part of the quadratic coefficient, J(t) will be assumed to be symmetric.
Thus, the optimal value gradient with respect to the state vector by (B.138) will be

∇x[v∗](x, t) = J(t)x . (A.131)

In the case that the cost function is a general quadratic form with linear and zeroth
degree terms, then the optimal value LQ decomposition (A.130) will have the same
kind of terms.

It is also assumed that there are no constraints on the control to maintain the
classical LQ problem form. Thus, stationary points of the pseudo-Hamiltonian are
sought,

∇u[H](x,u, t) = R(t)u +B⊤(t)J(t)x = 0 , (A.132)

using (B.133, B.138) and the fact that R(t) is symmetric. So the unconstrained
optimal control is the linear feedback control

u∗(x, t) = K(t) ≡ −R−1(t)B⊤(t)J(t)x , (A.133)

where the inverse of the quadratic cost coefficient R(t) exists since R(t) is positive
definite and where K(t) is the same gain matrix as in (A.103) found from the
Hamilton’s equation formulation. Upon substitution into the HJB equation leads
to a pure quadratic form using

v∗t (x, t) = x⊤J ′x (A.134)

and

H∗(x, t) ≡ H(x,u∗, t)

= x⊤
[
−1

2
J(t)B(t)R−1(t)B⊤(t)J(t) + J(t)A(t) +Q(t)

]
x .(A.135)

“bk0allfinal”
2007/1/7
page A35

i

i

i

i

i

i

i

i

A.5. Control of PDE Driven Dynamics (DPS) A35

Taking two partial derivatives or using the Hessian matrix formula (B.139) yields
the matrix Riccati equation

J ′(t) = −1

2
J(t)B(t)R−1(t)B⊤(t)J(t) − J(t)A(t) −A⊤(t)J(t) −Q(t) ,(A.136)

subject to the same final condition as well,

J(tf) = Sf (tf) . (A.137)

For feedback optimal control and optimal value, the dynamic programming ap-
proach is a more direct approach and the algebra is more manageable than the ap-
proach through Hamilton’s equations. However, the state trajectory is not produced
directly by dynamic programming. The more general linear quadratic problem with
jump-diffusion processes and other features will be treated in the next chapter.

A.5 Control of PDE Driven Dynamics (DPS)

Thus far, only the control of ODE driven systems have been considered. However,
many dynamical systems are governed by partial differential equations (PDES),
such as in fluid and solid dynamics. The PDE dynamics do greatly complicate the
optimal control problem and there are many cases to consider. The control of PDE
driven systems usually appears under the heading of distributed parameter systems
(DPS) and the control is called distributed control, while ODE driven systems are
classified as lumped parameter systems in contrast. For a more thorough but very
applied approach to DPS control, the reader can consult Ahmed and Teo’s [4] DPS
book, Gunzberger’s [101] recent monograph on flow control or consult the many
applications in the DPS research directions proceedings [234]. See also the recent
biomedical application to cancer drug delivery to the brain by Chakrabarty and
Hanson [48] (briefly summarized in the biomedical application Section 11.2.2. Only
one fairly general deterministic model will be presented here since the focus is on
stochastic problems.

A.5.1 DPS Optimal Control Problem

Let y(x, t) be a ny-vector state variable in space-time where x is the nx-dimensional
space vector. The state dynamics for y(x, t) satisfy a nonlinear reaction diffusion
equation with drift,

∂y

∂t
(x, t) = D∇2

x[y](x, t)+C∇x[y](x, t)+B(y(x, t),x, t)+Au(x, t) , (A.138)

x ∈ Dx and t0 < t ≤ tf , with initial condition

y(x, t0) = y0(x)

and mixed boundary condition

(α(n̂⊤∇x)[y] + βy + γ)(x, t) = 0

“bk0allfinal”
2007/1/7
page A36

i

i

i

i

i

i

i

i

A36 Appendix A. Appendix: Deterministic Optimal Control

for x on the space domain boundary ∂Dx while n̂(x, t) is the outward normal to the
boundary. Here u(x, t) is the nu-dimensional space-time control variable in a linear
control-dependent term. All coefficient functions are assumed to be bounded while
being commensurate in multiplication and sufficiently differentiable as needed. In
particular, the diffusion tensor D = [Diδi,j]ny×ny

is a positive-definite diagional
matrix and the drift coefficient C = [Ci,kδi,j]ny×ny×nx

. The main reaction vector
B(y(x, t),x, t) is the only term assumed to be nonlinear since reaction terms are
often naturally nonlinear. The control coefficient is A = [Ai,j]ny×nu

and is assumed
to be constant but could depend on (x, t), as could be C and D.

Further, let the space-time objective be in the form of the total quadratic
costs,

V [y,u, tf] =
1

2

∫ tf

t0

dt

∫

Dx

dx
(
y⊤Qy+u⊤Ru

)
(x, t)+

1

2

∫

Dx

dx
(
y⊤Sy

)
(x, tf) ,(A.139)

where the quadratic control coefficient R is symmetric positive-definite, while Q and
S are symmetric positive-semi-definite to ensure a minimum. Eqs. (A.138-A.139)
provide the underlying formulation of the DPS optimal control problem.

A.5.2 DPS Hamiltonian Extended Space Formulation

For the formulation of the equations for the optimal solutions to the control problem,
the dynamic and initial-boundary constraints need to be combined into a pseudo-
Hamiltonian,

H(y,u,λ,µ,ν) = V [y,u, tf]

+

∫ tf

t0

dt

∫

Dx

dx λ
⊤(yt−D∇2

x[y]−C∇x[y]−B−Au
)
(x, t)

+

∫ tf

t0

dt

∫

∂Dx

dΓµ⊤(α(n̂⊤∇x)[y] + βy + γ
)
(x, t) (A.140)

+

∫

Dx

dx ν⊤(y(x, t+0) − y0(x)
)
,

where {λ(x, t),µ(x, t),ν(x)} is a set of Lagrange multiplier that provide the mech-
anism for including the control problem constraints at the expense of extending the
state-control space to higher dimension with

z(x, t) ≡ {y(x, t),u(x, t),λ(x, t),µ(x, t),ν(x)}

denoting the extended space-control vector. Next, assuming an optimal extended
state z(x, t) = z∗(x, t) exists under sufficient differentiability properties of H(z),
perturb about this optimal extended state as z(x, t) = z∗(x, t) + δz(x, t) where
δz(x, t) is the variation and then expand the pseudo-Hamiltonian about this vari-
ation,

H(z∗(x, t) + δz(x, t)) = H(z∗(x, t)) + δH(z∗(x, t), δz(x, t)) + O(|δz|2(x, t)).

“bk0allfinal”
2007/1/7
page A37

i

i

i

i

i

i

i

i

A.5. Control of PDE Driven Dynamics (DPS) A37

Neglecting quadratic order perturbation terms, including the second variation of
H(z), then the first variation δH(z∗(x, t), δz(x, t)) is found to be a linear function
of the extended state perturbation δz(x, t) using (A.139-A.140). For this perturba-
tion, the nonlinear reaction term B(y(x, t),x, t) is assumed to be more than once
differentiable so that

B(y∗ + δy,x, t) = B(y∗,x, t) + (δy⊤∇y)[B](y∗,x, t) + O(|δy|2) ,

for example twice differentiable to guarantee the quadratic order error term. For
simplicity, let B∗ ≡ B(y∗,x, t). Applying multiple Taylor approximations,

δH(z∗, δz) =

∫ tf

t0

dt

∫

Dx

dx
(
(y∗)⊤Qδy+(u∗)⊤Rδu

)
(x, t)+

∫

Dx

dx
(
(y∗)⊤Sδy

)
(x, tf)

+

∫ tf

t0

dt

∫

Dx

dx (λ∗)⊤
(
δyt−D∇2

x[δy]−C∇x[δy]−(δy⊤∇y)[B]∗−Aδu
)
(x, t)

+

∫ tf

t0

dt

∫

Dx

dx dλ⊤(y∗
t −D∇2

x[y∗]−C∇x[y∗]−B∗−Au∗) (x, t)

+

∫ tf

t0

dt

∫

∂Dx

dΓ(µ∗)⊤
(
α(n̂⊤∇x)[δy] + βδy

)
(x, t) (A.141)

+

∫ tf

t0

dt

∫

∂Dx

dΓ(δµ⊤(α(n̂⊤∇x)[y∗] + βy∗ + γ
)
(x, t)

+

∫

Dx

dx
(
(ν∗)⊤δy(x, t+0) + δν⊤ (y∗(x, t+0) − y0(x)

))
.

Obtaining the critical or optimal conditions requires the reduction of the highest or-
der partial derivative terms, since under integration the perturbations δyt(x, t) and
∇2

x[δy] are not independent of lower order derivatives and the higher order deriva-
tives can be reduced by integration by parts techniques to lower order derivatives.
Thus, using integration by parts

∫ tf

t0

dt (λ∗)⊤δyt(x, t) = (λ∗)⊤δy

∣∣∣∣
tf

0

−
∫ tf

t0

dt δy⊤λ∗
t ,

−
∫

Dx

dx (λ∗)⊤C∇x[δy] = −
∫

∂Dx

dΓδy⊤n̂⊤C⊤λ∗ +

∫

Dx

dx δy⊤∇⊤
x [C⊤λ∗] .

where C⊤ ≡ [Ck,iδk,j]nxnx×ny×ny
defines the transpose of a three subscript array,

and finally using a double integration by parts [102]

−
∫

Dx

dx (λ∗)⊤D∇2
x[δy] = −

∫

∂Dx

dΓ
(
(n̂⊤∇x)[δy⊤]Dλ∗ − δy⊤(n̂⊤∇x)[Dλ∗]

)

−
∫

Dx

dx δy⊤∇2
x[Dλ∗] .

“bk0allfinal”
2007/1/7
page A38

i

i

i

i

i

i

i

i

A38 Appendix A. Appendix: Deterministic Optimal Control

Using these reduced forms in (A.141) and collecting terms as coefficients of like
extended state perturbations produces a more useful form:

δH(z∗, δz) =

∫ tf

t0

dt

∫

Dx

dx (δy)⊤
(
−λ∗

t −∇2
x[Dλ∗]+∇⊤

x [C⊤λ∗]+∇y[B
⊤]∗λ∗+Qy∗)

+

∫ tf

t0

dt

∫

Dx

dx (δu)⊤
(
Ru∗−A⊤λ∗) (x, t)

+

∫ tf

t0

dt

∫

Dx

dx (δλ)⊤
(
y∗

t −D∇2
x[y∗]−C∇x[y∗]−B∗−Au∗) (x, t)

+

∫ tf

t0

dt

∫

∂Dx

dΓ(n̂⊤∇x)[δy⊤]
(
α⊤µ∗ −Dλ

∗) (x, t) (A.142)

+

∫ tf

t0

dt

∫

∂Dx

dΓ(δy)⊤
(
(n̂⊤∇x)[Dλ∗] − n̂⊤C⊤λ∗ + β⊤µ∗) (x, t)

+

∫ tf

t0

dt

∫

∂Dx

dΓ(δµ)⊤
(
α(n̂⊤∇x)[y∗] + βy∗ + γ

)
(x, t)

+

∫

Dx

dx δy⊤(Sy∗+λ∗) (x, tf)

+

∫

Dx

dx δy⊤(ν∗−λ
∗) (x, t0) +

∫

Dx

dx δν⊤(y∗(x, t+0) − y0(x)
)
.

A.5.3 DPS Optimal State, Co-State and Control PDEs

Our interest here is to present a usable formulation for those whose prime inter-
est is obtaining concrete solutions for applications, so our approach is a formal
applied mathematical one. If the interest of the reader is in existence and unique-
ness properties of the solution rather than the solution itself, the reader should
explore the references [4], [101], [234] and references therein for abstract notions
of Hilbert spaces with related Sobolev spaces and functional derivatives. However,
such abstract approaches have little utility in solving real problems.

The optimal state, co-state and control trajectory dynamics follow from setting
to zero each of the independent state, co-state and control first variations in the first
variation of the pseudo-Hamiltonian in (A.142), as well as any relevant boundary,
initial and final values which are assumed to be independent of the space-time
interior values.

The optimal state equation for y∗(x, t) follows from setting the critical coeffi-
cient of the co-state variation δλ(x, t) on each interior point of Dx×(t0, tf) yielding

y∗
t (x, t)=

(
D∇2

x[y∗]+C∇x[y∗]+B∗+Au∗) (x, t) , (A.143)

for x ∈ Dx and t0 < t ≤ tf , while the intial condition y∗(x, t+0) = y0(x) follows
from setting the coefficient of the initial condition co-state variation δν(x) to zero
and the boundary condition

(
α(n̂⊤∇x)[y∗] + βy∗ + γ

)
(x, t) = 0 , x ∈ ∂Dx , t0 < t < tf ,

“bk0allfinal”
2007/1/7
page A39

i

i

i

i

i

i

i

i

A.5. Control of PDE Driven Dynamics (DPS) A39

from setting the coefficient of the final condition co-state variation δν(x) to zero.
The optimal state equation (A.143), of course, has the same form as that of the
original state equation (A.138), which is a forward parabolic PDE for D > 0.

The optimal co-state equation for λ∗ is derived by setting the state variation
δy(x, t) coefficient to zero, so that

(
λ∗

t + ∇2
x[Dλ∗] −∇⊤

x [C⊤λ∗] −∇y[B⊤]∗λ∗ −Qy∗) (x, t) = 0 , (A.144)

for x ∈ Dx and t0 ≤ t < tf , noting that (A.144) is a backward parabolic PDE since
the diffusion term has an opposite sign to that of the forward equation (A.143). So
a final condition is needed by setting the coefficient of δy(x, tf) to zero, i.e.,

(λ∗ + Sy∗) (x, tf) = 0 , (A.145)

coupling the computed final condition of λ∗ to the computed final value of (−Sy∗).
The boundary conditions follow from setting the coefficient of δy on the boundary
to zero, so

(
(n̂⊤∇x)[Dλ

∗] − n̂⊤C⊤λ
∗ + β⊤µ∗) (x, t) = 0 , x ∈ ∂Dx , (A.146)

giving rise to another complication, in that the boundary condition co-state µ∗(x, t)
appears. However, the coefficient the normal gradient (n̂⊤∇x)[δy⊤] yields,

(
α⊤µ∗ −Dλ∗) (x, t) = 0 , x ∈ ∂Dx ,

which, if α⊤ is invertible, can be used to eliminate µ∗ on the boundary. Another
co-state condition comes from the initial value of δy which gives

ν∗(x) = λ
∗(x, t0) ,

where λ∗(x, t0) is the terminal output of the backward integration of the prime
optimal co-state PDE (A.144) starting from the final condition (A.145).

From the coefficient of the control variation δu(x, t), the optimal control is
given by

(
Ru∗ −A⊤λ∗) (x, t) = 0 , x ∈ Dx , t0 ≤ t < tf ,

and since R(x, t) should be invertible due to its positive-definite property then

u∗(x, t) =
(
R−1A⊤λ∗) (x, t) , (A.147)

in absence of control constraints, else it is merely the regular optimal control
u(reg)(x, t).

A numerical scheme developed in Chakrabarty and Hanson [48] for a biomed-
ical application uses a forward state integration of (A.143) and backward co-state
integration of (A.144) with subsequent iterations until the norm of the iteration
difference is sufficiently small. The forward integration step for (A.143) requires a
good starting guess for the optimal control space-time distribution in addition to
using the specified state initial condition. The final time approximation to y∗(x, t)
is then used as the final condition to start the co-state λ

∗(x, t) backward integra-
tion of (A.144). The end approximation of the co-state space-time distribution of
λ∗(x, t) is used by (A.147) to update the optimal control distribution approximation
u∗(x, t), which in turn is used in the next state forward integration.

“bk0allfinal”
2007/1/7
page A40

i

i

i

i

i

i

i

i

A40 Appendix A. Appendix: Deterministic Optimal Control

A.6 Exercises

1. For the deterministic linear first order dynamics,

Ẋ(t) = −µ0X(t) + β0U(t), t > 0, given X(0) = x0 6= 0, µ0 > 0, β0 6= 0,

and quadratic performance measure,

V [U] =
r0
2

∫ tf

0

U2(t)dt, r0 > 0,

find the optimal state trajectory and optimal (unconstrained) control to bring
the state from the initial state to the final state xf in tf seconds while min-
imizing the functional V [U] with respect to the control u, with the answer
depending on the parameter set {x0, xf , tf , µ0, β0, r0}. Note that the final
state and time are fixed.

2. Consider another simple lumped model of a leaky reservoir (after Kirk [163])
given by

Ẋ(t) = −aX(t) + U(t), X(0) = x0,

where X(t) is the depth of the reservoir, U(t) is the net flow of water per unit
time into the reservoir at time t and a > 0 is the rate of leakage and usage.
The net inflow is constrained pointwise 0 ≤ U(t) ≤ M for all 0 < t ≤ tf and
also cumulatively by

∫ tf

0

U(t)dt = K > 0,

where K, M and tf are fixed constants, such that K ≤M · tf for consistency.
Find the optimal control law U∗(t) that maximizes only the final depth,

J [X] = bX(tf)

with b > 0, the optimal stateX∗(t), optimal final depth J [X∗] and the optimal
Hamiltonian H∗.

3. Pontryagin’s Auxiliary Necessary Conditions for the Hamiltonian
in the Special Case of No Explicit Dependence on Time: Assume
sufficient differentiability for the Hamiltonian and that

H∗ = H(X∗(t),U∗(t),λ∗(t)),

so ∂H∗/∂t ≡ 0. Then show:

(a) If the final time tf is fixed and the Hamiltonian H does not depend
explicitly on time then the Hamiltonian must be constant when evaluated
on an locally (interior) extreme trajectory, i.e.,

H∗ = H(X∗(t),U∗(t),λ∗(t)) = c, (A.148)

“bk0allfinal”
2007/1/7
page A41

i

i

i

i

i

i

i

i

A.6. Exercises A41

where c is a constant.

Explain why fixed tf and local extremes are needed; also, explain show
why Example A.8 or Exercise 2 are counter-examples for the result A.148
if certain condition is not satisfied, stating what that condition is.

(b) If the final time tf is free and both the Hamiltonian H and the final cost
function S = S(x) do not depend explicitly on time then the Hamiltonian
must be zero when evaluated on an locally (interior) extreme trajectory,
i.e.,

H∗ = H(X∗(t),U∗(t),λ∗(t)) = 0. (A.149)

4. Solve the deterministic optimal control problem with wealth state dynamics,

dX(t) = (µ0 − U(t))X(t)dt,

for 0 ≤ t ≤ tf , X(0) = x0 > 0, µ0 is a constant mean rate and the wealth
consumption is unconstrained −∞ < U(t) < +∞. The objective is maxi-
mum cumulative utility, the running consumption is the risk-adverse utility
C(x, u, t) = 2

√
u and similarly the utility of final wealth is S(x, t) = 2

√
x.

(a) Formulate the Hamiltonian H(x, u, λ, t) and the associated Hamilton’s
equations;

(b) Show that the optimal Hamiltonian H∗ is a maximum at the regular
point
(X∗(t), U∗(t), λ∗(t), t), where λ∗(t) is the optimal co-state.

(c) Show that optimal trajectories satisfy λ∗(t)X∗(t) = K and U∗(t) =
1/K2 ≡ K0, where K is a constant.

(d) Show that K0 is satisfied by the nonlinear equation K0x0 exp((µ0 −
K0)tf) = 1. {Hint: the transversality condition

λ∗(tf) = (∂S/∂x)(X∗(tf), tf)

since X∗(tf) is free and tf is fixed.}

5. Find the maximum discounted net profit with objective function

C(x, u, t) = e−δ0t[p0X(t) − c0]u , S(x, t) = σ0x ,

subject to the linear control-state dynamics,

Ẋ(t) = µ0X(t) − U(t) , X(t0) = x0 , t0 ≤ t ≤ tf ,

where δ0, p0, c0, σ0 < 1,µ0 and x0 are fixed, positive constant parameters.
Assume that X(t) < c0/p0. Find intervals in parameter space where there is
a maximal control solution.

Discuss the difference between the solution to this problem and the solution to
a similar problem in Example A.9 with a bi-linear control-state term U(t)X(t)
rather than just linear in the control U(t).

“bk0allfinal”
2007/1/7
page A42

i

i

i

i

i

i

i

i

A42 Appendix A. Appendix: Deterministic Optimal Control

6. For the regular control demonstration in Example A.3 with dynamics (A.17),
utility of instantaneous consumption (A.19) and terminal wealth (A.20), but
with the utility power γ > 1 (for example, γ = 2), solve the Bolza problem for
the proper maximum utility objective by using bang control with the bounded
control constraints (A.18). Recall that the regular control solution yields a
minimum rather than a maximum solution.

7. For the singular control demonstration in Example A.9 with state dynamics
(A.52), cost function C(x, u, t) (A.53) and control constraints (A.54), analyze
the case when the maximum control U (max) exceeds the mean rate µ0, i.e.,
U (max) > µ0. When the parameter values permit a control solution, then find
the solution; otherwise list the parameter ranges in which there fails to be a
control solution.

8. Find the minimal control U∗(t) for the optimal performance

v∗(x1, x2, t) = max
U

[V [X1, X2, U](x1, x2, t)]

of the measure

V [X1, X2, U](x1, x2, t) =
1

2

∫ tf

t

(q1X
2
1 (s) + q2X

2
2 (s) + rU2(s))ds ,

q1 > 0, q2 > 0, r > 0, subject to the dynamics,

Ẋ1(t) = a1,1X1(t) + a1,2X2(t) + s1U(t), s1 > 0 ,

Ẋ2(t) = a2,1X1(t) + a2,2X2(t) + s2U(t), s2 > 0 ,

and the control constraints

|U(t)| ≤ K, K > 0 ,

formally solving for U∗(t) in terms of t, (x1, x2), first order partial derivatives
v∗x1

(x1, x2, t) and v∗x2
(x1, x2, t) using dynamic programming. Do not solve the

partial differential equation of dynamic programming but only substitute the
composite formulae for U∗(t) into it.

What changes in the solution form if the optimum is specified as a maximum
rather than a minimum?

Suggested References for Further Reading

• Ahmed and Teo, 1981 [4].

• Anderson and Moore, 1990 [8].

• Athans and Falb 1966 [15].

• Bell and Jacobson 1975 [24].

“bk0allfinal”
2007/1/7
page A43

i

i

i

i

i

i

i

i

A.6. Exercises A43

• Betts, 2001 [30].

• Bliss, 1946 [40].

• Bryson and Ho, 1975 [44].

• Chakrabarty and Hanson, 2005 [48].

• Clark, 1976 [56].

• Gunzberger, 2003 [101].

• Kirk, 1970 [163].

• Nise, 2000 [220].

• Pontryagin et al., 1962 [226].

• Research Directions in Distributed Parameter Systems, 2003 [234].

• Stengel, 1986 [258].

“bk0allfinal”
2007/1/7
page A44

i

i

i

i

i

i

i

i

A44 Appendix A. Appendix: Deterministic Optimal Control

“bk0allfinal”
2007/1/7
page B1

i

i

i

i

i

i

i

i

Appendix B

Preliminaries in
Probability and Analysis
(Online)

It is remarkable that a science which began with
the consideration of games of chance should have
become the most important object of human knowledge . . .
The most important questions in life are, for the most
part, only problems in probability.
—Pierre-Simon Laplace, Marquis de Laplace (1749-1827)
in Théorie Analytique des Probabilités.

I cannot believe that God would choose to play dice with
the universe.
—Albert Einstein (1879-1955).

I would suggest that nobody – not even God – would
know what a phrase like playing dice would mean in this
context.
—Niels Henrik David Bohr (1885-1962), reply to Einstein
in 1949 on the occasion of Einstein’s 70th birthday
continuing their famous discussion on the basis of
quantum mechanics.

It is so easy to see far and discover when standing on
the shoulders of giants, who before us have developed
prior knowledge.
—Sir Isaac Newton (1642-1727), as quoted in [233].

There is randomness and hence uncertainty in
mathematics, just as there is in physics.
—Paul Davis.

B1

“bk0allfinal”
2007/1/7
page B2

i

i

i

i

i

i

i

i

B2 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

This online appendix provides a practical common background for necessary
applied probability concepts for continuous and discrete random variables. These
concepts include conservation of probability, expectation, variance, higher moments
and basic distributions of interest. Also treated are applied analysis concepts of dis-
continuity and non-smoothness for deterministic processes, i.e., regular functions of
time, as they affect regular calculus concepts of Taylor approximations, asymptotics
and optimality principles. There is more in this appendix than many readers would
be expected to know, so it should be at least be browsed for familiarity and returned
to as a reference.

B.1 Distributions for Continuous Random Variables

Variables in upper case, such as X = X(ω), denote random variables, which are
in general functions of some underlying random parameter or variable ω defined
on some standard sample space Ω. For notational simplicity, the dependence on
the underlying or background random variable ω ∈ Ω will often be suppressed.
Variables in lower case letters, such as x, denote the actual sample variables or real-
izations associated with the random variables and are used as the dummy variables
in integrals.

B.1.1 Probability Distribution and Density Functions

Definition B.1. Φ denotes the corresponding probability distribution such that

Φ(x) ≡ Prob[X ≤ x] , (B.1)

in the case of a distribution on −∞ < X < +∞. Here, the notation Prob denotes
the probability function for the probability of occurrence of events on a subset as the
ratio relative to all events in the sample space. Elsewhere many other notations are
used, such as the minimal P and Pr.

If the distribution is proper then Φ(+∞) = 1, i.e., we say probability
is conserved. Also, Φ(−∞) = +0 and Φ is obviously continuous as long as the
probability distribution contains no jumps in value. However, later in this book, we
will consider more general random processes, in continuous time, that are composed
of continuous processes as well as processes with jump discontinuities, possibly a
countably infinite number of jumps. Thus, in general,

Properties B.2. Continuous Distribution Functions, Φ(x):

• Φ is non-decreasing, since probabilities must be non-negative.

• Φ is continuous, by properties of integrals with non-negative integrands (as-
suming there are no probability point masses, i.e., discrete components).

• Φ(−∞) = +0, by properties of integrals and X > −∞.

“bk0allfinal”
2007/1/7
page B3

i

i

i

i

i

i

i

i

B.1. Distributions for Continuous Random Variables B3

• Φ(+∞) = 1, if Φ is a proper distribution.

• Φ(x+ y) = Φ(x)+Prob[x < X ≤ x+ y], y > 0, by the additivity of probability
over disjoint sets, which here are (−∞, x] and (x, x + y].

Definition B.3. The symbol φ will denote a probability density such that

φ(x)dx = Prob[x < X ≤ x+ dx] (B.2)

in terms of the probability for the continuous random variable X.

Properties B.4. Relation between Distribution and Density:

• By the additivity of probability and definition of the distribution function,

φ(x)dx = Prob[x < X ≤ x+ dx] = Φ(x+ dx) − Φ(x) .

• Thus, for infinitesimal dx and Φ differentiable,

φ(x)dx = Φ′(x)dx ,

so

φ(x) = Φ′(x) . (B.3)

The differentiability of the distribution Φ is not considered a serious restric-
tion here, since differentiability in the generalized sense will be considered in
Section B.12.

• The relationship between the distribution function and the density in integral
form is

Φ(x) ≡ Prob[X ≤ x] ≡
∫ x

−∞
φ(y)dy , (B.4)

in the case of a differentiable distribution on −∞ < X < +∞.

• Another more general form is

Φ(x) ≡ Prob[X ≤ x] ≡
∫ x

−∞
dΦ(y) ,

which is called a Stieltjes integral. In abstract formulations, the differential
is written dΦ(y) = Φ(dy) as short hand notation for Φ((y, y + dy]), in the
half-open interval notation here.

• Sometimes it is useful to transform the random variable X to a more conve-
nient random variable Y , where X = ψ(Y), for example. Consequently, for
clarity of notation, let φ(x) = φX(x) and similarly Φ(x) = ΦX(x), adding an

“bk0allfinal”
2007/1/7
page B4

i

i

i

i

i

i

i

i

B4 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

extra subscript to mark which random variable pertains to a given density or
distribution function since the argument x is only a dummy variable. Thus,
the change of distribution for a change of random variable on the
interval (x1, x2] is written,

ΦX(x2) − ΦX(x1) =

∫ x2

x1

φX(x)dx

=

∫ y2

y1

φY (y)dy = ΦY (y2) − ΦY (y1) , (B.5)

where

φY (y) = φX(x)

∣∣∣∣
dx

dy

∣∣∣∣ = φX(x) |ψ′(y)| , (B.6)

provided ψ(y) is a differentiable monotonic function on (y1, y2), i.e., either
ψ′(y) > 0 or ψ′(y) < 0, where, in either case, the limits of integration are
given by

y1 = min[ψ−1(x1), ψ
−1(x2)]

and
y2 = max[ψ−1(x1), ψ

−1(x2)] .

B.1.2 Expectations and Higher Moments

In general, there are basic definitions for averaged quantities in the case of contin-
uous distributions:

Definition B.5. The mean or expectation of any continuously distributed
random variable X is

µ ≡ E[X] ≡
∫ +∞

−∞
xφ(x)dx , (B.7)

provided the above integral converges absolutely. The symbol E is the expectation
operator. Similarly, the expectation of a function of X, f(X), is

E[f(X)] ≡
∫ +∞

−∞
f(x)φ(x)dx , (B.8)

provided the integral converges absolutely.

Properties B.6. Expectations:

• The expectation operator is a linear operator:

E[c1X1 + c2X2] = c1E[X1] + c2E[X2], (B.9)

provided the expectations exist, for random variables Xi and constants ci, for
i = 1 : 2 (using MATLAB notation for the range of i).

“bk0allfinal”
2007/1/7
page B5

i

i

i

i

i

i

i

i

B.1. Distributions for Continuous Random Variables B5

Definition B.7. The variance or mean square deviation or second central
moment for any continuously distributed random variable X is

σ2 ≡ Var[X] ≡ E[(X − E[X])2] =

∫ +∞

−∞
(y − µ)2φ(y)dy , (B.10)

provided the integral converges absolutely. The deviation and the central moments
are defined relative to the mean µ. The square root of the variance σ is called the
standard deviation.

While the mean and the variance are the most often used moments of the
distribution, i.e., of the density, sometimes some of the higher moments are useful
for further characterizing the distribution.

Definition B.8. The third central moment is defined here in the normalized
form called the skewness coefficient [82] for the random variable X:

η3[X] ≡ E[(X − E[X])3]/(Var[X])3/2, (B.11)

such that the distribution is negatively skewed, symmetric or positively skewed, if
η3[X] is negative, zero or positive, respectively (zero being the skew of the normal
distribution as discussed in Subsection B.1.4).

Definition B.9. The fourth central moment is a measure of kurtosis (peaked-
ness) and is defined here in the normalized form called the kurtosis coefficient
[82] for the random variable X:

η4[X] ≡ E[(X − E[X])4]/(Var[X])2, (B.12)

such that the distribution is platokurtic or leptokurtic, if the coefficient of
excess kurtosis (η4[X] − 3) is negative or positive, respectively (3 is the value of
η4[X] for the normal distribution, discussed in Subsection B.1.4).

The property of kurtosis, from the Greek word for convexity, signifies more
at the crown (as seen from the density) for the distribution or peakedness in the
case of leptokurtic and a distribution with flatness in the case of platokurtic. The
kurtosis property together with skewness is of particular interest in mathematical
finance for characterizing non-normal properties of real market distributions.

The little book on statistical distributions of Evans, Hastings and Peacock [82]
concisely lists principal formulae for skewness, kurtosis and many other properties
for forty distributions. The book has more useful and easy to find information in it
than other books on distributions, including those requiring several volumes.

B.1.3 Uniform Distribution

The most fundamental continuous probability distribution is the uniform distribu-
tion.

“bk0allfinal”
2007/1/7
page B6

i

i

i

i

i

i

i

i

B6 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

Definition B.10. The uniform density on the finite interval [a, b] is defined as

φu(x; a, b) ≡
{

1/(b− a), x ∈ [a, b]
0, x /∈ [a, b]

}
. (B.13)

Definition B.11. The uniform distribution is defined by integrating the uniform
density:

Φu(x; a, b) ≡
∫ x

−∞
φu(y; a, b)dy =

0, x ≤ a
(x− a)/(b− a), a ≤ x ≤ b
1, b ≤ x

 , (B.14)

−∞ < x < +∞ , so that Φu(x; a, b) = 1 for b ≤ x < +∞, conserving total
probability.

Hence, the basic moments and other properties easily follow from simple in-
tegration:

Properties B.12. Uniform Distribution Moments:

• Conservation of probability: Eu[1] = 1 .

• Mean:

µ = Eu[X] =

∫ b

a

xφu(x; a, b)dx = (b + a)/2 . (B.15)

• Variance:

σ2 = Varu[X] =

∫ b

a

(x− Eu[X])2φu(x; a, b)dx = (b− a)2/12 . (B.16)

• Uniform domain correspondence to mean and variance: a = µ−
√

3σ
and b = µ+

√
3σ.

• Coefficient of skew: η3 = 0 .

• Coefficient of kurtosis: η4 = 1.8 or η4 − 3 = −1.2 is the excess value over
the normal value.

Hence, the uniform distribution is platokurtic, signifying its obvious flatness
compared to normal.

An important use of the uniform distribution is the numerical simulation of
the distributions that can be transformed from the uniform distribution. The most
basic random number generator is the standard uniform random number generator.
The standard uniform random number generator is usually based on a deterministic
generator called the linear congruential generator [230, 96] that is defined as nonzero

“bk0allfinal”
2007/1/7
page B7

i

i

i

i

i

i

i

i

B.1. Distributions for Continuous Random Variables B7

on the open interval (0, 1) instead of the closed interval [0, 1] as for the theoretical
distribution φu(x; 0, 1), which is more convenient for numerical purposes and the
endpoints do not contribute to the expectation integral anyway. Most computing
systems, such as MATLABTM [210], MapleTM [1] or MathematicaTM [284], and pro-
gramming languages have a built-in uniform random number generator, but must be
used with care considering that they use deterministic operations such as modular
arithmetic, multiplication and division. These random number generators are more
properly called pseudo random number generators since they generate only
approximations to random numbers, which only exist exactly in theory. Pseudo
random numbers should be carefully tested before using them in any computation.
For instance, MATLAB’s uniform generator is called rand (note that MATLAB’s
functions and code fragment are typeset in typewriter style) and can simulate an
approximation to a scalar, vector or more general arrays of random numbers. Fig-
ure B.1 illustrates the histograms of a row vector with N simulations of uniform
deviates for φu(x; 0, 1) using the form

x = rand(N, 1)

or more generally
y = a + (b − a) ∗ rand(N, 1)

which simulates an N−vector sample uniform on (a, b) in MATLAB. Other com-
puting systems may use a programming loop with N iterations may be needed.
The approximate distribution displays with the bin-centered histogram function
hist(x). Scaling the bin frequencies upon normalizing by the average bin count
N/nbins, where nbins is the number of bins, here 30 bins, would produce a scaled
histogram more appropriate for approximating probability density, φu(x; 0, 1), of
the theoretical uniform distribution. Thus, if fi is the frequency associated with
the ith bin [xi, xi + ∆x) for i = 1 : nbins, in MATLAB loop notation, of width
∆x, then

nbins∑

i=1

fi = N or
1

N

nbins∑

i=1

fi = 1,

the latter in normalized form.
Clearly, the larger sample size simulation with N = 100, 000 in Fig. B.1(b) is

a much better approximation of the uniform approximation then the much cruder
representation with N = 1, 000 in Fig. B.1(a). The relative error for the sample
mean is −0.24% for N = 1, 000 and −0.43% for N = 100, 000.

Note that the error in the sample mean did increase slightly with sample
size, but these are only single samples and another set of samples could have been
computed that would be used in the expected decreasing order with sample size, yet
not realistic. These are just approximations to random samples, although it would
be reasonable to expect that the average over repeated samples would be lower
the higher the sample size, provided that the selected random number generator is
sufficiently robust. The relative errors for the sample standard deviation (square
root of the sample variance), are 0.95% for N = 1, 000 and −0.20% for N = 100, 000,
which is more reasonable.

“bk0allfinal”
2007/1/7
page B8

i

i

i

i

i

i

i

i

B8 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

0.2 0.4 0.6 0.8
0

10

20

30

40

x, Uniform rand−Deviate

U
ni

fo
rm

 B
in

 F
re

qu
en

cy

Histogram for x = rand(N,1)

N = 1000

(a) Sample size N = 103.

0.2 0.4 0.6 0.8
0

500

1000

1500

2000

2500

3000

x, Uniform rand−Deviate

U
ni

fo
rm

 B
in

 F
re

qu
en

cy

Histogram for x = rand(N,1)

N = 100000

(b) Sample size N = 105.

Figure B.1. Histograms of simulations of uniform distribution on (0, 1) using
MATLAB [210] for two different sample sizes N .

The sample variance is obtained from the MATLAB function var(x), which
is normalized by number of degrees of freedom (N − 1) for the best estimate of the
variance, correcting for conditioning due to the mean value, which in MATLAB is
the function mean(x).

For more sophisticated distribution validation tests, chi-square (χ2) or Kolmogorov-
Smirnoff [230] tests can be used. The two samples displayed in Fig. B.1 illustrate
the problem of single samples requiring the averaging of several independent repli-
cations using a different random number generator initialization, called a random
seed but now called a state in MATLAB (e.g., rand(′state′, j) sets rand in the jth
state), so the error systematically decreases with sample size. Otherwise. the user
can take a larger sample size. See Appendix C Section C.1 for the MATLAB figure
code.

In this appendix, we present empirical representations of distributions by his-
tograms derived from random number generation, rather than the purely mathe-
matical graphs of the probability density as portrayed in probability and statistics
texts. This is to emphasize that the distributions derived from real environments
are not as ideal as the exact mathematical density functions. Another reason is to
emphasize that sometimes computations are necessary when no exact solutions are
available or useful when exact solutions are too complicated, beyond the expertise
of the entry-level graduate student or advanced undergraduate student.

B.1.4 Normal Distribution and Gaussian Processes

A continuous distribution of interest for Gaussian processes and other applications
is given in terms of the normal probability density, the derivative of the normal or
Gaussian probability distribution.

Definition B.13. The normal density with mean µ = En[X] and σ2 = Varn[X]

“bk0allfinal”
2007/1/7
page B9

i

i

i

i

i

i

i

i

B.1. Distributions for Continuous Random Variables B9

is defined as

φn(x;µ, σ2) ≡ 1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
, −∞ < x < +∞ , σ > 0 , (B.17)

where φn denotes the normal density function with argument x and parameters
{µ, σ2} following the semicolon. Here, X is called the normal random variate.

Definition B.14. The normal distribution is defined here through the density
as

Φn(x;µ, σ2) ≡
∫ x

−∞
φn(y;µ, σ2)dy , −∞ < x < +∞ , (B.18)

so that Φn(+∞;µ, σ2) = 1, conserving total probability.

Remark B.15. The normal distribution can be computed using MATLAB, Maple or
Mathematica computing systems, but the common special function that can be used,
without resorting to special packages, is the error function complement,

erfc(x) = 1 − erf(x) =
2√
π

∫ ∞

x

e−t2dt , (B.19)

so that the normal distribution can be computed from these two identities

Φn(x;µ, σ2) =
1

2
erfc

(
µ− x√

2σ

)
(B.20)

= 1 − 1

2
erfc

(
x− µ√

2σ

)
. (B.21)

Properties B.16. Normal Distribution Skew and Kurtosis:

• The normal distribution is skewless, since the coefficient of skew is
η3[X] = 0.

• The normal distribution has no excess kurtosis, since the coefficient of ex-
cess kurtosis is (η4[X] − 3) = 0, where 3 is the coefficient of kurtosis of the
normal distribution.

As with the uniform distribution, the normal distribution is a theoretical
idealization that is very useful in the analysis of stochastic problems. However,
for practical computations numerical simulations are usually necessary. Since the
normal density function is an exponential of a quadratic, direct transformation
from a uniform random generator is not directly possible. However, the usual
normal random number generating algorithm, called Box-Muller [230, 96], clev-
erly applies the uniform random generator to a polar coordinate version of a two-
dimensional normal distribution, reminiscent of the classic technique of converting
a normal probability integral on the infinite domain from one dimension to two

“bk0allfinal”
2007/1/7
page B10

i

i

i

i

i

i

i

i

B10 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

dimensions and polar coordinates to get exact integral values. In some comput-
ing systems there is a special built-in function for a normal random generator. In
MATLAB [210] the function is called randn, also having vector or array capabil-
ities in the vector form x = randn(N, 1) for a N−vector sample (more generally,
y = mu + sigma ∗ randn(N, 1) would simulate the density φn(y; mu, sigma2) where
mu is the specified mean and sigma is the specified standard deviation). (Note that
MATLAB’s functions, code variables such as mu and sigma and code fragments
are set in typewriter style.) The simulated normal density is illustrated by the
histogram in Fig. B.2 using two sample sizes, N = 1, 000 and 100, 000. Clearly,
the larger sample size in Fig. B.2(b) gives a better qualitative representation of the
theoretical bell-shaped curve of the normal density φn(x; 0, 1). The percent relative
errors in the mean and standard deviation are respectively −1.53% and −0.35%
for N = 1, 000, while the errors are 1.31% and −0.083% for the for N = 100, 000
sample size. See Appendix C Section C.2 for the MATLAB figure code.

−3 −2 −1 0 1 2 3
0

10

20

30

40

50

60

x, Normal randn−Deviate

N
or

m
al

 B
in

 F
re

qu
en

cy

Histogram for x = randn(N,1)

N = 1000

(a) Sample size N = 103.

−4 −2 0 2 4
0

1000

2000

3000

4000

5000

6000

7000

x, Normal randn−Deviate

N
or

m
al

 B
in

 F
re

qu
en

cy
Histogram for x = randn(N,1)

N = 100000

(b) Sample size N = 105.

Figure B.2. Histograms of simulations of the standard normal distribution with
mean 0 and variance 1 using MATLAB [210] with 50 bins for two sample sizes N . The his-
togram for the large sample size of N = 105 in Fig. B.2(b) exhibits a better approximation
to the theoretical normal density φn(x; 0, 1).

B.1.5 Simple Gaussian Processes

For later use, we will let W (t) denote what is called a standard, mean zero Wn zero
Wiener process with distribution

ΦW (t)(x) = Φn(x; 0, t) , −∞ < x < +∞ , t > 0 , (B.22)

with corresponding probability density

φW (t)(x) = φn(x; 0, t) , −∞ < x < +∞ , t > 0 . (B.23)

A simple Gaussian process with linear mean growth in time,

X = G(t) = µt+ σW (t) , (B.24)

“bk0allfinal”
2007/1/7
page B11

i

i

i

i

i

i

i

i

B.1. Distributions for Continuous Random Variables B11

has mean E[X] = µt and variance Var[X] = σ2t, so that the distribution of this
process is

ΦG(t)(x) = Φn(x;µt, σ2t) =
1√

2πσ2t

∫ x

−∞
e−

(y−µt)2

2σ2t dy , (B.25)

on −∞ < x < +∞, t > 0. The standard Wiener and Gaussian processes are
also called diffusion processes, so they form models of the diffusion part of the
jump-diffusion processes that are the main topic in this book. In order to see the
connection between the stochastic Gaussian process and the deterministic diffusion
process, let

u(x, t) = ΦG(t)(x)

and take partial derivatives of u(x, t) with respect to t and x to derive the diffusion
equation with drift (−µ) and diffusion coefficient (σ2/2),

ut(x, t) = −µux(x, t) + σ2

2 uxx(x, t) , −∞ < x < +∞ , t > 0 . (B.26)

where the subscripts on ut, ux and uxx denote partial derivatives and the equation
is called a partial differential equation (PDE).

Remarks B.17.

• Here we use the term Gaussian process as it is used in applied mathematics,
science and engineering, i.e., for processes that are normally distributed. (For
a more abstract view of Gaussian processes, see Mikosch [209]).

• There will be much more on the Wiener and Gaussian processes later, since
they form the basic process for building the diffusion component of the jump-
diffusion processes.

B.1.6 Lognormal Distribution

Often in applications, such as in many linear financial models, the exponential of a
normally distributed random variable arises and the distribution of this exponential
is called a lognormal distribution since its logarithm produces the normally
distributed exponent.

Theorem B.18. Let

Xln = exp (µ+ σXn) (B.27)

be a lognormal variate and let Xn be a standard normal variate, i.e., with zero
mean and unit variance, Then lognormal density with mean µln = E[Xln] and
(σln)2 = Var[Xln] can be written in terms of the normal density φn (B.17) such
that

φln

(
x;µln, (σln)

2
)
≡ x−1φn

(
ln(x);µ, σ2

)
0 < x < +∞ , σ > 0 , (B.28)

“bk0allfinal”
2007/1/7
page B12

i

i

i

i

i

i

i

i

B12 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

where φln denotes the lognormal density function with argument x and parameters
{µn, (σ

2)n} = {µ, σ2} follow the semicolon. If x = 0, then define φln as the limiting
case:

φln

(
0;µln, (σln)

2
)
≡ φln

(
0+;µln, (σln)

2
)

= 0 . (B.29)

Proof. Let the realization variable x > 0 and note that σ > 0, while the nat-
ural logarithm is an increasing function. Consider the corresponding lognormal
distribution definition, subsequently manipulated into the normal distribution:

Φln

(
x;µln, (σln)

2
)

= Prob [Xln ≤ x] (B.30)

= Prob [exp (µ+ σXn) ≤ x] (B.31)

= Prob [Xn ≤ (ln(x) − µ)/σ] (B.32)

= Φn((ln(x) − µ)/σ; 0, 1) (B.33)

= Φn(ln(x);µ, σ2) . (B.34)

The last step follows a normal distribution or density identity that allows transform-
ing from the standard normal to non-standard normal with mean µ and variance σ2

(see Exercise 9) on Page B72). Upon taking the derivatives of the first and the last
of this chain of equations, using the chain rule to handle the logarithmic argument
of the normal distribution, the relationship between the densities is

φln

(
x;µln, (σln)

2
)

= (Φln)′
(
x;µln, (σln)

2
)

= x−1(Φn)′
(
ln(x);µ, σ2

)

= x−1φn

(
ln(x);µ, σ2

)
.

Note that as x→ 0+ then

x−1 exp
(
−(ln(x) − µ)2/

(
2σ2
))

→ 0+ ,

since the exponential approaches zero much faster than the reciprocal of x ap-
proaches infinity. Thus, since the singularity at zero is removable, we define the
exception value of the lognormal density at zero to be

φln

(
0;µln, (σln)

2
)
≡ φln

(
0+;µln, (σln)

2
)

= 0 .

In the above analytical manipulation of distribution probabilities, the general
principle are embodied in the following lemma:

Lemma B.19. General Probability Inversion
Let X and Y be two random variables with continuous densities φX(x) and φY (y),
respectively. Further, let the dependence between them be given by X = g(Y) ,
where g(y) is continuously differentiable and increasing so that an inverse function

“bk0allfinal”
2007/1/7
page B13

i

i

i

i

i

i

i

i

B.1. Distributions for Continuous Random Variables B13

f exists, i.e., y = f(x) = g−1(x). Then the corresponding distributions are related
by

ΦX(x) = Prob[X ≤ x] = Prob[g(Y) ≤ x]

= Prob[Y ≤ f(x)] = ΦY (f(x)) (B.35)

and the densities are related by

φX(x) = f ′(x)φY (f(x)) . (B.36)

If, instead, g is strictly decreasing, then

ΦX(x) = Prob[Y ≥ f(x)] = 1 − ΦY (f(x)) (B.37)

and

φX(x) = −f ′(x)φY (f(x)) . (B.38)

Proof. Since f is the inverse function of g then with x = g(y) and y = f(x),
g(f(x)) = x and g′(y)f ′(x) = 1, using the chain rule and the derivatives are recip-
rocals of each other. Further, the increasing property of g means f is also increasing,
the signs of the derivatives must be the same. So if x1 ≤ x2 then f(x1) ≤ f(x2), the
direction of an inequality is preserved upon application of f . In the g decreasing
case, the direction is reversed. Thus, Eq. (B.35) has been demonstrated in the
increasing case. The decreasing case is similar, except for the change in inequality
direction and a minor point in converting from probability to distribution func-
tion. The probability complement equivalent of Prob[Y ≥ f(x)] would strictly be
1−Prob[Y < f(x)], but since the densities are continuous the probabilities assigned
to an isolated point are zero, i.e., Prob[Y < f(x)] = Prob[Y ≤ f(x)].

The densities follow upon differentiating by the chain rule,

Φ′
X(x) = φX(x) = f ′(x)Φ′

Y (f(x)) = f ′(x)φY (f(x))

in the increasing case and the decreasing case is similar except for the minus sign
in the density (B.38), which also preserves the non-negativity of the density, since
−f ′(x) > 0 in the negative case. The factor ±f ′(x) > 0 is the density conversion
factor in either case.

Properties B.20. Lognormal Distribution Moments:

• Mean:
µln = Eln[X] = eµ+σ2/2 .

• Variance:

σln = Varln[X] = (µln)
2
(
eσ2 − 1

)
,

“bk0allfinal”
2007/1/7
page B14

i

i

i

i

i

i

i

i

B14 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

• Inverse, Normal from Lognormal:

σ2 = ln
(
1 + σln/ (µln)2

)

and

µ = ln (µln) − 1

2
σ2 .

• Coefficient of skewness:

η
(ln)
3 [X] =

(
eσ2

+ 2
)√

eσ2 − 1 .

• Coefficient of kurtosis:

η
(ln)
4 [X] =

(
e4σ2

+ 2e3σ2

+ 3e2σ2 − 3
)
.

Remark B.21. The mean formula is justified using the logarithmic transformation,
y = (ln(x)−µ)/σ, from lognormal back to normal along with completing the square
method in the exponent,

Eln[X] =

∫ ∞

0

exp(−(ln(x) − µ)2/(2σ2))

x
√

2πσ2
xdx

=
1√
2π
eµ

∫ +∞

−∞
e−y2/2eσydy

=
1√
2π
eµ+σ2/2

∫ +∞

−∞
e−(y−σ2)2/2dy = eµ+σ2/2 .

Then the rest of the moments rely on the same techniques.

The simulation of the lognormal distribution relies on the fact (B.27) that the
lognormal variate is the exponential of a normal variate, i.e., Xln = exp(µ+ σXn).
Thus the MATLAB approximation will be the set of simulations,

y = mu*ones(N,1) + sigma*randn(N,1);

x = exp(y);

where again randn(N,1) is MATLAB’s normal random generator for a sample size
of N while the ones(N,1) function produces an N -vector of ones preserving the
vector form when adding the constant mu, with similar constructs in Maple and
Mathematica. Eq. (B.28) for the density implies that the proper lognormal density
will be obtained in theory.

The MATLAB graphical histogram output for two sample sizes, N = 1, 000
and 100, 000, both sorted into nbins= 150, is given in Fig. B.3. The selected normal
parameters are µn = µ = mu = 0.0 and σn = σ = sigma = 0.5, corresponding
to lognormal parameters µln ≃ 1.133 and σln ≃ 0.3646. The percent relative

“bk0allfinal”
2007/1/7
page B15

i

i

i

i

i

i

i

i

B.1. Distributions for Continuous Random Variables B15

errors in the lognormal mean and standard deviation are respectively −0.56% and
−0.60% for N = 1, 000, while the relative errors are −0.085% and −0.30% for the
for N = 100, 000 sample size. Again, the larger sample size Fig. B.3(b) gives a
better qualitative representation of the theoretical shape of the lognormal density
φln(x;µln, σln). Both subfigures confirm that the density goes to zero as x → 0+.
See Appendix C Section C.3 for the MATLAB figure code.

1 2 3 4 5
0

5

10

15

20

25

30

35

40

x, Lognormal Deviate

Lo
gn

or
m

al
 B

in
 F

re
qu

en
cy

Histogram for Lognormal x

N = 1000

(a) Sample size N = 103.

1 2 3 4 5 6 7
0

1000

2000

3000

4000

x, Lognormal Deviate

Lo
gn

or
m

al
 B

in
 F

re
qu

en
cy

Histogram for Lognormal x

N = 100000

(b) Sample size N = 105.

Figure B.3. Histograms of simulations of the lognormal distribution with mean
µn = 0 and variance σn = 0.5 using MATLAB [210] normal distribution simulations, x =
exp(mu*ones(N,1) + sigma*randn(N,1)), with 150 bins for two sample sizes. The his-
togram for the large sample size of N = 105 in Fig. B.3(b) exhibits a better approximation
to the theoretical lognormal density φn(x; 0, 1) than the one in Fig. B.3(a).

B.1.7 Exponential Distribution

The continuous exponential density is closely related to the inter-arrival time of a
Poisson process (discussed in Chapter 1).

Definition B.22. The exponential density is given for some exponential random
variate τe by

φe(t;µ) ≡ 1

µ
e−t/µ , 0 ≤ t < +∞ , µ > 0 , (B.39)

with mean µ, so the exponential distribution is called a one-parameter distribu-
tion. The explicit form of the exponential distribution is

Φe(t;µ) = Prob[τe ≤ t] =

{
1 − e−t/µ , t ≥ 0

0 , t < 0

}
. (B.40)

Properties B.23. Exponential Distribution Moments:

• Conservation of probability: Ee[1] = 1 .

“bk0allfinal”
2007/1/7
page B16

i

i

i

i

i

i

i

i

B16 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

• Mean: µ = Ee[X] , by selection of the exponential parameter.

• Variance: σ2 = Vare[X] = µ2 , so the standard deviation is also µ .

• Coefficient of skew: η3 = 2 , positive relative to the mean on [0,∞) .

• Coefficient of kurtosis: η4 = 9 or η4 − 3 = 6 is the excess value over the
normal value.

Hence, the exponential distribution defines a one-parameter family of distri-
butions with the same mean and standard deviation, but also positively skewed by
virtue of the semi-infinite domain and leptokurtic with clear pointedness.

Since the exponential distribution has such a simple form it can easily be
transformed into the uniform distribution for use in practical simulations. Using
fundamental law of transformation of probabilities [230] or as the inverse
transformation method [96] for transforming the exponential density φe(xe;µ)
to the standard (0, 1) uniform density φu(xu; 0, 1),

φu (xu; 0, 1) = φe (xe;µ)

∣∣∣∣
dxe

dxu

∣∣∣∣ , (B.41)

choosing the Jacobian sign negative, dxe/dxu < 0, because it leads to a faster
computational form by eliminating a constant of integration, so that,

xe = −µ ln (xu) , (B.42)

or in inverse form
xu = exp (−xe/µ) . (B.43)

A prime prerequisite for random simulations is that the distribution is covered in
the transformation, but the order of the covering does not matter so

Φe(xe;µ) = Prob [0 ≤ Xe ≤ xe]

= Prob [exp (−xe/µ) ≤ Xu ≤ 1]

= 1 − Φu (exp (−xe/µ) ; 0, 1) .

works even though the uniform distribution here is covered from right to left starting
from 1 while the exponential distribution is covered from left to right starting form
xe = 0. The interested reader can check that the general expectation Ee[f(Xe)] =
Eu[f(−µ ln(Xu))] is equivalent for any integrable function f (see Exercise 12).

Hence, x = −mu ∗ log(rand(N, 1)) leads to a MATLAB exponential random
generator producing N−vector output, where log is the MATLAB natural loga-
rithm function and mu is the input for the mean. The MATLAB graphical output
for two sample sizes, N = 1, 000 and 100, 000, is given in Figs. B.4(a) and B.4(b),
respectively. The percent relative errors in the mean and standard deviation are
respectively 7.94% and −0.71% for N = 1, 000, while the errors are 3.81% and
−0.54% for the for N = 100, 000 sample size. See Appendix CSection C.4 for the
MATLAB figure code.

Remarks B.24.

“bk0allfinal”
2007/1/7
page B17

i

i

i

i

i

i

i

i

B.1. Distributions for Continuous Random Variables B17

1 2 3 4 5 6
0

20

40

60

80

100

x, Exponential random−Deviate

E
xp

on
en

tia
l B

in
 F

re
qu

en
cy

Histogram for x = −ln(rand(N,1))

N = 1000

(a) Sample size N = 103.

2 4 6 8 10 12
0

0.5

1

1.5

2

x 10
4

x, Exponential random−Deviate

E
xp

on
en

tia
l B

in
 F

re
qu

en
cy

Histogram for x = −ln(rand(N,1))

N = 100000

(b) Sample size N = 105.

Figure B.4. Histograms of simulations of the standard exponential distribution,
with mean taken to be mu = 1, using MATLAB’s hist function [210] with 50 bins for two
sample sizes N , generated by x = −mu ∗ log(rand(N, 1)) in MATLAB . The histogram for
the large sample size of N = 105 in Fig. B.4(b) exhibits a better approximation to the
standard theoretical exponential density φe(x; 1).

• Alternatively, a more direct exponential to uniform transformation could have
been selected,

x̂u = 1 − exp (−x̂e/µ)

with inverse

x̂e = −µ ln (1 − x̂u) , (B.44)

but that would not be as numerically efficient for large sample sizes N as
(B.42) which is more often used, since (B.42) requires one less floating point
operation, not needing to subtract the uniform random sample from 1 per sam-
ple in (B.44). Typically random sample sizes are huge, so good representations
of the distribution can be obtained.

• The probabilistic view of the difference between the two exponential to uniform
transformations follows from Lemma B.19 on general probability inversion. In
the direct case, ĝ(y) = −µ ln(1 − y) and f̂(x) = 1 − exp(−x/µ), so g′(y) =
+µ/(1 − y) > 0 for 0 < y < 1. Thus,

Φ bXe
(x) = Φ bXu

(1 − exp(−x/µ))

by (B.35) and

φ bXe
(x) =

1

µ
exp(−x/µ)φ bXu

(1 − exp(−x/µ))

by (B.36), which implies φ bXu
(1 − exp(−x/µ)) = 1 since its coefficient is

φ bXe
(x). In the more useful case, g(y) = −µ ln(y) and f(x) = exp(−x/µ),

“bk0allfinal”
2007/1/7
page B18

i

i

i

i

i

i

i

i

B18 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

so g′(y) < 0 and

φXe
(x) = +

1

µ
exp(−x/µ)φXu

(exp(−x/µ))

by (B.38) and again φXu
(exp(−x/µ)) = 1.

B.2 Distributions of Discrete Random Variables

In general, averaged quantities for discrete distributions involve sums rather than
integrals used in the continuous distributions. (Note: the use of the term distribu-
tion is different for discrete and continuous cases.)

Definition B.25. Let the discrete distribution be

πk = Prob[X = xk] (B.45)

for some countable set of values X = {xk|k = 0 : m}, where m could be infinite (the
1 : n is MATLAB loop notation).

Definition B.26. Colon or Loop Notation:
For compactness, the range of a discrete set will be in the MATLAB colon or loop
notation [210, 142] with k = m1 : m2 denoting that the index k ranges from integers
m1 to m2 in steps of unity (1), meaning the same as the loosely defined k = m1,m1+
1, . . . ,m2 − 1,m2, assuming m1 < m2. In the case of non-unit steps ∆m, then
k = m1 : ∆m : m2 is used instead of k = m1,m1+∆m, . . . ,m2−∆m,m2, assuming
the range m2 −m1 is a positive integer multiple of ∆m.

Properties B.27. Discrete Distributions πk:

• Non-negativity: πk ≥ 0.

• Conservation of probability:

m∑

k=0

πk = 1 . (B.46)

The basic definitions in the discrete distribution case for averaged quantities
are listed:

Definitions B.28.

• The mean or expectation of the discrete set X = {xk|k = 0 : m} is

µ = E[X] ≡
m∑

k=0

xkπk , (B.47)

for any discretely distributed random variable provided the sum converges ab-
solutely.

“bk0allfinal”
2007/1/7
page B19

i

i

i

i

i

i

i

i

B.2. Distributions of Discrete Random Variables B19

• Similarly, the expectation of a function f(X) of X is

E[f(X)] ≡
m∑

k=0

f(xk)πk , (B.48)

provided the sum converges absolutely.

Definition B.29. The variance or mean square deviation of the discrete set
X is

Var[X] ≡ E[(X − E[X])2] =

m∑

k=0

(xk − µ)2πk , (B.49)

for any discretely distributed random variable provided the sum converges absolutely,
where the set difference (X − µ) ≡ {xk − µ|k = 0 : m} for fixed µ.

B.2.1 Poisson Distribution and Poisson Process

Another important distribution is a discrete distribution and is called the Poisson
distribution. It is useful for modeling jumps, especially for the jump component of
jump-diffusions.

Definition B.30. The Poisson distribution with Poisson variate ν and single
Poisson parameter Λ is given by the probabilities

pk(Λ) ≡ Prob[ν = k] = e−Λ (Λ)k

k!
, (B.50)

for k = 0, 1, 2, . . . and Λ ≥ 0, expressed as a simple Poisson distribution with
continuous parameter Λ which serves as both mean

E[ν] = Λ (B.51)

and variance

Var[ν] = Λ (B.52)

of this one-parameter discrete distribution.

The mean and variance can conveniently be computed from the properties of
the exponential series,

∞∑

k=0

uk

k!
= eu = exp(u) , −∞ < u < +∞ , (B.53)

together with its derivatives such as its first derivative form

∞∑

k=0

k
uk

k!
= u

d

du
eu ,

“bk0allfinal”
2007/1/7
page B20

i

i

i

i

i

i

i

i

B20 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

which can be used to compute the mean property from

E[ν] = e−Λ
∞∑

k=0

k
(Λ)k

k!

to derive (B.51) and its second derivative form

∞∑

k=0

k2u
k

k!
=

(
u
d

du

)2

eu ,

which can be used with the mean to compute the variance property from

Var[ν] = e−Λ
∞∑

k=0

(k − Λ)2
(Λ)k

k!

to derive (B.52) upon expanding the square in the sum.
From (B.50), it is simple to deduce that pk(0+) = δk,0, where δk,0 is defined:

Definition B.31.

δi,j =

{
1 if j = i
0 if j 6= i

}
(B.54)

is the Kronecker delta or discrete delta function.

Figure B.5 illustrates the Poisson distribution versus the Poisson counting
variable k for four values of the Poisson parameter, Λ = 0.2, 1.0, 2.0 and 5.0. See
Appendix C Section C.5 for the MATLAB figure code. For the smaller parameter

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
Poisson Distributions: p

k
(Λ)

p
k(Λ

)

k, Poisson Counter

Λ = 0.2
Λ = 1.0
Λ = 2.
Λ = 5.

Figure B.5. Poisson distributions with respect to the Poisson counter variable
k for parameter values Λ = 0.2, 1.0, 2.0 and 5.0. These represent discrete distributions, but
discrete values are connected by dashed, dotted and dash-dotted lines only to help visualize
the distribution form for each parameter value.

value, Λ = 0.2, the distribution resembles a discretized version of the exponential

“bk0allfinal”
2007/1/7
page B21

i

i

i

i

i

i

i

i

B.3. Joint and Conditional Distribution Definitions B21

distribution, while as Λ increases to 2.0 the distribution is beginning to resemble
the normal distribution around the peak. For large values of the parameter Λ it can
be shown (Feller, [83]) that the Poisson distribution has a normal approximation.

For later use, let P (t) denote the simple Poisson process with linear time
dependent parameter Λ = λt is a jump process with unit jumps, hence also charac-
terized as a counting process. It can be shown (see Çinlar [55], for instance) that
P (t) discrete distribution is

pk(λt) ≡ Prob[P (t) = k] = e−λt (λt)
k

k!
. (B.55)

If the random variable Tk is the time of the kth Poisson unit jump for k = 0 :
+∞, then time between jumps or inter-arrival time can be shown to be distributed
exponentially:

Prob[Tk+1 − Tk ≤ t | Tk] = 1 − Prob[Tk+1 − Tk > t | Tk]

= 1 − Prob[P (Tk + t) − P (Tk) = 0 | Tk]

= 1 − Prob[P (t) = 0]

= 1 − e−λt = Φe(t; 1/λ) , (B.56)

in the first step using conservation of probability to write the probability in terms
of one minus the complement, in the second step using the fact that the probability
that the inter-arrival time ∆Tk = Tk+1 − Tk > t is the same as the probability that
Poisson increment P (Tk + t) − P (Tk) = 0, in the third step using the stationarity
property that P (s+ t)−P (s) and P (t) have the same distribution (to be discussed
later), and finally using Eq. (B.55) with k = 0.

Remark B.32. More on the Poisson process will be presented in the main chapters
of the text, since it serves as the basic process for building the jump component of
the jump-diffusion processes.

B.3 Joint and Conditional Distribution Definitions

In many part of this book, several properties of joint and conditional distributions
will be useful and are summarized for two random variables here. These random
variables can be combinations of discrete and continuous random variables, e.g.,
discrete for jump variables or continuous for diffusion variables. The definition
forms are the forms that are useful in this text, but they are not necessarily the
most general definitions. Many can be easily generalized from a couple to multiple
random variables. For more general information see the long time standard reference
of Feller [84] or the references of Karlin and Taylor [161, 265].

Definitions B.33. Jointly Distributed Random Variables

• The joint probabilities or joint distribution functions of two random
variables X and Y depend on whether the random variables are discrete or
continuous, leading to three cases:

“bk0allfinal”
2007/1/7
page B22

i

i

i

i

i

i

i

i

B22 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

1. Two jointly distributed discrete random variables, X and Y , have
the joint probability or joint distribution function

πX,Y (xi, yj) ≡ Prob[X = xi, Y = yj] , (B.57)

for specified discrete values xi and yj for integers i and j (in general,
the discrete sets are assumed to be countable or denumerable) and such
values will be assumed with the qualifications given here;

2. Two jointly distributed continuous random variables, X and Y ,
have the joint probability or joint distribution function

ΦX,Y (x, y) ≡ Prob[X ≤ x, Y ≤ y] ; (B.58)

3. Two jointly distributed mixed continuous and discrete random
variables, X and Y , have the hybrid joint probability or joint dis-
tribution function

ΦX,Y (x, yj) ≡ Prob[X ≤ x, Y = yj] , (B.59)

for some discrete value yj.

• The joint densities, if they exist, of two jointly distributed random variables
X and Y , are defined as

1. Two jointly distributed discrete random variables, X and Y , do
not have a joint density in the usual way, but for an applied for-
mulation, the generalized functions can be used (see Section B.12 on
page B53).

2. Two jointly distributed continuous random variables, X and Y ,
have the joint density if the partial derivatives exist,

φX,Y (x, y) =
∂2ΦX,Y

∂x∂y
(x, y) , (B.60)

and then can be used to calculate the joint distribution;

ΦX,Y (x, y) =

∫ x

−∞
dξ

∫ y

−∞
dη φX,Y (ξ, η) . (B.61)

3. Two jointly distributed mixed continuous and discrete random
variables, X and Y , have the joint density if only the x-partial deriva-
tive exists,

φX,Y (x, yj) =
∂ΦX,Y

∂x
(x, yj) , (B.62)

which is a hybrid density-distribution rather than a strict joint den-
sity, but then it can be used to calculate the joint distribution,

ΦX,Y (x, yj) =

∫ x

−∞
dξ φX,Y (ξ, yj) , (B.63)

for some discrete value yj.

“bk0allfinal”
2007/1/7
page B23

i

i

i

i

i

i

i

i

B.3. Joint and Conditional Distribution Definitions B23

• The marginal distributions in one of two random variables X and Y are
defined by summing or integrating over the other random variable:

1. Two jointly distributed discrete random variables, X and Y , have
the marginal distributions

πX(xi) =
∞∑

j=1

πX,Y (xi, yj) , (B.64a)

πY (yj) =

∞∑

i=1

πX,Y (xi, yj) ; (B.64b)

2. Two jointly distributed continuous random variables, X and Y ,
have the marginal distributions

ΦX(x) = lim
y→+∞

ΦX,Y (x, y) =

∫ x

−∞
dξ

∫ +∞

−∞
dη φX,Y (ξ, η) ,(B.65a)

ΦY (y) = lim
x→+∞

ΦX,Y (x, y) =

∫ y

−∞
dη

∫ +∞

−∞
dξ φX,Y (ξ, η) ,(B.65b)

provided the limits exist;

3. Two jointly distributed mixed continuous and discrete random
variables, X and Y , have the marginal distributions

ΦX(x) =

∫ x

−∞
dξ

∞∑

j=1

φX,Y (ξ, yj) , (B.66a)

πY (yj) =

∫ +∞

−∞
dξ φX,Y (ξ, yj) , (B.66b)

provided the limit exists.

• The marginal densities of two random variables, X and Y , are defined as

1. Two jointly distributed discrete random variables, X and Y , do
not have marginal densities in the usual way, but for an applied for-
mulation, the generalized functions can be used (see Section B.12 on
page B53);

2. Two jointly distributed continuous random variables, X and Y ,
have the marginal densities,

φX(x) =

∫ +∞

−∞
dη φX,Y (x, η) , (B.67a)

φY (y) =

∫ +∞

−∞
dξ φX,Y (ξ, y) ; (B.67b)

“bk0allfinal”
2007/1/7
page B24

i

i

i

i

i

i

i

i

B24 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

3. Two jointly distributed mixed continuous and discrete random
variables, X and Y , has the marginal density for the continuous
random variable X,

φX(x) =

∞∑

j=1

φX,Y (x, yj) , (B.68)

and the marginal distribution πY (yj) is given in (B.66b).

• The expectation function f(X,Y) of joint random variables, X and
Y , is defined as:

1. Two jointly distributed discrete random variables, X and Y , have
the joint expectation of f(X,Y), providing the sums or integrals exist,

EX,Y [f(X,Y)] =

+∞∑

i=1

+∞∑

j=1

f(xi, yj)πX,Y (xi, yj) ; (B.69)

2. Two jointly distributed continuous random variables, X and Y ,
have the joint expectation of f(X,Y),

EX,Y [f(X,Y)] =

∫ +∞

−∞
dξ

∫ +∞

−∞
dη f(ξ, η)φX,Y (ξ, η) ; (B.70)

3. Two jointly distributed mixed continuous and discrete random
variables, X and Y , have the joint expectation,

EX,Y [f(X,Y)] =

∫ +∞

−∞
dη

∞∑

j=1

f(ξ, yj)φX,Y (ξ, yj) , (B.71)

where φX,Y (x, yj) is the hybrid density-distribution given by (B.62).

• The covariance of two jointly distributed random variables, X and Y ,
for all three cases, is defined as

Cov[X,Y] ≡ EX,Y [(X − EX [X])(Y − EY [Y])] , (B.72)

provided the expectations exist. Hence,

Cov[X,Y] = EX,Y [X · Y] − EX [X] · EY [Y]. (B.73)

• The variance of a sum or difference of two random variables, X and
Y ,

Var[X ± Y] = VarX [X] ± 2Cov[X,Y] + VarY [Y] , (B.74)

since upon expansion using (B.72) and the definition of variance twice,

Var[X ± Y] = E[(X − E[X] ± (Y − E[Y]))2]

= VarX [X] ± 2CovX,Y [X,Y] + VarY [Y] .

“bk0allfinal”
2007/1/7
page B25

i

i

i

i

i

i

i

i

B.3. Joint and Conditional Distribution Definitions B25

Remarks B.34.

• The subscript on the expectation symbol is often omitted, but can be used in
multivariate expectation to precisely specify which variable or variables are the
arguments of the expectation operator and avoid confusion.

• The integral notations are equivalent,
∫ x2

x1

dx

∫ y2

y1

dyf(x, y) =

∫ x2

x1

∫ y2

y1

f(x, y)dydx ,

the former, having the element of integration follow the integration sign, makes
it easy to see the order of integration and which limits of integration go with
what elements of integration.

Definitions B.35. Independently Distributed Random Variables:

• The joint distribution of two independent random variables, X and
Y , is the product of the marginal distributions:

1. Two discrete random variables, X and Y , are independent if their
joint distribution is

πX,Y (xi, yj) = πX(xi) · πY (yj) ; (B.75)

2. Two continuous random variables, X and Y , are independent if
their joint distribution is

ΦX,Y (x, y) = ΦX(x) · ΦY (y) ; (B.76)

3. Two mixed continuous discrete random variables, X and Y , are
independent if their joint distribution is

ΦX,Y (x, yj) = ΦX(x) · πY (yj) . (B.77)

• The joint density of two independent random variables, X and Y , is
the product of the marginal densities:

1. Two discrete random variables, X and Y , do not have a joint den-
sity in the usual way;

2. Two continuous random variables, X and Y , are independent if
their joint distribution is

φX,Y (x, y) = φX(x) · φY (y) ; (B.78)

3. Two mixed continuous and discrete random variables, X and Y ,
are independent if their hybrid density-distribution is

φX,Y (x, yj) = φX(x) · πY (yj) ; (B.79)

assuming densities exist where relevant.

“bk0allfinal”
2007/1/7
page B26

i

i

i

i

i

i

i

i

B26 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

• The joint expectation of the product f(X) · g(Y) in two independent
random variables, X and Y , is the product of the expectations,

EX,Y [f(X) · g(Y)] = EX [f(X)] · EY [g(Y)] , (B.80)

covering all three cases.

• The covariance of two independent random variables, X and Y , is
zero,

Cov[X,Y] ≡ E[(X − E[X])(Y − E[Y])] = 0 , (B.81)

since by the separability of the expectation in (B.80),

Cov[X,Y] = EX [(X − E[X])] · EY [(Y − E[Y])] = 0 · 0 = 0.

Note that the converse is not true. If Cov[X,Y] = 0, then the random vari-
ables are not necessarily independent.

B.3.1 Conditional Distributions and Expectations

Definitions B.36.

• The conditional probability and conditional distribution of the random
variable X given the random variable Y is defined such that

1. If X and Y are both discrete random variables,

πX|Y (xi|yj) ≡ Prob[X = xi | Y = yj] =
Prob[X = xi, Y = yj]

Prob[Y = yj]
, (B.82)

provided the marginal distribution πY (yj) = Prob[Y = yj] 6= 0 from
(B.64).

2. If X and Y are both continuous random variables,

ΦX|Y (x|y) ≡ Prob[X ≤ x | Y = y] =

∫ x

−∞ dξφX,Y (ξ, y)

φY (y)
, (B.83)

provided marginal density φY (y) 6= 0 from (B.67). See Karlin and Tay-
lor [161].

Remarks B.37.

◦ Since we can write

Prob[Y ∈ [y, y + dy]]
dy
= φY (y)dy ,

i.e., in precision-dy, the formula (B.83) can be rewritten in proba-
bilities,

Prob[X ≤ x | Y = y] =
Prob[X ≤ x, Y ∈ [y, y + dy]]

Prob[Y ∈ [y, y + dy]]
,

provided Prob[Y ∈ [y, y + dy]] > 0.

“bk0allfinal”
2007/1/7
page B27

i

i

i

i

i

i

i

i

B.3. Joint and Conditional Distribution Definitions B27

◦ Regarding (B.83), note that if Y is a continuous random variable,
then Prob[Y = y] = 0 since a single point has no probability mass
with

lim
δ→0

∫ y+δ

y

φY (η)dη = 0.

◦ The reader can confirm the consistency of these conditional proba-
bility formulas when X and Y are independent random variables.

3. If X is a continuous and Y is a discrete random variable,

ΦX|Y (x|yj) ≡ Prob[X ≤ x | Y = yj] =
Prob[X ≤ x, Y = yj]

Prob[Y = yj]
(B.84)

=

∫ x

−∞ dξφX,Y (ξ, yj)

Prob[Y = yj]
,

provided marginal distribution πY (yj) = Prob[Y = yj] 6= 0 from (B.66b),
where φX,Y (ξ, yj) is the hybrid density-distribution in (B.62).

• Iterated probability uses the definitions of conditional probability in reverse
to evaluate joint probability for the random variables X and Y ,

1. If X and Y are both discrete random variables,

Prob[X = xi, Y = yj] = Prob[X = xi | Y = yj] · Prob[Y = yj] , (B.85)

provided the conditional distribution Prob[X = xi | Y = yj] exists.

2. If X and Y are both continuous random variables,

Prob[X ≤ x, Y ∈ [y, y + dy]] =

∫ x

−∞
dξφX,Y (ξ, y)dy

= Prob[X ≤ x | Y = y] · φY (y)dy , (B.86)

provided the conditional distribution Prob[X ≤ x | Y = y] exists, but if
not then φY (y) = 0 should cover the case.

3. If X is a continuous and Y is a discrete random variable,

Prob[X ≤ x, Y = yj] = Prob[X ≤ x | Y = yj] · Prob[Y = yj] , (B.87)

provided marginal distribution πY (yj) = Prob[Y = yj] 6= 0 from (B.66b),
where φX,Y (ξ, yj) is the hybrid density-distribution in (B.62).

Remark B.38. These forms are convenient for decomposing joint probability
calculations into simpler parts.

“bk0allfinal”
2007/1/7
page B28

i

i

i

i

i

i

i

i

B28 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

• The conditional density is

φX|Y (x|y) =
∂ΦX|Y (x|y)

∂x
, (B.88)

provided X is a continuous random variable and Y is either continuous or
discrete.

• The conditional expectation of X given Y = y is defined as

EX [X |Y = y] =

∫ +∞

−∞
xφX|Y (x|y)dx (B.89)

provided X is a continuous random variable and Y is either continuous or
discrete; else

EX [X |Y = yj] =

∞∑

i=1

xiπX|Y (xi|yj) (B.90)

when both X and Y are discrete random variables with a similar form for
EX [X |Y = y] if X is discrete but Y is continuous.

• Similarly, the expectation for a function f(X,Y) given Y = y is

EX [f(X,Y)|Y = y] =

∫ +∞

−∞
f(x, y)φX|Y (x|y)dx .

provided X is a continuous random variable and Y is either continuous or
discrete; else

EX [f(X,Y)|Y = yj] =

∞∑

i=1

f(xi, yj)πX|Y (xi|yj)

when both X and Y are discrete random variables.

Properties B.39. Conditional Expectations:

• E[f(X)|X] = f(X) for some function f .

• EY [EX|Y [X |Y]] = EX,Y [X], but EY [EX|Y [X |Y]] = EX [X] if X and Y are
independent random variables.

• E[c1X1 + c2X2|Y] = c1E[X1|Y] + c2E[X2|Y], provided the conditional expec-
tations exist for random variables Y and Xi, and constants ci, for i = 1 : 2,
i.e., the conditional expectation is a linear operation.

• If X and Y are random variables, then the iterated expectation is

EX,Y [f(X,Y)] = EY [EX [f(X,Y)|Y]] , (B.91)

“bk0allfinal”
2007/1/7
page B29

i

i

i

i

i

i

i

i

B.3. Joint and Conditional Distribution Definitions B29

provided the expectations exist, i.e., that f(x, y) is sufficiently integrable with
respect to any density. This is also a general form of the law of total probability
given the next section.

Proof. In the case that X and Y are both continuous random variables, the
justification is built upon the basic definition of the conditional distribution
in (B.83) which leads to the conditional density according to (B.88) upon
differentiation,

φX|Y (x|y) = φX,Y (x, y)/φY (y)

assuming φY (y) > 0. Further, φY (y) > 0 will be assumed on −R ≤ y ≤ R for
some R > 0, since φY (y) → 0+ as y → +∞ for conservation of probability
through integrability at infinity. For convenience, the limit as R → +∞ will
be ignored in the following formally justifying chain of equations:

EX,Y [f(X,Y)] =

∫ +∞

−∞
dy

∫ +∞

−∞
dxφX,Y (x, y)f(x, y)

=

∫ +∞

−∞
dy

∫ +∞

−∞
dx
(
φX|Y (x|y)φY (y)

)
f(x, y)

=

∫ +∞

−∞
dyφY (y)

∫ +∞

−∞
dxφX|Y (x|y)f(x, y)

= EY [EX [f(X,Y)|Y]] .

The other random variable cases are similar with sums where discrete random
variables are concerned.

• If X and Y are independent, then E[X |Y] = E[X] and in general

E[f(X)g(Y)|Y] = E[f(X)]g(Y),

provided the expectations exist.

See Mikosch [209] for more conditional expectation properties in a more ab-
stract setting.

B.3.2 Law of Total Probability

Properties B.40. Law of Total Probability:

• When X is a discrete random variable and given a countable set of
mutually independent discrete random variables, {Y1, Y2, . . . , Yi, . . . },
and the conditional probabilities Prob[X |Yi] for i = 1, 2, . . . , then the
law of total probability (see Taylor and Karlin [265]) in this completely
discrete case is

Prob[X] =

∞∑

i=1

Prob[X |Yi]Prob[Yi] , (B.92)

“bk0allfinal”
2007/1/7
page B30

i

i

i

i

i

i

i

i

B30 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

i.e., an extension of the law of additive probabilities for disjoint events.

• When X is a continuous random variable, the corresponding law of total
probability for the probability distribution ΦX(x) is

ΦX(x) =

∞∑

i=1

ΦX|Y (x|Yi)Prob[Yi] . (B.93)

• Providing the density exists in the continuous random variable case, the cor-
responding law of total probability for the probability density of φX(x) is

φX(x) =

∞∑

i=1

φX|Y (x|Yi)Prob[Yi] . (B.94)

• Finally, the expectation corresponding to the law of total probability is

E[f(X)] =

∞∑

i=1

EX [f(X)|Yi]Prob[Yi] . (B.95)

for either discrete or continuous X case and assuming the expectations of f(X)
exist. This is a special case of the iterated expectations given previously in
(B.91).

Example B.41. An interesting financial example of (B.95) derived from [265] is
the statistics for the daily stock price return observed on a transaction by transaction
basis. Let the transaction price return be ξi = ∆Si = Si+1−Si, where Si is the price
of the ith transaction, with S0 the initial price such as that from the previous day’s
closing. Suppose the returns are independent identically distributed (I.I.D.) random
variables with common mean Eξ[ξi] = µ and variance Varξ[ξi] = σ2. Assume the
current total daily stock return after N transactions is

X =

N∑

i=0

ξi ,

where N is Poisson distributed, i.e., N is a counting process such that Prob[N =
n] = pn(Λ) with Λ being the Poisson parameter in (B.50), so EN [N] = Λ =
VarN [N]. Starting from the law of total probability, the expectation of the daily
return is decomposed as

EX [X] =

∞∑

n=0

EX|N [X |N = n]pn(Λ) =

∞∑

n=0

Eξ|N

[
N∑

i=0

ξi

∣∣∣∣∣N = n

]
pn(Λ)

=

∞∑

n=0

Eξ

[
n∑

i=0

ξi

]
pn(Λ) =

∞∑

n=0

n∑

i=0

Eξ[ξi]pn(Λ)

=

∞∑

n=0

n∑

i=0

µpn(Λ) = µ

∞∑

n=0

npn(Λ) = µΛ ,

“bk0allfinal”
2007/1/7
page B31

i

i

i

i

i

i

i

i

B.4. Probability Distribution of a Sum: Convolutions B31

where the independence and identically distributed properties of the ξi random vari-
ables, as well as the mean properties of N , have been used.

The variance of X is more complicated but follows from similar techniques,
except that terms are collected by completing the square in the ith return deviation
from the mean (ξi − µ) with several applications of the independence assumption:

VarX [X] = EX [(X − Λµ)2] =
∞X

n=0

Eξ|N

2
4

NX

i=0

ξi − Λµ

!2
˛̨
˛̨
˛̨N = n

3
5 pn(Λ)

=

∞X

n=0

Eξ

"
nX

i=0

(ξi − µ) + (n − Λ)µ

!2#
pn(Λ)

=

∞X

n=0

Eξ

"
nX

i=0

nX

j=0

(ξi − µ)(ξj − µ) + 2(n − Λ)µ

nX

i=0

(ξi − µ) + (n − Λ)2µ2

#
pn(Λ)

=
∞X

n=0

Eξ

2
4

nX

i=0

(ξi − µ)2 +
nX

i=0

nX

j 6=i

(ξi − µ)(ξj − µ) + (n − Λ)2µ2

3
5 pn(Λ)

=
∞X

n=0

"
nX

i=0

Eξ[(ξi − µ)2] + (n − Λ)2µ2

#
pn(Λ) =

∞X

n=0

[nσ2 + (n − Λ)2µ2]pn(Λ)

= Λσ2 + Λµ2 = Λ(σ2 + µ2) ,

such that the ith return variance is augmented by the mean squared.

B.4 Probability Distribution of a Sum: Convolutions

Combinations of random variables play an important role in the analysis of stochas-
tic processes, especially in the sum of two stochastic processes. Consider the fol-
lowing result:

Theorem B.42. Convolution for Sums of Random Variables If X and
Y are independent random variables with densities φX(x) and φY (y), respectively,
then the distribution of the sum is

ΦX+Y (z) ≡ Prob[X + Y ≤ z] =

∫ +∞

−∞
ΦY (z − x)φX(x)dx , (B.96)

provided the integral exists, where

ΦY (y) =

∫ y

−∞
φY (η)dη .

Proof. By the independence of the variables X and Y , the joint density is sepa-
rable, φX+Y (x, y) = φX(x)φY (y). Thus, using the properties of the Heaviside step

“bk0allfinal”
2007/1/7
page B32

i

i

i

i

i

i

i

i

B32 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

function,

H(x) =

{
0, x < 0
1, x ≥ 0

}
, (B.97)

then

Prob[X + Y ≤ z] = EX+Y [H(z −X − Y)]

=

∫ +∞

−∞

∫ +∞

−∞
H(z − x− y)φX(x)φY (y)dydx

=

∫ +∞

−∞

∫ z−x

−∞
φY (y)dyφX(x)dx

=

∫ +∞

−∞
ΦY (z − x)φX(x)dx

= EX [ΦY (z −X)] ,

where iterated integrals have been freely interchanged by the theorem of Fubini
which asserts that if an integral exists as a 2-dimensional integral then the two
iterative integrals can be interchanged, i.e., the order of integration does not matter.
Fubini’s theorem is often used in probability theory [84, 168].

Since it has been assumed that the densities exist, then differentiation of the
sides of the equation in (B.96), but under the integral sign for those on the right,
yields the formula for the probability density of a sum:

Corollary B.43.

φX+Y (z) =

∫ +∞

−∞
φY (z − x)φX(x)dx , (B.98)

The particular functional product forms of (B.96,B.98) are called convolutions
[84]:

Definition B.44. Let the convolution of a distribution or density f(y) and a
density φ(x) be

(f ∗ φ)(z) ≡
∫ +∞

−∞
f(z − x)φ(x)dx , (B.99)

provided the integral exists. Consequently, we have the following properties, includ-
ing the reformulation of the above sum rules:

Properties B.45. Convolutions:

• The convolution of densities is symmetric (f ∗ φ)(z) = (φ ∗ f)(z) , upon
change of variables in the integrand.

“bk0allfinal”
2007/1/7
page B33

i

i

i

i

i

i

i

i

B.4. Probability Distribution of a Sum: Convolutions B33

• φX+Y (z) = (φY ∗ φX)(z) = (φX ∗ φY)(z).

• ΦX+Y (z) = (ΦX ∗ φY)(z) = (ΦY ∗ φX)(z).

• The form for n mutually independent random variables, all with given densi-
ties, is

φX1+X2+···+Xn
(z) = (φX1 ∗ φX2 ∗ · · · ∗ φXn

)(z) (B.100)

=

{
((· · · ((φX1 ∗ φX2) ∗ φX3) · · · ∗ φXn−1) ∗ φXn

)(z)

(φX1 ∗ (φX2 ∗ (φX3 ∗ · · · (φXn−1 ∗ φXn
) · · ·)))(z)

}
,

the latter forms depending on whether the convolution expansion is from the
right or from the left, respectively.

Remark B.46. The particular form depends on which particular inductive
definition is used, i.e., the right and left convolution expansion forms, respec-
tively, are

φPn+1
i=1 Xi

(z) =

(
φP

n
i=1 Xi

∗ φXn+1

)
(z)

(
φX1 ∗ φPn+1

i=2 Xi

)
(z)

 ,

as can be shown by mathematical induction.

Lemma B.47. Convolution of Normal Densities is Normal:
If X and Y are normally distributed random variables, with probability densities
φX(x) = φn(x;µx, σ

2
x) and φY (y) = φn(y;µy, σ

2
y), respectively, then, letting Z =

X + Y ,

φZ(z) = (φX ∗ φY)(z) (B.101)

=

∫ +∞

−∞
φX(z − y)φY (y)dy (B.102)

= φn(z;µx + µy, σ
2
x + σ2

y) . (B.103)

Maple Proof :
> phi:=(x,m,s)->exp(-(x-m)^2/(2*s^2))/sqrt(2*pi*s^2);

φ := (x,m, s) → e(−1/2 (x−m)2

s2)

√
2 π s2

> interface(showassumed=0); assume(sx>0); assume(sy>0);

> phi Z:=simplify(int(phi(z-y,mx,sx)*phi(y,my,sy),

“bk0allfinal”
2007/1/7
page B34

i

i

i

i

i

i

i

i

B34 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

> y=-infinity..infinity));

phi Z :=
1

2

e

„
− (z−mx−my)2

2 (sy2+sx2)

«
√

2
√
π

π
√

sy2 + sx2

For more general results see the Exercises (16, 17, 18).

B.5 Characteristic Functions

Often it convenient to transform distributions or densities so that moments can be
generated more systematically leading to a class of generating functions. Here, the
emphasis will be on one class that is more useful for both positive and negative
random variables, called characteristic functions.

Definition B.48. The characteristic function of a random variable X is defined
in general as

CX(u) ≡ E
[
eiuX

]
, (B.104)

where i =
√
−1 is the imaginary unit constant, u is the characteristic function

argument, assumed real here, the complex exponential is

eiux = cos(ux) + i sin(ux)

by Euler’s formula with complex conjugate z∗ = (x+ iy)∗ ≡ x− iy so

(exp(iux))∗ = exp(−iux)

and modulus (absolute value) |z| ≡
√

(x2 + y2) so

∣∣eiux
∣∣ =

√
cos2(ux) + sin2(ux) = 1

according to Pythagorus’ theorem (summarizing almost all of the complex algebra
that will be needed here). Only three main forms for CX(u) are listed here:

• if X is a continuous random variable with proper probability distribution func-
tion ΦX(x) then

CX(u) =

∫ ∞

−∞
eiuxdΦX(x), (B.105)

which is called a Fourier-Stieltjes transform;

• if X is a continuous random variable and there exists a density corresponding
to ΦX(x), then

CX(u) =

∫ ∞

−∞
eiuxφX(x)dx, (B.106)

which is just an ordinary Fourier transform;

“bk0allfinal”
2007/1/7
page B35

i

i

i

i

i

i

i

i

B.5. Characteristic Functions B35

• if X is a discrete random variables with distribution function πk = Prob[X =
xk] for all non-negative integers k, then

CX(u) =

∞∑

k=0

πke
iuxk , (B.107)

which is called a Fourier exponential series.

Properties B.49. Characteristic Functions:

• Moment Properties:

◦ CX(0) = 1 by conservation of probability;

◦ C′
X(0) = EX [X] by differentiation of integrand;

◦ By induction for k = 0, 1, 2, · · · ,

dkCX

duk
(0) = ikEX

[
Xk
]
.

• Relationship to Standard Generating Function:

GX(z) ≡ E
[
zX
]
, (B.108)

so letting zx = eiux, then z = eiu, u = −i ln(z), GX(z) = CX(−i ln(z)) and
CX(u) = GX(eiu).

• Complex Properties: By Euler’s formula, the resolution into real and imag-
inary parts:

CX(u) = CX(u) + iSX(u),

where the real part is the cosine transform

CX(u) =

∫ ∞

−∞
cos(ux)φX(x)dx

and the imaginary part is the sine transform

SX(u) =

∫ ∞

−∞
sin(ux)φX(x)dx,

so the complex conjugate is

C∗
X(u) = CX(u) − iSX(u).

• Reality and Symmetric Densities: The characteristic function CX(u) is
real if and only if the corresponding probability density is symmetric, i.e.
φX(−x) = φX(x). Note that CX(u) is real if the imaginary part SX(u) is zero

“bk0allfinal”
2007/1/7
page B36

i

i

i

i

i

i

i

i

B36 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

and CX(−u) = C∗
X(u) = CX(u) − iSX(u) (exp(−iux) = cos(ux) − i sin(ux)),

so

iSX(u) = 0.5(CX(u) − CX(−u)) = 0.5

∫ ∞

−∞

(
eiux − e−iux

)
φX(x)dx

= 0.5

∫ ∞

−∞
eiux (φX(x) − φX(−x)) dx,

then φX(x) symmetric implies SX(u) = 0 and SX(u) = 0 implies φX(x)
symmetric.

• Upper Bound: |CX(u)| ≤ 1, since by Euler’s formula and trigonometric
identities

|CX(u)|2 =

(∫ ∞

−∞
cos(ux)φX(x)dx

)2

+

(∫ ∞

−∞
sin(ux)φX(x)dx

)2

=

∫ ∞

−∞

∫ ∞

−∞
(cos(ux) cos(uy) + sin(ux) sin(uy))φX(x)φX(y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
cos(u(x− y))φX(x)φX (y)dxdy

≤
∫ ∞

−∞

∫ ∞

−∞
φX(x)φX(y)dxdy = 1.

• Sums of Random Variables and Convolutions: Let {Xk; k = 1 : N}
be a set of independent random variables, then CX1+X2(u) = CX1(u) · CX1(u)
since by the convolution property (B.98)

CX1+X2(u) =

∫ ∞

−∞
eiuxφX1+X2(x)dx =

∫ ∞

−∞
eiux (φX1 ∗ φX2) (x)dx

=

∫ ∞

−∞
eiux

∫ ∞

−∞
φX2 (x− y)φX1(y)dydx

=

∫ ∞

−∞
eiuyφX1 (y)

∫ ∞

−∞
eiu(x−y)φX2(x− y)dxdy

= CX1(u) · CX1(u),

assuming integral interchange is permitted. Further, for a set of of N inde-
pendent random variables,

CP
N
k=1 Xk

(u) =

N∏

k=1

CXk
(u).

• Uniqueness: The characteristic function CX(u) is uniquely related to its
corresponding distribution ΦX(x) and vice versa (see Feller [84] for justifica-
tion and more information on characteristic and other generating functions,
as well as the inverse Fourier transform that is beyond the simple complex
variables that is assumed here).

“bk0allfinal”
2007/1/7
page B37

i

i

i

i

i

i

i

i

B.6. Sample Mean and Variance: Sums of IID Random Variables B37

Examples B.50. Characteristic Functions for Common Distributions:

• Normal Distribution:

Cn(u;µ, σ2) =

∫ ∞

−∞
eiuxφn(x;µ, σ2)dx = e−0.5σ2u2+iµu.

• Exponential Distribution (µ > 0):

Ce(u;µ) =

∫ ∞

0

eiuxφe(x;µ)dx =
1

1 − iµu
=

1 + iµu

1 + µ2u2
.

• Uniform Distribution (a < b):

Cu(u; a, b) =
1

b− a

∫ b

a

eiuxdx =
eiub − eiua

i(b− a)u
.

• Double Exponential (Laplace) Distribution (µ > 0):

Cde(u; a, µ) =
1

2µ

∫ ∞

0

eiuxe−|x−a|/µdx =
eiau

1 + µ2u2
.

• Poisson Distribution (Λ > 0, xk = k):

Cp(u; Λ) =
∞∑

k=0

eiukpk(Λ) =
∞∑

k=0

eiuke−Λ Λk

k!
= e−Λ

∞∑

k=0

(
eiuΛ

)k

k!
= eΛ(eiu−1).

Characteristic functions are also used to define Lévy processes, which are ba-
sically a generalization of jump-diffusion processes to include processes with infinite
jump rates. Thus, characteristic functions are essential for including such singular
behavior. For references on Lévy processes see the cited sources on Lévy processes
or jump-diffusion references that emphasize Lévy processes [12, 59, 223].

Another application is to financial option pricing for jump-diffusions with
stochastic volatility (i.e., stochastic variance) where the characteristic function for-
mulation and its inverse Fourier transform offer certain advantages for computation
(see Carr et al. [47] or Yan and Hanson [287]).

B.6 Sample Mean and Variance: Sums of IID
Random Variables

Just as there is no such thing as a truly random variable in practice, although
the theory of random variables is very useful, there is no such thing as a continu-
ously sampled random variable in practice. Typically, we sample discretely from a
theoretical continuous distribution and assume that the samples are independently
sampled.

“bk0allfinal”
2007/1/7
page B38

i

i

i

i

i

i

i

i

B38 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

Definition B.51. Independent, Identically Distributed Random Variables
(I.I.D. or IID):

A set of n random variables {Xk|k = 1 : n} is independent, identically
distributed (I.I.D. or IID) if the Xk have the same distribution, i.e.,

ΦXk
(x) = ΦXj

(x) ,

for all k, j = 1 : n and Xk is independent of Xj when k 6= j, i.e.,

Cov[Xk, Xj] = Var[Xj]δk,j .

Definition B.52. Sample Mean and Variance:
Let {Xk|k = 1 : n} be a sample of n random variables, then the sample mean is
defined as

mn =
1

n

n∑

k=1

Xk , (B.109)

and the sample variance or population variance is

s2n =
1

n

n∑

k=1

(Xk −mn)2 , (B.110)

but the unbiased estimate of the sample variance is

ŝ2n =
1

n− 1

n∑

k=1

(Xk −mn)2 . (B.111)

An estimate Ŷ of a quantity y is called an unbiased estimate if

E
[
Ŷ
]

= y.

Theorem B.53. IID Sample Mean and Variance:
Let {Xk|k = 1 : n} be a set of IID random variables, such that E[Xk] = µ and
Var[Xk] = σ2 for all k, then

E[mn] = µ , (B.112)

E[s2n] = σ2 , (B.113)

E[ŝ2n] =
n

n− 1
σ2 , (B.114)

Var[mn] =
1

n
σ2 . (B.115)

Remarks B.54.

“bk0allfinal”
2007/1/7
page B39

i

i

i

i

i

i

i

i

B.7. Law of Large Numbers B39

• These sample moments and more are left as Exercises (13, 15, 14). The
first is trivial, but the other two rely heavily on the independence property so
it is very helpful to collect all terms as deviations from the mean forms like
(Xk − µ). Also, split up multiple sums into a single sum for equal indices
(say j = k) and the product of an outer sum by an inner sum when the inner
index in not equal to the outer index (say j 6= k) . Note that for large n, the
difference between the regular and unbiased estimates of the variance will be
small.

• Since mn is a sum of random variables, then its distribution will be a nested
convolution of the common distribution of the Xk variates. Convolutions are
defined earlier in (B.96) of Section B.4.

• Later, the relevant limit theorems will be discussed. The Law of Large Numbers
(B.116) says that the sample mean will approach the distribution mean and the
Central Limit Theorem B.57, discussed later, says that the sample distribution
will approach the normal limiting distribution for large sample sizes.

• For properties of powers of partial sums of zero-mean IID random variables
see Lemma 5.15 on page 149.

B.7 Law of Large Numbers

When applying probability to real applications, the user may need to compare the
statistical properties of the practical sample with the ideal concepts of probability
theory. For instance, when comparing the sample mean to an ideal distribution
mean, some justification comes partly from the law of large numbers, a weak and
a strong form are given here suitable for this appendix of preliminaries (see also
Feller [83]or Karlin and Taylor [161]) .

B.7.1 Weak Law of Large Numbers (WLLN)

Theorem B.55. Law of Large Numbers (weak form):
Let {X1, X2, . . . Xi, . . . } be a sequence of independent identically distributed random
variables (i.e., I.I.D. R.V.s or mutually independent random variables with common
distribution Φ(x)) with common mean µ = E[Xi] for all i. Let Sn =

∑n
i=1Xi be a

sequence of partial sums such that Sn is the sum of n of these sample measurements,
so that the sample mean is mn = Sn/n. Then for every ǫ > 0.

Prob[|mn − µ| > ǫ] −→ 0 as n→ +∞ . (B.116)

Thus, if the sample size is large enough, the sample mean will approximate
the distribution mean.

“bk0allfinal”
2007/1/7
page B40

i

i

i

i

i

i

i

i

B40 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

B.7.2 Strong Law of Large Numbers (SLLN)

Theorem B.56. Law of Large Numbers (strong form):
Let {X1, X2, . . .Xi, . . . } be a sequence of independent identically distributed random
variables (i.e., I.I.D. R.V.s or mutually independent random variables with common
distribution Φ(x)) with common mean µ = E[Xi] for all i. Let Sn =

∑n
i=1Xi be a

sequence of partial sums such that Sn is the sum of n of these sample measurements,
so that the sample mean is mn = Sn/n. Then

Prob[limn→∞mn = µ] = 1 ,

i.e., mn → µ with probability one as n→ +∞ .
(B.117)

B.8 Central Limit Theorem

The central limit theorem is much more powerful than the law of large numbers.
Again, a simple form is given for I.I.D. R.V.s [83].

Theorem B.57. Central Limit Theorem:
Let {X1, X2, . . .Xi, · · · } be a sequence of independent identically distributed ran-

dom variables (i.e., I.I.D. R.V.s or mutually independent random variables with
common distribution Φ(x)) with common mean µ = E[Xi] and variance σ2 =
Var[Xi] for all i. Let Sn =

∑n
i=1Xi be the sum of n of these sample measure-

ments, so that the sample mean is mn = Sn/n. Then for every fixed ξ,

Prob

[
mn − µ

σ/
√
n

≤ ξ

]
−→ Φn(ξ; 0, 1) , (B.118)

as n→ +∞, where Φn(ξ; 0, 1) is the standard normal distribution defined in (B.1.4),
when µ = 0 and σ2 = 1.

Thus, if the sample size is large enough, the deviation of the sample mean from
the distribution mean, scaled by σ/

√
n, will be asymptotically normally distributed

with mean 0 and variance 1.
For stronger versions of the central limit theorem see the many probability

references listed at the end of this appendix.

B.9 Matrix Algebra and Analysis

Many important distributions, stochastic processes and control problems are mul-
tivariate, rather than scalar. Here matrix algebra and matrix analysis are summa-
rized. Many of the given properties can be computed symbolically using Maple and
Mathematica, or numerically using MATLAB.

• Vector Notation: x = [xi]n×1, in boldface, denotes an n-vector, where the
number xi is the ith component. Let y = [yi]n×1 be another n-vector. In this
book vectors are column vectors, unless transposed. Numbers are also called
scalars here.

“bk0allfinal”
2007/1/7
page B41

i

i

i

i

i

i

i

i

B.9. Matrix Algebra and Analysis B41

• Matrix or Array Notation: A = [ai,j]n×n denotes an n× n square matrix
(literally a table) or array, where the number ai,j is an element of the ith row
and jth column. Sometimes we say that A is an order n matrix. Nonsquare
matrices would be Q = [qi,j]m×n or R = [ri,j]n×p. Matrix elements may also
be functions.

• Matrix equality: B = Ameans that all matrix elements are equal, bi,j = ai,j

for i = 1 : n and j = 1 : n. The negation of the equality only requires one
pair of unequal elements, bk,ℓ 6= ak,ℓ for some (k, ℓ).

• Matrix Identity:

In ≡ [δi,j]n×n , (B.119)

where δi,j is the Kronecker defined in (B.54) and has the sum property that∑n
j=1 ajδi,j = ai provided i is in the range of j, j = 1 : n.

• Matrix Transpose:

Q⊤ = [qj,i]n×m , (B.120)

i.e., transposing a real matrix is switching rows and columns. If there are
complex elements, then the Hermitian transpose is used, QH = [q∗j,i]n×m

where if z = x + îy is a complex number then the complex conjugate is
z∗ = x− îy and î =

√
−1 is the imaginary unit such that î2 = −1. Although

this book is exclusively about real problems, there are important methods and
even real problems that introduce complex numbers into the analysis.

• Inner or Dot or Scalar Product of two Vectors:

x⊤y = x•y = x⊤y ≡
n∑

i=1

xiyi , (B.121)

provided y is also an n-vector. If there are complex vector elements or com-
ponents, then the Hermitian inner product is used,

xHy ≡
n∑

i=1

x∗i yi.

• Matrix Trace:

Trace[A] ≡
n∑

i=1

ai,i. (B.122)

• Matrix-Vector Product:

Qx ≡

∑

j=1

qi,jxj

m×1

, (B.123)

i.e., the ith component is (Qx)i =
∑

j=1 qi,jxj .

“bk0allfinal”
2007/1/7
page B42

i

i

i

i

i

i

i

i

B42 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

• Matrix-Matrix Product:

QR ≡
[
∑

k=1

qi,krk,j

]

m×p

, (B.124)

so for two matrices to be commensurate or consistent in multiplication the
number of columns of the pre-multiplier Q must be the same as the number
of rows of the post-multiplier R.

• Transpose of a Matrix Product: (QR)⊤ = R⊤Q⊤.

• Matrix Inverse: For square matrices A, the inverse A−1 has the property

A−1A = In = AA−1 (B.125)

whenever A−1 exists and this property provides a set of algebraic equation
for determining the elements of the inverse. See the MATLAB, Maple and
Mathematica packages.

• Vector Norm:

||x||p ≡
(

n∑

i=1

|xi|p
)1/p

(B.126)

is the pth norm with the properties that

1. ||x||p ≥ 0;

2. ||x||p = 0 if and only if x = 0;

3. ||sx||p = |s|||x||p if s is a scalar;

4. ||x + y||p ≤ ||x||p + ||y||p, called the triangular inequality;

5. ||x⊤y||p ≤ ||x||p||y||p, called the Cauchy inequality.

Common norms are the

1. 1-norm, ||x||1 =
∑n

i=1 |xi|;
2. infinity-norm, ||x||∞ = maxi=1:n[|xi|];
3. 2-norm, ||x||2 =

√∑n
i=1 x

2
i =

√
x⊤x if x real, but ||x||2 =

√
xHx if

complex.

• Matrix Norm: Matrix norms are defined on the more basic vector norms,

||A||p ≡ max
||x||p 6=0

[||Ax||p/‖|x||p] = max
||u||p 6=1

[||Au||p] , (B.127)

and they satisfy properties analogous to the vector norm properties above.
Usual values are p = 1, 2, or ∞.

“bk0allfinal”
2007/1/7
page B43

i

i

i

i

i

i

i

i

B.9. Matrix Algebra and Analysis B43

• Matrix Condition Number:

cond p[A] ≡ ||A||p||A−1||p (B.128)

is the pth condition number, bounded below by cond p[A] ≥ 1 and is scale-
invariant since cond p[sA] = |s| cond p[A] if s is a non-zero scalar. Implicit
in the definition is that the inverse A−1 exists.

• Matrix Determinants: If A is a square matrix, then the determinant Det[A]
has a scalar value that can be computed by recursion from smaller determi-
nants, expanding by either a row or a column. For instance,

1. If n = 1, then Det[a1,1] = a1,1.

2. If n = 2, then

Det

[
a1,1 a1,2

a2,1 a2,2

]
= a1,1Det[a2,2] − a1,2Det[a2,1].

3. If n = 3, then

Det

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 = a1,1Det

[
a2,2 a2,3

a3,2 a3,3

]

−a1,2Det

[
a2,1 a2,3

a3,1 a3,3

]

+a1,3Det

[
a2,1 a2,2

a3,1 a3,2

]
.

4. And so forth.

Some useful properties are Det[A⊤] = Det[A] since row and column expansions
give the same result; the Cauchy-Binet formula that

Det[AB] = Det[A]Det[B] (B.129)

provided A and B are commensurate; Det[In] = 1; a corollary is Det[A−1] =
1/Det[A] if A−1A = In.

• Systems of Linear Equations:

Ax = b (B.130)

where the coefficient matrix A and b = [bi]n×1 are given, and the object is to
find the vector x.

1. In theory, a unique solution exists if Det[A] 6= 0, else if Det[A] = 0 then
A is called singular.

“bk0allfinal”
2007/1/7
page B44

i

i

i

i

i

i

i

i

B44 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

2. In numerical practice, a nearly singular A usually has serious problems
and the condition number cond [A] due to its scale-invariance is a bet-
ter measure of difficulties. If cond [A] is of moderate size (not much
bigger than O(1) say) then the problem is called well-conditioned, but
if cond [A] is very large than the problem is called ill-conditioned. In
Gaussian elimination with back substitution, row pivoting with row scal-
ing or full pivoting can reduce the conditioning problems and produce
more reliable approximate solutions. The MATLAB, Maple and Mathe-
matica systems provide either numerical or symbolic functions to solve
Ax = b.

• Matrix Eigenvalue Problems:

Ax = λx (B.131)

is the eigenvalue problem statement, where the object is to find a set of char-
acteristic values or eigenvalues λk and associated eigenvectors xk that char-
acterize the matrix A.

1. Since the algebraic problem (A−λkIn)xk = 0 is equivalent to the original
(B.131),

Det[A− λIn] = 0

is called the characteristic or eigen equation.

2. (A− λkIn) is a nth polynomial in λk,

Pn(λ) =

n∑

i=0

ciλ
i ,

where c0 = Det[A], c1 = −Trace[A] · · · , cn = (−1)n.

3. The characteristic equation is the condition for finding a non-trivial
eigenvalue, xk[xi,k]n×1 6= 0.

4. Solving Det[A− λIn] = 0 yields n eigenvalues [λi]n×1.

5. The eigenvectors can be found from a subset of the original problem, but
are not unique.

6. If xk is an eigenvector, then so is y = s ∗ x, where s is an arbitrary,
nonzero scalar.

7. A unit or normalized eigenvector is of the form ||uk||p = 1.

8. IfA is real and symmetric, then the eigenvectors are orthogonal, x⊤
j xk =

||xk||22δj,k or orthonormal if ||xk||2 = 1 in addition.

9. If A is not real and non-symmetric, then the left or adjoint eigen problem

yH
j A = µ∗

jy
H
j or AHyj = µjyj

would be needed for orthogonality conditions since 0 = (λk − µ∗
j)y

H
j xk,

so if µ∗
j 6= λk then yH

j xk = 0.

“bk0allfinal”
2007/1/7
page B45

i

i

i

i

i

i

i

i

B.9. Matrix Algebra and Analysis B45

• Gradient of a Scalar Valued Function of a Vector Argument:

∇x[F](x) =
∂F

∂x
(x) = Fx(x) ≡

[
∂F

∂xi
(x)

]

n×1

, (B.132)

so the gradient is a column vector with the same shape as x here. In some
texts [44], the gradient may be a row vector, so matrix-vector products will
be different there.

• Gradient of a Matrix-Vector Product Transpose:

∇x

[
(Ax)⊤

]
=

[
∂

∂xi

n∑

k=1

aj,kxk

]

n×n

=

[
n∑

k=1

aj,kδi,k

]

n×n

= [aj,i]n×n = A⊤ , (B.133)

so the gradient just peels off the pre-multiplied x⊤, since (Ax)⊤ = x⊤A⊤ (i.e.,
the gradient peel theorem).

• Quadratic Forms:

Q = x⊤Ax
n∑

i=1

n∑

j=1

xiai,jxj (B.134)

which is a scalar, and since Q is a scalar and the transpose has no effect on
scalars then

Q = Q⊤ = x⊤A⊤x =
1

2

(
Q + Q⊤) = x⊤ASx , (B.135)

where AS ≡ 1
2 (A+A⊤) is the symmetric part of A. Thus, for quadratic forms,

the user might as well assume A to be symmetric or that A⊤ = A.

• Positive Definite Matrices: The matrix A is positive definite if for every
nonzero vector x (x 6= 0) the quadratic form

x⊤Ax > 0 , (B.136)

sometimes abbreviated as A > 0. Similarly, A is positive semi-definite if,
for all x 6= 0,

x⊤Ax ≥ 0 , (B.137)

or if so then we say A ≥ 0. Further, A is positive definite if and only if all its
eigen values are positive [67], so then A is invertible, i.e., A−1 exists.

• Gradient of a Quadratic Form:

∇x

[
x⊤Ax

]
= 2Ax , (B.138)

assuming A is symmetric, by two applications of the peel theorem, one on the
left and another on the right by transposing first.

“bk0allfinal”
2007/1/7
page B46

i

i

i

i

i

i

i

i

B46 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

• Hessian Matrix of a Scalar Valued Function:

∇x

[
∇⊤

x [F]
]
(x) =

[
∂2F

∂xi∂xj
(x)

]

n×n

, (B.139)

so the matrix of second derivatives is a square n× n matrix.

• Hessian Matrix of a Quadratic Form:

∇x

[
∇⊤

x [x⊤Ax]
]

= ∇x

[
2(Ax)⊤

]
= 2∇x

[
x⊤A

]
= 2A (B.140)

by the peel theorem, assuming that A is symmetric.

B.10 Some Multivariate Distributions

The probability distributions, such as normal, exponential, and Poisson, previously
considered have been functions of a single real sample variable representing a single
random variate. However, some applications require multidimensional distributions
representing jointly distributed multivariate random variables. The continuous mul-
tivariate normal (multinormal) distribution and the discrete multinomial distribu-
tion will serve as examples.

B.10.1 Multivariate Normal Distribution

Definition B.58. The multivariate normal distribution for the real m-dimensional
vector random variate X = [Xi]m×1 ∈ R

m is defined by the density in matrix-vector
notation as

φn(x; µ,Σ) ≡ 1

(2π)m/2
√

Det[Σ]
exp

(
−0.5(x− µ)T Σ−1(x − µ)

)
, (B.141)

where µ = [µi]m×1 = E[X] is the vector mean,

Σ = [σi,j]m×m = E
[
[(Xi − µi)(Xj − µj)]m×m

]

is the positive definite variance-covariance matrix, i.e., σi,i ≡ σ2
i = Var[Xi] for

i = 1 : m, while σi,j ≡ Cov[Xi, Xj] if j 6= i for i, j = 1 : m, and Det[Σ] is the
determinant of Σ. The correlation coefficient is the normalized covariance,

ρi,j ≡ Cov[Xi, Xj]√
Var[Xi]Var[Xj]

=
σi,j

σiσj
, (B.142)

provided σi, σj 6= 0 and i, j 6= 0.
Total probability is conserved since

∫

Rm

φn(x; µ,Σ)dx = 1.

“bk0allfinal”
2007/1/7
page B47

i

i

i

i

i

i

i

i

B.10. Some Multivariate Distributions B47

Theorem B.59. Correlation coefficient bounds:
Let X1 and X2 be two random variables, then

|ρ(X1, X2)| ≤ 1, (B.143)

provided σ1 > 0 and σ2 > 0, but if ρ(X1, X2) = ±1, then

X2/σ2 = ±X1/σ1 + C (B.144)

for some constant C.

Proof. The proof is modeled after Feller’s proof [83, p. 236]. Let ρ = ρ(X1, X2)
and using (B.74)

Var[X1/σ1 ±X2/σ2] = Var[X1/σ1] ± 2Cov[X1/σ1, X2/σ2] + Var[X2/σ2]

= 2(1 ± ρ) ≥ 0,

since Var[X] ≥ 0, so |ρ| ≤ 1.
If ρ = 1, then let ±1 = −1 and thus X1/σ1 − X2/σ2 = C1 where C1 is a

constant, but if ρ = −1, then let ±1 = +1 and thus X1/σ1 +X2/σ2 = C2 where C2

is a constant. Combining these two cases leads to the form (B.144).

Example B.60. In the two-dimensional case, the bivariate normal distribu-
tion, with σi > 0 for i = 1 : 2, let σ1,2 = ρσ1σ2 where ρ = ρ1,2 is the correlation
coefficient between state 1 and state 2 such that −1 < ρ < +1 to keep the density
well defined. Thus,

Σ =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
, (B.145a)

Σ−1 =
1

1 − ρ2

[
1/σ2

1 −ρ/(σ1σ2)
−ρ/(σ1σ2) 1/σ2

2

]
. (B.145b)

The Σ−1 follows upon calculating the two-dimensional inverse of Σ, while substi-
tuting for Σ−1 and Det[Σ] = (1 − ρ2)σ2

1σ
2
2 yields the more explicit density form:

φn

([
x1

x2

]
; µ,Σ

)
=

1

2πσ1σ2

√
1 − ρ2

exp

(
− 0.5

1 − ρ2

[(
x1 − µ1

σ1

)2

−2ρ(x1 − µ1)(x2 − µ2)

σ1σ2
+

(
x2 − µ2

σ2

)2
])

. (B.146)

Some of the first few moments are tabulated (results from the MapleTM symbolic
computation system) in Table B.1:

Remark B.61. The bivariate normal density becomes singular when σ1 → 0+ or
σ2 → 0+ or ρ2 → 1− and the density becomes degenerate. If ρ > 0, then X1 and

“bk0allfinal”
2007/1/7
page B48

i

i

i

i

i

i

i

i

B48 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

Table B.1. Some expected moments of bivariate normal distribution.

Some Binormal Expectations

E[1] = 1
E[xi] = µi, i = 1 : 2

Var[xi] = σ2
i , i = 1 : 2

Cov[x1, x2] = ρσ1σ2

E[(xi − µi)
3] = 0, i = 1 : 2

E[(xi − µi)
4] = 3σ4

i , i = 1 : 2
E[(x1 − µ1)

2(x2 − µ2)
2] = (1 + 2ρ2)σ2

1σ
2
2

X2 are positively correlated, while if ρ < 0, then X1 and X2 are negatively
correlated.

B.10.2 Multinomial Distribution

The multinomial distribution may be useful for studying discrete collections of sam-
ples from continuous distributions such as the bin frequencies of histograms and
many other applications [83, 128].

Definition B.62. Using m bins where πk (0 < πk < 1) is the theoretical probability
associated with the kth bin as well as a parameter of the distribution for k = 1 : m
bins such that

m∑

k=1

πk = 1 (B.147)

and fk is the observed frequency (integer outcome count, fk ≥ 0) for the kth bin for
a sample of N observations such that

m∑

k=1

fk = N , (B.148)

the multinomial distribution is given by the joint probability mass function

p(f ; π) = Prob
[
F = f

∣∣1T π = 1,1T f = N
]

= N !

m∏

k=1

πfk

k

fk!
, (B.149)

where f = [fi]m×1 is the frequency value vector, F = [Fi]m×1 is the random fre-
quency vector, and 1 = [1]m×1 is the ones or summing vector.

Example B.63. When m = 2, the multinomial distribution is called the binomial
distribution and has probability function

p(f1, f2;π1, π2) =
N !πf1

1 π
f2

2

f1!f2!
=

(
N
f1

)
πf1

1 (1 − π1)
N−f1 , (B.150)

“bk0allfinal”
2007/1/7
page B49

i

i

i

i

i

i

i

i

B.10. Some Multivariate Distributions B49

where the binomial coefficient
(
n
k

)
≡ n!

k!(n− k)!
(B.151)

with the constraints f2 = N − f1 and π2 = 1 − π1 used on the far right hand
side. The binomial distribution is applicable to trials with just two outcomes, called
Bernoulli trials (Feller [83]). Often these two outcomes or bins are identified
as either a success, with probability π1, or failure, for example, with probability
π2 = 1 − π1. Feller [83] calls the binomial distribution, the normal distribution
and the Poisson distribution the three principal distributions throughout probability
theory.

The binomial theorem gives the binomial expansion,

(π1 + π2)
N =

N∑

f1=0

(
N
f1

)
πf1

1 π
N−f1

2 , (B.152)

but the coefficients are precisely the binomial probability functions

(π1 + π2)
N =

N∑

f1=0

p(f1, N − f1;π1, π2) , (B.153)

which is why the distribution in (B.150) is called the Binomial distribution for bi-
nomial frequencies f1 for f1 = 0 : N (Feller [83]).

Consequently, the binomial expectation for some function g is given by

E[g(F1)] =

N∑

f1=0

g(f1)p(f1, N − f1;π1, 1 − π1) .

Using parametric differentiation of the sums, with Fk being the kth random variable
and fk being the kth given conditioned variable, it can be shown that

• E[1] = 1 when g(fk) = 1 (actually (B.152) or (B.153) with π2 = π1),

• E[Fk] = Nπk when g(fk) = fk,

• Var[Fk] = Nπk(1 − πk) when g(fk) = (fk −Nπk)2,

• Cov[F1, F2] = −Nπ1π2 = −Nπk(1 − πk) = −Var[F1] when g(f1) = (f1 −
Nπ1)((N − f1) −N(1 − π1)) = −N(f1 −Nπ1)

2.

As an illustration of an application of parametric differentiation to sum a
finite number of terms, consider the first moment:

E[F1] =

N∑

f1=0

f1

(
N
f1

)
π
f1
1 (1 − π1)

N − f1

= π1
d

dπ1

N∑

f1=0

(
N
f1

)
π
f1
1 (π2)

N − f1

∣∣∣∣∣∣
π2=1−π1

= π1
d

dπ1

[
(π1 + π2)

N
]∣∣

π2=1−π1
= π1N

[
(π1 + π2)

N−1
]∣∣

π2=1−π1
= Nπ1 .

“bk0allfinal”
2007/1/7
page B50

i

i

i

i

i

i

i

i

B50 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

Similarly, forms with powers of {π1, d/dπ1} can be used for higher moments.
Figure B.6 illustrates the Binomial distributions as a function of the binomial

frequency f1 when the total count is N = 10 for three values of the binomial prob-
ability parameter, π1 = 0.25, 0.5 and 0.75. See Appendix C Section C.6 for the
MATLAB figure code. These binomial distributions roughly resemble a discretized

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Binomial Distributions: p

1
(f

1
) = p(f

1
,N−f

1
;π

1
,1−π

1
)

p
1(f

1)

f
1
, Binomial Frequency

π
1
 = 0.25

π
1
 = 0.50

π
1
 = 0.75

Figure B.6. Binomial distributions with respect to the binomial frequency f1

with N = 10 for values of the probability parameter, π1 = 0.25, 0.5 and 0.75. These
represent discrete distributions, but discrete values are connected by dashed, dotted and
dash-dotted lines only to help visualize the distribution form for each parameter value.

version of the normal distribution, except that they are skewed for π1 = 0.25 and
0.75 while the distribution for π1 = 0.50 the distribution is symmetric. Feller [83]
states that when Nπ1(1 − π1) is large that the binomial distribution can be approx-
imated by the normal distribution with mean Nπ1 and variance Nπ1(1 − π1), but
when N is large and π1 is the same order as 1/N then the binomial distribution
can be approximated by the Poisson distribution with Λ = Nπ1 order one. Since
the Poisson can also be approximated by the normal approximation there is some
overlap of the two approximations, but only the Poisson approximation is good when
Λ = Nπ1 is small.

The multinomial distribution has the same basic moments as the binomial,
but the constraints on the πk and fk also constrain the expectation summations.
The multinomial distribution in (B.149) is in fact the terms in the multinomial
expansion theorem,

(
m∑

k=1

πk

)N

= N !

m−1∏

i=1

(N−Fi−1)∑

fi=0

πfi

i

fi!

 π
N−Fm−1
m

(N −Fm−1)!
,

=

m−1∏

i=1

(N−Fi−1)∑

fi=0

 p(f ; π)

∣∣∣∣∣∣
fm=(N−Fm−1)

, (B.154)

which can be obtained from (m − 1) successive applications of the binomial ex-
pansion. It can be shown by induction upon replacing πm by (πm + πm+1) in the

“bk0allfinal”
2007/1/7
page B51

i

i

i

i

i

i

i

i

B.11. Basic Asymptotic Notation and Results B51

induction hypothesis above and using an additional application of the binomial ex-
pansion with the power (N − Fm−1). Here, Fk ≡ ∑k

j=1 fj is the partial sum of
the first k frequencies, such that F0 ≡ 0. For application to the multinomial dis-
tribution, the constraints lead to the elimination formula fm = N − Fm−1 for the
mth terms, so that the final fraction in (B.154) depends on the first m− 1 sample
frequencies fk. In the case of the multinomial distribution, also the mth theoretical
probability πm = 1 −∑m−1

j=1 πj can be eliminated by conservation of probability.

B.11 Basic Asymptotic Notation and Results

Definitions and Results B.64. For purposes of a refined study of limits and
asymptotic behaviors found in many stochastic problems, basic asymptotic con-
cepts can be defined as

• Equals big Oh or is the order of symbol is such that f(x) = O(g(x)) as
x → x0 if f(x)/g(x) is bounded as x → x0 provided g(x) 6= 0 in a deleted
neighborhood of x = x0.

For example: 8 sin(ǫ/7) = O(ǫ) as ǫ→ 0 or (2N2+3N+100)/(3N+5) = O(N)
as N → ∞ or exp(−0.5∆t) = 1 − 0.5∆t + O((∆t)2) as ∆t → 0. Also,
O(100∆t) = O(∆t) as ∆t → 0, since constants need not be considered. As
alternate notation, O((∆t)2) = O2(∆t) as ∆t→ 0.

• Equals little oh or is smaller order than is such that f(x) = o(g(x))
as x → x0 if f(x)/g(x) → 0 as x → x0 provided g(x) 6= 0 in a deleted
neighborhood of x = x0. Also the notation f(x) ≪ g(x) is equivalent to
f(x) = o(g(x)).

For example: exp(−0.5∆t) = 1−0.5∆t+o(∆t) as ∆t→ 0 or
∫ t+∆t

t f(τ)dτ =
f(t)∆t+o(∆t) as ∆t → 0 provided f(t) is continuous. Note O(∆t)+o(∆t) =
O(∆t) as ∆t→ 0.

• Equals ord or is the same order as is such that f(x) = ord(g(x)) as
x → x0 if f(x) = O(g(x)) but that f(x) 6= o(g(x)). The relation f(x) ≤
ord(g(x)) is equivalent to f(x) = O(g(x)) and f(x) < ord(g(x)) is equivalent
to f(x) = o(g(x)).

For example: (∆t)2 < ord(∆t) as ∆t → 0 but ∆t > ord((∆t)2) as ∆t → 0.

• The symbol ∼ or is asymptotic to is such that f(x) ∼ g(x) as x → x0

if f(x)/g(x) → 1 as x → x0 provided g(x) 6= 0 in a deleted neighborhood of
x = x0.

For example: (1 − exp(−0.425∆t))/∆t ∼ 0.425 as ∆t→ 0.

Remark B.65. The symbol ∼ is commutative since if f(ǫ) ∼ g(ǫ) then
g(ǫ) ∼ f(ǫ) as ǫ → 0 provided both f(ǫ) and g(ǫ) are not equal to zero in a

“bk0allfinal”
2007/1/7
page B52

i

i

i

i

i

i

i

i

B52 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

neighborhood of ǫ = 0. Also, one should never say that f(ǫ) ∼ 0 (?) since
according to our definition that would be dividing by zero.

• A sequence {φn(x)} for n = 0 : ∞ is an asymptotic sequence if φn+1(x) <
ord(φn(x)) as x→ x0.

For example: φn(x) = (x− x0)
n as x→ x0 or φn(∆t) = (∆t)n/2 as ∆t→ 0+

for n = 0 : ∞.

• An expansion
∑∞

n=0 anφn(x), where an are coefficients constant in x and
φn(x) are elements of an asymptotic sequence, is an asymptotic expansion
which is asymptotic to a function f(x) if

f(x) −
N∑

n=0

anφn(x) < ord(φN (x))

as x→ x0 for all N , and if so then

f(x) ∼
∞∑

n=0

anφn(x)

as x→ x0. As a corollary, the inductive algorithm for the coefficients follows
starting with a0 = limx→x0 f(x)/φ0(x) and

aN+1 = lim
x→x0

f(x) −∑N
n=0 anφn(x)

φN+1(x)

for N = 0 : +∞, assuming that all limits exist.

For example, most convergent Taylor series, when considered under limiting
conditions, are asymptotic expansions, or asymptotic power series in particu-
lar:

f(x) ∼
∞∑

n=0

f (n)(x0)(x− x0)
n/n!

as x→ x0, but some asymptotic expansions can be divergent and still be useful
if a finite number of terms are used, such as the expansion of the famous
Stieltjes integral divergent asymptotic expansion example [28]

∫ ∞

0

e−tdt

(1 + xt)
∼

∞∑

n=0

(−1)nn!xn

as x→ 0, which clearly diverges. For asymptotic applications, we are usually
only interested in a few terms, whether the expansion is convergent or di-
vergent, so the first few terms of a divergent expansion can be useful. Limits
play a different role in asymptotic expansions then they do for Taylor series, in
that limits of the independent variable (here, x) are used in asymptotics, while
limits of the index (here, n) are used to test the convergence or divergence of
Taylor series for a fixed value of the independent variable.

“bk0allfinal”
2007/1/7
page B53

i

i

i

i

i

i

i

i

B.12. Generalized Functions: Combined Continuous and Discrete B53

• For integrals dominated by an exponential whose exponent, say φ(x)/ǫ, has a
maximum at x∗ within the interior of the range of integration (a, b) such that
φ′(x∗) = 0 and φ′′(x∗) < 0, i.e., φ(x) ∼ φ(x∗) + 0.5φ′′(x∗)(x − x∗)2, while
f(x) ∼ f(x∗) is continuous and subdominant, as x → x∗ and 0 < ǫ << 1,
Laplace’s method for asymptotic evaluation of integrals [28] leads to
the asymptotic approximation,

∫ b

a

eφ(x)/ǫf(x)dx ∼
√

2πǫ

−φ′′(x∗)e
φ(x∗)/ǫf(x∗), (B.155)

as ǫ→ 0+. If x∗ = a or x∗ = b, i.e., an end point maximum, then the integral
is asymptotic to one half the above approximation.

For example, the general factorial function or gamma function [2] for
real x with x > −1,

x! = Γ(x+ 1) =

∫ ∞

0

e−ttxdt = xx+1

∫ ∞

0

ex(−y+ln(y))dy

∼
√

2πxe−xxx (B.156)

as x → ∞, after transforming the original integral to the Laplace form us-
ing t = xy with φ(y) = −y + ln(y) and ǫ = 1/x, since the fast exponen-
tially decaying coefficient function exp(−t) does not satisfy the subdominant
requirement for Laplace’s method. (Often, some transformation is necessary
to fit a method.) The result is a correction to Stirling’s (asymptotic) formula
ln(x!) ∼ x ln(x), which is only the leading term of the exponent expansion of
x! as x → ∞. Some authors refer to the leading term (B.156) of the full
integral as Stirling’s formula, e.g., Feller ([83]).

Remark B.66. Laplace and Probability:
Since Laplace was associated with the early foundational work in the analytical
theory of probability in his treatise Théorie Analytique des Probabilités, it is
likely that Laplace’s method was developed for probability integrals, in partic-
ular normal probability integrals, which were not restricted to infinite or zero
limits of integration and the integrals can be found exactly.

B.12 Generalized Functions: Combined Continuous
and Discrete Processes

In stochastic problems, especially in extreme limits and distributions, representa-
tions beyond ordinary functions, such as generalized functions, are useful for the
complete description of stochastic problems, such as combined continuous and dis-
crete processes. While there are alternative abstract representations, generalized
functions are very helpful in motivating stochastic models and solutions to associ-
ated stochastic problems as they are in the study of differential equations. Many

“bk0allfinal”
2007/1/7
page B54

i

i

i

i

i

i

i

i

B54 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

generalized functions are only defined under integration, but can be constructed as
the limit of a sequence of ordinary functions.

Definitions B.67.

• The Heaviside step function, H(x), is a generalized function with the prop-
erty that

∫ +∞

−∞
f(x)H(x− x0)dx =

∫ +∞

x0

f(x)dx (B.157)

for some integrable function f(x) on (−∞,+∞).

• Heaviside Step Function:
One pointwise definition of the Heaviside step function is

H(x) =

{
0, x < 0
1, x ≥ 0

}
, (B.158)

which is right-continuous, but another version takes the average value at zero
so that it has better numerical properties,

Ha(x) =

0, x < 0
1/2, x = 0
1, x > 0

 , (B.159)

although the Heaviside function is often left undefined at x = 0 since a single
isolated point does not contribute to an ordinary or Riemann integral. For gen-
eralized functions, the averaged one, Ha(x) is better for underlying numerical
approximations.

• For intervals on the real line, the right-continuous Heaviside step function is
related to the indicator function for some set A,

1x∈A ≡
{

1, x ∈ A
0, x /∈ A

}
, (B.160)

so that
1x∈(0,+∞) = H(x),

using the above Heaviside step function definition.

For example, the probability distribution can be written

ΦX(ξ) = EX [H(ξ −X)] = EX [1X∈(−∞,ξ]], (B.161)

provided the density is sufficiently continuous. Note that 1(y−x)∈[a,b) = 1x∈(y−b,y−a],
by definition, is a technique which becomes more useful in calculating multivariate
probability distributions.

“bk0allfinal”
2007/1/7
page B55

i

i

i

i

i

i

i

i

B.12. Generalized Functions: Combined Continuous and Discrete B55

Definition B.68. Dirac Delta Function:
The Dirac delta function, δ(x), is a generalized function with the property that

∫ +∞

−∞
f(x)δ(x − x0)dx = f(x0) , (B.162)

for any continuous function f(x) defined for x on R and some point x0 on R (see
B. Friedman [88]).

Remark B.69. The generalized function δ(x− x0) is not a regular function and it
only has meaning in the integrand of an integral. Since δ(x− x0) picks out a single
value of the function f(x), it must be concentrated at a point, i.e., for any ǫ > 0,

∫ x0+ǫ

x0−ǫ

f(x)δ(x − x0)dx = f(x0) .

Hence, for ǫ → 0+, this integral will give the same answer f(x0), whereas for an
ordinary integral of calculus and f(x) continuous the answer will be O(ǫ) as ǫ→ 0+

and thus zero in the limit. Consequently, the integral with δ(x− x0) can be ignored
away from the point of concentration x0. The delta function, δ(x−x0) is also called
an impulse function when it is used to impart an impulse to drive a differential
equation.

A simple constructive approximation that in the limit leads to the delta func-
tion δ(x) is the simple triangular approximation,

dǫ(x) ≡
1

ǫ

{
(1 − |x|/ǫ), 0 ≤ |x| ≤ ǫ
0, ǫ ≤ |x|

}
(B.163)

Now consider an arbitrary test function f(x) that is continuous and continuously
differentiable, then using the definition (B.163),

∫ +∞

−∞
dǫ(x)f(x)dx =

1

ǫ

∫ +ǫ

−ǫ

(1 − |x|/ǫ)f(x)dx

=

∫ +1

−1

(1 − |y|)f(ǫy)dy

=

∫ +1

−1

(1 − |y|)[f(0) + O(ǫ)]dy

= f(0) + O(ǫ) → f(0) ,

as ǫ→ 0+. Since dǫ(x) has the same effect at δ(x) in the limit, it can be said that

δ+0(x) = lim
ǫ→0+

gen
= δ(x) .

where the symbol of generalized equality is
gen
= defined below:

“bk0allfinal”
2007/1/7
page B56

i

i

i

i

i

i

i

i

B56 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

Definition B.70. Generalized Equality:
Let

g(x)
gen
= h(x)

if for a sufficient class of test functions, f(x), (sufficiently smooth, bounded with
exponential decay as x→ ∞, depending on the application) both g(x) and h(x) have
the same effect in integration,

∫ +∞

−∞
f(x)g(x)dx =

∫ +∞

−∞
f(x)h(x)dx.

Using the Wiener process density φW (t)(w) (B.23), it can also be shown that
in the generalized sense,

φW (0+)(w)
gen
= δ(w). (B.164)

The generalized result (B.164) is obtained by examining the asymptotic limit as
t→ 0+,

E[f(W (t))] =

∫ +∞

−∞
f(w)φn(w; 0, t)dw → f(0) ,

for a continuous, exponentially bounded test function |f(w)| < K exp(aw) for some
K > 0 and a < a0 for some a0 is sufficient, since the negative quadratic exponent
of the density dominates any simple exponential at infinity. One need only consider
the finite interval [−R,R] for some sufficiently large R, R/

√
t≫ 1 when t≪ 1 will

suffice, so that the tail portion of the integral on (−∞,+∞) is negligible

Remarks B.71. :

• The technique suggested is Laplace’s Method for integrals given in Eq. (B.155);
see also references [60, 28], for instance, or Exercise 23.

• Since we are interested here in limits of the normal distribution and its density,

the density has a delta function limit such that φW (0+)(w)
gen
= δ(w) according

(B.164), then the use of the H(x) step function form (B.158) in the relation
ΦX(ξ) = EX [H(ξ−X)] (B.161) is inconsistent. This is because Φ∆W (t)(0) =
1/2 for all positive values of ∆t, so

ΦW (0+)(w) =

∫ w

−∞
δ(v)dv =

0, w < 0
1/2, w = 0
1, w > 0

 = Ha(w)

or (B.159), since the averaged value at zero is needed. However, using the
expectation form of the distribution (B.161) (normally, products of delta func-
tions cannot be made), then

E[H(w −W (0+))] =

∫ +∞

−∞
H(w − v)δ(v)dv = H(w)

which is incorrect when w = 0 when using the generalized limits for the normal
density.

“bk0allfinal”
2007/1/7
page B57

i

i

i

i

i

i

i

i

B.12. Generalized Functions: Combined Continuous and Discrete B57

Examples B.72. Generalized Function:

• δ(ax+ b)
gen
= (1/a)δ(x+ b/a), for constant a > 0 and b, by changing variables

ξ = ax in the integral definition (B.162).

• δ(−x) gen
= δ(x), i.e., δ(x) behaves as an even function, since f(0−) = f(0) if

the function f is continuous.

• xδ(x)
gen
= 0, since by (B.162) with any f(x) = xF (x), F (x) continuous and

x0 = 0, ∫ +∞

−∞
F (x)xδ(x)dx = 0 · F (0) = 0 .

• Let f(x) be any continuously differentiable function on R, then the derivative
of the Dirac delta function δ′(x) is defined by

∫ +∞

−∞
f(x)δ′(x)dx = −f ′(0) . (B.165)

The motivation for this definition is the integration by parts calculus tool that

∫ +∞

−∞
f(x)δ′(x)dx =

[
f(x)δ(x) −

∫
f ′(x)δ(x)dx

]∣∣∣∣
+∞

−∞
= −f ′(0) ,

where the fact that δ(x) is concentrated at x = 0 means the f(x)δ(x) vanishes
at infinity since δ(x) dominates by vanishing faster than any f(x) can grow.

An alternate motivation is to use the original definition of δ(x−x0) in (B.162),
assume that δ(x − x0) is differentiable under the integral, i.e., in has been
generated by a continuously differential approximation satisfying uniformity
conditions, then

d

dx0

∫ +∞

−∞
f(x)δ(x − x0)dx = −

∫ +∞

−∞
f(x)δ′(x− x0)dx

= f ′(x0) , (B.166)

the minus sign arising from differentiating (x − x0) with respect to x0 as a
simple application of the chain rule.

• Similarly, δ′′(x), for twice continuously differentiable functions f , is defined
in the generalized sense by

∫ +∞

−∞
f(x)δ′′(x)dx = +f ′′(0) , (B.167)

derivable by two integrations by parts and using the concentration at x =
0. The same result also follows by differentiating the integral definition of
δ(x− x0) in (B.162) twice.

“bk0allfinal”
2007/1/7
page B58

i

i

i

i

i

i

i

i

B58 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

• H ′(x)
gen
= δ(x) with respect to continuous function f(x) for which f(x) and its

derivative vanish as |x| → ∞, since by integration by parts,

∫ +∞

−∞
f(x)H ′(x)dx =

[
f(x)H(x) −

∫
f ′(x)H(x)dx

]∣∣∣∣
+∞

−∞

= −
∫ +∞

0

f ′(x)dx = f(0) .

An alternate motivation for this result, is to start with the original definition
of the Heaviside step function,

d

dx0

∫ +∞

−∞
f(x)H(x− x0)dx = −

∫ +∞

−∞
f(x)H ′(x− x0)dx

= −f(x0)dx , (B.168)

so ignoring the two minus signs, we have H ′(x − x0)
gen
= δ(x− x0).

• A discrete distribution can be transformed into a continuous distribution by
using a sequence of delta functions such that the density for the discrete ran-
dom variable X with (m+1) possible discrete values {xk|k = 0 : m} each with
probability πk, such that the generalized density is given by

φ
(gen)
X (x)

gen
=

m∑

k=0

πkδ(x− xk) .

Hence, the expectation of some function f(x) is

E
(gen)
X [f(X)] =

∫ +∞

−∞
f(x)φX(x)dx =

m∑

k=0

πk

∫ +∞

−∞
f(x)δ(x− xk)dx

=

m∑

k=0

πkf(xk)

which is the same formula as given in (B.48) previously. Also, conservation
of probability is confirmed by

E(gen)
x [1] = 1

using the discrete probability property (B.46). However, the implied probability

distribution Φ
(gen)
X (x) is problematic since neither definition, H(x − xk) or

Ha(x− xk), of the step function is suitable at x = xk, but see the appropriate
right-continuous step function HR(x) ahead in (B.171).

Since it is an aim of the text to treat continuous and discrete distributions
together, a unified applied treatment is needed. For this treatment, generalized

“bk0allfinal”
2007/1/7
page B59

i

i

i

i

i

i

i

i

B.12. Generalized Functions: Combined Continuous and Discrete B59

functions [185, 88], primarily step and delta functions, will be used for discrete
distributions in a manner similar to the way they are used in differential equations,
but more suited to stochastic processes. Thus, the continued discrete distribution
will be illustrated and defined for the Poisson process since the probabilities are
already ordered by integer values:

Lemma B.73.

• The Poisson distribution made right-continuous is

ΦP (t)(X) = Prob[X ≤ x] =

{ ∑⌊x⌋
j=0 pj(λt) , x ≥ 0

0 , x < 0

}
, (B.169)

which readily follows and where ⌊x⌋ is the integer floor function such that
x− 1 < ⌊x⌋ ≤ x.

• However, in terms of the generalized right-continuous (RC) step-function
HR(x) this Poisson distribution can be generalized to

ΦP (t)(X) =

∞∑

k=0

pk(λt)HR(x− k) , (B.170)

such that

HR(x) =

{
0 , x < 0
1 , x ≥ 0

}
, (B.171)

where the property HR(0) = HR(0+) and HR(0−) = 0 embodies the required
right-continuity property. Clearly, ΦP (t)(X) is right-continuous, rather than
purely continuous.

Proof. The distribution form (B.169) follows directly from the definition of the
continuous distribution using the discrete Poisson distribution Prob[P (t) = k] =
pk(λt) for k = 0 : ∞. Thus,

Prob[P (t) ≤ x] =

k∑

j=0

pj(λt), k ≤ x < k + 1 ,

for k = 0 : ∞, since it takes k jumps for x to exceed k, i.e., k = ⌊x⌋, so k ≤ x < k+1
is equivalent to x − 1 < ⌊x⌋ ≤ x, and any more will require the (k + 1)st jump.
Thus, the kth probability pk(λt) is included in the sums if x ≥ k, i.e., pk(λt) is
included in the form

pk(λt)HR(x− k)

leading to B.170).

“bk0allfinal”
2007/1/7
page B60

i

i

i

i

i

i

i

i

B60 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

Definition B.74. The Poisson process density corresponding to this continuous
distribution is denoted by

φP (t)(X) =
∞∑

k=0

pk(λt)δR(x− k) , (B.172)

where δR(x) is the right-continuous (RC) delta function such that

HR(x) =

∫ x

−∞
δR(y)dy (B.173)

having the desired property that HR(0) = 1 and the integral property
∫ ∞

−∞
f(y)δR(y)dy = f(0−). (B.174)

These generalized functions and their properties will be encountered in more detail
later in this text. The generalized HR(x) function is somewhat different from the
concretely defined H(x) in (B.158). Also, if the function f is continuous at x = 0
in B.174, then f(0−) can be replaced by f(0).

The relationship between the exponential distribution and the Poisson distri-
bution follows from the time of the arrival of the first jump T1 under the standard
assumption that the Poisson processes P (t) starts at t = T0 ≡ 0 and that the dis-
tribution for the first jump is the same as the probability that the Poisson jump
counter exceeded one, i.e.,

ΦT1(t;λ) ≡ Prob[T1 ≤ t] = Prob[P (t) ≥ 1] =

∞∑

k=1

pk(λt)

=

∞∑

k=1

e−λt (λt)
k

k!
= e−λt

(
eλt − 1

)
= 1 − e−λt , (B.175)

which is the same result as (B.40). The same result holds for the inter-arrival time,
Tk+1 − Tk, between successive Poisson jumps, except that the more general result
depends on the property of stationarity of the Poisson process that is introduced in
Chapter 1.

Summarizing distributions properties for combinations of continuous random
variables and right-continuous jump processes, we have

Properties B.75. Right-Continuous Distribution Functions Φ(x):

• Φ is non-decreasing, since probabilities must be non-negative.

• Φ is right-continuous, by properties of integrals with non-negative inte-
grands including integrands with right-continuous delta functions or probability
masses.

• Φ(−∞) = +0, by properties of integrals and X > −∞.

• Φ(+∞) = 1 if Φ is a proper distribution.

“bk0allfinal”
2007/1/7
page B61

i

i

i

i

i

i

i

i

B.13. Fundamental Properties of Stochastic and Markov Processes B61

B.13 Fundamental Properties of Stochastic and
Markov Processes

B.13.1 Basic Classification of Stochastic Processes

The classification of stochastic processes is important since the classification leads
to the appropriate method of treatment of the stochastic process applications.

A stochastic process or random process is a random function of time
ξ = X(t;ω) where X(t;ω) is a random variable depending on time t and some
underlying random variable ω on the sample space Ω (again the ω dependence
will often be suppressed unless it is needed to describe some stochastic process
attribute).

If the time domain is continuous on some interval [0, T] then it is said to be
a stochastic processes in continuous time whether the domain is bounded or
unbounded. However, if the time domain is discrete, ξ = Xi in discrete time units
i = 1 : ∞ called stages, then it is a stochastic process in discrete time or
random sequence. If ξ = X(t) is not an random variable then X(t) would be called
a deterministic process.

Stochastic processes are also generally classified according to the properties of
the range of the random variable ξ = X(t), called the state space of the process.
This state space can be continuous, in which case it is still referred to as a stochastic
process, but if the state space is discrete with a finite or infinite number of states
then the stochastic process is called a chain. The Gaussian process is an example
of a process with a continuous state space, while the simple Poisson process with
unit jumps is an example of a process with a discrete state space. A mixture of
Gaussian and Poisson processes, called a jump-diffusion, is an example of a hybrid
stochastic system.

B.13.2 Markov Processes and Markov Chains

An important class of stochastic process is the Markov process X(t) in which the
future state depends on only some current state but not on a past state. This
Markov property offers many advantages in the analysis of the behavior of these
processes.

Definitions B.76.

• A stochastic process X(t) for t ≥ 0 in continuous time is a Markov process
on a continuous state space Scsct if for any t ≥ 0, ∆t ≥ 0 and x ∈ Scsct,

Prob[X(t+ ∆t) ≤ x|X(s), s ≤ t] = Prob[X(t+ ∆t) ≤ x|X(t)].(B.176)

• A stochastic process Xi for i = 0 : ∞ in discrete time is a Markov process on
continuous state space Scsdt if for any n = 0 : ∞, i = 0 : ∞, and xn ∈ Scsdt,

Prob[Xn+1 ≤ xn+1|Xi = xi, i = 0 : n]

= Prob[Xn+1 ≤ xn+1|Xn = xn]. (B.177)

“bk0allfinal”
2007/1/7
page B62

i

i

i

i

i

i

i

i

B62 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

• A stochastic process X(t) for t ≥ 0 in continuous time is a Markov chain
on discrete state space Sdsct = {0, 1, 2, . . .} if for any t ≥ 0, ∆t ≥ 0 and
j(t) ∈ Sdsct,

Prob[X(t+ ∆t) = j(t+ ∆t)|X(s) = j(s), s ≤ t]

= Prob[X(t+ ∆t) = j(t+ ∆t)|X(t) = j(t)]. (B.178)

• A stochastic process Xi for i = 0 : ∞ in discrete time is a Markov chain on
discrete state space Sdsdt = {0, 1, 2, . . .} if for any n = 0 : ∞, i = 0 : ∞ and
ji ∈ Sdsdt,

Prob[Xn+1 = jn+1|Xi = ji, i = 0 : n]

= Prob[Xn+1 = jn+1|Xn = jn]. (B.179)

The conditional probability Prob[Xn+1 = jn+1|Xn = jn] = Pn,n+1(jn, jn+1) is
called the transition probability for the step from stage n to stage n+ 1.

Thus, the Markov process can be called memory-less or without after-
effects since, for example in the continuous time case, the future state X(t+∆t)
depends only on the current state X(t), but not on the past states {x(s), s < t}.
This memory-less property of Markov processes leads immediately to the indepen-
dent increments property of Markov processes:

Lemma B.77. If X(t) is a Markov process in continuous time then the state
increment ∆X(t) ≡ X(t+ ∆t)−X(t) is independent of ∆X(s) ≡ X(s+ ∆s)−
X(s), s, t,∆s,∆t ≥ 0, if the time intervals are disjoint except for trivial over-lap,
i.e., either s+ ∆s ≤ t or t+ ∆t ≤ s, such that

Φ∆X(t),∆X(s)(∆x,∆y) ≡ Prob[∆X(t) ≤ ∆x,∆X(s) ≤ ∆y]

= Prob[∆X(t) ≤ ∆x]Prob[∆X(s) ≤ ∆y].

Note that the Markov property definition can be reformulated as

Prob[X(t+ ∆t) ≤ x+ ∆x|X(s), s < t;X(t) = x] = Prob[∆X(t) ≤ ∆x|X(t) = x]

and thus independent of any increments in the past.

B.13.3 Stationary Markov Processes and Markov Chains

Definition B.78. A Markov process is called stationary or time-homogeneous
if the probability distribution depends only on the time difference, i.e.,

• if Prob[X(t+ ∆t) −X(t) ≤ y] = Prob[∆X(t) ≤ y] depends on ∆t ≥ 0 and is
independent of t ≥ 0 in the continuous time case given y in the state space,
continuous or discrete or

“bk0allfinal”
2007/1/7
page B63

i

i

i

i

i

i

i

i

B.14. Continuity, Jump Discontinuity and Non-Smoothness B63

• if Prob[Xi+k −Xi ≤ y] depends on k ≥ 0 and is independent of i ≥ 0 in the
discrete time case given y in the state space, continuous or discrete (it is also
said that the transition probabilities are stationary).

The stationary Markov chain in discrete time is fully characterized by the
transition probability matrix [Pi−1,j−1]N×N where Pi,j = Prob[Xn+1 = j|Xn =
i] for all stages n = 0 : N − 1 where N may be finite or infinite [265]. Although the
main focus here is on Markov processes in continuous time, Markov chains serve
as numerical approximation for Markov processes, such as in the Markov chain
approximation methods of Kushner and co-workers [174, 175, 179].

B.14 Continuity, Jump Discontinuity and
Non-Smoothness Approximations

In the standard calculus much of the emphasis is on functions that are continuous,
differentiable, continuously differentiable or have similar nice properties. However,
many of the models for Markov processes do not always have such nice analytical
properties, since Poisson processes are discontinuous and Gaussian processes are
not smooth. Thus, the standard calculus will be reviewed and revised to include
the not so nice but essential properties.

B.14.1 Beyond Continuity Properties

If X(t) is a process, i.e., function of time, whether stochastic or deterministic, the
basic differences are here summarized:

Definitions B.79.

• Let the increment for the process X(t) be ∆X(t) ≡ X(t+∆t)−X(t), where
∆t is the time increment.

• Let the differential for the process X(t) be dX(t) ≡ X(t + dt) −X(t) with
respect to the time t, where dt is the infinitesimal time differential.

• The increment and differential are precisely related by the integral

∆X(t) =

∫ t+∆t

t

dX(s).

While much of the regular calculus is usually cast in a more abstract form,
much of applied stochastic calculus is based on differentials and increments, so much
of the following will be formulated with increments or differentials, ready to use.

Definitions B.80.

“bk0allfinal”
2007/1/7
page B64

i

i

i

i

i

i

i

i

B64 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

• The process X(t) is a continuous process at the point t0 if

lim
∆t→0

X(t0 + ∆t) = X(t0),

provided the limit exists;

• Else the process X(t) is discontinuous at t0.

• The process X(t) is continuous on the interval (t1, t2) if it is continuous at
each point of the interval.

• The process X(t) has a jump discontinuity at t0 if

lim
∆t→0
|∆t|>0

X(t0 + ∆t) 6= X(t0),

provided both the limit exists, i.e., the limit from the left

X(t−0) = lim
∆t→0+

X(t0 − ∆t)

and does not agree with the limit from the right

X(t+0) = lim
∆t→0+

X(t0 + ∆t),

where ∆t→ 0+ means {∆t→ 0,∆t > 0}. In other words, if

X(t+0) 6= X(t−0) .

then X(t) has a jump at t = t0 ([168]). The corresponding jump at the jump
discontinuity (discontinuity of the first kind) is defined as

[X](t0) ≡ X(t+0) −X(t−0) = lim
∆t→0+

X(t0 + ∆t) − lim
∆t′→0+

X(t0 − ∆t′) .(B.180)

• The process X(t) is right-continuous at t0 if

lim
∆t→0
∆t>0

X(t0 + ∆t) = X(t0),

such that the jump of X at t defined as

[X](t0) ≡ X(t0) −X(t−0) , (B.181)

since X(t+0) = X(t0). Left-continuous processes are similarly defined.

Remark B.81. The jump definition is consistent with definition of the increment
and consequently the differential, since if there is a jump at time t1 then dX(t−1) =
X(t−1 + dt) −X(t−1) = X(t+1) −X(t−1) = [X](t1), accepting the convention that dt
is both positive and infinitesimal so that X(t−1 + dt) = X(t+1). Similarly, for the
increment ∆X(t−1) → [X](t1) as ∆t→ 0+.

Definitions B.82.

“bk0allfinal”
2007/1/7
page B65

i

i

i

i

i

i

i

i

B.14. Continuity, Jump Discontinuity and Non-Smoothness B65

• The process X(t) is smooth at t0 if

lim
∆t→0

∆X(t0)/∆t

exists, i.e., X(t) is differentiable at t0.

• Else the process X(t) is non-smooth.

Remark B.83. For example, if ∆X(t1) ∼ C
√

∆t for some non-trivial constant
C, then ∆X(t1) → 0 and ∆X(t1)/∆t ∼ C/

√
∆t → ∞ as ∆t → 0+, so X(t) is

continuous but not smooth at t1.

B.14.2 Taylor Approximations of Composite Functions

Construction of application models often relies on Taylor’s formula with remain-
der (Lagrange form) for small perturbations about some given point, given here in
the form:

Theorem B.84. Taylor Approximation for a Scalar-Valued Function of
a Scalar Argument, f(x):
Let the function f(x) be defined, continuous and be (n + 1) times continuously
differentiable for |∆x| < R, then

f(x+ ∆x) =

n∑

m=0

f (m)(x)

m!
(∆x)m +

f (n+1)(x + θ∆x)

(n+ 1)!
(∆x)n+1 , (B.182)

where f (m)(x) is the mth order derivative of f at x, θ ∈ (0, 1) is the relative location
of the mean value point x+θ∆x in the remainder term and R is the convergence
radius.

Further, if the highest derivative f (n+1) is bounded on the interval of conver-
gence, |∆x| < R, then the remainder

Sn(x; ∆x) − f(x+ ∆x) = O((∆x)n+1),

as ∆x→ 0, where

Sn(x; ∆x) ≡
n∑

m=0

f (m)(x)

m!
(∆x)m ,

is the partial sum of the first (n+ 1) terms for m = 0 : n.
For most applications, only a few terms are needed, while for stochastic ap-

plications in continuous time this form will be applied when the variable x is a
process like X(t). More generally, the interest is in functions that depend explicitly
on time t and implicitly on time through the process X(t), like F (X(t), t). This is
illustrated for a deterministic process increment in function F (X(t), t), three times
continuously differentiable in both t and x. First, the increment is split up to par-
tially separate out the first argument X(t)-process and second t-argument explicit

“bk0allfinal”
2007/1/7
page B66

i

i

i

i

i

i

i

i

B66 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

time changes so that the one-dimensional Taylor approximation (B.182) can be
separately applied to the component parts. Using partial derivatives,

Theorem B.85. Taylor Approximation for a Scalar-Valued Function of
a Scalar Argument X(t) and Time t, f(X(t), t):
Let f(x, t) be three times differentiable in both x and t, let the process X(t) be
continuous and let ∆X(t) = X(t+ ∆t)−X(t) so X(t+ ∆t) = X(t) + ∆X(t), then

∆f(X(t), t) ≡ f(X(t) + ∆X(t), t+ ∆t) − f(X(t), t)

= (f(X(t) + ∆X(t), t+ ∆t) − f(X(t) + ∆X(t), t))

+ (f(X(t) + ∆X(t), t) − f(X(t), t))

=
∂f

∂t
(X(t), t)∆t+

∂f

∂x
(X(t), t)∆X(t) (B.183)

+
1

2

∂2f

∂t2
(X(t), t)(∆t)2 +

∂2f

∂t∂x
(X(t), t)∆t∆X(t)

+
1

2

∂2f

∂x2
(X(t), t)(∆X)2(t)

+O((∆t)3) + O((∆t)2∆X) + O(∆t(∆X)2) + O((∆X)3),

as ∆t→ 0 and ∆X(t) → 0.

Remarks B.86.

• Keeping the second order partial derivative terms written out explicitly is in
anticipation that, although the process may be continuous, the process may not
be smooth as in the case of the Gaussian process.

• The about expansion can be extended to vector processes X(t) = [Xi(t)]nx×1

and is best expanded by components.

• Another difference with the stochastic cases is that X will also be a function
of the underlying probability space variable ω, so X = X(t;ω) and ∆X =
∆X(t;ω) → 0 in probability (only) as ∆t → 0+. Since ∆X(t;ω) may have
an unbounded range, e.g., in the case that ∆X(t;ω) is normally distributed
as ∆t → 0+, but ∆t > 0, the boundedness part of the order symbol defini-
tion O would be invalid if, for instance, the ∆X in O3(∆X) were replaced by
∆X(t;ω). However, something like O(E[∆X3(t;ω)]) would be valid. Never-
theless, formula (B.183) will be useful as a preliminary or formal expansion
calculation, prior to applying an expectation and neglecting very small terms.

In the case where the space process is a vector function of time, then perform-
ing the Taylor expansion by components facilitates the calculation of the Taylor
approximation:

Theorem B.87. Taylor Approximation for a Scalar-Valued Function of
a Vector Argument X(t) and Time t, f(X(t), t):

“bk0allfinal”
2007/1/7
page B67

i

i

i

i

i

i

i

i

B.14. Continuity, Jump Discontinuity and Non-Smoothness B67

Let f(x, t) be three times differentiable in both x and t, let the column vector process
X(t) = [Xi]nx×1 be continuous, i.e., by component, and let ∆X(t) = X(t + ∆t) −
X(t) so X(t+ ∆t) = X(t+ ∆t) + ∆X(t), then

∆f(X(t), t) ≡ f(X(t) + ∆X(t), t+ ∆t) − f(X(t), t)

= (f(X(t) + ∆X(t), t+ ∆t) − f(X(t) + ∆X(t), t))

+ (f(X(t) + ∆X(t), t) − f(X(t), t))

=
∂f

∂t
(X(t) + ∆X(t), t)∆t

+
1

2

∂2f

∂t2
(X(t) + ∆X(t), t)(∆t)2 + O((∆t)3)

+

nx∑

i=1

∂f

∂xi
(X(t), t)∆Xi(t)

+

nx∑

i=1

nx∑

j=1

1

2

∂2f

∂xi∂xj
(X(t), t)∆Xi(t)∆Xj(t) + O(||∆X ||3)

=
∂f

∂t
(X(t), t)∆t + ∇⊤

x [f](X(t), t)∆X(t) (B.184)

+
1

2

∂2f

∂t2
(X(t), t)(∆t)2 +

1

2
∆X⊤(t)∇x

[
∇⊤

x [f]
]
(X(t), t)∆X(t)

+∇x

[
∂f

∂t

]
(X(t), t)∆X(t)∆t

+O((∆t)3) + O((∆t)2||∆X ||) + O(∆t||∆X ||2) + O(||∆X ||3),

as ∆t→ 0 and ∆X(t) → 0, where the gradient of f is the vector

∇x[f](X(t), t) ≡
[
∂f

∂xi
(X(t), t)

]

nx×1

,

the transpose vector is the row vector ∆x⊤ = [∆xj]1×nx, and ||∆x|| is some norm,
e.g., the infinite norm ||∆x||∞ = maxi[|Dxi|].

In the case where there is a vector-valued function f depending on time t and a
space process X(t) that is a vector function of time, then systematically performing
the Taylor expansion by both f and X components as well at by the t argument of f
and finally reasembling the results into matrix-vector form facilitates the calculation
of the Taylor approximation:

Theorem B.88. Taylor Approximation for a Vector-Valued Function of
a Vector Argument X(t) and Time t, f(X(t), t):
Let f(x, t) = [fi(x, t)]nx×1 be three times differentiable in both x and t, let the
column vector process X(t) = [Xi(t)]nx×1 be continuous, i.e., by component, and let

“bk0allfinal”
2007/1/7
page B68

i

i

i

i

i

i

i

i

B68 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

∆X(t) = X(t+ ∆t) − X(t) so X(t+ ∆t) = X(t+ ∆t) + ∆X(t), then

∆f(X(t), t) ≡ f(X(t) + ∆X(t), t+ ∆t) − f(X(t), t)

= f(X(t) + ∆X(t), t+ ∆t) − f(X(t), t)

= [fi(X(t) + ∆X(t), t+ ∆t) − fi(X(t), t)]nx×1

=

[
∂fi

∂t
(X(t), t)∆t +

nx∑

j=1

∂fi

∂xj
(X(t), t)∆Xj(t)

+
1

2

∂2fi

∂t2
(X(t) + ∆X(t), t)(∆t)2 +

nx∑

j=1

∂2fi

∆t∂xj
(X(t), t)∆Xj(t)∆t

+
1

2

nx∑

k=1

nx∑

j=1

∂2fi

∂xk∂xj
(X(t), t)∆Xj(t)∆Xk(t)

+O((∆t)3) + O((∆t)2||∆X ||) + O(∆t||∆X ||2) + O(||∆X ||3)
]
nx×1

=
∂f

∂t
(X(t), t)∆t +

(
∆X⊤(t)∇x

)
[f](X(t), t) (B.185)

+
1

2

∂2f

∂t2
(X(t), t)(∆t)2 +

(
∆X⊤(t)∇x

) [∂f
∂t

]
(X(t), t)∆t

+
1

2

(
∆X(t)∆X⊤(t)

)
:
(
∇x∇⊤

x

)
[f](X(t), t)

+O((∆t)3) + O((∆t)2||∆X ||) + O(∆t||∆X ||2) + O(||∆X ||3),

as ∆t→ 0 and ∆X(t) → 0, where the gradient of f is pre-multiplied by the transpose
of ∆X(t) so that dimension of f is obtained

(∆X⊤(t)∇x)[f](X(t), t) ≡

nx∑

j=1

∆Xj(t)
∂fi

∂xj
(X(t), t)

nx×1

,

the second order derivative Hessian is similarly arranged as scalar-valued operator
double dot product

(∆X(t)∆X⊤(t) :∇x)∇x)⊤[f](X(t), t) ≡

nx∑

j=1

nx∑

k=1

(∆Xj(t)∆Xk(t)

· ∂2fi

∂xk∂xj
(X(t), t)

]

nx×1

,

the transpose vector is the row vector ∆x⊤ = [∆xj]1×nx, and ||∆x|| is some norm,
e.g., the infinite norm ||∆x||∞ = maxi[|Dxi|].

In general the double dot product is related to the trace of a matrix (B.122).

“bk0allfinal”
2007/1/7
page B69

i

i

i

i

i

i

i

i

B.15. Extremal Principles B69

Definition B.89. Double Dot Product of Two Square Matrices:
where

A :B ≡ Trace[AB] =
n∑

j=1

n∑

k=1

Aj,kBk, j (B.186)

for square matrices A and B.

However, if the process is discontinuous, as it will be for the jumps of the
Poisson process, then (B.183) is no longer valid since the assumption on X(t) is not
valid at the jump. Thus, if X(t) has a jump discontinuity at t = t1, then the most
basic form for change in f , the jump, must be used,

Theorem B.90. Zero order Taylor Approximation or Jump Function
Limit for a Scalar-Valued Function of a Discontinuous Vector Process
Argument X(t) and Time t, f(X(t), t):

∆f(X(t−1), t−1) → [f](X(t1), t1) ≡ f(X(t+1), t+1) − f(X(t−1), t−1), (B.187)

as ∆t→ 0+.

This result extends the jump function definition (B.180). For right continu-
ous jumps t+1 can be replaced by t1 (B.187) as in (B.181). The most fundamental
changes in processes are the large jumps, such as crashes or rallies in financial
markets or disasters and bonanzas in nature or machine failure and repair in man-
ufacturing production. It is important to be able to handle jumps, even though the
analysis may be much more complicated than for continuous processes.

B.15 Extremal Principles

Finding extremal properties, maxima and minima, through optimization is another
area where nice function properties may be over-emphasized, but for many optimal
control applications results are needed for more general functions, whether deter-
ministic or random functions.

Definitions B.91. Extrema:
Let f(x) be defined on some connected domain D in R

m.

• Then f(x) has an global maximum at x∗ in D if f(x) ≤ f(x∗) for all x on
D.

• Similarly, f(x) has an global minimum at some point x∗ on D if f(x) ≥
f(x∗) for all x on D.

• Often, such global extrema are called absolute extrema.

“bk0allfinal”
2007/1/7
page B70

i

i

i

i

i

i

i

i

B70 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

• Then f(x) has a local maximum or relative maximum at x∗ on D if
there is a neighborhood, N (x∗) of x∗ on D such that f(x∗ + ∆x) ≤ f(x∗) for
sufficiently small |∆x|.

• Similarly, f(x) has a local minimum or relative minimum at x∗ on D if
there is a neighborhood, N (x∗) of x∗ on D such that f(x∗ + ∆x) ≥ f(x∗) for
sufficiently small |∆x|.

• Often, such local extrema are called relative extrema.

Remarks B.92.

• The standard definition of global extrema, i.e., global maxima and global
minima, covers all of the most extreme values, the biggest and the smallest,
regardless of the analytic properties of the target function. The definition of
global extrema is the most basic definition, the one we need to turn to when
derivative methods fail. On the other hand, the finding global extrema is very
difficult in general and is by no means a closed problem.

• However, the standard definition of local extrema are strictly interior ex-
trema, due to restriction that the neighbor be in the domain of interest, so
would exclude boundary extrema which may include the extreme value be-
ing sought.

• The general recipe for global extrema is often given by

1. Find local extrema, usually restricted to where the target function is
well-behaved.

2. Find boundary extrema, perhaps also restricted to points where the
function is well-behaved.

3. Find the function values at all points where the function is not
well-behaved, i.e., discontinuous, non-smooth, etc.

4. Find the most extreme values of all of the above for the global
extreme values.

Theorem B.93. First Order Necessary Conditions for a Local Minimum
(Maximum):
Let f(x) be continuously differentiable in an open neighborhood N (x∗) of x∗. If x∗

is a local minimum (maximum), then ∇[f](x∗) = 0.

If ∇[f](x∗) = 0 then x∗ is also called a stationary point or interior critical
point of f . For proof see any good calculus or analysis text, else see Nocedal and
Wright [221] for a proof using Taylor’s approximation and for the following theorem.

“bk0allfinal”
2007/1/7
page B71

i

i

i

i

i

i

i

i

B.16. Exercises B71

Theorem B.94. Second Order Necessary and Sufficient Conditions for a
Local Minimum (Maximum):
Let ∇2[f](x) be continuous in an open neighborhood N (x∗) of x∗.

• If x∗ is a local minimum (maximum) of f , then ∇[f](x∗) = 0 and ∇2[f](x)
is positive (negative) definite.

• If ∇[f](x∗) = 0 and ∇2[f](x) is positive (negative) definite, then x∗ is a
minimum (maximum) of f .

B.16 Exercises

Many of these exercises, depending on the instructor, can be done by MATLAB,
Maple or Mathematica, but if theoretical, the Symbolic Toolbox of MATLAB will
be needed.

1. Prove the variance-expectation identity for any random variable X :

Var[X] = E[X2] − E2[X] . (B.188)

{Note that E2[X] = (E[X])2 here, since squaring the operator also squares the
value.}

2. Prove the following identity for the variance of the sum of two random
variables X and Y :

Var[X + Y] = Var[X] + 2Cov[X,Y] + Var[Y] . (B.189)

3. Prove the following identity for the variance of the product of two ran-
dom variables X and Y ,

Var[XY] = X
2
Var[Y] + 2XY Cov[X,Y] + Y

2
Var[X] − Cov2[X,Y]

+ 2XE[δX(δY)2] + 2XE[(δX)2δX] + E[(δX)2(δY)2] ,

where X = E[X] and Y = E[Y] are means, while δX = X − X and δY =
Y − Y are deviations from the mean. Further, in the case that X and Y are
independent random variables, show that

Var[XY] = X
2
Var[Y] + Y

2
Var[X] + Var[X]Var[Y] . (B.190)

4. Prove the Chebyshev inequality,

Prob[|X | ≥ ǫ] ≤ E[|X |2]/ǫ2 , (B.191)

where ǫ > 0.
{Hint: It is sufficient to assume that a probability density φ(x) exists, convert
ǫ2Prob[|X | ≥ ǫ] to integral form and use estimate of ǫ2 to absorb it into the
integrals as functions of x.}

“bk0allfinal”
2007/1/7
page B72

i

i

i

i

i

i

i

i

B72 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

5. Prove the Schwarz inequality (Cauchy-Schwarz inequality) in terms of
expectations,

E[|XY |] ≤
√

E[X2] · E[Y 2] . (B.192)

{Hint (big): Use the fact that (u − v)2 ≥ 0 and let u = X/
√
E[X2] and

v = Y/
√
E[Y 2], assuming that X and Y have finite, positive variances. Al-

ternatively, explore the characteristic roots of E[(λX +Y)2] ≥ 0 and consider
that if there are only real roots λi at the minimum, then the discriminant
(square root argument) must be positive in the quadratic formula.}

6. Prove Jensen’s inequality: If f is a convex function, i.e., f is real and

f(θx+ (1 − θ)y) ≤ θf(x) + (1 − θ)f(y) (B.193)

for all x, y and 0 < θ < 1, then

E[f(X)] ≤ f(E[X]) . (B.194)

7. (a) Derive this simple form of Bayes’ Rule for two related random variables
X and Y :

Prob[X = x|Y = y] =
Prob[Y = y, X = x]

Prob[Y = y]
, (B.195)

provided Prob[Y = y] > 0. {Hint: you need only to use the conditional
probability definition (B.83).}

(b) Derive, using an expansion of (B.195) and also the law of total proba-
bility (B.92), the multiple random variables or events form of Bayes’
Rule for the case of the random event Y that occurs in conjunction with
a member of the exhaustive (complete) and countable set of disjoint (mu-
tually exclusive) events, {Xi, i = 1 : n}, i.e., the total law of probability
if applicable,

Prob[Xi = xi|Y = y] =
Prob[Y = y, Xi = xi]∑

j=1 Prob[Y = y, Xj = xj] · Prob[Xj = xj]
.

8. For the uniform distribution, confirm the formulas for the mean, variance,
coefficient of skewness and coefficient of kurtosis.

9. Derive the following identity between the standard normal and the general
normal distributions,

Φn((ln(x) − µ)/σ; 0, 1) = Φn(ln(x);µ, σ2) .

10. Show, for the lognormal density with random variable Xln(t), that the
maximum location, the mode of the distribution or the most likely value
is given by

x∗ = Mode [Xln(t)] = exp
(
µ− σ2

)
.

“bk0allfinal”
2007/1/7
page B73

i

i

i

i

i

i

i

i

B.16. Exercises B73

Also, compare the mean or expected value to the mode for the lognormal
distribution by calculating the ratio

E [Xln(t)] /Mode [Xln(t)] ,

then compare this lognormal ratio to that for the normal variates,

E [Xn(t)] /Mode [Xn(t)] .

11. For the exponential distribution, confirm the formulas for the mean, vari-
ance, coefficient of skewness and coefficient of kurtosis.

12. Show the following equivalence between the exponential distribution ex-
pectation and the uniform distribution expectation,

Ee[f(Xe)] = Eu[f(−µ ln(Xu))]

for any integrable function f .

13. Show the sample moment formulas for a set of IID random variables Xk with
E[Xk] = µ and Var[Xk] = σ2 for k = 1 : n of Subsection B.6 are correct, i.e.,

(a) E[mn] = µ for sample mean mn (B.109);

(b) E[s2n] = (n− 1)σ2/n for sample variance s2n (B.110);

(c) E[ŝ2n] = σ2 for sample variance unbiased estimate ŝ2n (B.111);

(d) Var[mn] = σ2/n for sample mean mn .

Hint: See the remarks on page B38.

14. Show that for a set of IID random variables, that the covariance of the sample
mean mn and the sample variance s2n satisfy

Cov[mn, s
2
n] = µ3/n ,

where the third central moment is µ3 = E[(Xk−µ)3]. Discuss what probability
property relatingmn and s2n is implied by the result if the I.I.D. distribution is
even like the normal distribution and what property is implied asymptotically
as n→ +∞. See Subsection B.6.

15. Let S =
∑n

k=1Xk be the partial sum of n IID random variables {Xk} each
with mean E[Xk] = µ and variance Var[Xk] = σ2. Further, let the mth central
moment be defined as µ(m) = E[(Xk − µ)m], so that µ(1) = 0 and µ(2) = σ2.
Show that

(a) E[S] = nµ .

(b) Var[S] = nσ2.

(c) E[(S − E[S])3] = nµ(3), so is zero if the distribution of Xk has no skew
(B.11).

“bk0allfinal”
2007/1/7
page B74

i

i

i

i

i

i

i

i

B74 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

(d) E[(S − E[S])4] = nµ(4) + 3n(n− 1)σ2, where the first term is related to
the coefficient of kurtosis (B.12).
Hint: Use the binomial theorem, S −E[S] =

∑n
k=1(Xk − µ) and the fact

µ(1) = 0.

16. Show that the product of two normal densities is a proportional to a
normal density, i.e.,

φn(x;µ1, σ
2
1) · φn(x;µ2, σ

2
2) = φn

(
x;
µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2

,
σ2

1σ
2
2

σ2
1 + σ2

2

)
(B.196)

· 1√
2π(σ2

1 + σ2
2)

exp

(
− (µ1 − µ2)

2

2(σ2
1 + σ2

2)

)
.

Hint: Apply the completing the square technique to combine the two densities.

17. Let Xi be independent normal random variables with density φXi
(x), mean

µi and variance σ2
i for i = 1 to K:

(a) Show that the product of two normal densities is a normal density whose
mean is the sum of the means and whose variances is the sum of the
variances, using (B.196),

I2(x) ≡ (φX1 ∗ φX2) (x) =

∫ +∞

−∞
φX1(x − y)φX2(y)dy (B.197)

= φn(x;µ1 + µ2, σ
2
1 + σ2

2) .

(b) Using (B.197) for K = 2 as the induction initial condition, show the
general result by induction that

IK(x) ≡
((

K−1∏

i=1

φXi
∗
)
φXK

)
(x) = φn

(
x;

K∑

i=1

µi,
K∑

i=1

σ2
i

)
. (B.198)

18. Show that the distribution of the sum of two (2) IID random variables, U1 and
U2 unifomly distributed on [a, b], is a triangular distribution on [2a, 2b],
i.e. show in terms of densities that

φU1+U2(x) =

∫ +∞

−∞
φU1 (x− y)φU2(y)dy

=
1

(b − a)2

(x− 2a), 2a ≤ x < b+ a
(2b− x), b+ a ≤ x ≤ 2b

0, otherwise

 , (B.199)

Confirm that the resulting density conserves probability on (−∞,+∞).
Hint: It may be helpful to sketch the paths for non-zero integration in y on
the xy-plane, paying attention to the limits of integration are for each fixed x.

Remark B.95. Different from the normal distribution results in (17) of the
previous exercise, the convolution of two uniform random variables does not
conserve the uniformity of the distribution.

“bk0allfinal”
2007/1/7
page B75

i

i

i

i

i

i

i

i

B.16. Exercises B75

19. Show the that the distribution of the sum of three (3) IID random variables,
Ui, for i = 1 : 3 unifomly distributed on [a, b], is a piecewise
quadratic distribution on [3a, 3b], i.e. show in terms of densities that

φP3
i=1 Ui

(x) =

∫ +∞

−∞
φU1+U2(x− y)φU3(y)dy (B.200)

=
1

2(b− a)3

+(x− 3a)2, 3a ≤ x < 2a+ b

−(x− (b + 2a))2

+2(b− a)2

−(2b+ a− x)2

 , 2a+ b ≤ x < a+ 2b

+(3b− x)2, a+ 2b ≤ x ≤ 3b
0, otherwise

,

using the result of the previous exercise for φU1+U2(x).
Hint: With this and the previous exercise, symbolic computation may be more
desirable, e.g,, MapleTM or MathematicaTM .

20. For the bivariate normal distribution, verify the inverse of Σ in (B.145)
and the explicit form for the density (B.146). Also, confirm by iterated in-
tegration that E[X1] = µ1, Var[X1] = σ2

1 and Cov[X1, X2] = ρσ1σ2. {Hint:
Only techniques such as completing the square and transformations to the
generic integral

∫ +∞

−∞
exp(−x2/2)[c0 + c1x+ c2x

2]dx =
√

2π[c0 · 1 + c2 · 1]

for any constants {c0, c1, c2}.}

21. For the binomial distribution in (B.150) verify that the given basic mo-
ments are correct, i.e., E[Fk] = Nπk and Var[Fk] = Nπk(1−πk) for k = 1 : 2.

22. Show that W (0+) = 0 with probability one by showing that φW (0+)(w)
gen
=

δ(w), i.e., in the generalized sense, which means that

E[f(W (t))] =

∫ +∞

∞
φW (t)(w)f(w)dw → f(0+)

as t→ 0+ for continuous, continuously differentiable and sufficiently bounded
functions f(w) which vanishing at infinity.
{Hint: For formal justification, scale t out of the density by a change of vari-
ables in the integral and expand f for small t, assuming that the exponential
convergence property of the normal density allows term-wise integration of the
expansion. Note that if X(t) is in the set S with probability one simply means
that Prob[X(t) ∈ S] = 1.
If more rigor is desired, use the asymptotic techniques, such as Laplace’s
method for integrals (B.155, Page B53), from the text and Exercise 23.}

“bk0allfinal”
2007/1/7
page B76

i

i

i

i

i

i

i

i

B76 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

23. Asymptotic Analysis, Generalized Function Problem:
Show that the following sequences for approximate the right-continuous step-
function HR(x) in (B.171) and the right-continuous delta function δR(x) in
(B.173),

HR,n(x) =

∫ x

−∞
δR,n(y)dy ;

δR,n(x) ≡ e−(y+µn)2/(2ǫn)/
√

2πǫn,

where ǫn > 0, µn > 0,
√
ǫn ≪ µn ≪ 1 when n ≫ 1. That is, show for n ≫ 1

that HR,n(0) = HR,n(0+) ∼ 1, HR,n(0−) → 0+ and

∫ +∞

−∞
f(y)δR,n(y − x)dy ∼ f(x−) ,

for any continuous function f(x) that is exponentially bounded, |f(x)| ≤
Ke−a|x| on (−∞,+∞) with a > 0 and K > 0, justifying the use of HR,n(x) →
HR(x) and δR,n(x) → δR(x) as n → ∞ for the generalized representation of
Poisson processes.
{Hint: When using the Laplace asymptotic approximation of integrals tech-
nique [60, 28], changing variables to ξ = y − x + µn, selecting the integral
tail-cutoff (−ρn, ρn) in ξ about the argument of the maximum of δR,n(ξ−µn)
at ξ = 0 with ǫn ≪ ρ2

n ≪ µn ≪ 1 so that the tails are exponentially negligible
being dominated by the factor exp(−ρ2

n/(2ǫn)), approximate f(x− µn + ξ) ∼
f(x − µn) using continuity and then change variables to η = ξ/

√
ǫn so that

the limits of integration can be expanded to ±∞. The order in which these
approximations are performed is critical.}

Suggested References for Further Reading

• Bartlett, 1978 [19].

• Bender and Orszag, 1978 [28].

• Çinlar, 1975 [55].

• Copson, 1965 [60].

• Cox and Miller, 1968 [62].

• Doob, 1953 [69].

• Feller, 1968 [83].

• Feller, 1971 [84].

• Friedman, 1956 [88].

• Glasserman, 2003 [96].

“bk0allfinal”
2007/1/7
page B77

i

i

i

i

i

i

i

i

B.16. Exercises B77

• Higham and Higham, 2000 [142].

• Karlin and Taylor, 1975 [161].

• Karlin and Taylor, 1981 [162].

• Lighthill, 1964 [185].

• Moler et al., 2000 [210].

• Neftci, 2000 [217].

• Nocedal and Wright, 1999 [221].

• Pliska, 1997 [225].

• Parzen, 1962 [224].

• Ross, 1983 [237].

• Ross, 2000 [238].

• Taylor and Karlin, 1998 [265].

• Taylor and Mann, 1972 [263].

• Tuckwell, 1995 [270].

“bk0allfinal”
2007/1/7
page B78

i

i

i

i

i

i

i

i

B78 Appendix B. Appendix Online: Preliminaries in Probability and Analysis

‘‘bk0allfinal’’

2007/1/7

page C1

i

i

i

i

i

i

i

i

Appendix C

MATLAB Programs
(Online)

This appendix contains a selection of basic MATLAB m-file programs used in this
text to produce figures and are listed here as sample code for readers. They may
be eventually moved to on-line access only if space becomes an issue. Also, since
these m-files were used to produce figures for this book, they have more elaborate
cosmetic figure enhancements, requiring full screen height, than would normally
would be used for purely testing purposes.

C.1 Program: Uniform Distribution Simulation
Histograms

%%

function uniform03fig1

% Book Illustration for Uniform RNG Simulation

clc % clear variables, but must come before globals,

% else clears globals too.

clf % clear figures

fprintf(’\nfunction uniform03fig1 OutPut:’)

kfig = 0;

for m = 3:2:5

kfig = kfig+1; figure(kfig);

N=10^m;

x=rand(N,1);

xmean=mean(x);

xstd=std(x);

xmin = min(x);

xmax = max(x);

remean=(xmean*2-1)*100;

restd=(xstd*sqrt(12)-1)*100;

fprintf(...

’\n fig=%i; m=%2i; N=%i; xmean=%f; xstd=%f; min(x)=%f; max(x)=%f’ ...

C1

‘‘bk0allfinal’’

2007/1/7

page C2

i

i

i

i

i

i

i

i

C2 Appendix C. Appendix Online: MATLAB Programs

,kfig,m,N,xmean,xstd,xmin,xmax);

fprintf(’\n fig=%i; relerrmean=%f; relerrstd=%f;’ ...

,kfig,remean,restd);

nbins = 30; % min(fix(sqrt(10^m)),101);

xmin = 0; xmax = 1;

xbin1 = xmin; xbin2 = xmax; dxbin = (xbin2-xbin1)/nbins;

xbin = xbin1+dxbin/2:dxbin:xbin2-dxbin/2;

fprintf(...

’\n fig=%i; #bins(x)=%4i; xbin in [%6f,%6f]; dxbin=%10f;’ ...

,kfig,nbins,xbin1,xbin2,dxbin)

nx = hist(x,xbin); % Need Edge Oriented histc.

bar(xbin,nx)

axis tight

htitle=title(’Histogram for x = rand(N,1)’);

ks = [0.1,0.8]; nxmax = max(nx);

ytext=fix(ks(2)*nxmax); xtext=ks(1);

textn=[’N = ’ int2str(N)];

htext = text(xtext,ytext,textn);

hylabel=ylabel(’Uniform Bin Frequency’);

hxlabel=xlabel(’x, Uniform rand-Deviate’);

patchobj = findobj(gca,’Type’,’patch’);

haxis = gca;

set(haxis,’Fontsize’,20,’FontName’,’Helvetica’ ...

,’FontWeight’,’Bold’,’linewidth’,2)

set(patchobj,’FaceColor’,’w’,’EdgeColor’,’k’,’linewidth’,2);

set(htitle,’Fontsize’,24,’FontName’,’Helvetica’ ...

,’FontWeight’,’Bold’)

set(htext,’Fontsize’,20,’FontName’,’Helvetica’ ...

,’FontWeight’,’Bold’)

set(hylabel,’Fontsize’,24,’FontName’,’Helvetica’ ...

,’FontWeight’,’Bold’)

set(hxlabel,’Fontsize’,24,’FontName’,’Helvetica’ ...

,’FontWeight’,’Bold’)

end

%End Code

%%

C.2 Program: Normal Distribution Simulation
Histograms

%%

function normal03fig1

% Book Illustration for Normal RNG Simulation

clc % clear variables, but must come before globals,

% else clears globals too.

‘‘bk0allfinal’’

2007/1/7

page C3

i

i

i

i

i

i

i

i

C.2. Program: Normal Distribution Simulation Histograms C3

clf % clear figures

fprintf(’\nfunction normal03fig1 OutPut:’)

kfig = 0;

for m = 3:2:5

kfig = kfig+1; figure(kfig);

N=10^m;

x=randn(N,1);

xmean=mean(x);

xstd=std(x);

remean=xmean*100;

restd=(xstd-1)*100;

fprintf(’\nNormal Random Deviate (MATLAB randn) Test:’);

fprintf(’\n fig=%i; m=%2i; N=%i; xmean=%f; xstd=%f;’ ...

,kfig,m,N,xmean,xstd);

fprintf(’\n fig=%i; relerrmean=%f; relerrstd=%f;’....

,kfig,remean,restd);

nbins = 50; % min(fix(sqrt(10^m)),101);

xmin = min(x); xmax = max(x);

xbin1 = xmin; xbin2 = xmax; dxbin = (xbin2-xbin1)/nbins;%

fprintf(’\n#bins(x)=%4i; xbin in [%6f,%6f]; dxbin=%10f;’ ...

,nbins,xbin1,xbin2,dxbin)

xbin = xbin1+dxbin/2:dxbin:xbin2-dxbin/2;

nx = hist(x,xbin); % Need Center Oriented hist.

bar(xbin,nx)

axis tight

htitle=title(’Histogram for x = randn(N,1)’);

ks = [0.4,0.7]; nxmax = max(nx);

xtext = xmax*(ks(1)-(kfig-1)*0.1); ytext=fix(ks(2)*nxmax);

textn=[’N = ’ int2str(N)];

haxis = gca;

htext = text(xtext,ytext,textn);

hylabel=ylabel(’Normal Bin Frequency’);

hxlabel=xlabel(’x, Normal randn-Deviate’);

set(haxis,’Fontsize’,20,’FontName’,’Helvetica’ ...

,’FontWeight’,’Bold’,’linewidth’,2)

patchobj = findobj(gca,’Type’,’patch’);

set(patchobj,’FaceColor’,’w’,’EdgeColor’,’k’,’linewidth’,2);

set(htitle,’Fontsize’,24,’FontName’,’Helvetica’ ...

,’FontWeight’,’Bold’)

set(htext,’Fontsize’,20,’FontName’,’Helvetica’ ...

,’FontWeight’,’Bold’)

set(hylabel,’Fontsize’,24,’FontName’,’Helvetica’ ...

,’FontWeight’,’Bold’)

set(hxlabel,’Fontsize’,24,’FontName’,’Helvetica’ ...

,’FontWeight’,’Bold’)

end

‘‘bk0allfinal’’

2007/1/7

page C4

i

i

i

i

i

i

i

i

C4 Appendix C. Appendix Online: MATLAB Programs

% End Code

%%

C.3 Program: Lognormal Distribution Simulation
Histograms

%%

function lognormal03fig1

% Book Illustration for LogNormal RNG Simulation

clc % clear variables, but must come before globals,

% else clears globals too.

clf % clear figures

fprintf(’\nfunction lognormal03fig1 OutPut:’)

kfig = 0; mu = 0.0; sig = 0.5;

muln = exp(mu+sig^2/2);

sigln = muln*sqrt(exp(sig^2) -1);

nbins = 150;

fprintf(’\n mu=%f; sig=%f; muln=%f; sigln=%f; nbins=%i’ ...

,mu,sig,muln,sigln,nbins);

for m = 3:2:5

kfig = kfig+1; figure(kfig);

N = 10^m;

y = mu*ones(N,1) + sig*randn(N,1);

x = exp(y);

xmean=mean(x);

xstd=std(x);

remean=(xmean/muln - 1)*100;

restd=(xstd/sigln - 1)*100;

fprintf(’\nLognormal Random Deviate (exp(mu+sig*randn)) Test:’);

fprintf(’\n fig=%i; m=%2i; N=%i; xmean=%f; xstd=%f;’ ...

,kfig,m,N,xmean,xstd);

fprintf(’\n fig=%i; relerrmean=%f; relerrstd=%f;’ ...

,kfig,remean,restd);

xmin = min(x); xmax = max(x);

xbin1 = xmin; xbin2 = xmax; dxbin = (xbin2-xbin1)/nbins;%

fprintf(’\n#bins(x)=%4i; xbin in [%6f,%6f]; dxbin=%10f;’ ...

,nbins,xbin1,xbin2,dxbin)

xbin = xbin1+dxbin/2:dxbin:xbin2-dxbin/2;

nx = hist(x,xbin); % Need Center Oriented hist.

bar(xbin,nx)

axis tight

htitle=title(’Histogram for Lognormal x’);

ks = [0.4,0.7]; nxmax = max(nx);

xtext = xmax*(ks(1)-(kfig-1)*0.1); ytext=fix(ks(2)*nxmax);

textn=[’N = ’ int2str(N)];

‘‘bk0allfinal’’

2007/1/7

page C5

i

i

i

i

i

i

i

i

C.4. Program: Exponential Distribution Simulation Histograms C5

haxis = gca;

htext = text(xtext,ytext,textn);

hylabel=ylabel(’Lognormal Bin Frequency’);

hxlabel=xlabel(’x, Lognormal Deviate’);

set(haxis,’Fontsize’,20,’FontName’,’Helvetica’ ...

,’FontWeight’,’Bold’,’linewidth’,2)

patchobj = findobj(gca,’Type’,’patch’);

set(patchobj,’FaceColor’,’w’,’EdgeColor’,’k’,’linewidth’,2);

set(htitle,’Fontsize’,24,’FontName’,’Helvetica’ ...

,’FontWeight’,’Bold’)

set(htext,’Fontsize’,20,’FontName’,’Helvetica’ ...

,’FontWeight’,’Bold’)

set(hylabel,’Fontsize’,24,’FontName’,’Helvetica’ ...

,’FontWeight’,’Bold’)

set(hxlabel,’Fontsize’,24,’FontName’,’Helvetica’ ...

,’FontWeight’,’Bold’)

end

% End Code

%%

C.4 Program: Exponential Distribution Simulation
Histograms

%%

function exponential03fig1

% Book Illustration for Exponential RNG Simulation with mean one.

clc % clear variables, but must come before globals,

% else clears globals too.

clf % clear figures

fprintf(’\nfunction exponential03fig1 OutPut:’)

kfig = 0; mu = 1.0;

for m = 3:2:5

kfig = kfig+1; figure(kfig);

N=10^m;

x=-mu*log(rand(N,1));

xmean=mean(x);

xstd=std(x);

remean=(xmean/mu-1)*100;

restd=(xstd/mu-1)*100;

fprintf(’\nExponential Random Deviate (MATLAB randn) Test:’);

fprintf(’\n fig=%i; m=%2i; N=%i; xmean=%f; xstd=%f;’ ...

,kfig,m,N,xmean,xstd);

fprintf(’\n fig=%i; relerrmean=%f; relerrstd=%f;’ ...

,kfig,remean,restd);

nbins = 50; % min(fix(sqrt(10^m)),101);

‘‘bk0allfinal’’

2007/1/7

page C6

i

i

i

i

i

i

i

i

C6 Appendix C. Appendix Online: MATLAB Programs

xmin = 0; xmax = max(x);

xbin1 = xmin; xbin2 = xmax; dxbin = (xbin2-xbin1)/nbins;%

fprintf(’\n#bins(x)=%4i; xbin in [%6f,%6f]; dxbin=%10f;’ ...

,nbins,xbin1,xbin2,dxbin)

xbin = xbin1+dxbin/2:dxbin:xbin2-dxbin/2;

nx = hist(x,xbin); % using centered defined bins,

% rather than edge bins

bar(xbin,nx)

axis tight

htitle=title(’Histogram for x = -ln(rand(N,1))’);

ks = [0.6,0.6]; nxmax = max(nx);

xtext = xmax*ks(1); ytext=fix(ks(2)*nxmax);

textn=[’N = ’ int2str(N)];

htext = text(xtext,ytext,textn);

hylabel=ylabel(’Exponential Bin Frequency’);

hxlabel=xlabel(’x, Exponential random-Deviate’);

haxis = gca;

set(haxis,’Fontsize’,20,’FontName’,’Helvetica’ ...

,’FontWeight’,’Bold’,’linewidth’,2)

patchobj = findobj(gca,’Type’,’patch’);

set(patchobj,’FaceColor’,’w’,’EdgeColor’,’k’,’linewidth’,2);

set(htitle,’Fontsize’,24,’FontName’,’Helvetica’ ...

,’FontWeight’,’Bold’)

set(htext,’Fontsize’,20,’FontName’,’Helvetica’ ...

,’FontWeight’,’Bold’)

set(hylabel,’Fontsize’,24,’FontName’,’Helvetica’ ...

,’FontWeight’,’Bold’)

set(hxlabel,’Fontsize’,24,’FontName’,’Helvetica’ ...

,’FontWeight’,’Bold’)

end

% End Code

%%

C.5 Program: Poisson Distribution versus Jump
Counter k

%%

function poisson03fig1

% Book Illustration for Poisson distribution with 3 parameter values.

clc % clear variables, but must come before globals,

% else clears globals too.

fprintf(’\nfunction poisson03fig1 OutPut:’);

lv =[0.2,1.0,2.0,5.0]; nlam = 4;

nk = 10; kv = 0:nk;

for ilam = 1:nlam

‘‘bk0allfinal’’

2007/1/7

page C7

i

i

i

i

i

i

i

i

C.6. Program: Binomial Distribution versus Binomial Frequency f1 C7

pv(1,ilam) = exp(-lv(ilam)), kv(1) = 0;

for k = 1:nk

kv(k+1) = k;

pv(k+1,ilam) = pv(1,ilam)*(lv(ilam))^k/factorial(k);

end

end

plot(kv,pv(:,1),’ko--’,kv,pv(:,2),’k^:’,kv,pv(:,3),’ks-.’ ...

,kv,pv(:,4),’kd-.’ ...

,’MarkerSize’,10,’MarkerFaceColor’,’k’,’LineWidth’,2)

htitle=title(’Poisson Distributions: p_k(\Lambda)’);

hylabel=ylabel(’p_k(\Lambda)’);

hxlabel=xlabel(’k, Poisson Counter’);

hlegend=legend(’\Lambda = 0.2’,’\Lambda = 1.0’,’\Lambda = 2.’ ...

,’\Lambda = 5.’,0);

haxis = gca;

set(haxis,’Fontsize’,20,’FontName’,’Helvetica’,’FontWeight’ ...

,’Bold’,’linewidth’,2)

set(htitle,’Fontsize’,24,’FontName’,’Helvetica’,’FontWeight’,’Bold’)

set(hylabel,’Fontsize’,24,’FontName’,’Helvetica’,’FontWeight’,’Bold’)

set(hxlabel,’Fontsize’,24,’FontName’,’Helvetica’,’FontWeight’,’Bold’)

set(hlegend,’Fontsize’,20,’FontName’,’Helvetica’,’FontWeight’,’Bold’)

% End Code

%%

C.6 Program: Binomial Distribution versus Binomial
Frequency f1

%%

function binomial03fig1

% Book Illustration for Binomial distribution

% with 3 \pi_1 parameter values.

% pv(f_1) = p(f1,N-f1;\pi_1,1-\pi_1)

% = Bi(N,f_1)*\pi_1^{f_1}*(1-\pi_1)^{N-f_1}

clc % clear variables, but must come before globals,

% else clears globals too.

clf % clear figures

fprintf(’\nfunction binomialfig03 OutPut:’);

pi1v =[0.25,0.5,0.75]; npi1 = 3;

N = 10; f1v = 0:N; nfact = factorial(N);

for ipi = 1:npi1

pi1 = pi1v(ipi);

pv(1,ipi) = (1-pi1)^N;

for f1 = 1:N

pv(f1+1,ipi) = nfact/(factorial(f1)*factorial(N-f1)) ...

pi1^f1(1-pi1)^(N-f1);

‘‘bk0allfinal’’

2007/1/7

page C8

i

i

i

i

i

i

i

i

C8 Appendix C. Appendix Online: MATLAB Programs

end

end

plot(f1v,pv(:,1),’ko--’,f1v,pv(:,2),’k^:’,f1v,pv(:,3),’ks-.’ ...

,’MarkerSize’,10,’MarkerFaceColor’,’k’,’LineWidth’,2)

htitle=title(’Binomial Distributions: p_1(f_1) = p(f_1,N-f_1;\pi_1,1-\pi_1)’);

hylabel=ylabel(’p_1(f_1)’);

hxlabel=xlabel(’f_1, Binomial Frequency’);

hlegend=legend(’\pi_1 = 0.25’,’\pi_1 = 0.50’,’\pi_1 = 0.75’,1);

haxis = gca;

set(haxis,’Fontsize’,20,’FontName’,’Helvetica’,’FontWeight’ ...

,’Bold’,’linewidth’,2)

set(htitle,’Fontsize’,24,’FontName’,’Helvetica’,’FontWeight’,’Bold’)

set(hylabel,’Fontsize’,24,’FontName’,’Helvetica’,’FontWeight’,’Bold’)

set(hxlabel,’Fontsize’,24,’FontName’,’Helvetica’,’FontWeight’,’Bold’)

set(hlegend,’Fontsize’,14,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

% End Code

%%

C.7 Program: Simulated Diffusion W (t) Sample
Paths

%%

function wiener06fig1

% Book Illustration for Wiener/Diffusion Process RNG Simulation ...

% for t in [0,1] with sample variation.

% Generation is by summing Wiener increments DW of even spacing Dt.

clc % clear workspace of prior output.

clear % clear variables, but must come before globals,

% else clears them.

fprintf(’\nfunction wiener06fig1 OutPut:’); % print code figure name

nfig = 0;

N = 1000; TF = 1.0; Dt = TF/N; % Set initial time grid: Fixed Delta{t}.

NP = N + 1; % Number of points.

mudt = 0; sqrtdt = sqrt(Dt); % Set standard Wiener increment moments’

% for dX(t) = mu*dt + sigma*dW(t); here mu = 0, sigma = 1

% and scaled dW(t) = sqrt(dt)*randn

% Begin Calculation:

tv = 0:Dt:TF; % time row-vector

nstate = 4; % number of states

jv = [1,2,3,4]; % selection of states; change when needed

DWv = zeros(nstate,N); Wv = zeros(nstate,NP); % DW & W vectors/arrays;

% Also sets initial Wv(j,1) = 0;

for j = 1:nstate

randn(’state’,jv(j)); % Set initial state for repeatability;

DWv(j,1:N) = sqrtdt*randn(1,N); %Generate N sample random row-vector;

‘‘bk0allfinal’’

2007/1/7

page C9

i

i

i

i

i

i

i

i

C.8. Program: Diffusion Sample Paths Time Step Variation C9

for i=1:N % Simulated Sample paths by Increment Accumulation:

Wv(j,i+1) = sum(DWv(j,1:i)); % Note Wv(j,1) = 0.0; sum is effic.

end

end

%%%%% Begin Plot:

nfig = nfig + 1;

scrsize = get(0,’ScreenSize’); % figure spacing for target screen

ss = [5.0,4.0,3.5]; % figure spacing factors

fprintf(’\n\nFigure(%i): Diffusion Simulated Sample Paths(4)\n’ ...

,nfig)

figure(nfig)

marks = {’k-’,’k-o’,’k-^’,’k-x’}; % easier to change marks with nstate

%

for j = 1:nstate

plot(tv,Wv(j,1:NP),marks{j},’linewidth’,2); hold on;

end

hold off

%

title(’Diffusion Simulated Sample Paths (4)’...

,’FontWeight’,’Bold’,’Fontsize’,44);

ylabel(’W(t), Wiener State’...

,’FontWeight’,’Bold’,’Fontsize’,44);

xlabel(’t, Time’...

,’FontWeight’,’Bold’,’Fontsize’,44);

hlegend=legend(’State 1’,’State 2’,’State 3’,’State 4’...

,’Location’,’Best’);

set(hlegend,’Fontsize’,36,’FontWeight’,’Bold’);

set(gca,’Fontsize’,36,’FontWeight’,’Bold’,’linewidth’,3);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss(nfig) 60 scrsize(3)*0.60 scrsize(4)*0.80]);

% [l,b,w,h]

% End Code

%%

C.8 Program: Simulated Diffusion W (t) Sample
Paths Showing Variation with Time Step Size

%%

function wiener06fig2

% Book Illustration for Wiener/Diffusion Process RNG Simulation ...

% for t in [0,1] with sample variation.

% Generation is by summing Wiener increments DW of even spacing Dt.

clc % clear workspace of prior output.

clf % clear figures, else accumulative.

clear % clear variables, but must come before globals, else clears them.

‘‘bk0allfinal’’

2007/1/7

page C10

i

i

i

i

i

i

i

i

C10 Appendix C. Appendix Online: MATLAB Programs

fprintf(’\nfunction wiener06fig2 OutPut:’); % print code figure name

nfig = 1;

N = 1000; TF = 1.0; Dt = TF/N; % Set time grids: Several dt’s.

NP = N+1; % Total number of Points.

% for dX(t) = mu*dt + sigma*dW(t); here mu = 0, sigma = 1

% and scaled dW(t) = sqrt(dt)*randn

% Begin Calculation:

% nstate = 1; % number of states.

ndt = 3; % number of local dt’s.

jv = [1,2,3,4]; % selection of states; change when needed

randn(’state’,jv(1)); % Set common initial state for repeatability

RN = randn(1,N); % common random sample of N points.

Wv = zeros(ndt,NP); % W array of local vectors;

% Also sets all Wv(kdt,1) = 0 for tv(1) = 0;

% recall MATAB is unit based.

ts = zeros(ndt,NP); % Declare maximal local time vectors;

%%%%% Begin Plot:

nfig = nfig + 1;

scrsize = get(0,’ScreenSize’); % figure spacing for target screen

ss = [5.0,4.0,3.5]; % figure spacing factors

fprintf(’\n\nFigure(%i): Diffusion Simulated Sample Paths(4)\n’ ...

,nfig)

figure(nfig)

marks = {’k-’,’k-o’,’k-^’,’k-x’}; % easier to change marks with nstate

%

for kdt = 1:ndt % Test Multiple Sample Paths with different dt’s:

S = 10^(kdt-1); % dt scalar factor;

Ns = N/S; NPs = Ns+1; % Local counts;

Dts = S*Dt; % Local time steps;

sigs = sqrt(Dts); % Local diffusion scaling;

ts(kdt,1:NPs) = 0:Dts:TF; % Local times;

for i = 1:Ns % Simulated Sample paths by Increment Accumulation:

Wv(kdt,i+1) = Wv(kdt,i) + sigs*RN(1,i*S);

end

plot(ts(kdt,1:NPs),Wv(kdt,1:NPs),marks{kdt},’linewidth’,2); hold on;

end

%

hold off

%

title(’Diffusion Simulations: \Delta{t} Effects’...

,’FontWeight’,’Bold’,’Fontsize’,44);

ylabel(’W(t), Wiener State’...

,’FontWeight’,’Bold’,’Fontsize’,44);

xlabel(’t, Time’...

,’FontWeight’,’Bold’,’Fontsize’,44);

hlegend=legend(’\Delta{t} = 10^{-3}, N = 1000’...

‘‘bk0allfinal’’

2007/1/7

page C11

i

i

i

i

i

i

i

i

C.9. Program: Simulated Simple Poisson P (t) Sample Paths C11

,’\Delta{t} = 10^{-2}, N = 100’ ...

,’\Delta{t} = 10^{-1}, N = 10’,’Location’,’Best’);

set(hlegend,’Fontsize’,36,’FontWeight’,’Bold’);

set(gca,’Fontsize’,36,’FontWeight’,’Bold’,’linewidth’,3);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss(nfig) 60 scrsize(3)*0.60 scrsize(4)*0.80]);

% [l,b,w,h]

% End Code

%%

C.9 Program: Simulated Simple Poisson P (t) Sample
Paths

%%

function poisson03fig2

% Book Illustration for Simple Poisson/Jump Process RNG Simulation ...

% for P(t) = 1:K jumps with sample variation.

% Generation is by Poisson Jump Exponentially distributed

% jump time increments T(k+1)-T(k), T(k+1) = kth jump time,

% T(1) := 0.

%

clc % clear variables, but must come before globals,

% else clears globals too.

fprintf(’\nfunction poisson03fig2 OutPut:’)

kfig = 0;

K = 10; KP = 2*K +1; % Include sample of K jumps only.

p = zeros(KP,1); kstates = 4; LT = zeros(KP,kstates);

% Begin Calculation:

for kstate = 1:kstates; % Test Multiple Simulated Sample Paths:

LT(1,kstate) = 0; p(1) = 0; % Set initial scaled jump time

% and jump count.

rand(’state’,kstate); % Set initial state for repeatability

% or path change.

DTe = -log(rand(K,1)); % Generate random vector of

% K exponential variates.

for k = 1:K % Simulated sample scaled jump times

% LT(k+1) = lambda*T(k+1):

LT(2*k,kstate) = LT(2*k-1,kstate) + DTe(k);

LT(2*k+1,kstate) = LT(2*k,kstate);

p(2*k) = p(2*k-1);

p(2*k+1) = p(2*k-1) + 1;

end

end

% Begin Plot:

kfig = kfig + 1;

‘‘bk0allfinal’’

2007/1/7

page C12

i

i

i

i

i

i

i

i

C12 Appendix C. Appendix Online: MATLAB Programs

fprintf(’\n\nFigure(%i): Simulated Jump Sample Paths\n’,kfig)

figure(kfig)

plot(LT(1:KP,1),p,’k-’,LT(1:KP,2),p,’k:’,LT(1:KP,3),p,’k-.’ ...

,LT(1:KP,4),p,’k--’,’LineWidth’,2);

htitle=title(’Simulated Simple Jump Sample Paths’);

hylabel=ylabel(’P(t), Poisson State’);

hxlabel=xlabel(’\lambda\cdot{t}, Scaled Time’);

hlegend=legend(’Sample 1’,’Sample 2’,’Sample 3’,’Sample 4’,0);

haxis = gca;

set(haxis,’Fontsize’,20,’FontName’,’Helvetica’,’FontWeight’,’Bold’ ...

,’linewidth’,2)

set(htitle,’Fontsize’,24,’FontName’,’Helvetica’,’FontWeight’,’Bold’)

set(hylabel,’Fontsize’,24,’FontName’,’Helvetica’,’FontWeight’,’Bold’)

set(hxlabel,’Fontsize’,24,’FontName’,’Helvetica’,’FontWeight’,’Bold’)

set(hlegend,’Fontsize’,20,’FontName’,’Helvetica’,’FontWeight’,’Bold’)

% End Code

%%

C.10 Program: Simulated Simple Incremental
Poisson ∆P (t) Sample Paths

%%

function poisson03fig3

% Book Illustration for Simple Incremental Poisson/Jump Process RNG

% Simulation for Delta{P}(t) = P(t+Delta{t})-P(t) = 1:K jumps

% with sample variation.

% Generation is by Poisson Jump Zero-One Law:

% Prob(Delta{P}(t)=0] = 1-lambda*dt,

% assuming sufficiently small Delta{t}’s.

%

clc % clear variables, but must come before globals,

% else clears globals too.

clf % clear figures, else accumulative.

fprintf(’\nfunction delpois03fig3 OutPut:’)

kfig = 1;

figure(kfig);

marks = {’k-’,’k:’,’k-.’,’k--’};

% marks = {’k-o’,’k:s’,’k-.^’,’k--d’};

K = 10; KS = 500; KP = KS + 1; % Include first K jumps from total

% KS sample only.

kstates = 4; DP = zeros(KP,kstates); DT = zeros(KP,kstates);

% Begin Calculation:

for kstate = 1:kstates; % Test Multiple Simulated Sample Paths:

k = 0; DP(1,kstate) = 0.0; DT(1,kstate) = 0; % Set initial

% jump parms.

‘‘bk0allfinal’’

2007/1/7

page C13

i

i

i

i

i

i

i

i

C.10. Program: Simulated Incremental Poisson ∆P (t) Sample Paths C13

rand(’state’,kstate-1); % Set initial state for repeatability

% or path change.

xu = rand(KS,1); % Generate random vector of K uniform variates.

dt = 0.05; lambda = 1.0; % Set time step and jump rate.

ldt = lambda*dt; % one jump prob.

xl = (1-ldt)/2; xr = (1+ldt)/2; % Set centered jump probability

% thresholds, using centered

% part of uniform distribution

% to avoid open end point bias.

ip = 0; % Set plot counter.

for i = 1:KS % Simulated sample scaled jump times

% LT(k+1) = lambda*T(k+1):

ip = ip + 1;

if xu(i) <= xr && xu(i) >= xl % Get jump if prob. in [xl,xr].

k = k + 1;

DP(ip+1,kstate) = DP(ip,kstate);

DT(ip+1,kstate) = DT(ip,kstate) + dt;

ip = ip + 1;

DP(ip+1,kstate) = DP(ip,kstate) + 1;

DT(ip+1,kstate) = DT(ip,kstate);

else

DP(ip+1,kstate) = DP(ip,kstate);

DT(ip+1,kstate) = DT(ip,kstate) + dt;

end

if k == K

KP = ip + 1;

fprintf(’\n kstate = %i; i = %i points; k = %i jumps;’ ...

,kstate-1,i,k);

break;

end

end

plot(DT(1:KP,kstate),DP(1:KP,kstate),marks{kstate} ...

,’LineWidth’,2), hold on

end

% Begin Plot:

fprintf(’\n\nFigure(%i): Simulated Small \Delta{t} Jump Sample Paths\n’ ...

,kfig)

htitle=title(’Simulated Small \Delta{t} Simple Jump Sample Paths’);

hylabel=ylabel(’\Delta{P}(t), Poisson State’);

hxlabel=xlabel(’t, Time’);

hlegend=legend(’Sample 1’,’Sample 2’,’Sample 3’,’Sample 4’,0);

haxis = gca;

set(haxis,’Fontsize’,20,’FontName’,’Helvetica’,’FontWeight’,’Bold’,’linewidth’,2)

set(htitle,’Fontsize’,24,’FontName’,’Helvetica’,’FontWeight’,’Bold’)

set(hylabel,’Fontsize’,24,’FontName’,’Helvetica’,’FontWeight’,’Bold’)

set(hxlabel,’Fontsize’,24,’FontName’,’Helvetica’,’FontWeight’,’Bold’)

‘‘bk0allfinal’’

2007/1/7

page C14

i

i

i

i

i

i

i

i

C14 Appendix C. Appendix Online: MATLAB Programs

set(hlegend,’Fontsize’,20,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

% End Code

%%

C.11 Program: Simulated Diffusion Integrals∫
(dW)2(t) by Itô Partial Sums

%%

function intdwdw

% Example MATLAB code for integral of (dW)^2.

clc % clear variables;

t0 = 0.0; tf = 1.0;

n = 1.0e+4; nf = n + 1; % set time grid: (n+1) subintervals

dt = (tf-t0)/nf; % and (n+2) points;

% replace these particular values according the application;

t(1) = t0; % set initial time at i = 1 for MATLAB;

W(1) = 0.0; % set initial diffusion noise condition;

sqrtdt = sqrt(dt); % dW(i) noise time scale so E[dW] = 0;

sumdw2(1) = 0.0; % set initial sum variable;

kstate = 1; randn(’state’,kstate); % Set randn state

% for repeatability;

dW = sqrtdt*randn(nf,1); % simulate (n+1)-dW(i)’s sample;

t = t0:dt:tf; % get time vector t;

for i = 1:nf % simulate integral sample path.

W(i+1) = W(i) + dW(i); % sum diffusion noise;

sumdw2(i+1) = sumdw2(i) + (dW(i))^2; % sum whole integrand;

end

fprintf(’\n\nFigure 1: int[(dW)^2](t) versus t\n’);

figure(1)

plot(t,sumdw2,’k-’,t,t,’k--’,’LineWidth’,2); % plot sum;

htitle=title(’\int(dW)^2(t) Simulations versus t’);

hylabel=ylabel(’\int(dW)^2(t) and t, States’);

hxlabel=xlabel(’t, Time’);

hlegend=legend(’\int(dW)^2(t)’,’t’,0);

haxis = gca;

set(haxis,’Fontsize’,20,’FontName’,’Helvetica’ ...

,’FontWeight’,’Bold’,’linewidth’,2);

set(htitle,’Fontsize’,24,’FontName’,’Helvetica’ ...

,’FontWeight’,’Bold’);

set(hylabel,’Fontsize’,24,’FontName’,’Helvetica’ ...

,’FontWeight’,’Bold’);

set(hxlabel,’Fontsize’,24,’FontName’,’Helvetica’ ...

,’FontWeight’,’Bold’);

set(hlegend,’Fontsize’,20,’FontName’,’Helvetica’ ...

,’FontWeight’,’Bold’);

‘‘bk0allfinal’’

2007/1/7

page C15

i

i

i

i

i

i

i

i

C.12. Program: Simulated Diffusion Integrals
∫
g(W, t)dW C15

scrsize = get(0,’ScreenSize’);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/3.8 35 scrsize(3)*0.70 scrsize(4)*0.86]);

% End Code

%%

C.12 Program: Simulated Diffusion Integrals∫
g(W, t)dW : Direct Case by Itô Partial Sums

%%

function intgwtdw

% Book code example for int[g(w,t)dw] on [t0,t] by RNG Simulation:

% Generation is by summing g(W(i),t(i))dW(i) of even spacing dt

% for i=0:n, but converted to from index base 0 to base 1:

% matlab[G(W(i),T(i))DW(i);i=1:N+1] ...

% = math[g(W(i),t(i))dW(i);i=0:n].

% Sample g(w,t) = exp(w-t/2) with exact integral g(w,t) - 1

% on [0,t].

clc % clear variables, but must come before globals,

% else clears globals too.

clf % clear figures

fprintf(’\nfunction intgwtdw OutPut:’)

kfig = 0; % figure counter.

TF= 2.0; T0 = 0; N = 20000; NI = N+1; dt = (TF-T0)/NI; % Set initial

% time grid: Fixed Delta{t}.

sqrtdt = sqrt(dt); % Set std. Wiener increment time scale.

T(1) = T0; % set T(1) = T0 in place of t(0) = t0 for base 1 vector.

W(1) = 0.0; % Set W(1) in place of W(0) = 0 wpo for base 1 vector.

S(1) = 0.0; % Set integral sum initially.

gv(1) = g(W(1),T(1)); % Set integrand initially.

Err(1) = 0.0; % Set Error initially.

% Begin Sample Path Calculation:

kstate = 1;

randn(’state’,kstate); % set randn state for repeatability.

DW = sqrtdt*randn(1,NI); % Generate normal random vector of N+1

% samples for dW(t).

for i = 1:NI % Simulated Sample paths by Increment Accumulation:

T(i+1) = T(i) + dt;

W(i+1) = W(i) + DW(i);

gv(i+1) = g(W(i+1),T(i+1));

S(i+1) = S(i) + gv(i)*DW(i);% integrand g defined in subfunction.

Err(i+1) = S(i+1) - (gv(i+1) -gv(1)); % CAUTION: FOR KNOWN g HERE!

end

T(NI+1) = TF; % Correct for final cumulative time rounding errors.

% Begin Plot:

‘‘bk0allfinal’’

2007/1/7

page C16

i

i

i

i

i

i

i

i

C16 Appendix C. Appendix Online: MATLAB Programs

kfig = kfig + 1;

fprintf(’\n\nFigure(%i): int[g](t) versus t Simulations\n’,kfig)

figure(kfig)

plot(T,S,’k-’,T,W,’k-.’,T,Err,’k--’,’LineWidth’,2);

htitle=title(’\int g(W,t)dW(t) for g = exp(W(t)-t/2)’);

hylabel=ylabel(’\int g(W,t)dW(t), W(t), g(W(t),t) - g(0,0)’);

hxlabel=xlabel(’t, Time’);

hlegend=legend(’\int g(W,t)dW(t)’,’W(t)’,’Error(t)’,0);

haxis = gca;

set(haxis,’Fontsize’,20,’FontName’,’Helvetica’,’FontWeight’,’Bold’ ...

,’linewidth’,2)

set(htitle,’Fontsize’,24,’FontName’,’Helvetica’,’FontWeight’,’Bold’)

set(hylabel,’Fontsize’,24,’FontName’,’Helvetica’,’FontWeight’,’Bold’)

set(hxlabel,’Fontsize’,24,’FontName’,’Helvetica’,’FontWeight’,’Bold’)

set(hlegend,’Fontsize’,16,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

% End Main

function gv = g(W,T)

% Example g(W(t),t) = exp(W(t) - t/2); exact integral = g(W(t),t) - 1.

gv = exp(W - T/2);

% End Code

%%

C.13 Program: Simulated Diffusion Integrals∫
g(W, t)dW : Chain Rule

%%

function intgxtdw

% Book code example for int[g(w,t)dw] on [t0,t] by RNG Simulation:

% Generation is by summing g(W(i),t(i))dW(i) of even spacing dt for

% i=0:n, but converted to from index base zero to base one:

% matlab[G(X(i),T(i))DW(i);i=1:N+1] = math[g(X(i),t(i))dW(i);i=0:n].

% Chain Rule Form: Int[gdW](t) = G(W,t)-G(0,0) - Int[(g_t+0.5*g_w)(w,t)dt];

% G_w(w,t) = g(w,t), G_{ww}(w,t) = g_w(w,t).

% Sample Test Code ofr various g’s.

clc % clear variables, but must come before globals,

% else clears globals too.

clf % clear figures

fprintf(’\nfunction intgxtdw OutPut:’)

kfig = 0; % figure counter.

TF= 2.0; T0 = 0; N = (TF-T0)*10000; NI = N+1; dt = (TF-T0)/NI;

% Set initial time grid: Fixed Delta{t}, Scaled to [T0,TF] with N.

sqrtdt = sqrt(dt); % Set standard Wiener increment time scale.

t(1) = T0; % set T(1) = T0 in place of t(0) = t0 for base 1 vector.

W(1) = 0.0; % Set W(1) in place of W(0) = 0 wpo for base 1 vector.

sdw(1) = 0.0; sdt(1) = 0.0; % Set integral sum initially.

‘‘bk0allfinal’’

2007/1/7

page C17

i

i

i

i

i

i

i

i

C.13. Program: Simulated Diffusion Integrals
∫
g(W, t)dW : Chain Rule C17

gv(1) = g(W(1),t(1)); % Set integrand initially.

ev(1) = 0.0; % Set error initially, if known.

% Begin Sample Path Calculation:

kstate = 1;

randn(’state’,kstate); % set randn state for repeatability.

dW = sqrtdt*randn(1,NI); % Generate normal random vector of N+1

% samples for dW(t).

for i = 1:NI % Simulated Sample paths by Increment Accumulation:

t(i+1) = i*dt;

W(i+1) = W(i) + dW(i);

X(i+1) = W(i+1); % Set State for this g Example.

gv(i+1) = g(X(i+1),t(i+1));

sdw(i+1) = sdw(i) + gv(i)*dW(i);% integrand g in subfunction.

sdt(i+1) = sdt(i) - gthgw(X(i+1),t(i+1))*dt;% gthgw in subfunction.

ev(i+1) = sdw(i+1) - exact(X(i+1),t(i+1)) - sdt(i+1);

% CAUTION: For given g only!

end

t(NI+1) = TF; % Correct for final cumulative time rounding errors.

% Begin Plot:

kfig = kfig + 1;

fprintf(’\n\nFigure(%i): int[g](t) versus t Simulations\n’,kfig)

figure(kfig)

plot(t,sdw,’k-’,t,W,’k-.’,t,ev,’k--’,’LineWidth’,2);

htitle=title(’\int g(X,t)dW(t) for g = exp(X), X = W’);

hylabel=ylabel(’\int g(X,t)dW(t), X = W(t) and Error(t)’);

hxlabel=xlabel(’t, Time’);

hlegend=legend(’\int g(X,t)dW(t)’,’X = W(t)’,’Error(t)’,0);

haxis = gca;

set(haxis,’Fontsize’,20,’FontName’,’Helvetica’,’FontWeight’,’Bold’, ...

’linewidth’,2)

set(htitle,’Fontsize’,24,’FontName’,’Helvetica’,’FontWeight’,’Bold’)

set(hylabel,’Fontsize’,24,’FontName’,’Helvetica’,’FontWeight’,’Bold’)

set(hxlabel,’Fontsize’,24,’FontName’,’Helvetica’,’FontWeight’,’Bold’)

set(hlegend,’Fontsize’,16,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

% End Main

%%

function gv = g(x,t)

% Sample g(X(t),t) only, e.g.,

%1% gv = exp(x-t/2); % x = w.

%2% gv = exp(x); % x = w.

%3% gv = x; % x = w.

gv = exp(x);

%%

function exactv = exact(x,t)

% Sample g(X(t),t) exact integrals only, e.g.,

%1% exactv = exp(x-t/2) - 1; % i.e., G(w,t)-G(0,0), x=w, G(w,t)=exp(w-t/2).

‘‘bk0allfinal’’

2007/1/7

page C18

i

i

i

i

i

i

i

i

C18 Appendix C. Appendix Online: MATLAB Programs

%2% exactv = exp(x) - 1; % i.e., G(w,t)-G(0,0), x=w, G(w,t)=exp(w).

%3% exactv = 0.5*(x^2-t); % i.e., G(w,t)-G(0,0), x=w, G(w,t)=0.5*(w^2-t).

exactv = exp(x) - 1; % i.e., G(w,t)-G(0,0), x=w, G(w,t)=exp(w).

%%

function gthgwv = gthgw(x,t)

% Reg. Correction Int. of (G_t+0.5*G_{ww})(X(t),t), G_w = g.

%1% gthgwv = 0; % i.e., g=exp(x-t/2)=G, G_t=-0.5*G, G_{ww}=G.

%2% gthgwv = 0.5*exp(x); % i.e., G=g=exp(w), G_t=0, G_{ww}=g_w=exp(w).

%3% gthgw 0; % i.e., g=x=w, G=0.5*(w^2-t), G_t=-0.5, G_{ww}=g_w=1;

gthgwv = 0.5*exp(x); % i.e., G=g=exp(w), G_t=0, G_{ww}=g_w=exp(w).

%%

% End Code

%%

C.14 Program: Simulated Linear Jump-Diffusion
Sample Paths

%%

function linjumpdiff03fig1

% Book Illustration for Linear (Geometric)Jump Diffusion SDE RNG

% Simulation with constant coefficients for t in [0,1]

% with sample variation:

% DX(t) = X(t)*(mu*Dt + sig*DW(t) + nu*DP(t),

% X(0) = x0.

% Or log-state:

% DY(t) = (mu-sig^2/2)*Dt + sig*DW(t) + log(1+nu)*DP(t),

% Y(0) = log(x0).

% Generation is by summing Wiener increments DW of even spacing Dt

% with Poisson jump increment added at correct time increment.

% Sufficiently SMALL increments assumed, so zero-one jump law is

% appropriate.

% Allows Separate Driver Input and Special Jump

% or Diffusion Handling.

clc % clear variables, but must come before globals,

% else clears globals too.

clf % clear figures

fprintf(’\nfunction linjumpdiff03fig1 OutPut:’);

%%% Initialize input to jdsimulator

N = 1000; T = 1.0; % Set initial time grid: Fixed Delta{t}.

mu = 0.5; sig = 0.10; nu = -0.10; lambda = 3.0;

% set constant parameters.

%

jdsimulator(mu,sig,nu,lambda,N,T);

%

% END INPUT FOR JUMP-DIFFUSION SIMULATOR.

‘‘bk0allfinal’’

2007/1/7

page C19

i

i

i

i

i

i

i

i

C.14. Program: Simulated Linear Jump-Diffusion Sample Paths C19

%%

function jdsimulator(mu,sig,nu,lambda,N,T)

idiff = 1; ijump = 1;

if sig == 0, idiff = 0; end

if nu == 0, ijump = 0; end

kfig = 0; % figure counter.

NI = N+1; Dt = T/NI;

iv = 2; % iv=1 for *(1+/-sqrt(Var[X])) or iv=2 for *exp(+/-sqrt(Var[Y]).

sqrtdt = sqrt(Dt); % Set standard Wiener increment moments.

muddt = (mu - sig^2/2)*Dt; % Get Ito diffusion corrected drift term.

lognu = log(1 + nu); % Get log of relative jump term amplitude.

% Begin Sample Path Calculation:

t = 0:Dt:T; kstates = 4; x0 = 1.0;

for kstate = 1:kstates % Test Multiple Simulated Sample Paths:

if idiff == 1

randn(’state’,kstate-1); % Set initial normal state

% for repeatability.

DW = sqrtdt*randn(NI,1); % Generate normal random vector

% of N samples for DW(t).

WS(1) = 0.0; % Set W(0) = 0 wpo using MATLAB base 1 vector.

end

if ijump == 1

rand(’state’,kstate-1); % Set initial uniform state

% for repeatability.

DU = rand(NI,1); % Generate Uniform random vector of N

% DP(t) samples.

PS(1) = 0.0; % Set P(0) = 0 wpo using MATLAB base 1 vector.

ldt = lambda*Dt; % one jump prob.

ul = (1-ldt)/2; ur = (1+ldt)/2; % Set centered jump

% probability thresholds,

end

YS(1) = 0.0; XS(1,kstate) = x0; % Set initial exponent and state.

% using centered part of uniform distribution

% to avoid open end point bias.

for i = 1:NI % Simulated Sample paths by Increment Accumulation:

YS(i+1) = YS(i) + muddt;

if idiff == 1, YS(i+1) = YS(i+1)+ sig*DW(i); end

if ijump == 1

if DU(i) <= ur && DU(i) >= ul % Get jump if prob. in [ul,ur]:

YS(i+1) = YS(i+1) + lognu;

end

end

XS(i+1,kstate) = x0*exp(YS(i+1));% Invert exponent to get state.

end

end

% Compute Mean State Path and +/- One Std. Deviation:

‘‘bk0allfinal’’

2007/1/7

page C20

i

i

i

i

i

i

i

i

C20 Appendix C. Appendix Online: MATLAB Programs

XM(1) = x0; XT(1) = x0; XB(1) = x0;

muxexp = mu + lambda*nu;

if iv == 1, sigxexp = sig^2 + lambda*nu^2; end

if iv == 2, sigyexp = sig^2 + lambda*(log(1+nu))^2; end

for i = 1:NI

XM(i+1) = x0*exp(muxexp*t(i+1));

if iv == 1

V = sqrt(exp(sigxexp*t(i+1)) - 1);

XT(i+1) = XM(i+1)*(1 + V);

XB(i+1) = XM(i+1)*(1 - V);

end

if iv == 2

V = exp(sqrt(sigyexp*t(i+1)));

XT(i+1) = XM(i+1)*V;

XB(i+1) = XM(i+1)/V;

end

end

% Begin Plot:

kfig = kfig + 1;

kjd = 4 - 2*idiff - ijump;

NP = N + 2;

stitle = {’Linear Jump-Diffusion Simulations’ ...

,’Linear Diffusion Simulations’ ...

,’Linear Jump Simulations’};

sylabel = {’X(t), Jump-Diffusion State’,’X(t), Diffusion State’ ...

,’X(t), Jump State’};

fprintf(’\n\nFigure(%i): Linear Jump-Diffusion Simulations\n’,kfig)

figure(kfig)

plot(t,XS(1:NP,1),’k-’ ...

,t,XS(1:NP,2),’k-’ ...

,t,XS(1:NP,3),’k-’ ...

,t,XS(1:NP,4),’k-’ ...

,t,XM(1:NP),’k--’ ...

,t,XT(1:NP),’k-.’ ...

,t,XB(1:NP),’k-.’,’LineWidth’,2);

htitle=title(stitle(kjd));

hylabel=ylabel(sylabel(kjd));

hxlabel=xlabel(’t, Time’);

if iv == 1

hlegend=legend(’X(t) Sample 1’,’X(t) Sample 2’,’X(t) Sample 3’...

,’X(t) Sample 4’,’E[X](t)’,’(E[X]*(1+V))(t)’,’(E[X]*(1-V))(t)’,0);

end

if iv == 2

hlegend=legend(’X(t) Sample 1’,’X(t) Sample 2’,’X(t) Sample 3’...

,’X(t) Sample 4’,’E[X](t)’,’(E[X]*V)(t)’,’(E[X]/V)(t)’,2);

end

‘‘bk0allfinal’’

2007/1/7

page C21

i

i

i

i

i

i

i

i

C.15. Program: Simulated Linear Mark-Jump-Diffusion Sample Paths C21

haxis = gca;

set(haxis,’Fontsize’,20,’FontName’,’Helvetica’,’FontWeight’,’Bold’...

,’linewidth’,2)

set(htitle,’Fontsize’,24,’FontName’,’Helvetica’,’FontWeight’,’Bold’)

set(hylabel,’Fontsize’,24,’FontName’,’Helvetica’,’FontWeight’,’Bold’)

set(hxlabel,’Fontsize’,24,’FontName’,’Helvetica’,’FontWeight’,’Bold’)

set(hlegend,’Fontsize’,16,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

%

% End JDSimulator Code

%%

C.15 Program: Simulated Linear
Mark-Jump-Diffusion Sample Paths

%%

function linmarkjumpdiff06fig1

% Book Illustration for Linear Distributed-Jump Diffusion SDE RNG

% Simulation with variable coefficients for t in [0,1]

% with sample variation:

% DX(t) = X(t)*(mu(t)*Dt + sig(t)*DW(t) + nu(Q)*DP(t),

% X(0) = x0.

% Or log-state:

% DY(t) = (mu(t)-sig^2(t)/2)*Dt + sig(t)*DW(t) + Q*DP(t),

% Y(0) = log(x0) and Q = ln(1+nu(Q)).

% Generation is by summing Wiener increments DW of even spacing Dt

% with Poisson jump increment added at correct time increment.

% Sufficiently SMALL increments assumed, so zero-one jump law is

% appropriate.

% For demonstration purposes, Q will be assumed to be

% (qdist =1) UNIFORMLY distributed on (qparm1,qparm2)=(a,b)

% OR

% (qdist=2) NORMALLY distributed with (qparm1,qparm2)=(muj,sj2).

% Allows Separate Driver Input and Special Jump

% or Diffusion Handling.

clc % clear variables, but must come before globals,

% else clears globals too.

clf % clear figures

fprintf(’\nfunction linjumpdiff06fig1 OutPut:’);

%%% Initialize input to jdsimulator with sample parameters:

N = 1000; t0 = 0; T = 2.0; % Set initial time grid: Fixed Delta{t}.

idiff = 1; ijump = 1; x0 = 1.0;

qdist = 1; a = -2; b = +1; qparm1 = a; qparm2 = b; %e.g., Uniform

%OR E.G., Normal distribution:

%qdist = 2; muj = 0.28; sj2 = +0.15; qparm1 = muj; qparm2 = sj2;

% set constant parameters.

‘‘bk0allfinal’’

2007/1/7

page C22

i

i

i

i

i

i

i

i

C22 Appendix C. Appendix Online: MATLAB Programs

fprintf(’\n N=%i; x0=%6.3f; t0=%6.3f; T=%6.3f;’,N,x0,t0,T);

fprintf(’\n qdist=%i*; qparm1=%6.3f; qparm2=%6.3f;’...

,qdist,qparm1,qparm2);

fprintf(’\n * qdist=1 for uniform Q-distribution.’);

fprintf(’\n * qdist=2 for normal Q-distribution.’);

%

jdsimulator(idiff,ijump,qdist,qparm1,qparm2,N,x0,t0,T);

%

% END INPUT FOR JUMP-DIFFUSION SIMULATOR.

%%

function jdsimulator(idiff,ijump,qdist,qparm1,qparm2,N,x0,t0,T)

kfig = 0; % figure counter.

dt = (T-t0)/N; % Get number of intervals/samples and time step.

kjd = 4 - 2*idiff - ijump;

NP = N + 1; % Number of plot points = number of time steps + 1.

sqrtdt = sqrt(dt); % Set standard Wiener increment moments.

tv = t0:dt:T; % Compute time vector;

sv = zeros(size(tv)); ldtv = zeros(size(tv));

muv = mu(tv); % Get time-dependent coefficient vectors

if idiff == 1, sv = sigma(tv); end

if ijump == 1, ldtv = dt*lambda(tv); end

muddt = (muv - sv.^2/2)*dt; % Get diffusion corrected drift term.

if qdist == 1 % Average nu(Q)=exp(Q)-1 for UNIFORM Q-Dist.

numean = (exp(qparm2)-exp(qparm1))/(qparm2-qparm1)-1;

elseif qdist == 2 % Average nu(Q)=exp(Q)-1 for NORMAL Q-Dist.

numean = exp(qparm1-qparm2/2)-1;

end

% Compute Theoretical Mean State Path

% E[X(t+dt)] = X(t)*exp(E[dX(t)|X(t)=x]/x), x0 > 0:

XM = zeros(1,NP); % preallocate mean state.

XM(1) = x0;

for i = 1:N

XM(i+1) = XM(i)*exp(muv(i)*dt+numean*ldtv(i));

end

kstates = 4; kv = [1,5,9,10]; % selected random states.

XS = zeros(NP,kstates); % preallocate global state array.

% Begin Sample Path Calculation:

for k = 1:kstates % Test Multiple Simulated Sample Paths:

if idiff == 1

randn(’state’,kv(k)); % Set initial normal state

% for repeatability.

DW = sqrtdt*randn(1,N); % Generate normal random vector

% of N samples for DW(t).

end

if ijump == 1

rand(’state’,kv(k)); % Set initial uniform state

‘‘bk0allfinal’’

2007/1/7

page C23

i

i

i

i

i

i

i

i

C.15. Program: Simulated Linear Mark-Jump-Diffusion Sample Paths C23

% for repeatability.

DU = rand(1,N); % Generate Uniform random vector DP(t)

if qdist == 1 %Generate Uniform random mark vector Q samples.

Q = qparm1+(qparm2-qparm1)*rand(1,N);

elseif qdist == 2 %Generate Normal random mark vector Q samples.

sj = sqrt(qparm2); Q = qparm1+sj*randn(1,N);

end

ul = (1-ldtv)/2; ur = 1-ul; % Set vector centered jump

% probability thresholds,

end

YS = zeros(1,N+1); % preallocate state exponent for efficiency.

XS(1,k) = x0; % Set kth initial state.

for i = 1:N % Simulated Sample paths by Increment Accumulation:

YS(i+1) = YS(i) + muddt(i); % Add dY-drift:

% Add diffusion increment:

if idiff == 1, YS(i+1) = YS(i+1)+ sv(i)*DW(i); end

% Using centered part of uniform distribution, with

% acceptance-rejection, to avoid open end point bias:

if ijump == 1

if DU(i) <= ur(i) && DU(i) >= ul(i) % Jump if in [ul,ur]

YS(i+1) = YS(i+1) + Q(i); % If jump, +Y-jump amplitude.

end % Else no jump, so do not add anything.

end

XS(i+1,k) = x0*exp(YS(i+1));% Invert exponent to get state.

end % i

end % k

% Sample Mean State:

XSM = zeros(1,NP);

for i = 1:NP

XSM(i) = mean(XS(i,:));

end

% Begin Plot:

scrsize = get(0,’ScreenSize’);

ss = 5.2; dss = 0.2; ssmin = 3.0;

kfig = kfig + 1;

stitle = {’Linear Mark-Jump-Diffusion Simulations’ ...

,’Linear Diffusion Simulations’ ...

,’Linear Mark-Jump Simulations’};

sylabel = {’X(t), Jump-Diffusion State’,’X(t), Diffusion State’ ...

,’X(t), Jump State’};

slegend = {’X(t), State 1’,’X(t), State 5’ ...

,’X(t), State 9’,’X(t), State 10’...

,’XM(t), th. Mean=E[X(t)]’,’XSM(t), Sample Mean’};

fprintf(’\n\nFigure(%i): Linear Jump-Diffusion Simulations\n’,kfig)

figure(kfig)

plot(tv,XS(1:NP,1),’k+-’ ...

‘‘bk0allfinal’’

2007/1/7

page C24

i

i

i

i

i

i

i

i

C24 Appendix C. Appendix Online: MATLAB Programs

,tv,XS(1:NP,2),’k:’ ...

,tv,XS(1:NP,3),’k--’ ...

,tv,XS(1:NP,4),’k-.’ ...

,tv,XM(1:NP),’k-’,tv,XSM(1:NP),’b.-’ ...

,’LineWidth’,2); % Add for more States?

title(stitle(kjd),’Fontsize’,24,’FontName’,’Helvetica’...

,’FontWeight’,’Bold’);

ylabel(sylabel(kjd),’Fontsize’,24,’FontName’,’Helvetica’...

,’FontWeight’,’Bold’);

xlabel(’t, Time’,’Fontsize’,24,’FontName’,’Helvetica’...

,’FontWeight’,’Bold’);

legend(slegend,’Location’,’Best’,’Fontsize’,16,...

’FontName’,’Helvetica’,’FontWeight’,’Bold’);

haxis = gca;

set(haxis,’Fontsize’,20,’FontName’,’Helvetica’...

,’FontWeight’,’Bold’,’linewidth’,2);

ss = max(ss - dss,ssmin);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss 60 scrsize(3)*0.60 scrsize(4)*0.80]); %[l,b,w,h]

%

% End JDSimulator Code

%

% linear Time-Dependent SDE Coefficient Functions:

% (Change with application; functions must be vectorizable,

% using vector element dot operations or vector functions.)

%

function v = mu(t)

% drift coefficient example, change with applications:

v = 0.1*sin(t);

% end mu(t)

%

function v = sigma(t)

% drift coefficient example, change with applications:

v = 1.5*exp(-0.01*t);

% end sigma(t)

%

function v = lambda(t)

% drift coefficient example, change with applications:

v = 3.0*exp(-t.*t);

% end lambda(t)

%%

‘‘bk0allfinal’’

2007/1/7

page C25

i

i

i

i

i

i

i

i

C.16. Program: Euler-Maruyama Simulations for Linear Diffusion SDE C25

C.16 Program: Euler-Maruyama Simulations for
Linear Diffusion SDE

%%

function sdeeulersim

% Euler-Maruyama Simulations: Linear, Time-Dep. Coeff. SDE,

% dX(t) = X(t)(mu(t)dt+sigma(t)dW(t)), X(0) = x0, t0 < t < tf,

% Given Initial data: x0, t0, tf, Nt; functions: f, g

clc

x0 = 1; t0 = 0; tf = 5; Nt = 2^10;

randn(’state’,8);

DT = tf/Nt; sqrtdt = sqrt(DT);

Xeul(1) = x0; Xexact(1) = x0; Xdiff(1) = Xeul(1) - Xexact(1);

t = [t0:DT:tf];

DW = randn(1,Nt)*sqrtdt;

W = cumsum(DW); % Note: omits initial zero value; count is off by 1;

%

for k = 1:Nt % Exact formula to fine precision for exact consistency:

Xexact(k+1) = xexact(x0,t(k+1),W(k));

end

% Lumped coarse sample from fine sample:

L = 2^3; NL = Nt/L; KL = [0:L:Nt]; DTL = L*DT; tL = [t0:DTL:tf];

fprintf(’(N_t,NL)=(%i,%i); Size(t,KL,tL)=[(%i,%i);(%i,%i);(%i,%i)];’...

,Nt,NL,size(t),size(KL),size(tL));

for k = 1:NL % Euler-Maruyama formula to coarse precision:

DWL = sum(DW(1,KL(k)+1:KL(k+1)));

Xeul(k+1) = Xeul(k) + f(Xeul(k),tL(k))*DTL+g(Xeul(k),tL(k))*DWL;

Xdiff(k+1) = Xeul(k+1) - Xexact(KL(k+1));

end

%

scrsize = get(0,’ScreenSize’);

ss = [3.0,2.8,2.6,2.4,2.2,2.0];

%

nfig = 1;

figure(nfig);

plot(tL,Xeul,’k--’,’linewidth’,3); hold on

plot(t,Xexact,’k-’,’linewidth’,3); hold off

axis([t0 tf 0 max(max(Xeul),max(Xexact))]);

title(’Euler-Maruyama and Exact Linear SDE Simulations’...

,’Fontsize’,36,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

xlabel(’t, Time’...

,’Fontsize’,32,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

ylabel(’X(t), State’...

,’Fontsize’,32,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

legend(’Xeul(t): Euler’,’Xexact(t): Exact’,’Location’,’Best’);

set(gca,’Fontsize’,28,’FontName’,’Helvetica’,’FontWeight’,’Bold’...

“bk0allfinal”
2007/1/7
page C26

i

i

i

i

i

i

i

i

C26 Appendix C. Appendix Online: MATLAB Programs

,’linewidth’,3);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss(nfig) 70 scrsize(3)*0.60 scrsize(4)*0.80]);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

Xdiffmax = max(abs(Xdiff));

fprintf(’\nMaximal Euler-Exact Absolute Error:’);

fprintf(’\n max(abs(Xeul(TL)-Xexact(TL)))=%8.2e=%8.2e*DTL;\n’...

,Xdiffmax,Xdiffmax/DTL);

% (N_t,NL) = (1024,128); Size(t,KL,tL) = [(1,1025);(1,129);(1,129)];

% Maximal Euler-Exact Abs. Error:

% max(abs(Xeul(TL)-Xexact(TL))) = 1.31e+00 = 3.36e+01*DTL;

%

nfig = nfig+1;

figure(nfig);

plot(tL,Xdiff,’k-’,’linewidth’,3);

axis tight;

title(’Euler and Exact Linear SDE Simulations Error’...

,’Fontsize’,32,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

xlabel(’t, Time’...

,’Fontsize’,32,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

ylabel(’Xeul(t)-Xexact(t), Error’...

,’Fontsize’,32,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

set(gca,’Fontsize’,28,’FontName’,’Helvetica’,’FontWeight’,’Bold’...

,’linewidth’,3);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss(nfig) 70 scrsize(3)*0.60 scrsize(4)*0.80]);

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function y = f(x,t)

mu = 1/(1+0.5*t)^2;

y = mu*x;

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function y = g(x,t)

sig = 0.5;

y = sig*x;

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function y = xexact(x0,t,w)

% exact solution if available for general linear SDE:

mubar = 2-2/(1+0.5*t); sig = 0.5; sig2bar = sig^2*t/2;

y = x0*exp(mubar-sig2bar + sig*w);

%

% end sdeeulersim.m

%%

‘‘bk0allfinal’’

2007/1/7

page C27

i

i

i

i

i

i

i

i

C.17. Program: Milstein Simulations for Linear Diffusion SDE C27

C.17 Program: Milstein Simulations for Linear
Diffusion SDE

%%

function sdemilsteinsim

% Milstein SDE Simulations: Linear, Time-Dep. Coeff. SDE

% dX(t) = X(t)(mu(t)dt+sigma(t)dW(t)), X(0) = x0, t0 < t < tf,

% Given Initial data: x0, t0, tf, Nt; functions: f, g

clc

x0 = 1; t0 = 0; tf = 5; Nt = 2^12;

randn(’state’,8);

DT = tf/Nt; sqrtdt = sqrt(DT);

Xmil(1) = x0; Xeul(1) = x0; Xexact(1) = x0;

Xdiff(1) = Xmil(1) - Xexact(1);

Xmileul(1) = Xmil(1) - Xeul(1);

t = [t0:DT:tf];

DW = randn(1,Nt)*sqrtdt;

W = cumsum(DW); % Note: omits initial zero value; count if off by 1;

for k = 1:Nt % Exact formula to fine precision for exact consistency:

Xexact(k+1) = xexact(x0,t(k+1),W(k));

end

% Lumped coarse sample from fine sample:

L = 2^3;

NL = Nt/L; KL = [0:L:Nt]; DTL = L*DT; tL = [t0:DTL:tf];

fprintf(’(N_t,NL)=(%i,%i); Size(t,KL,tL)=[(%i,%i);(%i,%i);(%i,%i)];’...

,Nt,NL,size(t),size(KL),size(tL));

for k = 1:NL % Milstein and Euler formulas to coarse precision:

DWL = sum(DW(1,KL(k)+1:KL(k+1)));

Xmil(k+1)=Xmil(k)+f(Xmil(k),tL(k))*DTL+g(Xmil(k),tL(k))*DWL...

+0.5*g(Xmil(k),tL(k))*gx(Xmil(k),tL(k))*(DWL^2-DTL);

Xeul(k+1)=Xeul(k)+f(Xeul(k),tL(k))*DTL+g(Xeul(k),tL(k))*DWL;

Xdiff(k+1) = Xmil(k+1) - Xexact(KL(k+1));

Xmileul(k+1) = Xmil(k+1) - Xeul(k+1);

end

%

scrsize = get(0,’ScreenSize’);

ss = [3.0,2.8,2.6,2.4,2.2,2.0];

%

nfig = 1;

figure(nfig);

plot(tL,Xmil,’k--’,’linewidth’,3); hold on

% plot(tL,Xeul,’k:’,’linewidth’,3); hold on

plot(t,Xexact,’k-’,’linewidth’,3); hold off

axis([t0 tf 0 max(max(max(Xmil),max(Xeul)),max(Xexact))]);

title(’Milstein and Exact Linear SDE Simulations’...

,’Fontsize’,36,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

‘‘bk0allfinal’’

2007/1/7

page C28

i

i

i

i

i

i

i

i

C28 Appendix C. Appendix Online: MATLAB Programs

xlabel(’t, Time’...

,’Fontsize’,32,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

ylabel(’X(t), State’...

,’Fontsize’,32,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

hlegend = legend(’Xmil(t): Milstein’,’Xexact: Exact’...

,’Location’,’Best’);

set(hlegend,’Fontsize’,32,’FontName’,’Helvetica’...

,’FontWeight’,’Bold’);

set(gca,’Fontsize’,28,’FontName’,’Helvetica’

,’FontWeight’,’Bold’,’linewidth’,3);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss(nfig) 70 scrsize(3)*0.60 scrsize(4)*0.80]);

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

Xdiffmax = max(abs(Xdiff));

fprintf(’\nMaximal Milstein-Exact Absolute Error:’);

fprintf(’\n max(abs(Xmil(TL)-Xexact(TL)))=%8.2e=%8.2e*DTL;\n’...

,Xdiffmax,Xdiffmax/DTL);

% (N_t,NL) = (1024,128); Size(t,KL,tL) = [(1,1025);(1,129);(1,129)];

% Maximal Milstein-Exact Absolute Error:

% max(abs(Xmil(TL)-Xexact(TL))) = 1.23e+00 = 3.16e+01*DTL;

% Maximal Milstein-Euler Absolute Error:

% max(abs(Xmil(TL)-Xeul(TL))) = 9.54e-01 = 2.44e+01*DTL;

%

nfig=nfig+1;

figure(nfig);

plot(tL,Xdiff,’k-’,’linewidth’,3);

axis tight;

title(’Milstein and Exact SDE Simulations Error’...

,’Fontsize’,36,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

xlabel(’t, Time’...

,’Fontsize’,32,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

ylabel(’Xmil(t)-Xexact(t), Error’...

,’Fontsize’,32,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

set(gca,’Fontsize’,28,’FontName’,’Helvetica’,’FontWeight’,’Bold’...

,’linewidth’,3);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss(nfig) 70 scrsize(3)*0.60 scrsize(4)*0.80]);

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

Xmileulmax = max(abs(Xmileul));

fprintf(’\nMaximal Milstein-Euler Absolute Error:’);

fprintf(’\n max(abs(Xmil(TL)-Xeul(TL))) = %8.2e = %8.2e*DTL;\n’...

,Xmileulmax,Xmileulmax/DTL);

‘‘bk0allfinal’’

2007/1/7

page C29

i

i

i

i

i

i

i

i

C.18. Program: Monte Carlo Simulation Comparing Uniform and Normal Errors C29

%

nfig=nfig+1;

figure(nfig);

plot(tL,Xmileul,’k-’,’linewidth’,3);

axis tight;

title(’Milstein and Euler SDE Simulations Difference’...

,’Fontsize’,36,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

xlabel(’t, Time’...

,’Fontsize’,32,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

ylabel(’Xmil(t)-Xeul(t), Difference’...

,’Fontsize’,32,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

set(gca,’Fontsize’,28,’FontName’,’Helvetica’,’FontWeight’,’Bold’...

,’linewidth’,3);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss(nfig) 70 scrsize(3)*0.60 scrsize(4)*0.80]);

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function y = f(x,t)

mu = 1/(1+0.5*t)^2;

y = mu*x;

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function y = g(x,t)

sig = 0.5;

y = sig*x;

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function y = gx(x,t)

sig = 0.5;

y = sig;

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function y = xexact(x0,t,w)

% exact solution if available for general linear SDE:

mubar = 2-2/(1+0.5*t); sig = 0.5; sig2bar = sig^2*t/2;

y = x0*exp(mubar-sig2bar + sig*w);

%

% end sdemilsteinsim.m

%%

C.18 Program: Monte Carlo Simulation Comparing
Uniform and Normal Errors

%%

function mcm0unifnorm

‘‘bk0allfinal’’

2007/1/7

page C30

i

i

i

i

i

i

i

i

C30 Appendix C. Appendix Online: MATLAB Programs

% Book Chapter 10 Sims, Section Monte Carlo;

% compare error for uniform and normal on

% int(exp(-x^2/2)/sqrt(2*pi),x=-R..R)

clc

clear

%

global R V

%

fprintf(’Compare Uniform and Normal Monte Carlos:\n’);

n = 100; srtn = sqrt(n);

R=5; V = 2*R;

fprintf(’\nn=%i; R=%6.4f; V=%6.4f;\n’,n,R,V);

% erfc(x) = 2\sqrt(pi)*int(exp(-t^2),t=x..infty);

% normcdf(x)=0.5*erfc(-x/sqrt(2));

exact = 0.5*(erfc(-R/sqrt(2))-erfc(+R/sqrt(2)));

sig2uexact = 2.5/sqrt(pi)*(erf(R)-erf(-R))-exact^2;

sig2nexact = exact*(1-exact);

fprintf(’\nexact integral = %10.8f;’,exact);

fprintf(’\nsig2unifexact = %9.4e; sigunifexact = %9.4e;’...

,sig2uexact,sqrt(sig2uexact));

fprintf(’\nsig2normexact = %9.4e; signormexact = %9.4e;\n’...

,sig2nexact,sqrt(sig2nexact));

U = -R+V*rand(1,n);

X = randn(1,n);

for i=1:n

fuv(i)=fu(U(i));

fnv(i)=fn(X(i));

end

% Monte Carlo estimators:

sun = mean(fuv);

snn = mean(fnv);

fprintf(’\nsunifn=%10.8f; snormn=%10.8f;’,sun,snn);

fprintf(’\nsunifnabserror=%9.4e%%; snormnabserror=%9.4e%%;’...

,sun-exact,snn-exact-1);

fprintf(’\nsunifnrelerror=%9.4e%%; snormnrelerror=%9.4e%%;\n’...

,100*(sun/exact-1),100*(snn/exact-1));

% Monte Carlo variance estimators:

sig2un = var(fuv); % MATLAB var(x); gives unbiased variance

sig2nn = var(fnv);

fprintf(’\nsig2unifn=%9.4e; sig2normn=%9.4e;’,sig2un,sig2nn);

fprintf(’\nsig2unifnabserror=%9.4e%%; sig2normnabserror=%9.4e%%;’...

,sig2un-sig2uexact,sig2nn-sig2nexact);

fprintf(’\nsig2unifnrelerror=%9.4e%%; sig2normnrelerror=%9.4e%%;\n’...

,100*(sig2un/sig2uexact-1),100*(sig2nn/sig2nexact-1));

% std. errors:

seunifexact = sqrt(sig2uexact)/srtn;

‘‘bk0allfinal’’

2007/1/7

page C31

i

i

i

i

i

i

i

i

C.19. Program: Monte Carlo Simulation Comparing Uniform and Normal Errors C31

senormexact = sqrt(sig2nexact)/srtn;

seunifn = sqrt(sig2un)/srtn;

senormn = sqrt(sig2nn)/srtn;

fprintf(’\nstderrunifexact=%9.4e; stderrnormexact=%9.4e;’...

,sqrt(sig2uexact)/srtn,sqrt(sig2nexact)/srtn);

fprintf(’\nstderrunifn=%9.4e; stderrnormn=%9.4e;’...

,sqrt(sig2un)/srtn,sqrt(sig2nn)/srtn);

fprintf(’\nstderrunifndiff=%9.4e; stderrnormndiff=%9.4e;\n’...

,seunifn-seunifexact,senormn-senormexact);

%

%%%%%

function y = fu(x)

global R V

y = V*exp(-x.*x/2)/sqrt(2*pi);

%%%

function y = fn(x)

global R V

y = 1;

if abs(y)>R, y=0; end

%%%%%

%

% end mcm0unifnorm.m

%

%%

C.19 Program: Monte Carlo Simulation Comparing
Uniform and Normal Errors

%%

function mcm1test

% mcm1test: Monte Carlo Method, nx = 1 dim, uniform dist,

% I = int(F(x),x=a..b), F(x) = sqrt(1-x^2), -1 <= a < b <= +1;

% technically, f(x) = (b-a)F(x) = (b-a)*sqrt(1-x^2) to account for

% uniform density phi(x) = 1/(b-a) on [a,b], so I = meanf.

%

clc; clear

%

fprintf(’Monte Carlo Test of 1-dim Uniform Dist. on (a,b)’);

fprintf(’\n with F(x)=sqrt(1-x^2) and f(x) = (b-a)F(x):\n’);

a = 0; b = +1; % -1 <= a < b <= +1;

% integral of f(x) = sqrt(1-x^2); on [a,b]:

IntExact = 0.5*(asin(b)-asin(a))+0.5*(b*sqrt(1-b^2)-a*sqrt(1-a^2));

MufExact = IntExact;

Sigf = sqrt((b-a)^2*(1-(b^2+a*b+a^2)/3)-MufExact^2);

fprintf(’\nk n muhatn mufExact sighatn Sigf stderrn AbsErrorf\n’);

‘‘bk0allfinal’’

2007/1/7

page C32

i

i

i

i

i

i

i

i

C32 Appendix C. Appendix Online: MATLAB Programs

kmax = 7;

for k = 1:kmax

rand(’state’,0); % set state or seed

n(k) = 10^k; % sample size, k = log10(n(k)) ;

x = a+(b-a)*rand(n(k),1); % get n(k) X 1 random sample on (a,b);

f = (b-a)*sqrt(1-x.^2); % vectorized f;

meanf(k) = mean(f); % E[f(X)];

sigf(k) = std(f); % sqrt(sigmaf^2), sigmaf^2 = unbiased variance of f;

sigdrn(k) = sigf(k)/sqrt(n(k));

error(k) = abs(meanf(k)-MufExact);

fprintf(’%1i %8i %6.4f %6.4f %9.3e %9.3e %9.3e %9.3e\n’...

,k,n(k),meanf(k),MufExact,sigf(k),Sigf,sigdrn(k),error(k))

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

scrsize = get(0,’ScreenSize’);

ss = [3.0,2.8,2.6,2.4,2.2,2.0];

%

nfig = 1;

figure(nfig);

kv = [1:kmax];

plot(kv,meanf,’k-o’,’linewidth’,3,’MarkerSize’,12); hold on

plot(kv,sigf,’k-x’,’linewidth’,3,’MarkerSize’,12); hold off

axis([min(kv) max(kv) 0 1]);

title(’Monte Carlo Results, Uniform Dist., F(x) = sqrt(1-x^2)’...

,’Fontsize’,36,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

xlabel(’log(n), Log_{10} Sample Size’...

,’Fontsize’,32,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

ylabel(’f-Moments \mu_n, \sigma_n’...

,’Fontsize’,32,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

legend(’\mu_n, Mean-est.’,’\sigma_n, StdDev-est.’,’Location’,’Best’);

set(gca,’Fontsize’,28,’FontName’,’Helvetica’,’FontWeight’,’Bold’,’linewidth’,3);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss(nfig) 70 scrsize(3)*0.60 scrsize(4)*0.80]);

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

nfig = nfig+1;

figure(nfig);

kv = [1:kmax];

plot(kv,log10(sigdrn),’k-o’,’linewidth’,3,’MarkerSize’,12); hold on

plot(kv,log10(error),’k-x’,’linewidth’,3,’MarkerSize’,12); hold off

ymin = min(min(log10(sigdrn)),min(log10(error)));

ymax = max(max(log10(sigdrn)),max(log10(error)));

axis tight; %axis([min(kv) max(kv) ymin ymax]);

title(’Monte Carlo Errors, Uniform Dist., F(x) = sqrt(1-x^2)’...

‘‘bk0allfinal’’

2007/1/7

page C33

i

i

i

i

i

i

i

i

C.20. Program: Monte Carlo Acceptance-Rejection Technique C33

,’Fontsize’,36,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

xlabel(’log(n), Log_{10} Sample Size’...

,’Fontsize’,32,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

ylabel(’f-Errors log(StdError_n), log(AbsError_n)’...

,’Fontsize’,32,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

legend(’log_{10}(StdError_n)’,’log_{10}(AbsError_n)’,’Location’,’Best’);

set(gca,’Fontsize’,28,’FontName’,’Helvetica’,’FontWeight’,’Bold’,’linewidth’,3);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss(nfig) 70 scrsize(3)*0.60 scrsize(4)*0.80]);

%%

%

% end mcm1test.m

%

%%

C.20 Program: Monte Carlo Acceptance-Rejection
Technique

%%

function mcm2acceptreject

% mcm2acceptreject: Monte Carlo Method, nx = 1 dim, normal dist.,

% I = int(F(x),x=a..b), F(x) = exp(-x^2/2)/sqrt(2pi), -1 <= a < b <= +1;

% technically, f(x) = I_{x in [a,b]} to account for truncated integral,

% so I = meanf.

%

clc; clear

%

fprintf(’Monte Carlo and Finite Difference Comparison:’);

fprintf(’\n including Acceptance-Rejection Technique Application,’);

fprintf(’\n with Normal Dist. on (a,b)’);

fprintf(’\n and with int(F(x),x=a..b), F(x) = exp(-x^2/2)/sqrt(2pi);\n’);

%

a = -2; b = 2; % limits of integration;

nfd = 100; % number of finite difference steps;

kmax = 7;

nmc = 10^kmax; % select Monte Carlo random sample size;

F = inline (’exp(-x.*x/2)./sqrt(2*pi)’,’x’); % x in [a,b]

% Thus, relative to the normal density, f(x)={1, x in [a,b]; 0, else};

h = (b - a)/nfd; % step size;

% Trapezoid Rule (see also MATLAB trapz(x,y) built-in function):

trap = (F(a)+F(b))/2;

for i = 1:nfd-1,

trap = trap+F(a+i*h);

end

trap = h*trap;

‘‘bk0allfinal’’

2007/1/7

page C34

i

i

i

i

i

i

i

i

C34 Appendix C. Appendix Online: MATLAB Programs

fprintf(’\n%3i-point Trapezoidal Rule: I(-1,1) = %.6f\n’,nfd+1,trap);

% Simpson’s (1/3) Rule:

simp = F(a)+F(b);

for i = 1:nfd-1

if mod(i,2)

simp =simp+ 4*F(a + i*h);

else

simp=simp+2*F(a + i*h);

end

end

simp = h*simp/3;

fprintf(’\n%3i-point Simpson’’s rule: I(-1,1) = %.6f\n’,nfd+1,simp);

% MATLAB quad built-in function (adaptive Simpson’s rule, default 1.e-6 accuracy):

tol = 1.e-9;

quadfn = quad(F,a,b,tol);

fprintf(’\n%7.1e-accurate quad: = %.6f\n’,tol,quadfn);

% Direct von Neumann Acceptance-Rejection Technique:

fprintf(’\nMonte Carlo results by von Neumann’’s Acceptance-Rejection technique:\n’);

fprintf(’\n k n muhatn stderrn\n’);

nac = 0;

x = randn(nmc,1); % MATLAB nmc X 1 normal distribution;

for n = 1:nmc

if (x(n) >= a) & (x(n) <= b)

nac = nac + 1; % counts accepted points;

end

if (n==10)|(n==100)|(n==1000)|(n==10000)|(n==100000)|(n==1000000)|(n==nmc)

k = log10(n);

kv(k) = k;

muhatn(k) = nac/n;

stderrn(k) = sqrt(muhatn(k)*(1-muhatn(k))/(n-1));

fprintf (’%2i %8i %8.6f %9.3e\n’,k,n,muhatn(k),stderrn(k));

end

end

fprintf(’\n 101-pt. trap: %8.6f %9.3e*’,trap,abs(trap-quadfn));

fprintf(’\n 101-pt. simp: %8.6f %9.3e*’,simp,abs(simp-quadfn));

fprintf(’\n accurate: %8.6f %9.3e*’,quadfn,abs(quadfn-quadfn));

fprintf(’\n * Absolute Errors\n’);

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

scrsize = get(0,’ScreenSize’);

ss = [3.0,2.8,2.6,2.4,2.2,2.0];

%

nfig = 1;

figure(nfig);

kv = [1:kmax];

plot(kv,muhatn,’k-o’,’linewidth’,3,’MarkerSize’,12); hold on

‘‘bk0allfinal’’

2007/1/7

page C35

i

i

i

i

i

i

i

i

C.21. Program: Monte Carlo Multidimensional Integration C35

plot(kv,stderrn*10,’k-x’,’linewidth’,3,’MarkerSize’,12); hold off

axis([min(kv) max(kv) 0 1]);

title(’Monte Carlo Results, Normal Dist., F(x) = \phi_n(x) on [a,b]’...

,’Fontsize’,36,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

xlabel(’log(n), Log_{10} Sample Size’...

,’Fontsize’,32,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

ylabel(’Moments \mu_n, 10*std-err_n’...

,’Fontsize’,32,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

legend(’\mu_n, Mean-est.’,’10*std-err_n’,’Location’,’Best’);

set(gca,’Fontsize’,28,’FontName’,’Helvetica’,’FontWeight’,’Bold’,’linewidth’,3);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss(nfig) 70 scrsize(3)*0.60 scrsize(4)*0.80]);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% end mcm2acceptreject.m

%

%%

C.21 Program: Monte Carlo Multidimensional
Integration

%%

function mcm3multidim

% mcm3multidim: Monte Carlo Multidimensional Integration,

% nx = 2:5 dims, normal distribution,

% I = int(F(x),x=a..b), F(x) = exp(-sum(x.^2)/2)/sqrt(2*pi)^nx,

% so f(x) = I_{a<= x <= b}, an indicator function using vector inequalities.

%

clc; clear

%

fprintf(’Monte Carlo Multidimenstional Integration:’);

fprintf(’\n including Acceptance-Rejection Technique Application,’);

fprintf(’\n with Normal Dist. on (a,b)’);

fprintf(’\n and with int(F(x),x=a..b), F(x) = exp(-x.^2/2)/sqrt(2pi)^nx;\n’);

%

nxmax = 5; % dimension

kmax = 6; % power of 10

f = inline (’exp(-sum(x.*x)/2) / sqrt(2*pi)^length(x)’,’x’);

for nx = 2:nxmax

a = -2*ones(1,nx); % lower vector limit

b = 2*ones(1,nx); % upper vector limit

for k = 1:kmax

nmc(k) = 10^k; % sample size

nac = 0;

for n = 1:nmc(k)

‘‘bk0allfinal’’

2007/1/7

page C36

i

i

i

i

i

i

i

i

C36 Appendix C. Appendix Online: MATLAB Programs

x = randn(1,nx); % MATLAB 1Xnmc normal distribution;

if (x >= a) & (x <= b) % von Neumann accept-reject technique

nac = nac + 1; % counts accepted points;

end

end

muhatn(k,nx) = nac/nmc(k);

stderrn(k,nx) = sqrt(muhatn(k,nx)*(1-muhatn(k,nx))/(nmc(k)-1));

end

end

%

fprintf(’\nMonte Carlo results in mutlidimension,’);

fprintf(’\n by von Neumann’’s Acceptance-Rejection technique:\n’);

fprintf(’\nMonte Carlo Mean Estmate, muhatn:’);

fprintf(’\n k n nx=2 nx=3 nx=4 nx=5\n’);

for k = 1:kmax

fprintf (’%2i %8i %8.6f %8.6f %8.6f %8.6f\n’...

,k,nmc(k),muhatn(k,2:nxmax));

end

fprintf(’\nMonte Carlo Std Error Estmate, stderrn:’);

fprintf(’\n k n nx=2 nx=3 nx=4 nx=5\n’);

for k = 1:kmax

fprintf (’%2i %8i %9.3e %9.3e %9.3e %9.3e\n’...

,k,nmc(k),stderrn(k,2:nxmax));

end

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

scrsize = get(0,’ScreenSize’);

ss = [3.0,2.8,2.6,2.4,2.2,2.0];

%

nfig = 1;

figure(nfig);

kv = [1:kmax];

plot(kv,muhatn(:,2),’k-o’...

,kv,muhatn(:,3),’k-x’...

,kv,muhatn(:,4),’k-+’...

,kv,muhatn(:,5),’k-*’...

,’linewidth’,3,’MarkerSize’,14);

axis([min(kv) max(kv) 0.5 1]);

title(’Monte Carlo Means, Normal Dist., F(x) = \phi_n(x) on [a,b]’...

,’Fontsize’,36,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

xlabel(’log(n), Log_{10} Sample Size’...

,’Fontsize’,32,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

ylabel(’Mean Estimates, \mu_n’...

,’Fontsize’,32,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

legend(’nx = 2’,’nx = 3’,’nx = 4’,’nx = 5’,’Location’,’Best’);

set(gca,’Fontsize’,28,’FontName’,’Helvetica’,’FontWeight’,’Bold’,’linewidth’,3);

“bk0allfinal”
2007/1/7
page C37

i

i

i

i

i

i

i

i

C.21. Program: Monte Carlo Multidimensional Integration C37

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss(nfig) 70 scrsize(3)*0.60 scrsize(4)*0.80]);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

nfig = nfig+1;

figure(nfig);

kv = [1:kmax];

plot(kv,stderrn(:,2),’k-o’...

,kv,stderrn(:,3),’k-x’...

,kv,stderrn(:,4),’k-+’...

,kv,stderrn(:,5),’k-*’...

,’linewidth’,3,’MarkerSize’,14);

axis tight; % axis([min(kv) max(kv) 0 0.2]);

title(’Monte Carlo Std. Errors, Normal Distribution on [a,b]’...

,’Fontsize’,36,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

xlabel(’log(n), Log_{10} Sample Size’...

,’Fontsize’,32,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

ylabel(’Std. Errors, stderr_n’...

,’Fontsize’,32,’FontName’,’Helvetica’,’FontWeight’,’Bold’);

legend(’nx = 2’,’nx = 3’,’nx = 4’,’nx = 5’,’Location’,’Best’);

set(gca,’Fontsize’,28,’FontName’,’Helvetica’,’FontWeight’,’Bold’,’linewidth’,3);

set(gcf,’Color’,’White’,’Position’ ...

,[scrsize(3)/ss(nfig) 70 scrsize(3)*0.60 scrsize(4)*0.80]);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% end mcm3multidim.m

%

%%

