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1. Introduction

1.1 Background:

e Black-Scholes-Mertorn(2 seminal papers in Spring '73 leading to 9
Nobel Prize in Economics for Scholes and Merton, Black dymg
'95) option pricing formula is based upon a purely geometimear)
diffusion process and its associated log-normal distiaout

e Statistical evidencé¢hat jumps are significant in financial markets:

— Stock and Option Prices in Ball and Torous ('85);
— Capital Asset Pricing Model in Jarrow and Rosenfeld ('84);

— Foreign Exchange and Stocks in Jorion (’89).
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1.2 Market Jump Properties:

Log-return market distributions usualbkewed negativé data time
interval sufficiently long compared to the skew-less normal
distribution.

Log-return market distributions usualgptokurtic, i.e., more peaked
than the normal distribution.

Log-return market distribution havatter or heavier tailsthan the
normal distribution’s exponentially small tails.

Stochastic dependence of volatilifgtandard deviation) is important.

Time-dependencef rate coefficients is important, i.e., non-constan
coefficients are important.
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1.3 Merton’s Jump-Diffusion Option Pricing Model:

e In Merton’s ("76) pioneering jump-diffusion option pricing mdel
he used log-normally distributed jump-amplitudes in a coomml
Poisson process.

Merton argued that theortfolio volatility could not be hedgeds in
the Black-Scholes’ pure diffusion case, but that the riskitral
property could preserve the no-arbitrage strategy by ewgtinat the
discounted, expected return would be at the market ratejjthibut
relying on measure theory.

Merton’s solution is the expected value ofiafinite set of
Black-Scholes’ call option pricing formulagach one the initial
stock price shifted by a jump factor depending on the number o
jumps which have a Poisson distribution.
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1.4 Risky Asset Stock Pric&(t), Dynamics at timet:

e Linear, Constant Rate Stochastic Differential Equation [H):

(Tk)J(Qk)> :

whereS(0) = Sy > 0 and

— u = expected rate of returmn absence of asset jumps, i.e.,

diffusive drift;
— o = diffusive volatility (standard deviation);
— W (t) = Wiener(diffusion or Brownian motionprocess

normally distributed such th&t[1/ (¢)] = 0 andVar[W (t)] = ¢;
— J(Q) = Poisson jump-amplitudevith underlyingrandom mark

variable @, selected for log-return so th@& = In(J(Q) + 1),

such that/(Q) > —1;
— NN (t) = Poisson jump counting proces®oisson distributed

such thafs[ N (t)] = At = Var[N(¢)];
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1.4 Continued: Stock Price Dynamics:

— T, is thepre-jump timeandQy is an independent and

identically distributed11D) mark realization at the:th jump;
— The processel/ (t) and P(t) along with@; areindependent

except that),. depends on a jump-event’at.

e Uniform Probability Jump-Amplitude Density.

I, a<qg<b
0, else ’

— Mark Mean p; = Eg|[Q] = 0.5(b + a);
— Mark Variance 05 = Varg[Q] = (b — a)*/12;
— Jump-Amplitude Mean

(exp(b) —exp(a))

o ~1.

J=E[J(Q)]=E[exp(Q)—1]=
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1.5 Uniform Distribution Motivation:

e Extreme jumpsn the market areelatively rareamong the large
number of daily fluctuations and as statistical outliery thie very
difficult, some say impossible, to include in statisticahlysis of

financial market data. With little information on the jump
component, we focus here on theiform jump-amplitudewith the
fattest of tails and finite rangethat is consistent with thidYSE
circuit breakers(since 1988) on extreme market changes.
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1.6 Log-Returnln(S(t)) SDE and Solution:

e According tolt0’s stochastic chain ruldor jump-diffusions

dIn(S(t)) = (i — o2 /2)dt + adW (t)
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2. RiIsk-Neutral Constant-Coefficient Problems
First a critical theorem:
Theorem 2.1: Expected Jump-Diffusion Stock Price

E[S(t)] = So exp((1 + AJ)t),

whereS(t) is given in (1) and/.
Proof: Using the mutual independence of the diffusion, Poissomitog
and IID mark processes with separated and iterated exmattat

N(t) - ]
E[S(t)] — Soe(u—JQ/z)tE |:60'W(t)621._1 Q;

1=0

| N ()
_0'2 O' .
— Soe(” /Q)tEW(t) [6 W(t)}EN(t) EQ|N |:| | 6Ql N(t):| :|

k

k=0 1=0

where the Poisson distributiom;, (\t) = e~ *(\t)* /k! has been used.
O
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2.2 Risk-Neutral Assumptions:
After Merton’s discontinuous paper (1976),

e Jumps are due to Extreme Changes in Firm’s Specifics, i.@;dstematic Risks,
e.g., bankruptcy, adverse legal rulings, unfavorableipiifalimportant discoveries,
etc.

Portfolio-Market Return Correlatiobeta (i.e., Cov[Rgs, Rys|/Var[Ry], where
returnRx = AX/X for X =5 or M) is Zeroand can be constructed biglta (i.e.,

0V /0.S) Hedging.

e Thus, Jump-Diffusion Model is Arbitrage-Free

e .". Risk-Neutral World
— E[S(t)] = Soexprt = p+ A =7 => pt = prn =7 — \J.

— Similarly, for time-dependent coefficients,

u(t) = pea(t) = v — AE[J(t, Q)].
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2.3 Risk-Neutral Jump-Diffusion SDE:

Under Risk-Neutral Measur#1.,, in principle,

dN(t)
dS(t)/S(t) = (r=\J) dt+odW (t)+ > J(Qy)

k=1
AN (1)

= rdt+odW (t) + Z (J(Qr)—J)+J (AN (t)—Adt),
k=1

where jump terms are separated into the zero-mean forme of th
compound Poisson process for convenience.
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3. Risk-Neutral Option Price Solutions

3.1 Risk-Neutral European Call Option:
Under Risk-Neutral Valuation with Measure!,.,, with drift z,,,, the

Payoff for European Call Option using Stock Prieg) having exercise
price K at exercise timé' is

C(So,T) = e ""Ep[max(S(T) — K,0)]

e~ T OO o0
= L(AT) / / (SOeDJ(Z’Sk>—K>
k Zo(Sk)

e~ /2gb§k (sk)dzdsk

1 E > S & —T
- S [ (e
k=0

Zo(Sk)

-6_22/2dZ],
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3.1 Continued: Risk-Neutral Options:
where the scaled jump-diffusion exponent is

DJ(z,8)=(r—AJ—02/2)T4+0VTz+s,
the At-The-Moneyfor standard normal integration variable is
Zo(s)=(In(K/So)—(r—AJ—c2/2)T—s)/(cVT)

and the partial sum df uniformly distributed IID marks is

k
Sk=> Qi
i=1

on [a, b] andsy, is the corresponding realized variable, such Brat Z?:qu; = 0.
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3.2 Black-Scholes Type Splitting of Integral:

1 3o

\/—2_77 Zo(s)
Soes—Aqu) (d1 (SOGS—AJT)) ,

A(S) SOe—(>\J_—|—a2/2)T—|—aﬁz—|—se—z2/2dz

1 o0 _

B(s) = \/—2_7T oo Ke ™ Te " 2ds=Ke T o (dg (SOeS_AJT)) :

1 Yy
a \V 27 — 00

Is the standardized normal distribution and

D (y) e~ /24

di(z)=(n(z/K)+(r+02/2)T)/(cVT) & do(z)=di(z) — VT

are the usuaBlack-Scholes normal distribution argument functions
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3.2 Continued: Splitting:

5 C(S0,T) = ) pr(AT)Eg, —A(§k>—B(§k)}
k=0 )

;EO Pr(AT)Eg | So oSkAIT Cb(dl(So egk—AJ_T) )

—Ke™ T (I)(Clg(SO egk_A jT) ) ] .

ipk()‘T)E§k [C(BS)(Soegk—AjT, T K, UQ,T)]7 2)
k=0

CBN(z, T, K,o%,r)=2®(d(z))— Ke "T®(da(x))

Is theBlack-Scholes formula (1973)out with the stock price argument shifted by a jump
factorexp(Sy —AJT).
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3.3 Put-Call Parity Generally Valid:
Put-call parity is founded orbasic maximum function properties

(Merton (1973), Hull (2000) and Higham (2004)), so is indegent of
the particular process,

C(S(),T) + Ke_TT — P(SO,T) + S()

or solving for European put option pride(Sy, T'),
P(S(), T) — C(S(), T) -+ Ke ™ — So, (3)

assuming no dividends or transaction fees and that Euragadboption
priceC(Sp, T') is known.
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4. Monte Carlo Simulations

For Monte Carlo simulations (e.g., see Glasserman (200 -uropean
call option price formula (2) can be equivalently writtemuguactly as

C(So,T) = Eg(T)[C(BS) (Soeg(T)—AJT’ T)}, 4)

directly in terms of the compound Poisson proc8é%) :ZN(T@,L with
uniformly distributed 11D random variableg; on [a, b).

~

Remark: If the zero mean procesé(T) S(T)—XI'J, where
exp(ATJ) = Elexp(S(T))], thenexp(S(T')) is an exponential
compound Poisson process wﬁklponentlal martingalgoroperty on
0, 7] thatE[exp(S(T))] =exp(S(0)) =1.
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4.1 Compound Poisson Simulation Samples:

Let INV; be allD Poisson variate sample pointaken from the distribution
of N(T') for :=1:n sample points. Given a jump iN;, letU;_ ; bellD
uniformly generated on [0, 1] sample poinfsr j=1:N,, then

Si =Y (a+ (b—a)U;;) = aN; + (b—a) 32, U; ; will be 11D
compound Poisson random variables on [a, b] having the same
distribution asS (7).

An elementary Monte Carlo (EMC) estimater C(Sy,T) is

~ 1 — S \J 1
Cr =~ 3 CE (SoeS T 1) =

such that thcéz.(BS) are IID random variables based 5‘{1

F. B. Hanson and Z. Zhu — 19 — UIC and NMIC



4.2 Variance Reduction Technigues: Antithetic Variates:
Variance reduction techniques can reduce the sm%oht reasonable
computatlonal cost. It; ; is uniformly distributed ono, 1], then the
Q;.; =a-+ (b — a)U; ; are uniformly distributedttetic) random
variables ona, b], so are thantithetic counterparts

QY =a+(b—a)(1-U;;) andS!" = (b+a)N; — S; are IID
random variables for = 1:n having the same compound Poisson
distribution asS (T'). Let thethetic-antithetic averagedBlack-Scholes
risk-neutral, discounted payoff be

X; :0.5(@BS)+@“BS)) , (5)

where the antithetic*?%) = (&) (55"’ =T 7Y fori = 1:n, with
thetic-antithetic averaged jump factor

Y, = 0.5 (exp( ) + exp (g( ))) , (6)

So the antithetic and thetic variates can be use togetheuble the
sample size without significant computational cost (Bog{&/(7)).
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4.3 Variance Reduction Techniques: Control Variates:
SinceElexp(S;(T))] = exp(ATJ) from Theorem 2.1 anekp(S; (7)) has
positive correlation witI@(B o ), so thecontrol variatestechnique can also
be used to reduce the variance of Monte Carlo estimatiorkingfaster
the higher the correlation. The antithetic variate and imwariate
variance reduction technigues can be combined, the cadjosted

payoff is

Zi(a) = X; —a-(Y; —exp(ATJ)), (7)

where(Y; —exp(ATJ)) is thecontrol deviationand« is anadjustable
control parameter The sample mean df; («) produces thélonte
Carlo estimatorfor C(.So, T'), since

Zn()=3"" Zi(a)/n =X —a(Y ,—exp(ATJ)), IS an unbiased estimatio
with E[Z,,(a)]=C(So, T) using IID mean properties
E[X,]|=E[X;]=C(So,T) andE[Y | =E[Y;] =exp(A\T'J) from the proof
of Thm. 2.1.
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4.3 Continued: Combined Antithetic and Control Variates:

The variance o ,, (o )ISO’Zn( ,=Var Zn(a)|=Var[Z;(a)]/n,

following from IID property of theZ; («). However,
Var[Z;(a)|=Var[X;] —2aCov[X;, Yi] +a’ Var[Y;].
So, the optimal parameter* to minimizeVar[Z; («)] is
o* = Cov[X;, Y;]/Var[Y;].
Using this optimal parameter*,
Var[Z]] = Var[Z;(a*)]= (1 — pX, v,) Var[X;],

wherepx vy, is the correlation coefficient betweéesy andY;. We also know that

1
Var[X;]| = 5 (1—|—p5§35),5§a35)) Var {@-(BS)}

é\(aBS)} [ BS)} |

becausé/ar [
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4.4 Estimation of Optimal Parametedx™:

In general, the parameter* is not known exactly, so estimation is needed along with the
following results.

Lemma4.1:

3. a(a)
Var |:€Sl —|—e$i

} _9 (eATj _262>\Tj_|_€>\T(e“+b—1))
whereJ = (exp(2b) — exp(2a))/(2(b—a))—1andJ = (exp(b) — exp(a))/(b—a)—1.
Proof: Follows from properties of the antithetic pdis;,5(*).

Lemma 4.2:An unbiased estimator fat™ is

o3 ’

n—1

whereX,, = >7 | X;/n is the sample mean, simlarly fofY,, andY .
Proof: Basically, the condition for an unbiased estimatgr] = o* can be shown to be

true.
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4.4 Continued: Estimation ofx™:

Sincea depends ory; for ¢ = 1:n, the estimater of o* introduces a bias into the estimate
of control adjusted payoff

i:l

Theorem 4.3:The estimateZ,, of C(So, T) has bias

Bn=E[Zn]—-C(So, T) = Cov[X, (2uy =Y ))Y]]/(no¥) = O(1/n),

wherepy = E[Y;] = exp(A\TJ), 0% = Var|Y;], Y has same distribution &s, for
1 = lin.

Proof: This follows from the IID property of X;Y; }.
Remark: The corrected unbiased estimat@@ is Z, = 2n — l?n, where

XY, - X,Y',

Oy
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4.5 Monte Carlo Algorithm:
Finally, our Monte Carlo algorithm with antithetic and caoitvariates
(ACV Monte Carlg variance reduction techniques :
for i1=1:n
Randonmly generate N; by Inverse Transform Met hod;
Random y generate 11D U”, j =1:Ny;
Set S; = aN; —I—(b—a)z LU
Set 5\ = (a+b)N; — 3
et ¢(PS) —¢(B9) (Soexp (i - )\TJ) T);

Set ¢{*"9 =9 (Syexp (8 = ATT),T);
Set X; =0.5 (" +c(*"9);

Set Y; =0.5 (exp(s\}-) + exp (:9}”));
end % or |
Corrpute a according to (9);

Set Zn_leX a(tsor . vi—eMYy;
Esti mate bias B, accordi ng to (11);
Get European call Zp = Zn — By

Get Eur opean put P by (3).
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5. Monte Carlo Simulation Results

Table 1:Elementary (no ACV) Monte Carlo Resultsee Discussion)

o K/So C P € t(sec) | eVt

09| 13.76 | 0.67 | 0.055 2.640 | 0.090
1.0 5.26 | 3.28 | 0.035 2.578 | 0.056
1.1 1.38 8.49 | 0.014 2.562 | 0.022
09| 1599 | 290 | 0.048 2.562 | 0.077
1.0 8.45 6.47 | 0.033 2.578 | 0.053
1.1 4.07 | 11.18 | 0.020 2.531 | 0.032
09| 19.15| 6.03 | 0.044 2.454 | 0.069
0.6 1.0 | 11.79| 9.81 | 0.033 2.500 | 0.052
1.1 7.09 | 14.21 | 0.023 2.500 | 0.036

Option parameters: K = 100, = 0.1,T = 0.2, A = 64, a = —0.028, b = 0.026.
Simulation count, = 10,000. Here,e = o5 = o(P5) /\/n.
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Table 2:Improved ACV Monte Carlo Resultésee Discussion)

o K/So C P € t(sec) | eVt

09| 13.73| 0.64 | 0.004 6.875 | 0.011
1.0 5.23 3.25 | 0.008 6.828 | 0.021
1.1 1.38 8.49 | 0.006 6.781 | 0.016
09| 16.03| 2.94 | 0.004 /7.031 | 0.011
1.0 8.42 6.44 | 0.004 6.922 | 0.011
1.1 4.06 | 11.17 | 0.004 7.218 | 0.011
09| 19.11| 6.02 | 0.003 6.797 | 0.008
0.6 1.0 | 11.81| 9.83 | 0.003 6.859 | 0.008
1.1 7.12 | 14.23 | 0.003 6.812 | 0.008

Option parameters: K = 100, = 0.1,T = 0.2, A = 64, a = —0.028, b = 0.026.
Simulation count, = 10, 000. Here,e = 05 = oz /+/n.
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5. Continued: Discussion of Table 1 and 2 Results:

Table 1 and Table 2 show that tA€V Monte Carlo reduces the
standard errore by a factor ranging from 2 to about 14, botreases
the computing timeoy 2 to 3 times. However, a better benchmark
trade-off ise\/¢, (Boyle, Broadie and Glasserman (1997)).

Results show that thieuropean callC option price is anncreasing
function of initial stock price Sy and theEuropean putP is a
decreasing functiorof Sj.

Both thecall C and put’P option prices increase with volatility.

The estimated model parameters used for following Table3 ar
1=0.1626, 0 =0.1074, A=64.16, a =—0.028, b=0.026 from our
double-unform distribution paper (Zhu and Hanson (200%)) t
compute the Standard & Poor 500 index option prices.
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Table 3: Comparison of Option Prices by ACV Monte Carl¢see
Discussion)

K

So

P

C(BS)

Pp(BS)

C*

P*

0.8

269.81

0.01

2.e-3

269.80

2.e-6

269.82

0.02

0.9

132.36

1.45

0.03

130.98

0.07

132.39

1.47

1.0

40.07

20.27

0.11

30.49

10.69

40.05

20.25

1.1

5.49

76.60

0.06

1.13

72.24

5.50

76.61

1.2

0.31

147.17

0.01

4.e-3

146.87

0.32

147.19

Option parameters: K = 1000, r = 0.1, T = 0.2. S&P 500 estimated parameters:
o =0.1074, A\ = 64, a = —0.028, b = 0.026. Simulation count: = 10, 000. Here,
€e=0y = oz /+/n. TheC* andP* values are obtained by more simulations, say
n = 400, 000 sample points, as a good approximation of the true values.
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5. Continued: Discussion of Table 3 Results:
e Computation oBlack-Scholes call price&(Z5) (S, T; K, 02, r) and
put price
PBI (S, T K, 0%, r)=C B (S, T; K,0%, r)+ K exp(—rT)—S
only gives arough estimationof the true values.

Table 3 shows that the estimateall C and put’P values by ACV
Monte Carlo are within the95% confidence intervabf the
approximate truecall C* and putP* values, i.e.,

C € [C* —1.96¢,C* + 1.96¢] or P € [P* — 1.96¢, P* + 1.96¢| by the
central limit theorem.

Theorem 5.1Jump-Diffusion European option prices are bigger
than Black-Scholes option pricesndependent of th&-mark
distribution, i.e.C(Sy, T; K, 02, 7) > CB5)(Sy, T; K,0?,r), and
P(So, T; K,0% r) > PPBI(Sy, T, K,0%,1).
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6. Conclusions

e Formulated a Risk-Neutral SDE appropriate for Compound
Jump-Diffusions, with emphasis on log-uniformly distrided
jump-amplitudes

Antithetic and Control Variates (ACV) Monte Carlo is a
significant improvemendf the elementary (no ACV) Monte Carlo
lacking these variance reduction techniques

Jump-diffusion option prices are biggethan pure-diffusion
Black-Scholes option prices

Framework of ACV Monte Carlo option pricing algorithm is g€
generaland can easily be applied to other jump-diffusion models
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