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1. Introduction
1.1 Background:

• Black-Scholes-Merton(2 seminal papers in Spring ’73 leading to ’97

Nobel Prize in Economics for Scholes and Merton, Black dyingin

’95) option pricing formula is based upon a purely geometric(linear)

diffusion process and its associated log-normal distribution.

• Statistical evidencethat jumps are significant in financial markets:

– Stock and Option Prices in Ball and Torous (’85);

– Capital Asset Pricing Model in Jarrow and Rosenfeld (’84);

– Foreign Exchange and Stocks in Jorion (’89).
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1.2 Market Jump Properties:

• Log-return market distributions usuallyskewed negativeif data time

interval sufficiently long compared to the skew-less normal

distribution.

• Log-return market distributions usuallyleptokurtic, i.e., more peaked

than the normal distribution.

• Log-return market distribution havefatter or heavier tailsthan the

normal distribution’s exponentially small tails.

• Stochastic dependence of volatility(standard deviation) is important.

• Time-dependenceof rate coefficients is important, i.e., non-constant

coefficients are important.
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1.3 Merton’s Jump-Diffusion Option Pricing Model:

• In Merton’s (’76) pioneering jump-diffusion option pricing model,
he used log-normally distributed jump-amplitudes in a compound

Poisson process.

• Merton argued that theportfolio volatility could not be hedgedas in

the Black-Scholes’ pure diffusion case, but that the risk-neutral

property could preserve the no-arbitrage strategy by ensuring that the

discounted, expected return would be at the market rate, allwithout

relying on measure theory.

• Merton’s solution is the expected value of aninfinite set of
Black-Scholes’ call option pricing formulaseach one the initial

stock price shifted by a jump factor depending on the number of

jumps which have a Poisson distribution.
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1.4 Risky Asset Stock Price,S(t), Dynamics at timet:

• Linear, Constant Rate Stochastic Differential Equation (SDE):

dS(t) = S(t)


µdt + σdW (t) +

dN(t)∑

k=1

S(T−

k )J(Qk)


 ,

whereS(0) = S0 > 0 and

– µ = expected rate of returnin absence of asset jumps, i.e.,
diffusive drift;

– σ = diffusive volatility (standard deviation);
– W (t) = Wiener(diffusion or Brownian motion)process,

normally distributed such thatE[W (t)] = 0 andVar[W (t)] = t;
– J(Q) = Poisson jump-amplitudewith underlyingrandom mark

variableQ, selected for log-return so thatQ = ln(J(Q) + 1),
such thatJ(Q) > −1;

– N(t) = Poisson jump counting process, Poisson distributed
such thatE[N(t)] = λt = Var[N(t)];
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1.4 Continued: Stock Price Dynamics:

– T −

k is thepre-jump timeandQk is an independent and

identically distributed(IID) mark realization at thekth jump;
– The processesW (t) andP (t) along withQk areindependent,

except thatQk depends on a jump-event atTk.

• Uniform Probability Jump-AmplitudeQ Density:

φQ(q) =
1

b − a





1, a ≤ q ≤ b

0, else



 ,

– Mark Mean µj ≡ EQ[Q] = 0.5(b + a);

– Mark Varianceσ2
j ≡ VarQ[Q] = (b − a)2/12;

– Jump-Amplitude Mean:

J̄≡E[J(Q)]≡E[exp(Q)−1]=
(exp(b)−exp(a))

(b−a)
−1.
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1.5 Uniform Distribution Motivation:

• Extreme jumpsin the market arerelatively rareamong the large

number of daily fluctuations and as statistical outliers they are very

difficult, some say impossible, to include in statistical analysis of

financial market data. With little information on the jump

component, we focus here on theuniform jump-amplitudewith the

fattest of tails and finite range, that is consistent with theNYSE
circuit breakers(since 1988) on extreme market changes.
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1.6 Log-Returnln(S(t)) SDE and Solution:

• According toIt ô’s stochastic chain rulefor jump-diffusions

d ln(S(t)) = (µ − σ2/2)dt + σdW (t) +

dN(t)∑

k=1

Qk .

• Easily integrated in continuous and jump components:

S(t) = S0 exp


(µ − σ2/2)t + σW (t) +

N(t)∑

k=1

Qk


 . (1)
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2. Risk-Neutral Constant-Coefficient Problems
First a critical theorem:

Theorem 2.1: Expected Jump-Diffusion Stock Price

E[S(t)] = S0 exp((µ + λJ̄)t),

whereS(t) is given in (1) andJ̄ .
Proof: Using the mutual independence of the diffusion, Poisson counting
and IID mark processes with separated and iterated expectations,

E[S(t)] = S0e
(µ−σ2/2)tE

»
eσW (t)e

PN(t)
i=1 Qi

–

= S0e
(µ−σ2/2)tEW (t)

h
eσW (t)

i
EN(t)

2
4EQ|N

2
4

N(t)Y

i=0

eQi

˛̨
˛̨
˛̨N(t)

3
5
3
5

= S0e
(µ−σ2/2)teσ2t/2

∞X

k=0

pk(λt)

kY

i=0

EQ

h
eQi

i
= S0e

(µ+λJ̄)t,

where the Poisson distributionpk(λt) ≡ e−λt(λt)k/k! has been used.
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2.2 Risk-Neutral Assumptions:
After Merton’s discontinuous paper (1976),

• Jumps are due to Extreme Changes in Firm’s Specifics, i.e., Non-Systematic Risks,

e.g., bankruptcy, adverse legal rulings, unfavorable publicity, important discoveries,

etc.

• Portfolio-Market Return Correlationbeta (i.e.,Cov[RS , RM ]/Var[RM ], where

returnRX =∆X/X for X =S or M ) is Zeroand can be constructed bydelta (i.e.,

∂V/∂S) Hedging.

• Thus, Jump-Diffusion Model is Arbitrage-Free.

• ∴ Risk-Neutral World

=⇒ E[S(t)] = S0 exp rt =⇒ µ + λJ̄ = r =⇒ µ = µrn ≡ r − λJ̄ .

– Similarly, for time-dependent coefficients,

µ(t) = µrn(t) ≡ r − λE[J(t, Q)].

F. B. Hanson and Z. Zhu — 11 — UIC and NMIC



2.3 Risk-Neutral Jump-Diffusion SDE:

Under Risk-Neutral MeasureMrn, in principle,

dS(t)/S(t) =
(
r−λJ̄

)
dt+σdW (t)+

dN(t)∑

k=1

J(Qk)

= rdt+σdW (t) +

dN(t)∑

k=1

(
J(Qk)−J̄

)
+J̄ (dN(t)−λdt) ,

where jump terms are separated into the zero-mean forms of the

compound Poisson process for convenience.
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3. Risk-Neutral Option Price Solutions
3.1 Risk-Neutral European Call Option:
Under Risk-Neutral Valuation with MeasureMrn with drift µrn, the

Payoff for European Call Option using Stock PriceS(t) having exercise

priceK at exercise timeT is

C(S0, T ) ≡ e−rT EM[max(S(T ) − K, 0)]

=
e−rT

√
2π

∞∑

k=0

pk(λT )

∫ kb

ka

∫ ∞

Z0(sk)

(
S0e

DJ(z,sk)−K
)

·e−z2/2φ eSk
(sk)dzdsk

=
1√
2π

∞∑

k=0

pk(λT )E eSk

[∫ ∞

Z0( eSk)

(
S0e

DJ(z, eSk))−rT − Ke−rT
)

·e−z2/2dz

]
,
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3.1 Continued: Risk-Neutral Options:
where the scaled jump-diffusion exponent is

DJ(z, s)≡(r−λJ̄−σ2/2)T +σ
√

Tz+s,

theAt-The-Moneyfor standard normal integration variable is

Z0(s)≡(ln(K/S0)−(r−λJ̄−σ2/2)T −s)/(σ
√

T )

and the partial sum ofk uniformly distributed IID marks is

eSk =
kX

i=1

Qi

on [a, b] andsk is the corresponding realized variable, such thateS0 =
P0

i=1Qi ≡ 0.
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3.2 Black-Scholes Type Splitting of Integral:
Let

A(s) ≡ 1√
2π

Z ∞

Z0(s)
S0e−(λJ̄+σ2/2)T+σ

√
T z+se−z2/2dz

= S0es−λJ̄T Φ
“
d1

“
S0es−λJ̄T

””
,

B(s) ≡ 1√
2π

Z ∞

Z0(s)
Ke−rT e−z2/2dz=Ke−rT Φ

“
d2

“
S0es−λJ̄T

””
,

Φ(y)≡ 1√
2π

Z y

−∞
e−z2/2dz

is the standardized normal distribution and

d1(x)≡(ln(x/K)+(r+σ2/2)T )/(σ
√

T ) & d2(x)≡d1(x) − σ
√

T

are the usualBlack-Scholes normal distribution argument functions.

F. B. Hanson and Z. Zhu — 15 — UIC and NMIC



3.2 Continued: Splitting:

∴ C(S0, T ) =
∞X

k=0

pk(λT )E eSk

h
A( eSk)−B( eSk)

i

=
∞X

k=0

pk(λT )E eSk

»
S0e

eSk−λJ̄T Φ
“
d1

“
S0e

eSk−λJ̄T
””

−Ke−rT Φ
“
d2

“
S0e

eSk−λJ̄T
””i

.

=
∞X

k=0

pk(λT )E eSk

h
C(BS)

“
S0e

eSk−λJ̄T, T ; K, σ2, r
”i

, (2)

where

C(BS)(x, T ; K, σ2, r)≡xΦ(d1(x))−Ke−rTΦ(d2(x))

is theBlack-Scholes formula (1973), but with the stock price argument shifted by a jump

factorexp( eSk−λJ̄T ).
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3.3 Put-Call Parity Generally Valid:
Put-call parity is founded onbasic maximum function properties
(Merton (1973), Hull (2000) and Higham (2004)), so is independent of

the particular process,

C(S0, T ) + Ke−rT = P(S0, T ) + S0

or solving for European put option priceP(S0, T ),

P(S0, T ) = C(S0, T ) + Ke−rT − S0, (3)

assuming no dividends or transaction fees and that Europeancall option

priceC(S0, T ) is known.
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4. Monte Carlo Simulations
For Monte Carlo simulations (e.g., see Glasserman (2004)),the European

call option price formula (2) can be equivalently written compactly as

C(S0, T ) = E eS(T )

[
C(BS)

(
S0e

eS(T )−λJ̄T , T
)]

, (4)

directly in terms of the compound Poisson processS̃(T )=
∑N(T )

i=1 Qi with

uniformly distributed IID random variablesQi on [a, b].

Remark: If the zero mean procesŝS(T )≡S̃(T )−λT J̄ , where

exp(λT J̄) = E[exp(S̃(T ))], thenexp(Ŝ(T )) is an exponential

compound Poisson process withexponential martingaleproperty on

[0, T ] thatE[exp(Ŝ(T ))]=exp(Ŝ(0))=1.
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4.1 Compound Poisson Simulation Samples:
Let Ni be aIID Poisson variate sample pointtaken from the distribution

of N(T ) for i=1:n sample points. Given a jump inNi, let Ui,j beIID
uniformly generated on [0, 1] sample pointsfor j =1:Ni, then

Ŝi =
∑Ni

j=1(a + (b − a)Ui,j) = aNi + (b − a)
∑Ni

j=1 Ui,j will be IID

compound Poisson random variables on [a, b] having the same

distribution asŜ(T ).

An elementary Monte Carlo (EMC) estimatefor C(S0, T ) is

Ĉn =
1

n

n∑

i=1

C(BS)
(
S0e

bSi−λJ̄T , T
)
≡ 1

n

n∑

i=1

Ĉ(BS)
i ,

such that thêC(BS)
i are IID random variables based on̂Si.
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4.2 Variance Reduction Techniques: Antithetic Variates:
Variance reduction techniques can reduce the size ofσbCn

at reasonable
computational cost. IfUi,j is uniformly distributed on[0, 1], then the
Q̂i,j =a+(b − a)Ui,j are uniformly distributed (thetic) random
variables on[a, b], so are theantitheticcounterparts

Q̂
(a)
i,j =a+(b − a)(1−Ui,j) andŜ(a)

i ≡ (b + a)Ni − Ŝi are IID
random variables fori = 1:n having the same compound Poisson
distribution asŜ(T ). Let thethetic-antithetic averaged, Black-Scholes
risk-neutral, discounted payoff be

Xi =0.5
“
bC(BS)
i + bC(aBS)

i

”
, (5)

where the antitheticbC(aBS)
i ≡ C

(BS)(S0e
bS(a)
i

−λJ̄T, T ) , for i = 1:n, with
thetic-antithetic averaged jump factor

Yi = 0.5
“
exp

“
bSi

”
+ exp

“
bS(a)

i

””
, (6)

So the antithetic and thetic variates can be use together to double the
sample size without significant computational cost (Boyle (1977)).
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4.3 Variance Reduction Techniques: Control Variates:
SinceE[exp( bSi(T ))] = exp(λT J̄) from Theorem 2.1 andexp( bSi(T )) has

positive correlation witĥC(BS)
i , so thecontrol variatestechnique can also

be used to reduce the variance of Monte Carlo estimation, working faster
the higher the correlation. The antithetic variate and control variate
variance reduction techniques can be combined, the controladjusted
payoff is

Zi(α) = Xi − α · (Yi − exp(λT J̄)) , (7)

where(Yi−exp(λT J̄)) is thecontrol deviationandα is anadjustable
control parameter. The sample mean ofZi(α) produces theMonte
Carlo estimatorfor C(S0, T ), since

Zn(α)≡
Pn

i=1Zi(α)/n =Xn−α(Y n−exp(λT J̄)), is an unbiased estimation

with E[Zn(α)]=C(S0, T ) using IID mean properties

E[Xn]=E[Xi]=C(S0, T ) andE[Y n]=E[Yi]=exp(λT J̄) from the proof

of Thm. 2.1.
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4.3 Continued: Combined Antithetic and Control Variates:

The variance ofZn(α) is σ2
Zn(α)

≡Var
ˆ
Zn(α)

˜
=Var[Zi(α)]/n ,

following from IID property of theZi(α). However,

Var[Zi(α)]=Var[Xi]−2αCov[Xi, Yi]+α2Var[Yi].

So, the optimal parameterα∗ to minimizeVar[Zi(α)] is

α∗ =Cov[Xi, Yi ]/Var[Yi ]. (8)

Using this optimal parameterα∗,

Var[Z∗
i ] ≡ Var[Zi(α

∗)]=
`
1 − ρ2

Xi,Yi

´
Var[Xi],

whereρXi,Yi
is the correlation coefficient betweenXi andYi. We also know that

Var[Xi] =
1

2

“
1+ρ bC(BS)

i
, bC(aBS)

i

”
Var

h
bC(BS)
i

i

becauseVar
h
bC(aBS)
i

i
=Var

h
bC(BS)
i

i
.
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4.4 Estimation of Optimal Parameterα∗ :
In general, the parameterα∗ is not known exactly, so estimation is needed along with the

following results.

Lemma 4.1:

Var

»
e

bSi +e
bS(a)
i

–
=2

“
eλT Ĵ−2e2λT J̄ +eλT (ea+b−1)

”
,

whereĴ = (exp(2b)− exp(2a))/(2(b−a))−1 andJ̄ = (exp(b)− exp(a))/(b−a)−1.

Proof: Follows from properties of the antithetic pair
`

bSi, bS(a)
i

´
.

Lemma 4.2:An unbiased estimator forα∗ is

bα =
n

n − 1

XY n −XnY n

σ2
Y

, (9)

whereXn =
Pn

i=1 Xi/n is the sample mean, simlarly forXY n andY n.

Proof: Basically, the condition for an unbiased estimateE[bα] = α∗ can be shown to be

true.
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4.4 Continued: Estimation ofα∗ :

Sincebα depends onYi for i = 1:n, the estimatebα of α∗ introduces a bias into the estimate

of control adjusted payoff

bZn≡
1

n

nX

i=1

Xi − bα
 

1

n

nX

i=1

Yi − eλT J̄

!
. (10)

Theorem 4.3:The estimatebZn of C(S0, T ) has bias

Bn≡E[ bZn]−C(S0, T )=Cov[X, (2µY −Y ])Y ]]/(nσ2
Y ) = O(1/n),

whereµY = E[Yi] = exp(λT J̄), σ2
Y = Var[Yi], Y has same distribution asYi, for

i = 1:n.

Proof: This follows from the IID property of{XiYi}.

Remark:The corrected unbiased estimate tobZn is bZn = bZn − bBn, where

bBn=
1

n − 1

XY
′

n − XnY
′

n

σ2
Y

, (11)

while Y
′

i =Yi(2µY −Yi), XY
′

n, Xn andY
′

n are sample means.
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4.5 Monte Carlo Algorithm:
Finally, our Monte Carlo algorithm with antithetic and control variates
(ACV Monte Carlo) variance reduction techniques :
for i = 1:n

Randomly generate Ni by Inverse Transform Method;
Randomly generate IID Ui,j, j = 1:Ni;
Set bSi = aNi + (b − a)

PNi

j=1 Ui,j;

Set bS(a)
i = (a + b)Ni − bSi;

Set C
(BS)
i = C

(BS)
“
S0 exp

“
bSi − λT J̄

”
, T
”
;

Set C
(aBS)
i = C

(BS)
“
S0 exp

“
bS(a)
i − λT J̄

”
, T
”
;

Set Xi = 0.5
“
C

(BS)
i + C

(aBS)
i

”
;

Set Yi = 0.5
“
exp( bSi) + exp

“
bS(a)
i

””
;

end %for i
Compute bα according to (9);
Set bZn = 1

n

Pn
i=1 Xi − bα( 1

n

Pn
i=1 Yi − eλT J̄);

Estimate bias bBn according to (11);
Get European call bZn = bZn − bBn;
Get European put bP by (3).
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5. Monte Carlo Simulation Results

Table 1:Elementary (no ACV) Monte Carlo Results(see Discussion)

σ K/S0 C P ǫ t (sec.) ǫ
√

t

0.9 13.76 0.67 0.055 2.640 0.090

0.2 1.0 5.26 3.28 0.035 2.578 0.056

1.1 1.38 8.49 0.014 2.562 0.022

0.9 15.99 2.90 0.048 2.562 0.077

0.4 1.0 8.45 6.47 0.033 2.578 0.053

1.1 4.07 11.18 0.020 2.531 0.032

0.9 19.15 6.03 0.044 2.454 0.069

0.6 1.0 11.79 9.81 0.033 2.500 0.052

1.1 7.09 14.21 0.023 2.500 0.036

Option parameters: K = 100, r = 0.1, T = 0.2, λ = 64, a = −0.028, b = 0.026.

Simulation countn = 10, 000. Here,ǫ = σ bCn
= σ(BS)/

√
n.
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Table 2:Improved ACV Monte Carlo Results(see Discussion)

σ K/S0 C P ǫ t (sec.) ǫ
√

t

0.9 13.73 0.64 0.004 6.875 0.011

0.2 1.0 5.23 3.25 0.008 6.828 0.021

1.1 1.38 8.49 0.006 6.781 0.016

0.9 16.03 2.94 0.004 7.031 0.011

0.4 1.0 8.42 6.44 0.004 6.922 0.011

1.1 4.06 11.17 0.004 7.218 0.011

0.9 19.11 6.02 0.003 6.797 0.008

0.6 1.0 11.81 9.83 0.003 6.859 0.008

1.1 7.12 14.23 0.003 6.812 0.008

Option parameters: K = 100, r = 0.1, T = 0.2, λ = 64, a = −0.028, b = 0.026.

Simulation countn = 10, 000. Here,ǫ = σ bZn
= σZ/

√
n.
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5. Continued: Discussion of Table 1 and 2 Results:
• Table 1 and Table 2 show that theACV Monte Carlo reduces the

standard errorǫ by a factor ranging from 2 to about 14, butincreases
the computing timeby 2 to 3 times. However, a better benchmark

trade-off isǫ
√

t, (Boyle, Broadie and Glasserman (1997)).

• Results show that theEuropean callC option price is anincreasing
function of initial stock price, S0 and theEuropean putP is a

decreasing functionof S0.

• Both thecall C and putP option prices increase with volatilityσ.

• The estimated model parameters used for following Table 3 are

µ=0.1626, σ=0.1074, λ=64.16, a=−0.028, b=0.026 from our

double-unform distribution paper (Zhu and Hanson (2005)) to

compute the Standard & Poor 500 index option prices.
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Table 3: Comparison of Option Prices by ACV Monte Carlo(see

Discussion)

K
S0

C P ǫ C(BS) P(BS) C∗ P∗

0.8 269.81 0.01 2.e-3 269.80 2.e-6 269.82 0.02

0.9 132.36 1.45 0.03 130.98 0.07 132.39 1.47

1.0 40.07 20.27 0.11 30.49 10.69 40.05 20.25

1.1 5.49 76.60 0.06 1.13 72.24 5.50 76.61

1.2 0.31 147.17 0.01 4.e-3 146.87 0.32 147.19

Option parameters: K = 1000, r = 0.1, T = 0.2. S&P 500 estimated parameters:
σ = 0.1074, λ = 64, a = −0.028, b = 0.026. Simulation countn = 10, 000. Here,

ǫ = σ bZn
= σZ/

√
n. TheC∗ andP∗ values are obtained by more simulations, say

n = 400, 000 sample points, as a good approximation of the true values.
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5. Continued2: Discussion of Table 3 Results:
• Computation ofBlack-Scholes call priceC(BS)(S0, T ; K, σ2, r) and

put price
P(BS)(S0, T ; K, σ2, r)=C(BS)(S0, T ; K, σ2, r)+K exp(−rT )−S0

only gives arough estimationof the true values.

• Table 3 shows that the estimatedcall C and putP values by ACV
Monte Carlo are within the95% confidence intervalof the

approximate truecall C∗ and putP∗ values, i.e.,

C ∈ [C∗ − 1.96ǫ, C∗ + 1.96ǫ] orP ∈ [P∗ − 1.96ǫ,P∗ + 1.96ǫ] by the

central limit theorem.

• Theorem 5.1Jump-Diffusion European option prices are bigger
than Black-Scholes option prices, independent of theQ-mark

distribution, i.e.,C(S0, T ; K, σ2, r) ≥ C(BS)(S0, T ; K, σ2, r), and

P(S0, T ; K, σ2, r) ≥ P(BS)(S0, T ; K, σ2, r).
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6. Conclusions
• Formulated a Risk-Neutral SDE appropriate for Compound

Jump-Diffusions, with emphasis on log-uniformly distributed
jump-amplitudes.

• Antithetic and Control Variates (ACV) Monte Carlo is a
significant improvementof the elementary (no ACV) Monte Carlo
lacking these variance reduction techniques.

• Jump-diffusion option prices are biggerthan pure-diffusion
Black-Scholes option prices.

• Framework of ACV Monte Carlo option pricing algorithm is quite
generaland can easily be applied to other jump-diffusion models.
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