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1. Introduction

1.1 Background:

e Merton’s 1971 pioneering J.E.T. paper on the optimal portim and
consumption problenfor geometric diffusions used HARA
(hyperbolic absolute risk-aversion) utility. Howevereta were
errors, in particular with the bankruptcy boundary comadhs and
vanishing consumption, some errors were due to the HARA imode
See also Merton’s 1969 lifetime portfolio paper in R.E.&S.

Merton’s optimal portfolio errorsare throughly discussed in the
seminal collection of papers with coauthors in Sethi’s lwaptcy
book in 1997. See his introduction, the KLS(ethi)S M.O.R84.9
paper and the J.E.T. 1988 paper with Taksar.
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1.2 Market Jump Properties:

e Statistical evidencé¢hat jumps are significant in financial markets:
— Stock and Option Prices in Ball and Torous ('85);
— Capital Asset Pricing Model in Jarrow and Rosenfeld ('84);
— Foreign Exchange and Stocks in Jorion (’89).
Log-return market distributions usuakbkewed negative

ns = Ms/(M-2)15 < 0, if data time interval sufficiently long,
compared to the skew-less normal distribution.

Log-return market distributions usualgptokurtic,
na = My/(M2)? > 3,i.e., more peaked than normal.

Log-return market distribution havatter or heavier tailsthan the
normal distribution’s exponentially small tails.

Time-dependencef rate coefficients is important, i.e., non-constan
coefficients are important; and stochastic volatility.
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1.3 Jump-Diffusion Models:

e Merton (J.F.E., 1976) in his pioneering jump-diffusion optn
pricing modelused 11D log-normally distributed jump-amplitudes
with a compound Poisson process. Other authors have alddhese
normal jump-applitude model.

e Kou (Mgt.Sci. 2002, and 2004 with Wang) used the 11D
log-double-exponential (Laplacepr option pricing.

e Hanson and Westmali(2001-2004) have a number of optimal
portfolio papers using various log-return jump-amplitude
distributions such adiscrete, normal and uniform distributions

e Jump-diffusions give skewness and excess-leptokurttsisarket
distributions.
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1.5 Jump Considerations:

e Extreme jumpsn the market areelatively rare (statistical outliers)
among the large number of daily fluctuations.

Alt-Sahalia (J.F.E., 2004) showldficulty in separating the jumps
from the diffusion by the usual maximum likelihood methods.

NYSE have had circuit breakers installesince 1988 to suppress
extreme market changes, like in the 1987 crash.

Uniform jump-amplitudeshave theattest of tails and finite range
consistent with circuit breakers and parsimony.

Bankruptcy conditionsalso need to be considered for the
jump-integrals of the jump-diffusion PIDEas we shall see for the
optimal portfolio problem; unlike the option pricing preoh.
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2.0 Log-Return Double-Uniform Amplitude Density:

e Linear Stochastic Differential Equation (SDE)

dP (t)

dS(t) = S(t)(pa(t)dt+oa(t)dG(0)+ S ST )I(T7 Qr), ()

k=1
whereS(0) = Sy > 0 and
— pq(t) = expected rate of returmn absence of asset jumps, i.e.,
diffusive drift;

— o4(t) = diffusive volatility (standard deviation);

— G(t) = Brownian motion or diffusion processnormally
distributed such thdi[dG(t)] = 0 andVar|dG(t)] = dt;

— P(t) = Poisson jump counting proces®oisson distributed
such thatt|dP(t)] = A(t)dt = Var|dP(t)];
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2.0 Continued: Stock Price Dynamics:

— J(t, Q) = Poisson jump-amplitudevith underlyingrandom
mark variableQ, selected for log-return so that
Q=In(J(t,Q)+ 1), suchthat/(t,Q) > —1;

— T, is thepre-jump timeand Q) is an independent and
identically distributed11D) mark realization at the:th jump;

— Theprocesse$+(t) and P(t) along with Qy, are independent
except that);. is conditioned on a jump-event @&},.
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2.1 Double-Uniform Probability Jump-Amplitude
(Q Mark Distribution:

®a(ait) = (0 8 Iacacor + (PO 220y ) Tosaco

F1p<q<oo}s p1(t) +p2(t) =1, a(t) <0 <b(t),
Mark Mean: 1.;(t) = Eq|Q] = (p1(t)a(t) + p2(t)b(t))/2;

Mark Variance:

02(t) = Varg[Q) = (p1(£)a®(t) + pa()62(£))/3 — u2(1);

Mark Higher Central Moments:
M5 (t) = Bol(Q — (1))
= (pr(t)a’ () +p2(t)b° (£)) /4 — p; () (305 (£) 4415 (1))
ME" () = Bol(Q — 1y (1)'] = (pr(8)a™ (£)+pa(£) (1)) /5
—Ap; () MGV () — 6415 ()03 (£) — i (1),
More motivation: Double-uniform distribution unlinks the different
behaviors in crashes and rallies.
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2.2 Log-Returnln(S(t)) SAE:

e According to a discrete form dfd’s stochastic chain ruldor
jump-diffusions

Aln(S(t)) = In(S(t + At)) — In(S(t))
>~ (pa(t) + A()p; () At + oa(t) AG(1)

AP
+115 () (AP() = AB)AL) + S0l Q1 = (1),
separated into convenient zero-mean stochastic termsewhe

a(t) = pa(t) — o5(t)/2 and0 < At < 1.

e Some Moments o\ In(S(¢)):
M{™V (1) = BIAI(S())] = (ma(t) + Mt)p; (1) At
Mz () = Var[AIn(S(1))] = (03(8) + A1) (15 () + 075 (1)) At,
M) = B (Mn(s0)] - M 0)]

= (p1(t)a’(t) + p2 ()b (1)) A (1) At /4,
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2.3 Log-Return Double-Uniform Probability Density
Theorem 2.3 Let

Aln(S(t)) = G(1)

whereG(t) = pua(t) At + o4 AG(t) is the Gaussian term.
Then the probability density ak In(5(%)) is

dujd 00 (dujd)
Pa sy (@) = Lo mAMADSG I (@)

= 2 o pr (A AN (),

for sufficiently smallAt and—oco < & < +o00, wherepy (A(t)At) is the
Poisson distribution with paramet&(t) At and the multiple-convolution,
Poisson distribution coefficients are

k
](fdujd) (I‘) — <¢g(t) H(*(/bQ’L)) (33)
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2.3 Some theorem special details:
In the case of the correspondingrmalized second order approximation

Baratsoy (@) = Ti_o Pk AR AL SV (2) /5o Pr(A(2)AY)
where the density coefficients are given by
$YY (@) = " (w3, 0%)

for k = 0, whereg™ (z; 1, 0%) is the normal distribution with megmand
varianceo”, while here(u, o) = (wa(t),o3(t)) At, fork = 1,

dujd n
V@) =+ EE e (at), 050 — p, 0)

+ES O (0,b(t); 2 — 1, 07)

where®™) (a, b; 1, o) is the normal distribution of, b) with density
¢'™ (x5 u, 0*), and fork = 2, see the Zhu and Hanson in the 2006 Sethi volumg¢
for qbgd“jd) () since the formula and proof are too long to present here.
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2.4 Jump-Diffusion Parameter Estimation:

e S&P 500 Index Data:from 1988 to 2003 witm(sP) = 4036 daily
closings, sAA[In(SP;)] = In(SP;41)—In(SP;) fori = 1:nP) —
discrete log-returns.

Basic Statistics:M ™) ~ 3.640 x 1074, M) ~ 1.075 x 1074,
(Sp) (sp)/( (sp))l 5~ 0.1952 < 0,
<Sp> = M) /(MEP)Y? ~ 6.974 > 3.
Yearly Partitioning: A[ln(SPif’?)] fork =1: '"«ff?i data points per
year forj, = 1:16 years.
Six-Dimensional Parameter Spacésiven AT; ~ 1/252 years/day,

— . 2 . . . .
Yiy, — (Nld,gya Od,j, > Viys bgya P15, Agy) .

Maximum Likelihood Obijective:

n (5P)
'y .’]y

dujd,?2
f(yiy) = Z log <¢(A 1,}]1(5(1))(3%3 ij)> .
k=1
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2.5 Computational Procedures:

e Optimization Techniques: Nelder-Mead down-hill simplexathod
using thef mi nsear ch function implementation of MATLABM,
needing only one new function evaluation for each succesdap to
test for best new search direction.

e Constraint Techniques: Barrier techniquegsed to enforce

O-c2l,jy > 0, aj, < 0, bjy > O,pl,jy c [O, 1) andAjy > 0.

e Some Average Values:

(B, 0dy phj, 05) == (0.17,0.10,3.1 x 107%,8.6 x 107?) .
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2.6 Results forgq(t), oa(t)) and ;(t), o;(t)):

Diffusion Parameters: ,(t) & 0,,(t) versus t Jump Parameters: |(t) & o,(t) versus t
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(a) Diffusion parametergz(t) & oq4(t). (b) Jump parametergi;(t) & o;(t).
Figure 1: Jump-diffusion mean and variance parametgtgz )\, oq(t) )

and (u;(t), o;(t)) ont € [1988,2004.5], represented as piecewise linegr
Interpolation of yearly averages assigned to the mid-year.
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2.7 Results forX(t) /500, p;(t) ) and @(t), b(t)):

More Jump Parameters: A(t)/500 & p , (t) versus t More Jump Parameters: a(t) & b(t) versus t
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(a) Jump parameter:(t) /500 & p1 (). (b) Jump parametersi(t) & b(t).
Figure 2: More jump parameters\(¢) /500, p1(t) ) and @(t), b(t)) on
t € [1988,2004.5], represented as piecewise linear interpolation of yeafly
averages assigned to the mid-year.
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2.8 Results for Skewness and Kurtosis Coefficients:

Skewness Coeff|C|ents (Sp) (t) & r](dujd) (t) versus t
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Kurtosis Coefficients: r]fp)(t) & nid“jd) (t) versus t
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(a) Skewness coefficientsi™ & n{™%V).  (b) Kurtosis coefficients (™) & (%),

Figure 3: Comparison of skewness and kurtosis coefficients for both
S&P500 data and the estimated double-uniform jump diffusialues ont €

[1988,2004.5], represented as piecewise linear interpolation of yeargrages
assigned to the mid-year.
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3.0 Optimal Portfolio and Consumption Policies:

e Portfolio: Riskless asset doond at price B(t) and Risky asset or
stock at priceS(t) (1), with instantaneous portfolio change fractiong
Uo(t) andU; (t), respectively, such thdfy(t) + U7 (t) = 1.

e Exponential Bond Price Process:

dB(t) =r(t)B(t)dt, B(0) = By .

e Jump-diffusion Portfolio Wealth Proces3V (t),
Less ConsumptiorC(t):

dW (t) = W (t) (r(t)dt 1 Ui(t) ((,ud(t) —r(t))dt

)
Foa(t)dG(t) + YIEP (@ — 1>)> - C)dt

subject to constrainti (t) > 0,0 < C(t) < C{™™) W (¢) and
ulm™™ < U t) < U™ allowing shortselling (min) 0)
and borrowing (]émax) > 1).
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3.1 Portfolio Optimal Objective

e Portfolio Objective:

v*(t, w) = ?leag]f [E le—ﬁ(t,tf)uf(W(tf))

ty
—I—/ e BLIY(C(s)) ds
t

‘W(t) — w,U;(t) = u, C(t) = c”

Cumulative Discount:3(t, s) ft 7)dr, wherej(t) is the
Instantaneous discount rate.

Consumption and Final Wealth Utility Functions{(c) andi/¢(w)
are bounded, strictly increasing and strictly concave.

Variable ClassesState variable isv, while control variables are
andc.

Final Condition: v*(t¢, w) = Us(w).
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3.2 Absorbing Natural Boundary Condition:
Approaching bankruptcyw — 07, so by consumption constraint
¢ — 07 and by the objective (3),

ty
v*(t,0%) = U (0F) e7PH4) +14(07) / e PtIds.  (4)
t

This is the simple variant what Merton gave as a correctidmnsri990
book for his 1971 optimal portfolio paper. However, KLAS(g6 1986
and Sethi with Taksar 1988 pointed out that it was necessagyiforce
the non-negativity of wealth and consumption. See also’'Sai997
bankruptcy book for a large collection of papers as well @z kant
summaries by Markowitz and Sethi, including the 1986 andBl&ers,
for a much greater variety of optimal portfolio and consumpproblems.
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3.3 Portfolio Stochastic Dynamic Programming PIDE:

0 = v} (t, w) — B(t)v* (¢, w) + U(c* (¢, w))
+ [(r(t) + (pa(t) —r(t))u*(t, w))w—c*(t, w)] v} (t, w)
+202(8) (u*)?(t, w)w?v} (¢, w) (5)

1(t) O 2(t) b(t)
+)‘(t)<|i|<t> JawyT oy Jo )

(v (t, (14 (e7 = Dur(t, w))w) —v* (¢, w) ) da,

whereu* = u*(t,w) € [Uémim, Uémaxq and

c* = c*(t,w) € [O,Céma”w} are the optimal controls if they exist, while
v (t,w) andv , (t,w) are the continuous partial derivatives with respegt
to wealthw when0 <t < t¢. Note that(1+4(e? — 1)u* (¢, w))w is a
wealth argument.
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3.4 Non-Negativity of Wealth and Jump Distribution:

Since(1+4(e? — 1)u*(t, w))w is a wealth argument in (5), it must
satisfy the wealth nonnegativity condition, so

ku,gq) =14+ (e2—1u >0
on the supporfa(t), b(t)] of the jump-amplitude mark density, (q; t).

Lemma 1. Bounds on Optimal Stock Fraction due to
Non-Negativity of Wealth Jump Argument:
If the support of ¢ (g; t) isthefinite interval ¢ € [a(t), b(t)] with
a(t) < 0 < b(t), then u*(t,w) isrestricted by (5) to
—1 —1 . 1 B —1
TEbm)) —ew—1 =% bW S T0w = Jiaw)  ©

but if the support of ¢ (q) isfully infinite, i.e., (—oo, +00), then
u*(t,w) isrestricted by (5) to

0 <u"(t,w) <1.
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3.4 Remarks Continued: Non-Negativity of Wealth and
Jump Distribution:

e Recall thatu is the stock fraction, so that short-selling and
borrowing will be overly restricted in the infinite supporiase (7)
wherea(t) — —oo andb(t) — +oo, unlike the finite case (6)
where—oco < a(t) < 0 < b(t) < +oc.

e SO0, unlike option pricing, finite support of the mark densitpakes a
big difference in the optimal portfolio and consumption pbtem!

e Thus, it would not be practical to use either normally or
double-exponentially distributed marks in the optimal géoslio and
consumption problem with a bankruptcy condition.

o If [amin, bmax] = [ming(a(?)), max.(b(t))], then the overall.* range
for the S&P500 data is

[umina umax] —
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4.0 Unconstrained Optimal or Regular Control Policies:

In absence of control constraints and in presence of sufficie
differentiability, the dual policy, implicit critical caditions are

e Regular Consumptiorc(re®) (¢, w):

U (58 (¢, w)) = v (L, w).

e Regular Portfolio Fractionw (&) (¢, w):
20l (8 w)ule®) (t,w) = —(pa(t) — r(t))woy, (t, w)
1 (t) 2(t) b(t)
—A(t)w (pa|(t) fa(t) +557 Jo )

ol (£, k(0 (¢, w), q)w) dg.
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4.1 Canonical Decomposition with CRRA Utilities:

e Constant Relative Risk-Aversion (CRRA HARA) Power Utilities:

Y
U(x) =Us(x) = P x>0, 0 <y <1. (10)

e <—— Relative Risk-Aversion (RRA):
RRA(z) = -U"(z) /(U (z)/z) = (1—=7) >0, v <1,

l.e., negative of ratio of marginal to average change in maig
utilility (U’ (x) > 0 & U"”(x) < 0) is a constant; the “risk-hating”
singular utilities wheny < 0 are excluded here.

e CRRA Canonical Separation of Variables:

v* (t,w) = U(w)vo(t), wolts) =1, (11)

l.e., if valid, then wealth state dependence is known ang tra
time-dependent factar, (¢) need be determined.
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4.2 Canonical Simplifications with CRRA Ultilities:

e Regular Consumption Control is Linear in Wealth:
8 (t,w) = w - c¢f°® (1) = w/ /vy 1T (t), (12)

with optimal consumptior;(¢) = max {mm [c(() °8) (1), qgma@} ,O}
peruw.
e Regular Portfolio Fraction Control is Independent of Wedlt

u(e®) (£, w) = ul " (t)

(=10 [ud(t) r(t) +oA(t) ] ( (reg)(t)ﬂ (13)

in fixed point form and: () = max [min {uéreg) (), Uémaxq ,Uémax)},

Wherell( _ (pl(t) fa(t) _|_p2(t) fb(t)> _ 1)/{’7—1(u’q)dq.

al() b(t)
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4.3 CRRA Time-Dependent Component in Formal
Bernoulli Equation:

0= v(t) + (1= %) (@2 (B uE)va(®) + 92005 " (1)) . (19

where

e Bernoulli Coefficientsgy (t; u) and g2 (t),
g2(t) = g2 (t; ca(t), c((feg) (t)), introduce implicit nonlinear

dependence om(t), ¢t (t) andcl® (¢), so iterative approximations
are required ( Zhu and Hanson 2006).
e Formal (Implicit) Bernoulli Solution:

11—

17
vo(t) = [e—§1<t;u3<t>><tf—t) (1 n / fgz(T)e§1<t;u3<t)><tf—f>dT)] |
t

where g (15 (0)(t; —0)= [ ar(siu())ds.
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5.1 Federal Funds Rates(¢) and 3(¢)):

Federal Funds Rates (%) r(t) & Bhat(t) versust

=
|—phat(t

©
:

©
:

\l

()]
X

N
:

w
:

—~
=
-+
©
<
A
o3
~~
=
p -
~
0\05
N—r
0
]
+—
)
@
+—
7
()
S
(]
+—
c

N
T

1988 1990 1992 1994 1996 1998 2000 2002 2004
t, Time in Years

Figure 4:Federal funds rate (H.15-Historical Data) for intere@) and discount-
ing E(t) on a daily bases, represented by piecewise linear inté¢rpolith yearly
averages assigned to the midpoint of each yeat for1988.5:2003.5 .
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5.2 Results for Regulak*<8) (t) and Optimahs*(t)
Portfolio Fraction Policies:

Regular Portfolio Fraction Policy

Optimal Portfolio Fraction Policy
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Figure 5: Regular and optimal portfolio stock fraction policies|™® (¢) and

) U] = [-18,12].
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6. Conclusions

e Introducedog-double-uniform distribution of jump-amplitudemto
jump-diffusion stock price models.

Developed estimation daime-dependent jump-diffusion parameters
for more realistic market models.

Demonstrated significant effects on the variation of instaaous

stock fraction policy due tatme-dependence of interest and
discount rates

Emphasized that double-uniform distribution issasonable
assumption for rare, large jumps, crashes or buying-freazi

Showed jump-amplitude distributions with compact suppare
much less restricted on short-selling and borrowing in thetomal
portfolio and consumption problem
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