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Outline of Abstract

Optimal Control of Stochastic Resource in Continuous

Time.
Model Effects of Large Random Price Fluctuations.

Influence of Continuous growth and Jump Stochastic

Noise.

Computational Stochastic Dynamic Programming,.

Pronounced Effect of Inflationary Prices on Optimal

Return.
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Part 1. Noninflationary, Deterministic Model:

Introduction.

1.1. Ordinary Differential Equation (ODE):

e Nonlinear (Logistic) Dynamics:
dX(s) = [riX(s)(1—X(s)/K)— H(s)] ds,
O0<t<s<T.
Initial Conditions: X(0) = xg ; 0<t<T
State Variable (Resource Size): X(t) = [X;(t)]1x1 ;

BiLinear Control-State Dynamics Assumption (for
Resource Harvesting): H(t) = qU(t)X(¢) ;

q = Efficiency (Catchability) Coeflicient;
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e Control Variable (Harvesting Effort):

U(t) — [Uz{X(t)at}]1X1 ’ Umin S U(t) S Umax < 00

e Growth Parameters:
r1 = Resource Intrinsic Growth Rate;

K = Environment Carrying (Saturation) Capacity.
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1.2. Quadratic Performance Index:

V(X, U, ) = / e~ [pqU(s)X(s) — e(U(s))] ds ,

where

e V(x,u,t) = Current Value of Future Resources (i.e.,

exp(dt) times Present Value);

T = Time Horizon (T > t);

0 = Nominal Discount Rate (NOT adjusted for inflation);
p = Price of Resource per Unit Harvest Rate;

c(u) = ciu + cou? = Quadratic Costs (Assume Increasing,
Convex Quadratic Costs: ¢; > 0 and ¢o > 0);

Instantaneous Net Return: R(x,u) = pqux — ¢(u) .
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1.3. Deterministic Dynamic Programming:

Optimization Goal = Maximize Total Return:
v¥(x,t) = V(x,u*,t) = max [V (x,u,t)] ;

PDE of Deterministic Dynamic Programming:

vi(x,t) + rix(1 — x/K)vi (x,t) — 6v™ (x,t) + S™(x,t) = 0;

Control Switching Term:

S* (x,t) = max [(p — vy (x, t)) gux — ciu — C2u2} :

Regular (Unconstrained) Control:

(p—vi(x,t))gx—c
2 - C2

uR(Xa t) — ’ cz > 0;
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e Optimal (Constrained) Control:

y

Umax7 Umax S uR(Xa t)
u*(x, t) = uR(X,t), Umin S uR(X, t) S Umax

L Umina uR(Xa t) S Umin
e Final Boundary Condition: v¥(x,T) = 0;

e Extinction Natural Boundary Condition:

o0 > 0.

V* (O, t) — _ (Cl + C2(§min)Umin (1 . 8_6(T_t)> ,
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Part 2. Inflationary, Stochastic Control Model

2.1. Stochastic Dynamics Equation (SDE (1)):

e Nonlinear Dynamics with Gaussian (G) and Poisson
(Z) Noise:

dX(s) 71 X(s)(1 — X(s)/K) — H(s)] ds

+ o1X(s) dW1(s) + X(s) Z a; dZ;(s, f;) »

j=1

X(t) = =,
e Initial Conditions: X(0) =xq, to<t<s<T ;

e Gaussian (Wiener) Noise (Zero Mean and
Normalized):

E[dWi(t)] =0, Var[dWi(t)]=dt o1<0;
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Poisson (Jump) Noise:
E[dZ;(t, f;)] = f;dt ,  Var[dZ;(t, f;)] = f;dt,

1 <3 <n, where f; = Jump Rate and a; = Jump Amplitude
Coefficient (—1 < a;);

Independent (Uncorrelated) Processes Assumption:

Cov[dWi(t), dZ;(t, f;)] = O,
COV[de (ta fj)v de'(ta fj’)] — 5j,j’fjdt 3
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2.2. Inflationary Factor Model:

e Nonlinear Supply—Demand Model Relation:

*P(t) - H(t) = Gross Return on Harvest;
* po = Supply—Demand Price Coefficient;
* p; = Constant Price per Unit Harvest;
*Y(t) = Fluctuating Inflationary Factor;
e Linear Fluctuating Inflationary Factor SDE (2):

dY(s) = r2Y(s)ds+ o2Y(s)dWa(s)+Y(s) > b;dQ;(s;g;)
*Y(1) =y; =
%

ro = Annual Rate of Inflation without Fluctuations;

* g; = jth component of Inflationary Jump Rate;

* b; = jth component of Jump Amplitude Coefficient;
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e Inflationary Gaussian (Wiener) Noise:
E[dW.(t)] =0, Var[dWs(t)] = dt o2 <0;
e Inflationary Poisson (Jump) Noise:
E[dQ;(t,g;)] = g;dt , Var[dQ;(t,g;)] = g;dt ,1 < j < m ;

e Independent (Uncorrelated) Processes Assumption:

Cov[dW>(t), dQ;(t,g;)] = O,

COV[de(tagj)v de’(tv gj')] — 5jaj’gjdt 3
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Figure 1: Pacific halibut prices in USdollars per kilogram
for each year from 1935 to 1985 (Raw Data: TPHC 1984
and 1985 Annual Reports).
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Figure 2: U.S.-Canadian catch in millions of kilograms for
each year from 1935 to 1985 (Raw Data: IPHC 1984 and
1985 Annual Reports).
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Figure 3: Pacific halibut price in USdollars per kilogram versus catch in
millions of kilograms for years from 1935 to 1985. Linear regression for
price times catch as a function of catch from 1980 to 1985 displayed as
smooth hyperbolic price curve. (Raw Data: IPHC 1984 and 1985 Annual

Reports).
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2.3. Mean Quadratic Performance Index:

Veoyut) = B UT =36 [(po + p1gU(s)X(s))Y (s)

— ¢(U(s))] ds | X(t) =x, Y(t) =y, U(t) = u|,

V(x,y,u,t) = Expected Current Value of Future

Resources (i.e., exp(dt) times Present Value);

{x,y} = 2-Dim State of Inflationary Stochastic

Dynamics ;
T = Time Horizon (T > t);

0 = Nominal Discount Rate (NOT adjusted for inflation);
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2.4. Stochastic Dynamic Programming:

e Optimization Goal = Maximize Total Return:

V*(Xa y,t) = V(Xa Y U*a t) = msx [V(Xa Yy, U, t)} )

e PDE of Stochastic Dynamic Programming:

0 = V;k(x9 y,t) + rix(1 — X/K)V:(X, yst) — 5V*(X7 y,t)

2

+ 0'1X a::c"'z.fg (1+a_7)xa§’a ) _V*(XaY9t)]

+  royv? +°’2y yy+zgg *(x, (1 + bj)y,t) — v¥(x,y,1)]

+ S*(XaYat)a

by General 1t6 Chain Rule;

e Control Switching Term:

S*(x,y,t) = max [poy + (pry — vz (x,¥,t)) qux — c1u — c2u®];
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2.4.1. More Stochastic Dynamic Programming:

e Regular (Unconstrained) Control:

t) = (p1y — va (X, y,t))gx — c1

202 ’ €z > 0;

Ur (Xa Yy,

e Optimal (Constrained) Control:

p

Umax, Umax S uR (X’ y’ t)
u*(X?Y9t) = 9 uR(Xay,t)a Umin S uR(X,y,t) S Umax

L Umin, uR(Xa Yat) < Umiin
e Final Boundary Condition: vi(x,y,T) =0;

e Extinction Natural Boundary Condition™:

B (c1 + C2lgmin)Umin (1 B e—a(T—t))

v¥(0,0,t) = , § > 0.

* see Kushner and Dupuis (1992) for proper handling of

stochastic reflecting boundary conditions.
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Part 3. Numerical Approximations

3.1 Basic Hybrid Numerical Procedures.

e Extrapolated, Predictor-Corrector for Nonlinear
Iteration.

e Crank-Nicolson Implicit for 2nd Order in Time and
State.

e Modifications for Poisson Functional Terms.

e Modifications for Optimization in Switching Term.
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Numerical Discretizations:
State;: X;=(i—1)Az,¢1=1,--- ,N,, Az =K/(N, —1);
Statey: Y;=(j — 1Ay, j=1,---,N,, Ay=eT/(N, —1);
Time: T, =T —(k—1)At,k=1,---,N;, At=T/(N; —1);

>k

Optimal Expected Value: v

wiayjatk> 5 %,j,k;

(
vy (Xi, Y5, Ty) — DVX; 1 = 0.5(Vigr ik — Vie1jk) /A
0.5(

V;k (Xza ija Tk) - DVYz,j,k —
V;kx(XZ,)/j,Tk) — DDVXi’j’k =
(Vierjk — 2Vijk + Vie1 k) /(Ax)?;
v* (X;,Y;,T) — DDVY, ;) =
(Vig+1,k = 2Vign + Vij—1,k)/ (Ay)*;
° V;k (XZ, Y}', Tk_|_(),5) — DVTz’,j,k = _(‘/z’,j,k:—l—l — %,j,k)/At;
with Error: O(Ax)? + O(Ay)? + O(At/2)?;

Vigrie — Vij—1.k)/Ay;
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3.2.1. More Numerical Discretizations:

X-Poisson Term: v*((1+a;)X;,Y;,Tx) — ZV; k.
by 2nd order accurate interpolation between nearest nodes;

Y-Poisson Term: v*(X;, (14 b)Y;,Tx) — QV; i x,
by 2nd order accurate interpolation between nearest nodes;

Regular Control:
ur(X;,Y;, Tx) — UR; ik = (p1Y; — DVX; kg Xi —c1)/(2¢2);

Optimal Control:

u*(X;,Y;, Tx) — U; j ,x = same as exact composite expression;

Hanson and Ryan — 21 — UIC and McKendree



3.3. Computational Stochastic Dynamic Programming:
For £k +1=2to N; whilet=1to N, & j =1 to N,:

e Accelerating Extrapolating Start:

VE; jx = 0. 5(3Vf§,’*) f;'::’ 1) =2 Vijktos, if k<2,

which are used to get components DVXE, DVYE, DDVXE,
DDVYE, ZVE, QVE, URE, UE & SE, and where V,})) is the

final correction from step k;

e Extrapolated-Predictor Step:

= V9 4 At[r1X:(1 — Xi/K)DVXE; j 1

’J’

1
Ec,—fx DDVXFE; j 1 — 6 VEi j.k

+
+ S fi(ZVE; jka — VE',j,kz)

+ rY;DVYE; jr + 0'2Y DDVYE; jk
+ Zg(QVE; ;1 — VEi,j,k:) + SEi j k]
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e Predictor Evaluation (Crank-Nicolson Midpoint):

VMp)k: — O 5(V(C,*) —I_ V(J kt-|—1) - 339k+0 5’

737 ,.77

which are used to get predicted components of DVXM, DVYM,
DDVXM, DDVYM, ZVM, QVM, URM, UM & SM;

Hanson and Ryan — 23 — UIC and McKendree



3.3.1 More Computational Dynamic Programming:

e (L + 1)st Corrector Step:

c,L+1 C,* c,L
v = v 4 A ['rlmz(l z;/ K)DVXMH)

73’ ’J?

2 fi (ZVM,CJ,I,;)Z - VM(C L)>

’J?

1
5alxzz)z)vxzw(c L) svmiet)

rzyJDVYM(,J’,)—I— —o2y?DDVYMSY)

1,7,k

Sug (QVMGE), - VM(C D)+ sMGR]

1,7,k 1,7,k 1,7,k

for L+ 1=1 to L*, where VM( 0) VMf];)k;
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e Corrector Evaluation:

c,L C,* c,
VMSY) = 0.5V + ViSm ),

1,7,k

which are used to get corrected components of DVXM, DVYM,
DDVXM, DDVYM, ZVM, QVM, URM, UM & SM,
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3.3.2 More Computational Dynamic Programming:

e Corrector Relative Stopping Criterion:

L+1 L L
|‘/;E§,k+1) — sz;,ku)rﬂ < €|V;Egc',k4)r1|

for all {7, 7} at fixed k + 1 and some relative tolerance € > 0
with L+ 1= L} and V) = V).

Mean Temporal-Spatial Mesh Corrector
Convergence Condition:

1

1
At < 5 ’
V GAJ(AE))? + (B/AE)?
where for example B/A¢ = 0.5(B,/Ax + B, /Ay) represents

some mean reciprocal of state meshes weighted by respective

linear comparison coefficients B, and B,. This condition is a
combined Parabolic-Hyperbolic (CFL) Mesh Ratio Condition.
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Part 4. Numerical Results
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Figure 4: Optimal current value, V* (K,y,t), in millions of USdollars versus
scaled price factor, y-exp(—r2-T), with time parameter t = 0.0, 2.0, 4.0, 6.0,
8.0, 10.0 for each curve ordered from top to bottom, respectively, and with

population size fixed at carrying capacity * = K.

Hanson and Ryan — 28 — UIC and McKendree



o
=)
o
)

o
o
S
IS

€
3]
=
(1]
x
]
@©
o
5
)
)
w
©
£
S
o
]
=
~
=
>
X
mpd
=
o

o
o
S
N

| |
0.4 0.6
yexp(-ro[T), Inflationary Price Factor

Figure D: Optimal feedback effort, ¢ - E* /r1(K,y,t), in dimensionless form
versus scaled price inflation factor, y - exp(—7rs - T)), with time parameter
covering t = 0.0, 2.0, 4.0, 6.0, 8.0, 10.0 for each curve closely spaced from
bottom to top, respectively, and with population size fixed at carrying ca-

pacity r = K.
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Figure 0: Sensitivity of optimal current value, V* (K,y,0), to inflation price
factor rate r2, with curves parameterized by scaled inflation price factor,
y-exp(—ro-T), ranging from 1.0 at top to 0.2 at bottom in steps of 0.2, with
time fixed at initial value ¢t = 0.0, and with population size fixed carrying

capacity =z = K.
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Part 5. Conclusions

Examined Effects of Random Price Fluctuations on

Optimal Policy and Optimal Return.

Successfully Applied Computational Stochastic

Dynamic Programming.
Random Price Jumps Strongly Affect Optimal Return.

Random Price Jumps have Less Impact on Optimal

Policy.

Random Price Jumps needed as Serious Consideration

as Hazardous Environments and other Environmental
Effects.
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