
Dynamic Programming, Control, and Computation∗

Floyd B. Hanson
Department of Mathematics, Statistics, and Computer Science,

University of Illinois at Chicago, and Department of Mathematics,
University of Chicago, Chicago, IL

hanson@math.uic.edu

May 27, 2010

Abstract

The presentation in this chapter is in the formal manner of classical applied math-
ematics and probability in order to focus on the methods and their implementation.
In Section 1, a fairly general model of stochastic dynamic programming in continuous
time is outlined. In Section 2, canonical forms, such as a linear dynamics and quadratic
cost model in control, that lead to a large reduction in computational effort are given or
discussed. In Section 3, finite difference partial differential equation methods are given
that are suitable for approximately solving nonlinear Bellman dynamic programming
equations. Alternatively, Markov chain approximation probabilistic methods which
systematically justify the stability and weak convergence of the approximating Markov
chain are summarized in Section 4. In the last section, there is a brief summary and
directions to some other approaches.

Keywords: dynamic programming; finite differences; Markov chain approximations,
curse of dimensionality

1 Dynamic Programming in Continuous Time

Dynamic programming in application areas of operations research often arise from optimal
objectives such as to minimize costs, maximize profits or maximize the utility of wealth and
its consumption. These problems invariably are formulated in an uncertain environment since
deterministic problems rarely occur without the some sort of random perturbation. Hence,
the optimization will necessarily be over an expected or mean value, else an optimum will not
be well-posed. Assuming that the perturbing noise is Markovian, then Bellman’s [2] principle
of optimality fits both stochastic and deterministic dynamic environments, with just some
extra analysis in the stochastic case. As a result of taking expectation before optimization,

∗Preprint to appear in Wiley Encyclopedia of Operations Research and Management Science, edited by
James J. Cochran, John Wiley & Sons, 7 pages, 2010.

1

the equation of dynamic programming is a deterministic partial integro-differential equation
(PIDE). See Hanson [3, 4] or Kushner and Dupuis [6] for more details.

Assuming that the objective is a minimal expected cost problem and that the minimum
is unique, then the minimum cost [4], starting at any time t in the horizon [t0, tf], is

v∗(x, t) ≡ min
U (t,tf]

[
E

(W ,P)(t,tf]

[
V [X,U, tf](x, t)

∣∣∣∣X(t) = x,U(t) = u

]]
,

V [X,U, tf](x0, t) =

∫ tf

t

C(X(s),U(s), s)ds+ Z(X(tf), tf),

(1)

where the value of the total cost on (t, tf] is based on cumulative running cost C(x,u, t)
and final cost Z(x, tf) functions. The X(t) is the state nx-vector process on state domain
Dx, U(t) is the control nu-vector process or optimizing variable on control domain Du. The
set {W(t),P(t)} comprise fundamental Markov diffusion and jump processes. The diffusion
component characterizes the central continuous part and the jump part characterizes the
large random, instantaneous, discontinuous rare events, since the diffusion part is insuffi-
cient for modeling catastrophic risk events. Obviously, the final optimal value is given by
v∗(x, tf) = Z(x, tf) for any x ∈ Dx from setting t = tf in (1).

The stochastic dynamic constraint is the jump-diffusion stochastic differential equation
(SDE),

dX(t) = f(X(t),U(t), t)dt+ g(X(t),U(t), t)dW(t) + dJ(t),

J(t) =

∫ t

0

∫
Dq

h(X(t),U(t), t,q)P(dt,dq), P(t) =

∫ t

0

∫
Dq

P(dt,dq),
(2)

when t0 ≤ t ≤ tf subject to a given initial state X(t0) = x0, dW(t) is the nw-dimensional
differential diffusion or Wiener process, P(dt,dq) is the compound np-dimensional Poisson
random measure that introduces the Poisson random jump times for the time infinitesimal
measure dt = (t, t + dt] and underlying np-dimensional random jump amplitude variables
in dq = (q,q + dq] when there is a jump. The diffusion process is normally distributed
with zero infinitesimal mean E[dW(t)] = 0, but correlation between components is allowed,
Cov[dW(t), dW>(t)] = [ρi,j(t)]nw×nwdt, such that ρi,i(t) = 1. The usual Poisson process is
denoted by P(t), such that it is Poisson distributed with vector jump intensity λ(t), infinites-
imal moments E[dP(t)] = λ(t)dt = [λi(t)]np×1dt, Cov[dP(t), dP>(t)] = [λi(t)δi,j]np×npdt and
E[Pj(dt,dq)] = λj(t)dtφQj

(qj)dqj, assuming no correlations between Poisson component
processes since simultaneous jumps are unlikely. The underlying jump amplitude random
variables Qj are IID for each component j = 1:np with density φQj

(qj). Similarly, there are
no correlations between Poisson and Wiener processes. The Poisson jumps are by definition
instantaneous, so at the instant of a jump there is zero time for continuous change and hence
the discontinuous changes are be calculated independent of continuous changes. At the kth
jump of jth Poisson component Pj(t) at random time Tj,k with random mark Qj,k, X(t)
jumps by the amplitude

X(Tj,k)−X(T−j,k) = ĥj(X(T−j,k),U(T−j,k), T
−
j,k, qj,k) ≡

[
hi,j(X(T−j,k),U(T−j,k), T

−
j,k, qj,k)

]
nx×1

,

where the function h(x,u, t,q) is the nx × np jump amplitude coefficient array. Like for
diffusions, the jump-diffusion approximation consistency conditions require that the incre-
ment version of dX(t) in (2) have conditional infinitesimal mean and variance that are
E[∆X(t)|X(t)] = O(∆t) and Var[∆X(t)|X(t)] = O(∆t). The drift or mean appreciation

2

coefficient function is f(x,u, t) and the diffusion coefficient function is g(x,u, t), both, along
with h(x,u, t,q), are assumed bounded for computational feasibility and commensurate in
multiplication with respect to the other variables. Stronger existence results are available as-
suming Lipschitz continuity, but some important models such as for stochastic volatility are
non-Lipschitzian. For pure deterministic problem, set g ≡ 0 and h ≡ 0, while for diffusion
only noise set h ≡ 0.

Assuming minimization and expectation operators are decomposable into factors, then
Bellman’s principle of optimality [4] is

v∗(x, t) = min
U (t,t+δt]

[
E

(W ,P)(t,t+δt]

[∫ t+δt

t

C(X(s),U(s), s)ds

+ v∗(X(t+ δt), t+ δt)

∣∣∣∣X(t) = x,U(t) = u

]]
,

(3)

given some small time-step δt, leads in the limit to the Hamilton-Jacobi-Bellman (HJB)
equation of stochastic dynamic programming, keeping only δt-terms,

0 = v∗t (x, t) + min
u

[H(x,u, t)] ≡ v∗t (x, t) +H∗(x, t), (4)

where the Hamiltonian functional is given by

H(x,u, t) ≡ C(x,u, t) +∇>x [v∗](x, t) · f(x,u, t)

+1
2
Tr
[(
gRg>

)
(x,u, t),∇x

[
∇>x [v∗]

]
(x, t)

]
+

np∑
j=1

λj(t)

∫
Dq

[
v∗
(
x + ĥj(x,u, t, qj), t

)
− v∗(x, t)

]
φQj

(qj)dqj,

R = R(t) ≡ [δi,j + ρi,j(t)(1− δi,j)]nw×nw
, Tr[A,B] ≡

∑n
i=1

∑n
i=1Ai,jBi,j.

(5)

Along with appropriate boundary conditions completes the formal specification of the bound-
ary-final value problem, the final value condition and the placement of the time derivative
implying that the dynamic programming problem is backward in time. Thus, the HJB equa-
tion (4) is in general a functional partial integro-differential equation (PIDE), so possesses
properties beyond the usual PDEs in that there is global dependence due to the integral
properties whereas the partial derivatives impart only local dependence. In addition, the
minimization can introduce nonlinear behavior, as in the case of the often assumed quadratic
control costs. These and other properties leads to many computational problems beyond the
the usual linear partial differential equation.

For specification of the minimization of the Hamiltonian in (5), a unique minimum and
continuous control derivatives up to second order such that the Hessian is positive-definite,
i.e., ∇u[∇>u [H]](x,u, t) > 0, are assumed. The critical condition ∇u[H](x,u, t) = 0 yields
the unconstrained minimal or regular control u(reg)(x, t) = argminu[H(x,u, t)], the primary
in purely mathematical problems, but a preliminary to the constrained optimal control in
applications. Real problems have constraints, so assuming hypercube constraints for simplic-
ity, that the constrained optimal control u∗(x, t) satisfies the constraints U

(min)
i ≤ u∗i (x, t) ≤

U
(max)
i for i = 1:nu components. Thus,

u∗(x, t) =
[
min

[
max

[
u

(reg)
i (x, t), U

(min)
i

]
, U

(max)
i

]]
nu×1

. (6)

3

2 Computational Reducing Canonical Forms

There are some simplifications that can be used to make the computation of the optimal
control simpler. An example is to use a linear drift dynamics and quadratic control cost
model, i.e., a LQ model in control only [4], so that

f(x,u, t) = f0(x, t) + f1(x, t)u,

g(x,u, t) = g0(x, t), h(x,u, t, q) = h0(x, t, q),

C(x,u, t) = c0(x, t) + c1(x, t)u + u>c2(x, t)u,

H(x,u, t) =H0(x, t) +H1(x, t)u + 1
2
u>H2(x, t)u,

(7)

where all functions are assumed to be specified and that c2 is positive definite. Since c2
and H2 appear only in quadratic forms they might as well be symmetric, then the regular
optimal control is explicit,

u(reg)(x, t) = −c−1
2 (x, t)

(
c>1 (x, t) + f>1 (x, t)∇x[v

∗](x, t)
)

(8)

and the optimal control u∗(x, t) is still given by the formula in (6).
In the classical LQ case, i.e., LQ in both control and state space, then both the Hamilto-

nian and the optimal value v∗ are quadratics, H in both control and state, while v∗ can be
shown to be a quadratic in state alone, so that the solution for v∗ involves solving ODE final
value problems only for coefficient functions of time t (see [1, 4] for the well-known details).

3 Finite Difference PDE Computational Methods

Finite differences have the advantage of straightforward application, but with a significant
difficulty in convergence if the ratio of the time to space meshes is not sufficiently small.
The first step is the discretization, where the time t ∈ [t0, tf] is partitioned into Nt discrete
backward time nodes and assuming for simplicity that the spatial variable is one-dimensional
(nx = 1) for x ∈ [x0, xf],

Tk = tf−(k−1) ·∆T for k = 1:Nt, with ∆T ≡ (tf − t0)/(Nt − 1),

Xj = x0+(j−1) ·∆X for j = 1:Nx with ∆X ≡ (xf−x0)/(Nx−1).

Next central finite differences (CFD) are used for second order accuracy for spatial derivatives
included in the Crank-Nicolson implicit (CNI) method along with half-steps in time to obtain
a simple second order accurate form for the time derivative,

v∗(Xj, Tk)→ Vj,k,

v∗t (Xj, Tk+0.5)→ (Vj,k+1−Vj,k)/(−∆T),

v∗x(Xj, Tk)→ DVj,k = 0.5(Vj+1,k−Vj−1,k)/∆X,

v∗xx(Xj, Tk)→ DDVj,k = (Vj+1,k− 2Vj,k+Vj−1,k)/(∆X)2,

u(reg)(Xj, Tk)→ URj,k = − (C1,j,k + F1,j,kDVj,k) /C2,j,k,

u∗(Xj, Tk)→ USj,k = u0(URj,k) = min[max[UMIN,URj,k],UMAX],

v∗(Xj+h0(Xj, Tk, q), Tk)→ VHj,k(q) & Λk = λ(Tk),

Fi,j,k = fi(Xj, Tk) & Ci,j,k = ci(Xj, Tk) & G0,j,k = g0(Xj, Tk),

Fj,k = f(Xj,USj,k, Tk) & Cj,k = c(Xj,USj,k, Tk),

UMIN = U (min) & UMAX = U (max),

(9)

4

where the LQ assumption has been used for explicitness in the optimal control or otherwise
different procedures will be needed [4]. The integral part for the jump amplitude distribu-
tion is probably not familiar and requires at least linear interpolation between a post-jump
position and nearest nodes, so

IVHj,k ≡
∫
Dq

VHj,k(q)φQ(q)dq '
Nq∑
i=1

wi · ((1− θi)Vj+`i,k + θiVj+`i+1,k) , (10)

where the {j + `i, j + `i + 1} are the nearest neighbor x-nodes corresponding to the post-
jump position Xj +h0(Xj, Tk, qi) for i = 1:Nq mark nodes, the θi are the corresponding linear
interpolation weights and the wi are the numerical integration weights assigned to the mark
nodes qi with respect to the density φQ(q). See [4] for additional information, procedures
and examples.

The basic CNI step approximates the midpoint in backward time by the average preserv-
ing second-order accuracy,

Vj,k+1 ' Vj,k + ∆T · Hj,k+0.5'Vj,k + 0.5∆T · (Hj,k +Hj,k+1) ,

Hj,k = Cj,k + Fj,kDVj,k + 0.5G2
0,j,kDDVj,k + Λk (IVHj,k − Vj,k).

(11)

Although Crank-Nicolson is unconditionally stable and has significant algebraic simplifica-
tions for linear diffusions problems, the general complexity of the jump-diffusion problem
with quadratic costs here requires iterations to handle the nonlinearities and jump integrals
in the optimal value function. An extrapolated-predictor-corrector method has been found to
be robust for a variety of applications [4]. An abbreviated pseudo-algorithm for the method
is as follows,

1. Given constants: {Nt, Nx, Nq, Nγ, tolv, tf ,UMIN,UMAX, x0, xf};
2. Get Tk ∀k; Get Xj, ∀j;
3. Given functions: {c0, c1, c2, f0, f1, g0, h0, λ0, u0, Z};
4. Get Vj,1 = Z(Xj, tf) ∀j; Get Λk = λ0(Tk), ∀k;

5. For k = 1:Nt − 1 do

6. Extrapolation Step: V
(1)
j,k+0.5 = Vj,1; If k > 1, then V

(1)
j,k+0.5 = 0.5(3Vj,k − Vj,k−1), endif;

plus H(1)
j,k+0.5, ∀j, using (11);

7. Prediction Step: V
(2)
j,k+1 = Vj,k + ∆T · H(1)

j,k+0.5 ∀j;
8. Predictor Evaluation Step: V

(2)
j,k+0.5 = 0.5

(
V

(2)
j,k+1 + Vj,k

)
, plus H(2)

j,k+0.5, ∀j, using (11);

9. For γ = 2:Nγ do

10. Correction Steps: V
(γ+1)
j,k+1 = Vj,k + ∆T · H(γ)

j,k+0.5, ∀j;
11. Corrector Convergence Check Step given sufficient relative tolerance tolv:

If maxj

[
V

(γ+1)
j,k+1 − V

(γ)
j,k+1

]
< tolv ·maxj

[
V

(γ)
j,k+1

]
then k = k + 1, Vj,k+1 = V

(γ+1)
j,k+1 , ∀j, break from loop γ to return to step 6;

endif;

12. Corrector Evaluation Step: V
(γ+1)
j,k+0.5 = 0.5

(
V

(γ+1)
j,k+1 + Vj,k

)
, plus H(γ+1)

j,k+0.5, ∀j, using (11);
13. end loop γ;

14. end loop k;

5

However, more discussion of stability and its effect on convergence is needed. Using the
central finite difference for the first order derivative in (9) means that diffusion dominance
has been tacitly assumed and the time step is selected by a mesh ratio condition, i.e.,

minj,k
[
G2

0,j,k − |Fj,k|∆X
]
≥ 0,

∆T < (∆X)2/maxj,k
[
G2

0,j,k+0.5

]
.

(12)

If the jump-diffusion is not diffusion dominated, then it is advisable to use an unwinding
finite difference for the first order difference to correspond to the direction of the drift,

DVj,k = (Vj+s,k − Vj,k)/(s∆x), s = sgn(Fj,k), sgn(0) ≡ 1, (13)

even though this approximation is only first order in ∆x. Second order forward and backward
finite differences of second order in ∆x can be used as they would be used for derivative
boundary conditions [4] to preserve second order accuracy.

Stochastic dynamic programming can become computationally demanding as the state
dimension nx and the common number of nodes per dimension Nx grow, as it does with
PDEs, because the demand per time step grows exponentially with exponent nx ln(Nx) and
this growth is called Bellman’s Curse of Dimensionality [4]. Advanced computing techniques
like massively parallel and vector processor are needed to treat large dimensions [3].

4 Probabilistic Markov Chain Approximation

The Markov chain approximation (MCA) [5, 6] uses the discrete Markov chain process tran-
sition probabilities implied by finite differences to generate proper computational time steps
and and weak convergence properties, developed by Kushner in the 1970s. This method, as
in the previous section, is applicable to deterministic as well as stochastic processes of the
Markov type.

Assuming the same optimization model (1) and stochastic dynamics (2), but nx = 1 and
nu = 1, the Bellman SDP equation (4) with (5) and forward discrete time value function
Vk(x) ' v∗(x, tk) becomes

Vk−1(x) =Vk(x)+∆tk−1 min
u

[
Ck(x, u)+Fk(x, u)V ′k(x)+

1
2
G2
k(x)V ′′k (x)+Λk(IVHk(x)−Vk(x))

]
, (14)

for k = 1:Nt − 1, ∆tk−1 = tk − tk−1, t1 = t0, tNt = tf and V1(x) = Z(x, tf), using similar
notation of the previous sections. Let ξk denote the kth stage of the Markov chain fo
k = 1:N1 such that ∆ξ = ξk+1 − ξk = O(∆X). The Markov chain transition probabilities
must satisfy the proper conditions of nonnegativity and conservation of probability, as well
the jump-diffusion approximation O(∆tk) consistency conditions mentions in Section 1.

For the self or nearest-neighbor transition probabilities associated with the diffusion com-
ponent processes and the finite difference grid with step ∆X using the central form for v′′k(x)
as in (9) and the stabilizing upwinded form for v′k(x) as in (13) with s = sgn(fk(x, u)),

p
(D)
k (X,X|X = x, uk−1) = 1−∆tk−1 (g2

k(x)+∆X|fk(x, uk−1)|) /(∆X)2,

p
(D)
k (X,X ±∆X|X = x, uk−1) = ∆tk−1 (0.5g2

k(x)+∆X max[±fk(x, uk−1)]) /(∆X)2.

(15)

The global time interpolation mesh condition for diffusive convergence is

∆tk−1 ≤ (∆X)2/min
x,u

[
g2
k(x)+∆X|fk(x, uk−1)|

]
. (16)

6

Provided that this time step is sufficiently small, then the well-known infinitesimal Poisson
transition probabilities, for j = 0, 1, 2 or more jumps, are given by

p
(J)
j,k =


1− λk∆tk−1 + o(λk∆tk−1), j = 0 jumps

λk∆tk−1 + o(λk∆tk−1), j = 1 jump

o(λk∆tk−1), j ≥ 2 jumps,

=p
(J)
0,kδj,0+p

(J)
1,kδj,1+o(λk∆tk−1), (17)

more specifically for the mean jump count λk∆tk−1 � 1 and ignoring the o(λk∆tk−1) yields

the 0 – 1 Bernoulli process transition probability terms, {p(J)
0,k = 1 − p(J)

1,k, p
(J)
1,k = λk∆tk−1},

that are consistent with the jump-diffusion approximation. Finally, adding the transition
probability for the node-interpolated jump amplitude when there is a jump leads to this
MCA dynamic programming computation formulation:

V
(JD)
k−1 (x)' min

u

[
Ck(x, u)∆tk−1+p

(J)
0,k

3∑
`=1

p
(D)
k (x, x+(`−2)∆X|x, u)V (JD)

k (x+(`−2)∆X)

+p
(J)
1,k ĨVH

(JD)

k (x, u)
]
,

(18)

where ĨVH
(JD)

k is the node-interpolated version of the integral interpolation in (10). For more
details see Kushner and Dupuis [6].

5 Summary and Some Other Approaches

This article covers the fairly general computational stochastic dynamic programming for
Markov stochastic processes, that includes deterministic, diffusion and jump-diffusion models
as subsets. Due to space limitations, it has not been possible to cover some related topics.
There have been recent results for convergence rates of computational dynamic programming
in diffusion problems, most recently by Song and Yin [8], who also refer to prior convergence
rate work of others. Genuine stochastic difference equation models have not been covered, but
Sennott [7] supplies a wealth of discrete applications and other kinds of objective functions.
See also the section in Hanson [3] reviewing the discrete version of differential dynamic
programming with alternative backward and forward successive approximations.

References

[1] B. D. O. Anderson and J. B. Moore, Optimal Control: Linear Quadratic Methods,
Prentice–Hall, Englewood Cliffs, NJ, 1990.

[2] R. E. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ,
1957.

[3] F. B. Hanson, Computational Stochastic Dynamic Programming, in Stochastic Digi-
tal Control System Techniques, Control and Dynamic Systems: Advances in Theory
and Applications, vol. 76, C. T. Leondes, ed., Academic Press, New York, NY, 1996,
pp. 103–162.

[4] F. B. Hanson, Applied Stochastic Processes and Control for Jump–Diffusions: Model-
ing, Analysis and Computation, Series in Advances in Design and Control, vol. DC13,
SIAM Books, Philadelphia, PA, 2007.

[5] H. J. Kushner, Numerical Methods for Stochastic Control Problems in Continuous
Time, SIAM J. Control Optim., vol. 28, 1990, pp. 999–1048.

7

[6] H. J. Kushner and P. G. Dupuis, Numerical Methods for Stochastic Control Problems
in Continuous Time, 2nd ed., Springer-Verlag, New York, NY, 2001.

[7] L. I. Sennott, Stochastic Dynamic Programming and the Control of Queueing Systems,
John Wiley & Sons, Inc., New York, NY, 1999.

[8] Q. S. Song and G. Yin, Rates of Convergence of Numerical Methods for Controlled
Regime-Switching Diffusions with Stopping Times in the Costs, SIAM J. Control Op-
tim., vol. 48, 2009, pp. 1831-1857.

8

