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1. INTRODUCTION

Two seminal papers, Black and Scholes (1973) and Merton3)19%re published in the Spring
of 1973 on the celebrated Black-Scholes or Black-Scholestdh model on an option pricing
formula for purely geometric diffusion processes with gs@ciated log-normal distribution. Black
and Scholes (1973) produced the model while Merton (1973 s mathematical justifications
for the model, extensively exploring the underlying and engeneral assumptions. These papers
led to the 1997 Nobel Prize in Economics for Scholes and Mersince Black died in 1995
(see Merton and Scholes (1995)). The Black-Scholes formsuleobably the most used financial
formula of all time.

However, in spite of the practical usefulness of the Blackebes formula, it suffers from many
defects, one defect is quite obvious during market crashesassive buying frenzies which con-
tradict the continuity properties of the underlying georeadiffusion process. In Merton’s (1976)
pioneering jump-diffusion option pricing model, he attaatpto correct this defect in continuity
and used log-normally distributed jump-amplitudes in a poand Poisson process. Merton ar-
gued that the portfolio volatility could not be hedged ashia Black-Scholes pure diffusion case,
but that the risk-neutral property could preserve the miti@ge strategy by ensuring that the ex-
pected return grows at the risk-free interest rate on theagee. Merton’s (1976) solution is the
expected value of an infinite set of Black-Scholes call oppacing formulas each one the ini-
tial stock price shifted by a jump factor depending on the henof jumps which have a Poisson
distribution.

Beyond jumps there are other market properties that shautbbsidered. Log-return market
distributions are usually negatively skewed (providedtthe interval for the data is sufficiently
long), but Black-Schoes log-returns have a naturally slkess-normal distribution. Log-return
market distributions are usually leptokurtic, i.e., moeaked than the normal distribution. Log-
return market distributions have fatter or heavier taietthe normal distribution’s exponentially
small tails. For these defects, jump-diffusions offer smoeection and more realistic properties.

However, time-dependent rate coefficients are important,non-constant coefficients are impor-
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tant. Stochastic volatility can be just as important as js@pd this is demonstrated by Andersen,
Benzoni and Lund (2002).

Several investigators have found statistical evidence jtiaps are significant in financial
markets. Ball and Torous (1985) studied jumps in stock artboprices. Jarrow and Rosen-
feld (1984) investigated the connections between jump aisk the capital asset pricing model
(CAPM). Jorion (1989) examined jump processes in foreigrharge and the stock market.

Kou (2002) and Kou and Wang (2004) derived option pricingiitssor jump-diffusion with
log-double-exponentially distributed jump amplitudesheTdouble-exponential distribution uses
one exponential distribution for the positive tail and drestfor the negative tail, back to back,
in the log-return model. Kou and co-worker have done extenasnalysis using this jump model.
Cont and Tankov (2004) give a fairly extensive account oflieery of option pricing for Lévy pro-
cesses which include finite variation jump-diffusions a8l & generalizations to infinite variation
processes. Also general incomplete markets are treatdigle hecent literature, many other papers
and several books have appeared or will soon appear on juffagidns. @ksendal and Sulem
(2005) treat control problems for Lévy processes, ineigdump-diffusions. Hanson (2005) gives
a more practical treatment of stochastic processes andbtémtjump-diffusions.

The purpose of this paper is to give a practical, reduced fgaao call option formula by the
risk-neutral valuation method for general jump-diffuspmncluding those with uniformly dis-
tributed jumps. For simplicity, constant coefficients asswaned, so stochastic volatility is also
excluded. A collateral result shows that the European call put based on the general jump-
diffusion model are worth more than that based on the Blathe®s (1973) model with the same
common parameters. Since the analysis of the partial susitgdar the independent identically
distributed random variables (lIDs) is very complicatedhe case of the uniform jump distri-
bution, it is almost impossible to get a closed option paciarmula like that of Black-Scholes.
Hence, we provide a Monte Carlo algorithm using variancecgdn techniques such as antithetic
variates and control variates, so that sample sizes cardbead for a given Monte Carlo variance.

The Monte Carlo method is used to compute risk-neutral vog of European call and put op-



tion prices numerically with the aid of the obtained redufmdhula. The numerical results show
that this is a practical, efficient and easy to implement rigan.

In Section 2, the jump-diffusion dynamics of the underlynngky asset and the risk-neutral
formula for the European call are introduced. In Sectiorhg, risk-neutral formulation for the
jump-diffusion SDE is derived. In Section 4, properties ofns of independent identically dis-
tributed random variables proved in Appendix A are used tmwsh reduced infinite expansion
formula can be given, but it has not been possible to prodsieple closed formula like Black-
Scholes. In Section 5, Monte Carlo methods with variancactoin techniques are introduced to
compute otherwise intractable risk-neutral option preved, in Section 6, Monte Carlo simulation
results for call and put prices are given along with sevesatgarisons. In Section 7, our conclu-
sions are given. Finally, in Appendix A, properties of sumsimformly distributed independent

identically distributed random variables used in Secti@melshown.

2. RISKY ASSET PRICE DYNAMICS

The following constant rate, linear stochastic differah&quation (SDE) is used to model the

dynamics of the risky asset pricg(¢) :

(2.1) dS(t) = S(t) (udt + cdW (t) + J(Q)dN(1)),

whereS, = S(0) > 0, u is the expected rate of return in absence of asset jumisshe diffusive
volatility, 17 (t) is the Wiener process/(Q) is the Poisson jump-amplitudé) is an underlying

Poisson amplitude mark process selected for convenientteso

Q =In(J(Q) +1),



N(t) is the standard Poisson jump counting process with jointmaea variance
E[N(t)] = At = Var[N(t)].

The jump term in (2.1) is a symbolic abbreviation for the &tstic sum

AN(t)

SHJ(QAN(t) = > S(T;7)J(Q)

k=1

whereT}, is thekth Poisson jumpg);. is thekth jump amplitude mark and the pre-jump asset value
is S(T}, ) = limyp, S(t), with the limit from left.

Let the density of the jump-amplitude maikbe uniformly distributed:

I, a<q<b
2.2) dolq) = — “= ,

b—a 0, else

wherea < 0 < b. The mark) has moments, such that the mean is

i = EqlQ] = 0.5(b + )

and variance is

(2.3) J =E[J(Q)] = (exp(b) — exp(a))/(b — a) — L.

The insufficient amount of jump data in the market make det@ng the best distribution for
the jump amplitude statistically difficult. The uniform tibution has the advantage that it is the
simplest distribution, has finite range and has the fataist in fact it is all tail. The finite range

property of the uniform distribution is consistent with tNew York Stock Exchange (NYSE)
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circuit breakerson extreme market changes as described by Aouriri, Okuyhataand Eglinton
(2002). For more details on uniform distributions, see lanand Westman (2002a, 2002b),
Hanson, Westman and Zhu (2004) and Hanson and Zhu (2004).

Note: in the following context, if absence of any speciallarption, X will denote the mean
of random variableX, thatis,X = ux = E[X].

According to the I1td stochastic chain rule for jump-difiuss (see Hanson (2005, Chapters

4-5)), the log-return process(S(¢)) satisfies the constant coefficient SDE
(2.4) dIn(S(t)) = (u — 0 /2)dt + cdW (t) + QAN (2) ,

which can be immediately integrated and the logarithm it@ceto yield the stock price solution

with geometric noise properties,
(2.5) S(t) = Syexp((u — o®/2)t + aW (t) + QN(1)),

where the jump part of the exponent denotes

N(t)
QN(t) = Z Qr
k=1

and theQ;, here are independent identically uniformly distributechpsamplitude marks), sub-
ject to the notation thaEg:1 Qr = 0 or else defing), = 0. See the jump-diffusion book of
Hanson (2005, Chapter 5).

The objective of this paper is to derive a reduced formula@adtical algorithm for the Eu-
ropean call option pricé(Sy, T'), which is a function of the current stock priég and the option
expiration timel’. There are also suppressed arguments like the strike firi¢tbe stock volatil-
ity o and the risk-free interest rate but for jump-diffusions also depends on parameters like th
jump rate) and the mean jump amplitude In contrast to the Black-Scholes (1973) hedge for

constructing a portfolio to eliminate the diffusion in thase of a pure diffusion process, Merton



(1976) argued that such hedging was not possible in the ¢dbe ump-diffusion model, but the
risk-neutral part of the Black-Scholes strategy could @nes the no arbitrage strategy to ensure
that the the expected return grows at risk-free interestrrah the average. This strategy can be
formulated in terms of a change of the drift of jump-diffusito a risk-neutral drift at rate or
more abstractly in terms of an equivalent change of measueerisk-neutral measure, sayl.
Consequently, the European call option price can be fortedlas the discounted expectation of

the terminal claimmax[S(T") — K, 0], so that
(2.6) C(S,T) = e " E pq[max[S(T) — K, 0]] .

It is sufficient to know that such a risk-neutral measure texid~or instance, see the readable
accounts in Baxter and Rennie (1996) or Hull (2000) for theepliffusions, else see Cont and

Tankov (2004) for the more general jump-diffusion cases.

3. RISK-NEUTRAL FORMULATION FOR

CONSTANT-COEFFICIENT SDE

By the equation (2.5), we can get the expected stock pricepatagion time7 as stated in the

following theorem:

Theorem 3.1 TheExpected Stock Priceis
(3.1) E[S(T)] = Sye™ T,

Proof: Using the stock price solution (2.5),

N(T)
E[S(T)] = Soe="/ITE [erW DXL Q] = gy elu=o®/2Tg,, [V D] Ey g [H e@]
=0



N(T N(T
(u—0?/2)T o%T/2 & Qi T = Qi
= Spet e Eno H e’ | =Spe"" Eng H e’

i=1 i=1

However, since the marks are uniformly 11D random varialled distributed independently of

N(t), by iterated expectations,

N(T) N(T) o
E|]e¥] = En |Eqw | [] e [N@D || =D n(A\TE
i=1 k=0

i=1

1)

i=1

00 k o0
= " nOD) J]E[?] =Y peADEFJ(Q) + 1]
k=0 1 k=0

1=

I
)

- ,; pr(AT) (J +1)" (7

where the Poisson distribution

VAL
p(AT) =e ’\T—( k:!)

has been used. Hence,

E[S(T)] = Spelrt )T

and therefore the theorem is provedQ

Assume the source of the jumps is due to extraordinary clsangie firm’s specifics, such as
the loss of a court suit or bankruptcy, but not from exterwvainés such as war. Thus, such jump
components in the jump-diffusion model represent only apstematic risks. Hence, tloerrela-
tion betaof the portfolio for non-systematic risk is constructeddgjta hedgings in Black-scholes
and is zero (see Merton (1976)). Further, under this assamphe jump-diffusion model (2.1) is
arbitrage-free However, in thaisk-neutral world E[S(T')] = Spe’”, s0S,e* )T = Spe'T and

solving for u, yields the risk-neutral appreciation rate,

(3.2) = fhon =7 — \J.



In the the more general case with time-dependent coeffgi¢gttthe instant expected price grow

rate as the risk-free raiét), i.e

EldS(t)/S(®)] = (u(t) + E[J(Q, OIA(1))dt = r(t)dt

thus obtaining the risk-neutral mean rate relationghiip) = .. (t) = r(t) — E[J(Q, t)]A(t).
Back to the constant coefficient case and substityting » — \.J into (2.1), we get the risk-

neutral SDE under the risk-neutral measiueas the following:

4s(t) ) dAN(t)
(3.3) oo
=rdt+odW(t)+ > (J(Qr) = J) + J (dN(t) = Adt)

where the jump terms are separated into the zero-mean fdrthe compound Poisson process
for later convenience in statistical calculations.
Before computing the European call option price, severantas given in Appendix A on

sums of uniformly distributed 11D random variables are resbd

4. RISK-NEUTRAL OPTION PRICING SOLUTIONS

Using risk-neutral valuation of the payoff for the Europeaii option in (2.6) with the stock price

solution (2.5) and risk-neutral drift coefficient (3.2),

C(So,T) = e~ Epyfmax(s 0)]
—TT OO

— K
— Zpk (AT) / / SpelrAT =0T +oVTatsy, _ K) 6_22/2¢$k<5k>d2d8k
\/ ka J Zo(sg)

_ Z )\T / / —(A\T4o?/2)T+oVTrs, Ke—rT) 6_22/2¢Sk (Sk)dZdSk
ka J Zo(sg)

(e}

- Z (AT)Es [/ <S e~ NI+ DT +oVTz48, _ Ke—rT> e—z2/2dz}
g )
V2m = Zo(Sk)

9



where
In(K/Sy) — (r —A\J —a?/2)T — s
oVT

is theat-the-moneyalue of the normal variable of integratiearandsS, = Zle Q; is the sum of

Zo(s) =

k jump amplitudes, such th&}; are uniformly distributed 11D random variables over thesivial

[a,b]. In the above equation, the sup = >, Q; = 0 in reversed sum notation, consistent with

the fact that there is no jump whén= 0.

Let
1 o0 7 2 2 1 _ 9 00 )
A(s) = — 506—(>\J+cr /DT +oVTzts ,—2 /2dz:_50€—(>\J+o /2)T+s/ eVTz,=2%/2
V2T J Zy(s) or Zo(e)
= LS()68_>JT /OO e—(oVT=2)%/2. —1 SogS—AfT /Uﬁ_ZO(S) e‘@/zdc
v2m Zo(s) V2 .

= Soe* Mo (aﬁ — Z0($)> = Soe M <d1 <5068_AJT>)

and
B(s) = L Ke ™ Te "z = LKe_rT /OO e %z
V21 Zo(s) V2m Zo(s)

= Ke " T0(=Zy(s)) = Ke @ (da (Soe" 7)),

where
In(z/K) + (r+02/2)T

4.1 d =
( ) 1(.7}) O'\/T
(4.2) dy(x) = dy(z) —oVT

are the usuaBlack-Scholes normal distribution argument functionkile

(4.3) d(y)

Vor Jowo
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is the standardized normal distribution. Therefore, ofinite sum call option price formula is

C(So.T) = Y pr(AT)Es, [A(Sk)— B(Sk)]

k=0

_ gpk(AT)Esk[Soesk‘m‘D (a1 (S0e527) ) e (o (S0 T) )|

Alternatively, this can be written more compactly as

(4.4) C(S0,T) = 3 pAT)Es, |0 (e 15 K, o2, 1) |
k=0

where

(4.5) C® (2, T; K, 0%, 1) = 2®(dy (x)) — Ke™" " ®(dy(x))

is the Black-Scholes (1973) formula, but with the stock @@ezgument shifted by a jump factor
eS-=MT in (4.4). The above equation agrees with Merton’s formu® (&t Merton (1976).

The next step is to compute
Es, [C(bs) (Soesk_)‘jT,T; K, 02,7")] .

However, it will be difficult to produce a simple analyticallstion, since the probability density
of the partial sumsS; for the log-uniform jump-diffusion model is very compliea which is
shown in Corollary A.1. The approximation to the solution tiois problem will be computed by

high-level simulation techniques.
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4.1 Put-Call Parity

Theput-call parityis founded on basic maximum function properties (Mertorv@)9Hull (2000)

and Higham (2004)), so is independent of the particulargsscso

(4.6) C(So, T) + Ke™™ = P(Sy,T) + So

or solving for the European put option price,

(4.7) P(Sy, T) = C(Sy, T) + Ke ™ — S,

in absence of dividends. Also, a risk-neutral argumentusmgas the following:

C(So,T) —P (S, T) = e "Epmax(S(T) — K,0)] — e ""Ep[max(K — S(T),0)]
= ¢ "TEy[max(S(T) — K,0) — max(K — S(T),0)]
= ¢ "TEM[S(T) — K] = e ™TEp[S(T)] — Ke ™™

= ¢Sy = Ke™™ = Sy — Ke™"T.

4.2 A Special Non-Jump Case

If A = 0, then there are no jump and the model is just a pure diffusiodeh In this case,
pe(AT) = exp(=AT)(AT)¥/k! = 0 for k > 0 andpo(t) = 1. Also, by the definitionS, =

Z?zl Q; = 0, a constant. Hence, expectations with respeéyts
ESO [C(bS) (SOQSO_AjTa T7 K7 027 ’I“)} = C(bS) (507 Ta Ka 027 T)

which is the standard Black-Scholes (1973) formulas (45,412) for the pure diffusion model.
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5. MONTE CARLO WITH VARIANCE REDUCTION

From (4.4), the European call option price formulae can hevedently written as

(5.1) C(S0,T) = By [C (S0, T3 K, 0%, )|
where

N(T)
(5.2) YWT) =) Qi

=1

Q; are uniformly distributed 11D random variables frdm b]. Note if(T) = v(T) — \T'J, where
exp(ATJ) = Elexp(y(T)], thenexp(J(T)) is an exponential compound Poisson process with the

exponential martingaleroperty on|0, 7] such that

Elexp(7(T))] = exp(7(0)) = exp(0) = 1.

So, the Monte Carlo approach may be a good choice to commkeneutral option prices
numerically. For some treatments of Monte Carlo methodsag# see Hammersley and Hand-
scomb (1964), Boyle, Broadie and Glasserman (1997) and nece:t compendium of Glasser-
man (2004).

Let N; be a sample point taken from the same Poisson distributio¥ (&3, so that theV;
fori = 1 : n sample points form a set of [ID Poisson variates. Gigrumps, let thels; ; for
j = 1: N; jump amplitude sample points, so that they are IID generatefbrmly distributed

random variables on [0, 1], then the
Yi = Z(a + (b — CL)UZ'J) = aNi + (b — a) Z Ui,j
j=1

J=1

for i = 1:n will be a set of IID random variables on [a, b] having the sarampound Pois-

son distribution with uniformly distributed jump amplites as does(7") in (5.2). Thus, based
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upon (5.1), arelementary Monte Carlo estimatEMCE) forC(S,, T') is the following
(5.3) C, = 1 XH:C(bS) (Soew_’\jT T:K, o 7’) = 1 zn:(]-(bs)
. n n p ) ) ) ) n p 17 )
such that the?i(bs) are 11D random variables with thg. Then, by the strong law of large numbers,
C, — C(S,T) with probability one as n — oo,
and by the 1ID property OCZ.(bS) the standard deviation; is equal tar®) /\/n, where

obs) _ \/Var [C09) (Soe7M-NT T K, 02, 1)] = [ Var [Ci(bs)}’

but may be estimated by the sample variance

(5.4) o) o 59 — J - i 1 Z; (@L - CZ.(bS)>2.

In order to reduce the standard deviation for the elemertnyte Carlo estimate; by a factor
of ten, the number of simulations has to be increased one hundredfold. However, there are
alternative Monte Carlo methods which can have smalleawag than that of EMCE by variance

reduction techniques.

5.1 Antithetic Variate and Control Variate Variance Reduction Techniques

Notice that ifU; ; is uniformly distributed fronj0, 1], then@m = a+ (b — a)U, ; is an uniformly

distributed (thetic) random variate frojam, b] and so also is thantithetic random variate

QY =a+(—a)(1-Uy),
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the counterpart to thihetic random variat@i,j. Hence,

N; N;
(5.5 7 Z a)(1 = Ui;)) = bN; - Z = (b+a)N; = %,

for i = 1:n, are IID random variables having the same compound Poissbribdtion with
uniformly distributed jump amplitudes as doed’) in (5.2). So, the antithetic variates method,
first applied to finance by Boyle (1977) (see also Boyle, Bimahd Glasserman (1997) and
Glasserman (2004) for more recent and expanded treatmeaitshe used.

Furthermore, we notice that the variable(v(7')) has the expectatiasp(AT.J) known from
the proof of Theorem 3.1 and has positive correlation Wittt (Soe?™ 7T T; K, 02, r). There-
fore, thecontrol variates techniquean be used to further reduce the variance of Monte Carlo es-
timation since the technique works faster the higher theetatron between the paired target and
control variates, provided that the mean of the controlataris known (Glasserman (2004)). The
control variates technique was also first used by Boyle (L& 7financial applications.

From the above analysis, we can get the Monte Carlo simukatidth antithetic and control

variate techniques. Let

6.6) X; = 0.5 (C(bs)(Soe”’i_’\jT,T; K,o% r)+ C(bs)(Soe'Yfa)_’\jT, T: K, 02,7’)>

(5.7) 0.5(C" 4 ¢y,

for i = 1:n represent théhetic-antithetic averagedlack-Scholes risk-neutral discounted payoffs

and

(5.8) Y; =0.5 (exp(%-) + exp <%-(a))> .

represents the average of thetic or original and antitlatip factors that will be used as a variance

reducing control variate.

15



Next, form the control variate adjusted payoff
Zi(a) = X; — a- (Y; —exp(\TJ)) ,

where(Y; — exp(\T.J)) is the control deviation and is an adjustable control coefficient. Then

taking the sample mean &f(«) produces the Monte Carlo estimator &S, 7'):
— I I I - - .
Znla) = - Zz:l: Zi(a) = - ;Xi —a— ; (Y —exp(ATJ))) = X,, — a(Y,, — exp(AT])),

which is an unbiased estimation singgZ,,(a)] = C(Sy, T') using IID mean propertieE[X | =
E[X;] = C(So, T) by (5.1) andE[Y,,] = E[Y;] = exp(AT'J) from the proof of Thm. 3.1.

The variance of the sample me&n(a) is
(5.9) 02 ) = Var [Za(a)] = %Var[Zi(oz)] |
following from the inherited 11D property of th&,(«). However,
Var[Z;(a)] = Var[X;] — 2aCov[X;, Yi] + o*Var[Y;].

So, theoptimal control parametea* to minimizeVar[Z;(«)] is

* COV[XZ#)/Z']
(5.10) o =

sinceVar[Y;] > 0, theY; in (5.8) being the positive sum of exponentials. Using thtiroal

parameten®,

Cov?[X;, Y]]

Var|Z7] = Var[Zi(a”)] = Var[X,] - Var([Y]]

= (1 - p§<LYZ) Var[X;],
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wherepy;, v, is the correlation coefficient betweefy andY;. We also know that

(5.11) Var[X;] = (Var [Ci(bs)} 1 9Cov [Ci(bs)’ Ci(abs)} 4 Var |:Ci(abs)])

(1 + pcgbs) C.(abs)> Var [Cl(bs)]

!
4
1
5.12 = -
(5.12) .

becausé/ar [Cfabs)] = Var [Ci(bs)]. Therefore,

(5.13) VarlZ] = 3 (1 ) (14 P g ) Var [0
(5.14) < % <1 + pci(bs)pi‘abs)) Var [C’i(bs)]
(5.15) < gvar[e] |

becausgy, ,, > 0 and provided o) q@bs) < 0. From (5.13-5.14)Var[Z]] < Var[X;], which
says that the variance of the Monte Carlo estimate withlagtiit variates and optimal control vari-
ates techniques (AOCV) will be less or equal to the Monte €astimate with antithetic variates

(AV) only, whereX; is given in (5.6) andVar|X;] is given in (5.11) . By (5.9) and (5.13),

o 1 .
(5.16)  Var(Zi] = Var(Zu(a")] = 5- (1 - f.y) (1 + pCZ_(bS)’Ci(abs)> Var [Cfb ’} ,

which together with (5.13-5.15), givasu([Z;] < .1 Var[C™] = 1Var[C,]. This says the variance
of the Monte Carlo estimate with AOCV (5.16) is at most hadf tlariance of the elementary Monte
Carlo estimate (EMCE) (5.3-5.4)A>1;/(bs)’ cabs) < 0. Ingeneralp ob%) ((@bs) is not always negative,
since it also can be positive as derrlwnsltrated in the follg\ﬁiguzre 1.2

However, if the jump amplitude boundsandb satisfya + b = 0, thenpcgbs)70§abs) < 0. We

state it in the following Proposition 5.1.
Proposition 5.1 If b/a = —1, thenpc_(bs) otabs) < 0.

In order to prove the Proposition 5.1, we need the followiegima 5.1 which is given in Higham

(2004) but with a little modification.
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p[CBS,CaBS] and a/b Ratio Relationship

©
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Figure 1: The Monte Carlo estimate p)g(bs) ((@bs) is not always negative, but is negative in the
region of interest near/b = —1. -

Lemmab5.1 If f(X)andg(X) are both monotonic strictly increasing or both monotonicréas-

ing functions then, for any random variahlé, Cov[f(X), g(X)] > 0.

Proof: Let Y be a random variable that is independentiofwith the same distribution, then

(f(X) = f(Y)(g(X)—g(Y)) >0if X #Y, otherwise). Hence,

0 < E[f(X)=f¥)(g(X)—g(Y))]

= Blf(X)g(X)] = E[f(X)g(Y)] = E[f(Y)g(X)] + E[f(Y)g(Y)].

SinceX andY are IID, that last right-hand side simplifies2&[f (X )g(X)] —2E[f(X)]E[g(X)],
which is2Cov[f(X), g(X)], and the result follows. O

Now we prove Proposition 5.1:

Proof: If b/a = —1, thatisa + b = 0, from (5.5),%.(6”) = —;. So,CZ.(bS) = Ci(bs)(SO exp(—rTJ +
v), T; K,0% r) and —Cfabs) = —Ci(bs)(So exp(—rTJ — ~;),T; K,o? r) are strictly increasing

functions with respect tg;. Hence Cov |C™, —C**| > 0 by the Lemma 5.1. Therefore,

K3 K3
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)

Cov [Ci(bs)7 C(abs)] < 0. SO,pC_(bs) oabs) < 0. O

Remark: In areal market, the ratity a will be close to—1, that isb+ a will be close to0 since
the skewness of the daily return distribution is not far afvayn 0 and the skewness is generated
by the jump part of the jump-diffusion model. Hence, in gﬂh@fC,(bS),C.(abS) < 0 in the real
market by Proposition 5.1 and the continuity of the functjx)c{;bs)’cgabsl) ab(Z)utb/a. For example,
the skewness is-0.1952 for 1988-2003 S&P 500 daily return market data @nd = —0.9286
as found by Zhu and Hanson (2005). In fact, in our Monte Cagorahm,pa(bs>7o_<abs) is about
—0.83. So, we can get a lot of benefit from the antithetic variatéavene redulctior; technique by
equation (5.13). Anyway, ib/a is far away from—1, the correlation coefficient o(bs) ((abs) can
be positive which will worsen the variance. In this case, &e ase the foIIowin(::] M()Lnte Carlo

estimator usingptimal control variatesechnique (OCV) only:
— 1 - (bs) 1< -
(5.17) Zn = ; G = (5 ; exp(7;) — exp(ATJ)>

whereg = Cov[C’i(bs), eYi]/Var[e¥]. So,

n e e

(5.18) Var[Z] = = (1 — P )var[o;b5>].

Before we comparé/ar[Z]] with Var[Z*], the following Lemma 5.2 and Lemma 5.3 are

needed.

Lemmab.2

2
Cfbs),Yi

<1 + P (bs) ’C_(abs))

2p

2
Px,y, =

Proof: Since the antithetic paﬁ(]fbs), CZ.(abS)) share common statistical properties, e.g.,
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Var [C’Z-(abs)} = Var[C™)], so

Var |:CZ-(bS) —+ Ci(abs):| =2 <1 + pcgbs)7cgabs)> Var [Cfbs):|

and
(bs) (abs) (a)
Cov? | 1¢ eYitei
p2 COVZ[Xi’)/;] . ov |: 2 ’ 2
X.Y: = —
i)Y Vi Xz V. Y; (bs) _(abs) ] (a)
XV g [T g Tl
Cov? [C;bs) + Ci(abs)7 eYi 4 evz-(“)}
Var [Ci(bs) + Ci(abs)] Var [e% + e’n-(a)}
a “ 2
(COV [Ci(bs)> ¢ + e )] + Cov [C’i(abs)’ el 4 e )])
2 <1 + P (bs) C;abg)) Var [Ci(bs)} Var [e% + e%(a)}
2Cov? [Ci(bs)’ e 4 6%’(&)]
<1 + pc_(bs) C_(abs)) Var |:CZ.(bS)] Var |:e%' -+ e’Yi(a)]
2 2
_ oP erigen” 2 c®)y,
<1 + Pc_(bs)’c_(abs)) (1 + pc_(bs)7cgabs)>
a

Hence, equation (5.13) can be also written as
k bS
(519) Var[ZZ] = 0.5 <]_ + pCZ-(bS),C,L-(abS) — 2p2i(bs)’Yi)V&r |:CZ( )] .

Remark: From (5.19) anghx ..y = px,y Wherex is some constant, it does not matter whether

Y; or SyY; is used as the control variate for variance reduction p@gos
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Lemmab.3 If X, Y andZ are any random variables, then

Var[Y] Var[Z]
P = ———— kv + P
Xy+s VarlY + 2] Var[y 4 2] %%

Pr oof:

9 Cov[X, Y +Z]  Cov[X,Y]+ Cov[X, 7]

PXY+2 = Va[X|VarlY + 2] Var[X]Var[Y + Z]
Cov[X,Y] Covl[X, Z]

Var[X|Var]Y + Z] = Var[X]|Var]Y + Z]

Cov[X,Y] VarlY] Cov[X, Z] Var[Z]
Var[X]|Var[Y] Var[Y + Z] = Var[X]Var[Z] Var[Y + Z]

VarlY] VarlZ]
Varly + 2]7% " Varly + 2]7%%

Therefore, based on the above two Lemmas, the followingditipn can be obtained.

L@ <0, thenVar[Z;] < Var[Z,].

eVie'’i

Proposition 5.2 If P pbs) abs) < 0 andp

Proof: From Lemma 5.3,

. Wf“)]
2 Var[e] 2 Var [6 2

= + p
(b) s () _ @1 Pc®s) _ @1 P sy @
Cp 7 eliteli Var |eYi + e Cime Var |eYi + e G e

— 1 p2 + p2 > 0 5p2
2(1 c® v TP ps) o ) = T )
-+ pe%@%(a)
sincep @ < 0. Therefore,
evi,ei
2 2 2

— < 0. < 0.

pCi(bS),e’Yi pC.(bS)7e’Yi+e’y’L(a) <0 5pCi(bs),e'Yi <0.5

2 iS22 _9p2 _
becauscpq(bs)vew < 1. That 'S’QpcngLew 2pc,§bs>,yi 1 <0. FromLemmab5.2 andCz.(bS)7Cz.(abs) <

21



2 2 2 2 2 2 i

0.5(1—p%,y) <1-— pzc(bs) .- With the above inequality anel s, abs) < 0, we get

0.5 (1 — pg{myi) (1 + pC_(bs)L,_(abs)) <1- PZ;bs) i

and the result follows by (5.16) and (5.18) O

Remark: From the proof of Lemma 5.4, we know that the condition _«, < 0is equivalent

eviei

toexp(a+b) — 1< 2J.

5.2 Estimate of Optimal Control Variate Parameter a*

In general, we do not know the optimal parametér= Cov|[X;, Y;|/Var[Y;] exactly, so we need

some estimation method for it. Before analyzing it, we néwodfollowing Lemma.

Lemma5.4
Var [671- T e%‘(a)] _9 <e>\Tj L 9pXTT eAT(ea+b—1)) ’

whereJ = (exp(2b) — exp(2a))/(2(b — a)) — 1 and recall.] = (exp(b) — exp(a))/(b — a) — 1
from (2.3).

Proof: Using the properties of the antithetic pé'ny,-, 7}“)),

Cov [e”, e%_(a)} - E [ewevi(a)] —E[e"]E [e%‘(a)} —E [6(a+b)N(T)] — B2 [¢"]

a+b__ T
AT(eH0=1) _ 22T

and

Var[e] = E[e®] — E*[¢¥] = AT TT gy [e%-(a)} .
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Thus,

Var [e% + e'y( )} — Var[e%'] + 2Cov [e”, evz-(a)} + Var [e%‘(“)}

= 2Var[e”’] 4+ 2Cov [ew, e%'(a)] =2 (e)‘Tj —2eTT 4 e’\T(ea+b_1)> )

From Lemma 5.4¢% = Var[Y;] = Var [0.5 (e%jLeV( ))] =05 <€)‘Tj—2€2>‘Tj—|—6>‘T(ea+b_l)>.

Proposition 5.3 An unbiased estimator far* is

" XY, - XY,
(5.20)a:< ZXY Y ZZXY) - nT—L1 _ ,

=1 j=1
whereX, = 1 3" | X; is the sample meaX'V’,, andY’,, have the similar meaning.

Proof: Itis necessary to show the condition for an unbiased estififi] = o* is true. Using the
standard technique of splitting the diagonal part out ofdbable sum and the independence as
well as the identical distribution property of the randomiailes at different compound Poisson

sample points fof = 1 : n, then

1 < 1 « 1
XY, — = X.V. | —
_1 < ) nz zg)o_%/]
=1 7j=1
= ! é‘E 1 ! XY, — E X;Y;
_n—lizl n v

J 1j#i

1
oy
Y
1 —[n-1 1 1
= E[X,Y] — = —
n—l%( n [ ] n > o2

Jj= 1]75%

E[a] = E [n

_ <n— Lpixy] - "o 1E[X]E[Y]> L

n n O'Y

= (E[XY] = E[X]E[Y]) o} = Cov[X,Y]/ot = a* .
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Sincea depends ofY; for i = 1:n, the estimaté of o* introduces a bias into the estimate

I 1 ~ (1 - \TJ
(5.21) Zn:E;Xi—a<E;Yi—e )

Fortunately, in this case, we can compute the bias which pstically goes to zero at the rate

O(1/n) as shown in the following Theorem.

Theorem 5.1 The estimateZ,, of the call priceC(S,, ') has bias

o~ 1
b= E[Zn] — C(S(],T) = E . 2 )

whereuy = E[Y;] = E[Y] = exp(\TJ), 02 = Var[¥;] = Var[Y], Y has the same distribution as

Yifori=1:n.

Proof: Setrn, = o2a(Y;, — py). Then,

SELXY i 2 XY
= 1= — Y _
_ >ic1 XYYy B 2ic Z;'L:I X5V _ By > i1 XiYi + my Doy E;’Lzl XiY;
n—1 n(n —1) n—1 n(n—1)
- . iX'Y-Yk — L Z#i XY _ My 2 i XiYi + By i Zj;éz' XiY;
n < v n(n—1) n n(n — 1)
— XiVe + 2 i XiYiYe _ D ik XeY3Ye 4+ 370, D0 XYYy
n n(n —1)
oy 2 XY Ly S > XY
n n(n —1)
_ XkYk2 + Zi;ﬁk Xz}/;,Yk _ Zj;ék XkY;Yk + Zi;ﬁk XzYk2 4 Zi;ﬁk Zj?gi’k XZY;Yk
n n(n —1)
py o XiYs By 2o 2 XY
_ T .
n n(n —1)

24



By the independence dfX;,Y;} and {X;,Y;} for j # ¢ as well as the identical distribution

properties,

XV2+(n=1)XYpy  (n—=DXYpy +(n—DpuxY?+ (n—1)(n = 2)uxpy”

Elnl = n n(n —1)
py XY on(n—Dpdpx  XY? = 2XYpy — px Y2+ 2uxpd
T nn—1) n
~ Cov[X,Y? —2uyCov[X,Y] Cov[X,Y (Y —2uy)]
n n

whereuy = E[X,], uy = E[Y;], XY = E[X,Y;], Y2 = E[Y?] andXY? = E[X,Y}?].

Therefore, the call price estimate bias

b = E[Z]—C(S,T) = E[-a(Ys — py)] = —Eloy-a(Yy — uy)]/o7
_ _E[pl/o? = 1 Cov[X, Y (2uy — Y)]

2
n Oy

Remark: From Theorem 5.1, we can make the following correction toeﬁ‘ténate?n:

(5.22) 0=2,-b

Y

whereb is an estimate of similar to the estimat@ of * in (5.20) as the following:

~ 1 XY, -X,Y,
(5.23) b:( ZXY e ZZXY) T ,

lel

whereY, = Y;(2uy — Y;), fori=1:n, XY',, X, andY”,, are sample means. Then, the estimate

§ is an unbiased estimate 6tSy, T).

25



5.3 TheMonte Carlo Algorithm

Now itis ready for us to give the Monte Carlo algorithm withigimetic variates and optimal control
variates techniques as the following:
The Monte Carlo Algorithm with antithetic and optimal control variatestechniques
for i=1,...,n
Randomly generate  N; by Poisson inverse transform method;
for j=1:N;
Randomly generate IID uniform random variables Uijs
end for |
Set 7, =aN;+ (b—a) Ejvzl Ui
Set 4" = (a+b)N; — i
Set C'Z-(bs) = () (SO exp (%- — )\Tj) T:K,o?, 7");
Set ) = ¢ (S exp (% ATJ) T. K, 02,7~);
Set Xi =05 (¢ 4 cl*™);
Set Y;=0.5 <exp(%) + exp <%(“)));
end for i
Compute « according to (5.20);
Set Z,=13" X, —a(lyr, v, — M),
Estimate bias b according to (5.23);
Get European call option estimation 0=27,—b;

Get European put option estimation P

by put-call parity (4.7).

6. MONTE CARLO CALL AND PUT PRICE RESULTS

In this section we provide some numerical results and dssouns to illustrate the particular algo-

rithm version of the Monte Carlo method used for the jumgudibn process in this paper. First
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of all, we compare our Monte Carlo method using antithetit @ptimal control variates (AOCV)
techniques having variance given in (5.16) to the elemgntwnte Carlo estimation (EMCE)
method given in (5.3), as well as to other Monte Carlo vaoiai

The compound Poisson process is simulated by first usingieese transform methad the
leading step of the algorithm given by Glasserman (2004h@jump counting component process
N, for i = 1:n and then theV; jump amplitude antithetic pairgy; ;, %(Z.)) are simulated together
by a standard uniform random number generator to getihdor j = 1: N;. We implement
them with MATLAB 6.5 and run them on the PC with a Pentium4 @GH& CPU. The numerical
test results for elementary Monte Carlo estimation (EMCIjhud are listed in Table 1, Monte
Carlo with antithetic variates (AV) only in Table 2, Monte i@awith optimal control variates
(OCV) only in Table 3, and for the antithetic variates congairwith the optimal control variates
in Table 4. The uniform distribution parameters in these foar tables were chosen arbitrarily
but satisfyinga/b ~ —1 andexp(a +b) — 1 < 2J, i.e.,a = —0.3 andb = 0.2. Another jump
parameter is\ = 100 per year, while the option parameters &fe= $100 andT" = 0.2 years with
interest rate- = 5% per year for testing convenience in the first four tables. Bamwolatilitieso
are given in the tables.

The results in these first four tables show that the antthetriates combined with optimal
control variates (AOCV) achieves the smallest standaror ¢lan the other three Monte Carlo
algorithms. This confirms our theoretical results aboutabeparisons of their variances in the
above section, but AOCV needs the longest time for compufiihgrefore, we use standard error
multiplying square root of computng timg/t as a benchmark for the trade-off in the estimate
variance and computing time. For a detailed explanatioh@benchmarky/t, please see Boyle,
Broadie and Glasserman (1997) and Glasserman (2004). @eethese results, the Monte Carlo
method with AOCV is overall the best estimate among the foontd Carlo methods mentioned
above. Also, these results show that the European call roptice is a decreasing function of
strike price X’ and the European put option is an increasing function of @thBhe call and put

option prices increase as the volatilityof stock price increases.
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Table 1: Call and Put Prices for Elementary Monte Carlo Estiom (EMCE) Method

| o || K/S, | Call,ce™) | put.Plemee) | Std. Error,e

t (seconds) Benchmarkev/? |

0.9 29.980 19.085 0.569 2.671 0.929
0.2 1.0 25.851 24.856 0.540 2.469 0.848
11 22.293 31.199 0.511 2.579 0.821
0.9 30.588 19.693 0.566 2.546 0.903
04| 1.0 26.524 25.529 0.538 2.547 0.858
11 23.011 31.916 0.510 2.515 0.808
0.9 31.574 20.678 0.563 2.531 0.896
06| 1.0 27.599 26.604 0.535 2.562 0.857
11 24.148 33.054 0.508 2.594 0.817

The financial and jump-diffusion parameters &ie= 100, 7' = 0.2, r = 0.05, A = 100, a = —0.3 and
b = 0.2. The simulation number is8 = 10,000. The EMCE standard error is abbreviateddoy o5, =

o) /\/n andey/t is a combined benchmark index.

Table 2: Call and Put Prices for Monte Carlo with AntithetarMtes (AV) only

| o || K/So | Call,c®™) | Put,P®) | Std. Error,e

t (seconds) Benchmarkev/? |

0.9 30.372 19.477 0.348 4.453 0.734
0.2 1.0 26.223 25.228 0.340 4.672 0.735
11 22.642 31.547 0.330 4.656 0.711
0.9 30.981 20.085 0.344 4.594 0.738
04| 1.0 26.892 25.897 0.336 5.312 0.775
11 23.352 32.258 0.326 5.360 0.755
0.9 31.965 21.069 0.340 5.203 0.773
06| 1.0 27.963 26.968 0.331 5.391 0.768
11 24.485 33.391 0.321 5.469 0.751

The financial and jump-diffusion parameters &= 100, T = 0.2, r = 0.05, A = 100, « = —0.3 and
b = 0.2. The simulation number is = 10,000. The AC standard error is abbreviateddy o5 , where

H, = >, Xi/n, X; is given in (5.6) and+/t is a combined benchmark index.
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Table 3: Call and Put Prices for Monte Carlo with Optimal GohVariates (OCV) only

| o || K/S | Call,cC) | Put,PC) | Std. Errore

t (seconds) Benchmarke+/t |

0.9 30.580 19.684 0.167 5.031 0.375
0.2 1.0 26.412 25.417 0.183 5.016 0.410
11 22.816 31.721 0.196 4.828 0.430
0.9 31.187 20.291 0.161 4.922 0.358
04| 1.0 27.085 26.090 0.176 3.093 0.310
11 23.534 32.440 0.188 4.938 0.418
0.9 32.171 21.276 0.153 4.797 0.335
06| 1.0 28.160 27.165 0.167 3.375 0.306
11 24.674 33.579 0.178 4.734 0.386

The financial and jump-diffusion parameters &ie= 100, 7' = 0.2, r = 0.05, A = 100, a = —0.3 and
b = 0.2. The simulation number is8 = 10,000. The AV standard error is abbreviated by o where

Z is given in (5.17) and+/t is a combined benchmark index.

Table 4: Call and Put Prices for Monte Carlo with combinedhtegues (AOCV)

| o || K/S | call,clee) | Put,Pleeev) | Std. Errore

t (seconds) Benchmarke/t |

0.9 30.645 19.749 0.106 5.656 0.253
02| 1.0 26.487 25.492 0.114 5.531 0.267
11 22.895 31.800 0.119 5.781 0.286
0.9 31.251 20.356 0.102 5.797 0.245
04| 1.0 27.154 26.159 0.109 6.250 0.272
11 23.604 32.509 0.114 6.672 0.294
0.9 32.232 21.337 0.096 5.593 0.227
06| 1.0 28.222 27.227 0.103 4.922 0.227
11 24.735 33.640 0.107 6.109 0.265

The financial and jump-diffusion parameters &fe= 100, 7 = 0.2, r = 0.05, A = 100, a = —0.3 andb =
0.2. The simulation number is = 10, 000. The AC standard error is abbreviateddy- o, = oz//n,

whereZ, is given in (5.21) and+/t is a combined benchmark index.

29



Also, the Black-Scholes call pric€™)(S,, T; K, 2, r) are computed directly from the for-
mula (4.5) and from it the put pric®®™)(S,, T; K, 02 r) is computed from the put-call parity

relation,

(6.1) PP (S, T K, 0% r)=C®™(S,,T: K,02 1) + K exp(—rT) — Sp.

The numerical results for call and prices for these Blackebes values and the AOCV values are
compared in Table 5. For Table 5, the estimated jump-diffushodel parameters = 0.1074,
A = 64.16, a = —0.028 andb = 0.026 used come from the double-unform distribution paper of
Zhu and Hanson (2005). The option parametersSére= 1000, 7' = 0.25 year, and- = 3.45%
which is the 3-month U.S. Treasury bill yeild rate on Augus@05. These parameters are also
used to compute the Standard & Poor 500 index option priddste(that these parameters are

different from those for Tables 1-4.)

Table 5: Comparison of Call and Put Option Prices

‘K/SO H (C (aocv) ‘ P (aocv) ‘ € ‘t(SEC.)‘ C'®s) ‘ P®s) ‘ C (true) ‘ PpErue) ‘

0.8 || 206.927| 0.057| 0.003| 6.219| 206.870 8.e-5| 206.937, 0.067
0.9 | 110.787| 3.058| 0.043| 6.516| 108.040, 0.3087| 110.792| 3.063
1.0 37.358| 28.770| 0.118| 6.109| 25.897| 17.309| 37.248| 28.660
11 6.506| 97.059| 0.069| 6.500| 1.260| 91.813| 6.479| 97.033
1.2 0.553| 190.248| 0.015| 6.203| 0.010| 189.700, 0.575| 190.269

The option parameters as) = 1000, r = 0.0345, T = 0.25, 0 = 0.1074, A = 64.16, a = —0.028
andb = 0.026. The simulation number i& = 10,000 for AOCV values, but a much larger number,
n = 400,000 sample points, are used for the approximation to the trugegal The Black-Scholes values
come from (4.5) and put-call parity (6.1). The standardres@bbreviated by = oy = oz/+/n, where

Z, is given in (5.21) for AOCV.

The numerical results in Table 5 show that the estimatedhodllput values by the Monte Carlo

method with AOCV are within th65% confidence interval of the true call®™® i.e.,

cleoer) ¢ [elme) _ 1 96e, C(™°) 1 1.96¢]
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and put value® e je.,
plocew) ¢ [plre) — 1.96¢, P 4 1.96¢]

by the central limit theorem except the case wiefs0 = 0.8. In Table 5, the true call and put
prices are approximated with a much larger number of sinariain = 400,000 compared to

n = 10,000 in Tables 1-4. Also, the estimated European call and pubopgirices are observed
to be bigger than the Black-Scholes call and put option pricespectively. This is not just a

numerical fact, but can be stated and proven with the follgwheorem:

Theorem 6.1 The European call and put option prices based on the junfpgidn model in (2.1)

are bigger than the Black-Scholes call and put option priespectively, i.e.,
C(So, T5 K, 0%, 1) > C™ (8o, T; K, 0%, 1),
and

P(So, T; K, 02,7’) > P(bs)(SO,T; K, 02,7').

Proof: Since the Black-Scholes call option pricing formula (4.6) €™ (S, T; K, 0%, r) is a
strictly convex function abou$ and by Jensen’s inequality (see Hanson (2005, Chapter 0) for

instance), we have

C(So, T; K,0%r) 2 E [Cﬂm) (Soe%T)—UT,T;K,a?,r)]

> Ot (EV(T) [Soe?M=MT) T K, 02,r> =C" (S, T; K, 0% 7).
By put-call parity and the above proven inequality,

P(So, T K, 0% 1) = C(So,T: K, 0% 1) + Ke'" = 5
> C(bs)(SQ,T; K, 0_2’7,) + Ke T — Sy = P(bs)(So,T; K, 0.2’74).
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Remark: In the proof of the Theorem 6.1, no special jump mark distrdyuof () in the jump-
diffusion model (2.1) is needed. Hence, this is a generaltratso suitable for the jump-diffusion
jump-amplitude models such as the log-normal of Merton §)9the log-double-exponential of

Kou (2002) and Kou and Wang (2004) and the log-double-umifof Zhu and Hanson (2005).

/. CONCLUSIONS

The original SDE is transformed to a risk-neutral SDE byisgtthe stock price increases at the
risk-free interest rate. Based on this risk-neutral SDEgduced European call option pricing
formula is derived and then by the put-call parity the Eusopput option price can be easily com-
puted. Also, some useful binomial lemmas and a partial sunsitjetheorem for the uniformly
distributed IID random variables are established. Unfuataly, the analysis of the log-uniform
jump-amplitude jump-diffusion density is too complicatedyet a closed-form option pricing for-
mula like that of Black-Scholes, excluding infinite sums.wéwer, that is true for many complex
problems where computational methods are important. Henk®nte Carlo algorithm with both
antithetic variate and control variate techniques forarace reduction for jump-diffusions is ap-
plied. This algorithm is easy to implement and the simutatiesults show that it is also efficient
within seven seconds to get the practical accuracy. Finaéyshow that the European call and put
option prices based on general jump-diffusion models fyatig linear constant coefficient SDEs

are bigger than the Black-Scholes call and put option priespectively.

Appendix A.
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SUMS OF UNIFORMLY DISTRIBUTED VARIABLES

The main purpose of this Appendix is to derive the partial slamsity function for the uniformly

distributed IID variables, but first we need the followingieas.

LemmaA.1 Partial Sum Density Recursion:
Let X; fori = 1 : n be a sequence of independent identically distributed (tH»dom variables

with uniform distribution ovef0, 1]. Let

be the partial sum for, > 1 with distribution
s, (s) = Prob[S, < s

and assume the density

¢s,(s) = s, (5)

exists. Then for any real numbersuch that) < s <n + 1,

(A1) 5.() = [ 05,y

Proof: Application convolution theorem (see Hanson (2005, Chrapjeto the recursiors,, ; =

S, + X,,+1 and the uniform IID of theX; on [0, 1] yield the density of5,, .,

—+00

GSi1(5) = (@s, * Oxppn) (5) = ¢s, (s — ¥)Px,, (v)dx

! .
= —x)dr = dz.
/0 ¢s, (s — x)dx /S_légn(x) x

That iS,¢3n+l(8) = fss—l (bgn (l’)dl’ a
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A.1 Preliminary Binomial Formulas

Lemma A.2 Binomial Formula Derivative | dentity:

" o 0, n=0orn>i+1
(A-2) ) @(—W = .

=0 (—D)"nlein, 1<n<i

for some set of constants,,.

Proof: Consider the basic binomial formula:
(A.3) Bola;n) = (1 —2)" = (”) (—1)ia

whose derivatives are easy to calculate by induction giving

2o(l—z)"" n>i+1

n—i)!

—1)%!, n=i

—~

B (z:n) =4
0, 0<n<i-1
SO

B (1%;n) = lim B{’(x;n) = (—1)ild,; ,

rz—1%t

where),, ; is the Kronecker delta. Consider the derivative form

By =3 (7)1
j=0 M
and defineB; (z;n) = zB{(x;n), then
Bl(li; n) = (
0

which proves (A.2) for the case= 1 with ¢, ; = 1.
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Fori > 1, note that each - d/dx operation on the basic binomial formula (A.3) introduces
another factor of in the binomial formula summand, leading to the inductiverdion of higher
order binomial formulas,

Biwi(z;n) = - Bi(x;n)

for i > 0. Straight-forward induction, shows that for 0,

Biam) =3 (7)o

=0 \J

and that

Bz =3 (1) -0

j=0
which is the target binomial formula in (A.2). To evaluatestformula, a further application
of induction on the inductive or recursive form definitiorr f8;,,(x; n), leads to the induction

hypothesis,
(A.4) Bi(z;n) = Zcivjijéj)(x; n)
j=1

where the constants ; are determined recursively by equating this induction tiyesis fori 4 1
and the recursive form faB;, 1 (x; n). Thus for arbitraryr, equating the coefficients of theterms
giveciy11 = ¢q fori > 1, soc;; = ¢;7 = 1 already found from thg = 1 case. Similarly, for
j=1i+1,ie,ordew ™, ¢;y1,1 = c;;fori > 1,s0c;; = ¢;; = 1, completing the two boundary

cases. In general, comparing coefficientsofor 2 < j < i yields the recursion,
Cit1j = Cij—1 1] " Cij,

which can be used to get all constants needed, for example= i(i — 1)/2.
Finally, using (A.4) with the resulB{” (1*;:n) = (—1)i!6,; implies the final result (A.2),

proving the lemma. O
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Lemma A.3 Shifted Binomial Formula | dentity:

“/n . . 0, n=0orn>:i+1
ws 3 (T)eve-ii- st

=0 nlein, 1<n<i
where the constants,, are given recursively in the above lemma.

Proof: This result follows quite easily from the derivative idént(A.2) by change of variable

j' =n — 7 and a binomial coefficient identity,

(L5) == ()

SO

0, n=0orn>1+1

(—D)™nlein, 1<n<i

and taking into account the extra factor(efl)™ proves the result (A.5) as well as the lemmal

Lemma A.4 Key Binomial Formula Application:

o > (%) vt - iy - -+ e =0,

wheren > 0 is an integer and is any value.
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Proof: Primarily expanding the factdrn — j + &) about(n — j) by the binomial theorem leads to

Zn: <7;) (1Y (n—j)"—(n—7+8&" = - Zn: (”) (—1)’ :01 <7Z) =i —

J=0 J=0

noting thatn > i in the application of Lemma A.3. O

A.2 Density of Partial Sumsof Uniformly Distributed | | D Random Variables

Now, returning to the calculation of the probability degsitf the partial sum random variable

S, =>.", X;, where theX; for; = 1 : n are an IID sequence of uniform random variables.

Theorem A.1 Partial Sum Density:
Let X; fori = 1 : n be a sequence of independent identity distribution (lID)d@am variables
each uniformly distributed oft), 1]. LetS,, = >, X; withn > 1. Then, the probability density

function ofS,, is

1 0<s<1l,n=1
(A7) bs.(5) =1 5, > (=1 (s =), 0<s<nmn,n>1 ¢,
0, else

where|s| denotes the integer floor function.

Proof: Again, we apply mathematical induction. When= 1, the conclusion is true from the

uniform density given in (2.2) when = 0 andb = 1. Whenn > 1, assume the induction
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hypothesis and < s < n, so

b5, (5) = ,i() Ji(s -yt

is true, but otherwises, (s) = 0. The objective is to use the hypothesis to show the result

5,11(8) = — i < ) 1 (s —j)",

if 0 <s<n-+1,butisO otherwise.

e Casel: Lets < 0ors>n+ 1,thengs,,,(s) = 0 since the value of,,,, = > X, and

0<X;,<1fori=1:n+1,508,:1 € [0,n+1].

e Case2: Let0 < s < 1,then—1 < s — 1 < 0. Therefore, starting with Lemma A.1 and

using the fact thaps, () = 0 whenz < 0,

G5y (8 / ¢s,(z (/solJr/O)%n dI—/ s, (z

38



Hence, o) < s < 1,

Ls]

)=y (1) 6

e Cae3 n<s<n+1 Thenn—1<s—1<mnand|s|] =norn+ 1. Therefore, by

Lemma A.1,

Pspia(8) = /S: bs, (z)dr = /:1 +/ns> bs, (z)dr = ps, (z)dx

- %;:(j)(—l)jun—y)"—<s—1—m

- %:: () crs-1-ar %gzj: (") -1

- %j; (" )evie-ar %:: (") -vim—sp

- L Z <<n]+ 1> . (7;)) (—1)7(s — )" + % (j)(—lwn -

RO Qe

_ %j; (") ar s %j; (") (== 5= .
s (e

Therefore, the right boundary case fok s < n + 1 is proven.

e Case4: Letl < s < nthenbyLemmaA.1, the fact that- 1 < |s| < s and the induction
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hypothesis,

G511 (5) = / bs, (2)dz = / 1ﬁi<?><‘l)j(“”n—1d$

) </ /LJ> ”‘“fj(?) )"t

[s—1] n nl
:/s_ n—l'JZ<J> Ha =iy
S
n—l'j j

=0
+(7‘&—11)': <?>(_1)j /L:J(w e
L 5 (%) -1tls) =3~ = 1=

nl 2\
- i (") evie-ar e LSJO <]><—1>J<s—3>"

Therefore, from Case 1 to Case 4, the conclusion is true-for, so by the mathematical induction

the theorem is proved. O

Corollary A.1 Partial Sum Density on [a, b):
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LetY; for: = 1 : n be a sequence of independent identically distributed ramdariables
uniformly distributed ovefa, b]. LetS, = > " | Y;, wheren > 1, then, the probability density

function ofS,, is

1, a<s<b n=1
(A8) ¢s,(s) = m ZJL:"&“ J (;‘)(—1)3(% — )Y na<s<nb n>1
0, else

Proof: Fors < na ors > nb, itis obvious thatys, (s) = 0.

Now, we considena < s < nb. Set

whereY; is uniformly distributed random variable fromto b, then it is easy to prove that the
distribution of X is the transformable to the uniform distributed [0n1] (the proof is omitted) .

Set
=1

So,

“Yi—a >".,Yi—na S,—na
Sn: 7 — =1 (2 — n )
;b—a b—a b—a

The probability distribution function aof,, is

®g (s) = Prob[S, < s] =Prob[(b—a)S, + na < s

s—na

— Prob [Sn < Sb_ ”a] - / T g, (2)do.
0

—Qa

So, forna < s < nb,

o, (220) S EEEL (rpspe

onls) = —— = = -1 —a)
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The Corollary is proved. 0
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