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1. INTRODUCTION

Two seminal papers, Black and Scholes (1973) and Merton (1973), were published in the Spring

of 1973 on the celebrated Black-Scholes or Black-Scholes-Merton model on an option pricing

formula for purely geometric diffusion processes with its associated log-normal distribution. Black

and Scholes (1973) produced the model while Merton (1973) gave the mathematical justifications

for the model, extensively exploring the underlying and more general assumptions. These papers

led to the 1997 Nobel Prize in Economics for Scholes and Merton, since Black died in 1995

(see Merton and Scholes (1995)). The Black-Scholes formulais probably the most used financial

formula of all time.

However, in spite of the practical usefulness of the Black-Scholes formula, it suffers from many

defects, one defect is quite obvious during market crashes or massive buying frenzies which con-

tradict the continuity properties of the underlying geometric diffusion process. In Merton’s (1976)

pioneering jump-diffusion option pricing model, he attempted to correct this defect in continuity

and used log-normally distributed jump-amplitudes in a compound Poisson process. Merton ar-

gued that the portfolio volatility could not be hedged as in the Black-Scholes pure diffusion case,

but that the risk-neutral property could preserve the no-arbitrage strategy by ensuring that the ex-

pected return grows at the risk-free interest rate on the average . Merton’s (1976) solution is the

expected value of an infinite set of Black-Scholes call option pricing formulas each one the ini-

tial stock price shifted by a jump factor depending on the number of jumps which have a Poisson

distribution.

Beyond jumps there are other market properties that should be considered. Log-return market

distributions are usually negatively skewed (provided thetime interval for the data is sufficiently

long), but Black-Schoes log-returns have a naturally skew-less normal distribution. Log-return

market distributions are usually leptokurtic, i.e., more peaked than the normal distribution. Log-

return market distributions have fatter or heavier tails than the normal distribution’s exponentially

small tails. For these defects, jump-diffusions offer somecorrection and more realistic properties.

However, time-dependent rate coefficients are important, i.e., non-constant coefficients are impor-
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tant. Stochastic volatility can be just as important as jumps and this is demonstrated by Andersen,

Benzoni and Lund (2002).

Several investigators have found statistical evidence that jumps are significant in financial

markets. Ball and Torous (1985) studied jumps in stock and option prices. Jarrow and Rosen-

feld (1984) investigated the connections between jump riskand the capital asset pricing model

(CAPM). Jorion (1989) examined jump processes in foreign exchange and the stock market.

Kou (2002) and Kou and Wang (2004) derived option pricing results for jump-diffusion with

log-double-exponentially distributed jump amplitudes. The double-exponential distribution uses

one exponential distribution for the positive tail and another for the negative tail, back to back,

in the log-return model. Kou and co-worker have done extensive analysis using this jump model.

Cont and Tankov (2004) give a fairly extensive account of thetheory of option pricing for Lévy pro-

cesses which include finite variation jump-diffusions as well as generalizations to infinite variation

processes. Also general incomplete markets are treated. Inthe recent literature, many other papers

and several books have appeared or will soon appear on jump-diffusions. Øksendal and Sulem

(2005) treat control problems for Lévy processes, including jump-diffusions. Hanson (2005) gives

a more practical treatment of stochastic processes and control for jump-diffusions.

The purpose of this paper is to give a practical, reduced European call option formula by the

risk-neutral valuation method for general jump-diffusions, including those with uniformly dis-

tributed jumps. For simplicity, constant coefficients are assumed, so stochastic volatility is also

excluded. A collateral result shows that the European call and put based on the general jump-

diffusion model are worth more than that based on the Black-Scholes (1973) model with the same

common parameters. Since the analysis of the partial sum density for the independent identically

distributed random variables (IIDs) is very complicated inthe case of the uniform jump distri-

bution, it is almost impossible to get a closed option pricing formula like that of Black-Scholes.

Hence, we provide a Monte Carlo algorithm using variance reduction techniques such as antithetic

variates and control variates, so that sample sizes can be reduced for a given Monte Carlo variance.

The Monte Carlo method is used to compute risk-neutral valuations of European call and put op-
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tion prices numerically with the aid of the obtained reducedformula. The numerical results show

that this is a practical, efficient and easy to implement algorithm.

In Section 2, the jump-diffusion dynamics of the underlyingrisky asset and the risk-neutral

formula for the European call are introduced. In Section 3, the risk-neutral formulation for the

jump-diffusion SDE is derived. In Section 4, properties of sums of independent identically dis-

tributed random variables proved in Appendix A are used to show a reduced infinite expansion

formula can be given, but it has not been possible to produce asimple closed formula like Black-

Scholes. In Section 5, Monte Carlo methods with variance reduction techniques are introduced to

compute otherwise intractable risk-neutral option pricesand, in Section 6, Monte Carlo simulation

results for call and put prices are given along with several comparisons. In Section 7, our conclu-

sions are given. Finally, in Appendix A, properties of sums of uniformly distributed independent

identically distributed random variables used in Section 4are shown.

2. RISKY ASSET PRICE DYNAMICS

The following constant rate, linear stochastic differential equation (SDE) is used to model the

dynamics of the risky asset price,S(t) :

dS(t) = S(t) (µdt + σdW (t) + J(Q)dN(t)) ,(2.1)

whereS0 = S(0) > 0, µ is the expected rate of return in absence of asset jumps,σ is the diffusive

volatility, W (t) is the Wiener process,J(Q) is the Poisson jump-amplitude,Q is an underlying

Poisson amplitude mark process selected for convenience sothat

Q = ln(J(Q) + 1),
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N(t) is the standard Poisson jump counting process with joint mean and variance

E[N(t)] = λt = Var[N(t)].

The jump term in (2.1) is a symbolic abbreviation for the stochastic sum

S(t)J(Q)dN(t) =

dN(t)∑

k=1

S(T−
k )J(Qk) ,

whereTk is thekth Poisson jump,Qk is thekth jump amplitude mark and the pre-jump asset value

is S(T−
k ) = limt↑Tk

S(t), with the limit from left.

Let the density of the jump-amplitude markQ be uniformly distributed:

φQ(q) =
1

b − a






1, a ≤ q ≤ b

0, else





,(2.2)

wherea < 0 < b. The markQ has moments, such that the mean is

µj ≡ EQ[Q] = 0.5(b + a)

and variance is

σ2
j ≡ VarQ[Q] = (b − a)2/12.

The original jump-amplitudeJ has mean

J̄ ≡ E[J(Q)] = (exp(b) − exp(a))/(b − a) − 1.(2.3)

The insufficient amount of jump data in the market make determining the best distribution for

the jump amplitude statistically difficult. The uniform distribution has the advantage that it is the

simplest distribution, has finite range and has the fattest tails, in fact it is all tail. The finite range

property of the uniform distribution is consistent with theNew York Stock Exchange (NYSE)
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circuit breakerson extreme market changes as described by Aouriri, Okuyama,Lott and Eglinton

(2002). For more details on uniform distributions, see Hanson and Westman (2002a, 2002b),

Hanson, Westman and Zhu (2004) and Hanson and Zhu (2004).

Note: in the following context, if absence of any special explanation,X will denote the mean

of random variableX, that is,X = µX = E[X].

According to the Itô stochastic chain rule for jump-diffusions (see Hanson (2005, Chapters

4-5)), the log-return processln(S(t)) satisfies the constant coefficient SDE

d ln(S(t)) = (µ − σ2/2)dt + σdW (t) + QdN(t) ,(2.4)

which can be immediately integrated and the logarithm inverted to yield the stock price solution

with geometric noise properties,

S(t) = S0 exp((µ − σ2/2)t + σW (t) + QN(t)),(2.5)

where the jump part of the exponent denotes

QN(t) =

N(t)∑

k=1

Qk

and theQk here are independent identically uniformly distributed jump-amplitude marksQ, sub-

ject to the notation that
∑0

k=1 Qk ≡ 0 or else defineQ0 ≡ 0. See the jump-diffusion book of

Hanson (2005, Chapter 5).

The objective of this paper is to derive a reduced formula andpractical algorithm for the Eu-

ropean call option priceC(S0, T ), which is a function of the current stock priceS0 and the option

expiration timeT . There are also suppressed arguments like the strike priceK, the stock volatil-

ity σ and the risk-free interest rater, but for jump-diffusions also depends on parameters like the

jump rateλ and the mean jump amplitudēJ . In contrast to the Black-Scholes (1973) hedge for

constructing a portfolio to eliminate the diffusion in the case of a pure diffusion process, Merton
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(1976) argued that such hedging was not possible in the case of the jump-diffusion model, but the

risk-neutral part of the Black-Scholes strategy could preserve the no arbitrage strategy to ensure

that the the expected return grows at risk-free interest rate r on the average. This strategy can be

formulated in terms of a change of the drift of jump-diffusion to a risk-neutral drift at rater or

more abstractly in terms of an equivalent change of measure to a risk-neutral measure, sayM.

Consequently, the European call option price can be formulated as the discounted expectation of

the terminal claimmax[S(T ) − K, 0], so that

C(S0, T ) ≡ e−rT EM[max[S(T ) − K, 0]] .(2.6)

It is sufficient to know that such a risk-neutral measure exists. For instance, see the readable

accounts in Baxter and Rennie (1996) or Hull (2000) for the pure diffusions, else see Cont and

Tankov (2004) for the more general jump-diffusion cases.

3. RISK-NEUTRAL FORMULATION FOR

CONSTANT-COEFFICIENT SDE

By the equation (2.5), we can get the expected stock price at expiration timeT as stated in the

following theorem:

Theorem 3.1 TheExpected Stock Price is

E[S(T )] = S0e
(µ+λJ̄)T .(3.1)

Proof: Using the stock price solution (2.5),

E[S(T )] = S0e
(µ−σ2/2)T E

[
eσW (T )e

PN(T )
i=1 Qi

]
= S0e

(µ−σ2/2)T EW

[
eσW (T )

]
EN,Q




N(T )∏

i=0

eQi




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= S0e
(µ−σ2/2)T eσ2T/2EN,Q




N(T )∏

i=1

eQi



 = S0e
µT EN,Q




N(T )∏

i=1

eQi



 .

However, since the marks are uniformly IID random variablesand distributed independently of

N(t), by iterated expectations,

E




N(T )∏

i=1

eQi



 = EN



EQ|N




N(T )∏

i=1

eQi

∣∣∣∣∣∣
N(T )







 =

∞∑

k=0

pk(λT )E

[
k∏

i=1

eQi

]

=

∞∑

k=0

pk(λT )

k∏

i=1

E
[
eQ
]

=

∞∑

k=0

pk(λT )Ek[J(Q) + 1]

=

∞∑

k=0

pk(λT )
(
J̄ + 1

)k
=

∞∑

k=0

e−λT (λT )k

k!

(
J̄ + 1

)k
= eλT J̄ ,

where the Poisson distribution

pk(λT ) ≡ e−λT (λT )k

k!

has been used. Hence,

E[S(T )] = S0e
(µ+λJ̄)T

and therefore the theorem is proved.

Assume the source of the jumps is due to extraordinary changes in the firm’s specifics, such as

the loss of a court suit or bankruptcy, but not from external events such as war. Thus, such jump

components in the jump-diffusion model represent only non-systematic risks. Hence, thecorrela-

tion betaof the portfolio for non-systematic risk is constructed bydelta hedgingas in Black-scholes

and is zero (see Merton (1976)). Further, under this assumption, the jump-diffusion model (2.1) is

arbitrage-free. However, in therisk-neutral world, E[S(T )] = S0e
rT , soS0e

(µ+λJ̄)T = S0e
rT and

solving forµ, yields the risk-neutral appreciation rate,

µ = µrn ≡ r − λJ̄.(3.2)
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In the the more general case with time-dependent coefficients, let the instant expected price grow

rate as the risk-free rater(t), i.e.,

E[dS(t)/S(t)] = (µ(t) + E[J(Q, t)]λ(t))dt = r(t)dt

thus obtaining the risk-neutral mean rate relationshipµ(t) = µrn(t) ≡ r(t) − E[J(Q, t)]λ(t).

Back to the constant coefficient case and substitutingµ = r − λJ̄ into (2.1), we get the risk-

neutral SDE under the risk-neutral measureM as the following:

dS(t)

S(t)
=
(
r − λJ̄

)
dt + σdW (t) +

dN(t)∑

k=1

J(Qk)

= rdt + σdW (t) +

dN(t)∑

k=1

(
J(Qk) − J̄

)
+ J̄ (dN(t) − λdt) ,

(3.3)

where the jump terms are separated into the zero-mean forms of the compound Poisson process

for later convenience in statistical calculations.

Before computing the European call option price, several lemmas given in Appendix A on

sums of uniformly distributed IID random variables are needed.

4. RISK-NEUTRAL OPTION PRICING SOLUTIONS

Using risk-neutral valuation of the payoff for the Europeancall option in (2.6) with the stock price

solution (2.5) and risk-neutral drift coefficient (3.2),

C(S0, T ) ≡ e−rT EM[max(S(T ) − K, 0)]

=
e−rT

√
2π

∞∑

k=0

pk(λT )

∫ kb

ka

∫ ∞

Z0(sk)

(
S0e

(r−λJ̄−σ2/2)T+σ
√

Tz+sk − K
)

e−z2/2φSk
(sk)dzdsk

=
1√
2π

∞∑

k=0

pk(λT )

∫ kb

ka

∫ ∞

Z0(sk)

(
S0e

−(λJ̄+σ2/2)T+σ
√

Tz+sk − Ke−rT
)

e−z2/2φSk
(sk)dzdsk

=
1√
2π

∞∑

k=0

pk(λT )ESk

[∫ ∞

Z0(Sk)

(
S0e

−(λJ̄+σ2/2)T+σ
√

Tz+Sk − Ke−rT
)

e−z2/2dz

]
,
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where

Z0(s) ≡
ln(K/S0) − (r − λJ̄ − σ2/2)T − s

σ
√

T

is theat-the-moneyvalue of the normal variable of integrationz andSk =
∑k

i=1 Qi is the sum of

k jump amplitudes, such thatQi are uniformly distributed IID random variables over the interval

[a, b]. In the above equation, the sumS0 =
∑0

i=1 Qi ≡ 0 in reversed sum notation, consistent with

the fact that there is no jump whenk = 0.

Let

A(s) ≡ 1√
2π

∫ ∞

Z0(s)

S0e
−(λJ̄+σ2/2)T+σ

√
Tz+se−z2/2dz=

1√
2π

S0e
−(λJ̄+σ2/2)T+s

∫ ∞

Z0(s)

eσ
√

Tze−z2/2dz

=
1√
2π

S0e
s−λJ̄T

∫ ∞

Z0(s)

e−(σ
√

T−z)2/2dz =
1√
2π

S0e
s−λJ̄T

∫ σ
√

T−Z0(s)

−∞
e−ζ2/2dζ

= S0e
s−λJ̄T Φ

(
σ
√

T − Z0(s)
)

= S0e
s−λJ̄T Φ

(
d1

(
S0e

s−λJ̄T
))

and

B(s) ≡ 1√
2π

∫ ∞

Z0(s)

Ke−rT e−z2/2dz =
1√
2π

Ke−rT

∫ ∞

Z0(s)

e−z2/2dz

= Ke−rT Φ(−Z0(s)) = Ke−rT Φ
(
d2

(
S0e

s−λJ̄T
))

,

where

d1(x) ≡ ln(x/K) + (r + σ2/2)T

σ
√

T
(4.1)

d2(x) ≡ d1(x) − σ
√

T(4.2)

are the usualBlack-Scholes normal distribution argument functions, while

Φ(y) ≡ 1√
2π

∫ y

−∞
e−z2/2dz(4.3)

10



is the standardized normal distribution. Therefore, our infinite sum call option price formula is

C(S0, T ) =
∞∑

k=0

pk(λT )ESk
[A(Sk)−B(Sk)]

=

∞∑

k=0

pk(λT )ESk

[
S0e

Sk−λJ̄T Φ
(
d1

(
S0e

Sk−λJ̄T
))

−Ke−rT Φ
(
d2

(
S0e

Sk−λJ̄T
))]

.

Alternatively, this can be written more compactly as

C(S0, T ) =
∞∑

k=0

pk(λT )ESk

[
C(bs)

(
S0e

Sk−λJ̄T , T ; K, σ2, r
)]

,(4.4)

where

C(bs)(x, T ; K, σ2, r) = xΦ(d1(x)) − Ke−rT Φ(d2(x))(4.5)

is the Black-Scholes (1973) formula, but with the stock price argument shifted by a jump factor

eSk−λJ̄T in (4.4). The above equation agrees with Merton’s formula (16) in Merton (1976).

The next step is to compute

ESk

[
C(bs)

(
S0e

Sk−λJ̄T , T ; K, σ2, r
)]

.

However, it will be difficult to produce a simple analytical solution, since the probability density

of the partial sumsSk for the log-uniform jump-diffusion model is very complicated which is

shown in Corollary A.1. The approximation to the solution for this problem will be computed by

high-level simulation techniques.
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4.1 Put-Call Parity

Theput-call parityis founded on basic maximum function properties (Merton (1973), Hull (2000)

and Higham (2004)), so is independent of the particular process, so

C(S0, T ) + Ke−rT = P(S0, T ) + S0(4.6)

or solving for the European put option price,

P(S0, T ) = C(S0, T ) + Ke−rT − S0,(4.7)

in absence of dividends. Also, a risk-neutral argument is given as the following:

C(S0, T ) − P(S0, T ) = e−rT EM[max(S(T ) − K, 0)] − e−rT EM[max(K − S(T ), 0)]

= e−rT EM[max(S(T ) − K, 0) − max(K − S(T ), 0)]

= e−rT EM[S(T ) − K] = e−rT EM[S(T )] − Ke−rT

= e−rT (S0e
rT ) − Ke−rT = S0 − Ke−rT .

4.2 A Special Non-Jump Case

If λ = 0, then there are no jump and the model is just a pure diffusion model. In this case,

pk(λT ) = exp(−λT )(λT )k/k! = 0 for k > 0 andp0(t) = 1. Also, by the definition,S0 =
∑0

i=1 Qi ≡ 0, a constant. Hence, expectations with respect toS0 is

ES0

[
C(bs)

(
S0e

S0−λJ̄T , T ; K, σ2, r
)]

= C(bs)
(
S0, T ; K, σ2, r

)

which is the standard Black-Scholes (1973) formulas (4.5, 4.1, 4.2) for the pure diffusion model.
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5. MONTE CARLO WITH VARIANCE REDUCTION

From (4.4), the European call option price formulae can be equivalently written as

C(S0, T ) = Eγ(T )

[
C(bs)

(
S0e

γ(T )−λJ̄T , T ; K, σ2, r
)]

,(5.1)

where

γ(T ) =

N(T )∑

i=1

Qi,(5.2)

Qi are uniformly distributed IID random variables from[a, b]. Note if γ̂(T ) ≡ γ(T )−λT J̄, where

exp(λT J̄) = E[exp(γ(T )], thenexp(γ̂(T )) is an exponential compound Poisson process with the

exponential martingaleproperty on[0, T ] such that

E[exp(γ̂(T ))] = exp(γ̂(0)) = exp(0) = 1.

So, the Monte Carlo approach may be a good choice to compute risk-neutral option prices

numerically. For some treatments of Monte Carlo methods, please see Hammersley and Hand-

scomb (1964), Boyle, Broadie and Glasserman (1997) and morerecent compendium of Glasser-

man (2004).

Let Ni be a sample point taken from the same Poisson distribution asN(T ), so that theNi

for i = 1 : n sample points form a set of IID Poisson variates. GivenNi jumps, let theUi,j for

j = 1 : Ni jump amplitude sample points, so that they are IID generateduniformly distributed

random variables on [0, 1], then the

γi =

Ni∑

j=1

(a + (b − a)Ui,j) = aNi + (b − a)

Ni∑

j=1

Ui,j

for i = 1 : n will be a set of IID random variables on [a, b] having the same compound Pois-

son distribution with uniformly distributed jump amplitudes as doesγ(T ) in (5.2). Thus, based
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upon (5.1), anelementary Monte Carlo estimate(EMCE) forC(S0, T ) is the following

Ĉn =
1

n

n∑

i=1

C(bs)
(
S0e

γi−λJ̄T , T ; K, σ2, r
)
≡ 1

n

n∑

i=1

C
(bs)
i ,(5.3)

such that theC(bs)
i are IID random variables with theγi. Then, by the strong law of large numbers,

Ĉn → C(S0, T ) with probability one as n → ∞,

and by the IID property ofC(bs)
i the standard deviationσbCn

is equal toσ(bs)/
√

n, where

σ(bs) =
√

Var
[
C(bs)(S0eγ(T )−λJ̄T , T ; K, σ2, r)

]
=

√
Var

[
C

(bs)
i

]
,

but may be estimated by the sample variance

σ(bs) ≃ s(bs) =

√√√√ 1

n − 1

n∑

i=1

(
Ĉn − C

(bs)
i

)2

.(5.4)

In order to reduce the standard deviation for the elementaryMonte Carlo estimateσbCn
by a factor

of ten, the number of simulationsn has to be increased one hundredfold. However, there are

alternative Monte Carlo methods which can have smaller variance than that of EMCE by variance

reduction techniques.

5.1 Antithetic Variate and Control Variate Variance Reduction Techniques

Notice that ifUi,j is uniformly distributed from[0, 1], thenQ̂i,j = a + (b − a)Ui,j is an uniformly

distributed (thetic) random variate from[a, b] and so also is theantithetic random variate

Q̂
(a)
i,j = a + (b − a)(1 − Ui,j),
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the counterpart to thethetic random variatêQi,j. Hence,

γ
(a)
i =

Ni∑

j=1

(a + (b − a)(1 − Ui,j)) = bNi − (b − a)

Ni∑

j=1

Ui,j = (b + a)Ni − γi,(5.5)

for i = 1 : n, are IID random variables having the same compound Poisson distribution with

uniformly distributed jump amplitudes as doesγ(T ) in (5.2). So, the antithetic variates method,

first applied to finance by Boyle (1977) (see also Boyle, Broadie and Glasserman (1997) and

Glasserman (2004) for more recent and expanded treatments), can be used.

Furthermore, we notice that the variableexp(γ(T )) has the expectationexp(λT J̄) known from

the proof of Theorem 3.1 and has positive correlation withC(bs)
(
S0e

γ(T )−λJ̄T , T ; K, σ2, r
)
. There-

fore, thecontrol variates techniquecan be used to further reduce the variance of Monte Carlo es-

timation since the technique works faster the higher the correlation between the paired target and

control variates, provided that the mean of the control variate is known (Glasserman (2004)). The

control variates technique was also first used by Boyle (1977) for financial applications.

From the above analysis, we can get the Monte Carlo simulations with antithetic and control

variate techniques. Let

Xi = 0.5
(
C(bs)(S0e

γi−λJ̄T , T ; K, σ2, r) + C(bs)(S0e
γ
(a)
i −λJ̄T , T ; K, σ2, r)

)
(5.6)

≡ 0.5(C
(bs)
i + C

(abs)
i ),(5.7)

for i = 1:n represent thethetic-antithetic averaged, Black-Scholes risk-neutral discounted payoffs

and

Yi = 0.5
(
exp(γi) + exp

(
γ

(a)
i

))
.(5.8)

represents the average of thetic or original and antitheticjump factors that will be used as a variance

reducing control variate.
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Next, form the control variate adjusted payoff

Zi(α) ≡ Xi − α · (Yi − exp(λT J̄)) ,

where(Yi − exp(λT J̄)) is the control deviation andα is an adjustable control coefficient. Then

taking the sample mean ofZi(α) produces the Monte Carlo estimator forC(S0, T ):

Zn(α) ≡ 1

n

n∑

i=1

Zi(α) =
1

n

n∑

i=1

Xi − α
1

n

n∑

i=1

(
Yi − exp(λT J̄)

)
≡ Xn − α(Y n − exp(λT J̄)),

which is an unbiased estimation sinceE[Zn(α)] = C(S0, T ) using IID mean propertiesE[Xn] =

E[Xi] = C(S0, T ) by (5.1) andE[Y n] = E[Yi] = exp(λT J̄) from the proof of Thm. 3.1.

The variance of the sample meanZn(α) is

σ2
Zn(α)

≡ Var
[
Zn(α)

]
=

1

n
Var[Zi(α)] ,(5.9)

following from the inherited IID property of theZi(α). However,

Var[Zi(α)] = Var[Xi] − 2αCov[Xi, Yi] + α2Var[Yi].

So, theoptimal control parameterα∗ to minimizeVar[Zi(α)] is

α∗ =
Cov[Xi, Yi]

Var[Yi]
,(5.10)

sinceVar[Yi] > 0, the Yi in (5.8) being the positive sum of exponentials. Using this optimal

parameterα∗,

Var[Z∗
i ] ≡ Var[Zi(α

∗)] = Var[Xi] −
Cov2[Xi, Yi]

Var[Yi]
=
(
1 − ρ2

Xi,Yi

)
Var[Xi],
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whereρXi,Yi
is the correlation coefficient betweenXi andYi. We also know that

Var[Xi] =
1

4

(
Var

[
C

(bs)
i

]
+ 2Cov

[
C

(bs)
i , C

(abs)
i

]
+ Var

[
C

(abs)
i

])
(5.11)

=
1

2

(
1 + ρ

C
(bs)
i ,C

(abs)
i

)
Var

[
C

(bs)
i

]
(5.12)

becauseVar
[
C

(abs)
i

]
= Var

[
C

(bs)
i

]
. Therefore,

Var[Z∗
i ] =

1

2

(
1 − ρ2

Xi,Yi

) (
1 + ρ

C
(bs)
i ,C

(abs)
i

)
Var

[
C

(bs)
i

]
(5.13)

≤ 1

2

(
1 + ρ

C
(bs)
i ,C

(abs)
i

)
Var

[
C

(bs)
i

]
(5.14)

≤ 1

2
Var

[
C

(bs)
i

]
,(5.15)

becauseρ2
Xi,Yi

≥ 0 and providedρ
C

(bs)
i ,C

(abs)
i

≤ 0. From (5.13-5.14),Var[Z∗
i ] ≤ Var[Xi], which

says that the variance of the Monte Carlo estimate with antithetic variates and optimal control vari-

ates techniques (AOCV) will be less or equal to the Monte Carlo estimate with antithetic variates

(AV) only, whereXi is given in (5.6) andVar[Xi] is given in (5.11) . By (5.9) and (5.13),

Var[Z∗
n] ≡ Var[Zn(α∗)] =

1

2n

(
1 − ρ2

Xi,Yi

) (
1 + ρ

C
(bs)
i ,C

(abs)
i

)
Var

[
C

(bs)
i

]
,(5.16)

which together with (5.13-5.15), givesVar[Z∗
n] ≤ 1

2n
Var[C

(bs)
i ] = 1

2
Var[Ĉn]. This says the variance

of the Monte Carlo estimate with AOCV (5.16) is at most half the variance of the elementary Monte

Carlo estimate (EMCE) (5.3-5.4) ifρ
C

(bs)
i ,C

(abs)
i

≤ 0. In general,ρ
C

(bs)
i ,C

(abs)
i

is not always negative,

since it also can be positive as demonstrated in the following Figure 1.

However, if the jump amplitude boundsa andb satisfya + b = 0, thenρ
C

(bs)
i ,C

(abs)
i

< 0. We

state it in the following Proposition 5.1.

Proposition 5.1 If b/a = −1, thenρ
C

(bs)
i ,C

(abs)
i

< 0.

In order to prove the Proposition 5.1, we need the following Lemma 5.1 which is given in Higham

(2004) but with a little modification.
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Figure 1: The Monte Carlo estimate ofρ
C

(bs)
i ,C

(abs)
i

is not always negative, but is negative in the

region of interest neara/b = −1.

Lemma 5.1 If f(X) andg(X) are both monotonic strictly increasing or both monotonic decreas-

ing functions then, for any random variableX, Cov[f(X), g(X)] > 0.

Proof: Let Y be a random variable that is independent ofX with the same distribution, then

(f(X) − f(Y ))(g(X) − g(Y )) > 0 if X 6= Y , otherwise0. Hence,

0 < E [(f(X) − f(Y ))(g(X) − g(Y ))]

= E[f(X)g(X)]− E[f(X)g(Y )] − E[f(Y )g(X)] + E[f(Y )g(Y )].

SinceX andY are IID, that last right-hand side simplifies to2E[f(X)g(X)]−2E[f(X)]E[g(X)],

which is2Cov[f(X), g(X)], and the result follows.

Now we prove Proposition 5.1:

Proof: If b/a = −1, that isa + b = 0, from (5.5),γ(a)
i = −γi. So,C(bs)

i = C
(bs)
i (S0 exp(−rTJ +

γi), T ; K, σ2, r) and−C
(abs)
i = −C

(bs)
i (S0 exp(−rTJ − γi), T ; K, σ2, r) are strictly increasing

functions with respect toγi. Hence,Cov
[
C

(bs)
i ,−C

(abs)
i

]
> 0 by the Lemma 5.1. Therefore,

18



Cov
[
C

(bs)
i , C

(abs)
i

]
< 0. So,ρ

C
(bs)
i ,C

(abs)
i

< 0.

Remark: In a real market, the ratiob/a will be close to−1, that isb+a will be close to0 since

the skewness of the daily return distribution is not far awayfrom 0 and the skewness is generated

by the jump part of the jump-diffusion model. Hence, in general ρ
C

(bs)
i ,C

(abs)
i

≤ 0 in the real

market by Proposition 5.1 and the continuity of the functionρ
C

(bs)
i ,C

(abs)
i

aboutb/a. For example,

the skewness is−0.1952 for 1988-2003 S&P 500 daily return market data andb/a = −0.9286

as found by Zhu and Hanson (2005). In fact, in our Monte Carlo algorithm,ρ
C

(bs)
i ,C

(abs)
i

is about

−0.83. So, we can get a lot of benefit from the antithetic variate variance reduction technique by

equation (5.13). Anyway, ifb/a is far away from−1, the correlation coefficientρ
C

(bs)
i ,C

(abs)
i

can

be positive which will worsen the variance. In this case, we can use the following Monte Carlo

estimator usingoptimal control variatestechnique (OCV) only:

Z ′

n =
1

n

n∑

i=1

C
(bs)
i − β

(
1

n

n∑

i=1

exp(γi) − exp(λT J̄)

)

(5.17)

whereβ = Cov[C
(bs)
i , eγi ]/Var[eγi ]. So,

Var[Z ′

n] =
1

n

(
1 − ρ2

C
(bs)
i ,eγi

)
Var[C

(bs)
i ].(5.18)

Before we compareVar[Z ′

n] with Var[Z∗
n], the following Lemma 5.2 and Lemma 5.3 are

needed.

Lemma 5.2

ρ2
Xi,Yi

=
2ρ2

C
(bs)
i ,Yi(

1 + ρ
C

(bs)
i ,C

(abs)
i

) .

Proof: Since the antithetic pair
(
C

(bs)
i , C

(abs)
i

)
share common statistical properties, e.g.,
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Var
[
C

(abs)
i

]
= Var[C

(bs)
i ], so

Var
[
C

(bs)
i + C

(abs)
i

]
= 2

(
1 + ρ

C
(bs)
i ,C

(abs)
i

)
Var

[
C

(bs)
i

]

and

ρ2
Xi,Yi

≡ Cov2[Xi, Yi]

Var[Xi]Var[Yi]
=

Cov2

[
C

(bs)
i +C

(abs)
i

2
, eγi+eγ

(a)
i

2

]

Var

[
C

(bs)
i +C

(abs)
i

2

]
Var

[
eγi+eγ

(a)
i

2

]

=
Cov2

[
C

(bs)
i + C

(abs)
i , eγi + eγ

(a)
i

]

Var
[
C

(bs)
i + C

(abs)
i

]
Var

[
eγi + eγ

(a)
i

]

=

(
Cov

[
C

(bs)
i , eγi + eγ

(a)
i

]
+ Cov

[
C

(abs)
i , eγi + eγ

(a)
i

])2

2
(
1 + ρ

C
(bs)
i ,C

(abs)
i

)
Var

[
C

(bs)
i

]
Var

[
eγi + eγ

(a)
i

]

=
2Cov2

[
C

(bs)
i , eγi + eγ

(a)
i

]

(
1 + ρ

C
(bs)
i ,C

(abs)
i

)
Var

[
C

(bs)
i

]
Var

[
eγi + eγ

(a)
i

] ,

=

2ρ2

C
(bs)
i ,eγi+eγ

(a)
i(

1 + ρ
C

(bs)
i ,C

(abs)
i

) =
2ρ2

C
(bs)
i ,Yi(

1 + ρ
C

(bs)
i ,C

(abs)
i

) .

Hence, equation (5.13) can be also written as

Var[Z∗
i ] = 0.5

(
1 + ρ

C
(bs)
i ,C

(abs)
i

− 2ρ2

C
(bs)
i ,Yi

)
Var

[
C

(bs)
i

]
.(5.19)

Remark: From (5.19) andρX,κY = ρX,Y whereκ is some constant, it does not matter whether

Yi or S0Yi is used as the control variate for variance reduction purposes.
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Lemma 5.3 If X, Y andZ are any random variables, then

ρ2
X,Y +Z =

Var[Y ]

Var[Y + Z]
ρ2

X,Y +
Var[Z]

Var[Y + Z]
ρ2

X,Z .

Proof:

ρ2
X,Y +Z =

Cov[X, Y + Z]

Var[X]Var[Y + Z]
=

Cov[X, Y ] + Cov[X, Z]

Var[X]Var[Y + Z]

=
Cov[X, Y ]

Var[X]Var[Y + Z]
+

Cov[X, Z]

Var[X]Var[Y + Z]

=
Cov[X, Y ]

Var[X]Var[Y ]
· Var[Y ]

Var[Y + Z]
+

Cov[X, Z]

Var[X]Var[Z]
· Var[Z]

Var[Y + Z]

=
Var[Y ]

Var[Y + Z]
ρ2

X,Y +
Var[Z]

Var[Y + Z]
ρ2

X,Z .

Therefore, based on the above two Lemmas, the following Proposition can be obtained.

Proposition 5.2 If ρ
C

(bs)
i ,C

(abs)
i

≤ 0 andρ
eγi ,eγ

(a)
i

≤ 0, thenVar[Z∗
n] ≤ Var[Z ′

n].

Proof: From Lemma 5.3,

ρ2

C
(bs)
i ,eγi+eγ

(a)
i

=
Var[eγi ]

Var
[
eγi + eγ

(a)
i

]ρ2

C
(bs)
i ,eγi

+
Var

[
eγ

(a)
i

]

Var
[
eγi + eγ

(a)
i

]ρ2

C
(bs)
i ,eγ

(a)
i

=
1

2

(
1 + ρ

eγi ,eγ
(a)
i

)
(

ρ2

C
(bs)
i ,eγi

+ ρ2

C
(bs)
i ,eγ

(a)
i

)
≥ 0.5ρ2

C
(bs)
i ,eγi

sinceρ
eγi ,eγ

(a)
i

≤ 0. Therefore,

ρ2

C
(bs)
i ,eγi

− ρ2

C
(bs)
i ,eγi+eγ

(a)
i

≤ 0.5ρ2

C
(bs)
i ,eγi

≤ 0.5

becauseρ2

C
(bs)
i ,eγi

≤ 1. That is,2ρ2

C
(bs)
i ,eγi

−2ρ2

C
(bs)
i ,Yi

−1 ≤ 0. From Lemma 5.2 andρ
C

(bs)
i ,C

(abs)
i

≤
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0, ρ2
Xi,Yi

≥ 2ρ2

C
(bs)
i ,Yi

. Hence,2ρ2

C
(bs)
i ,eγi

− ρ2
Xi,Yi

− 1 ≤ 2ρ2

C
(bs)
i ,eγi

− 2ρ2

C
(bs)
i ,Yi

− 1 ≤ 0. That is,

0.5(1 − ρ2
Xi,Yi

) ≤ 1 − ρ2

C
(bs)
i

,eγi
. With the above inequality andρ

C
(bs)
i ,C

(abs)
i

≤ 0, we get

0.5
(
1 − ρ2

Xi,Yi

) (
1 + ρ

C
(bs)
i

,C
(abs)
i

)
≤ 1 − ρ2

C
(bs)
i ,eγi

,

and the result follows by (5.16) and (5.18) .

Remark: From the proof of Lemma 5.4, we know that the conditionρ
eγi ,eγ

(a)
i

≤ 0 is equivalent

to exp(a + b) − 1 ≤ 2J̄ .

5.2 Estimate of Optimal Control Variate Parameter α
∗

In general, we do not know the optimal parameterα∗ = Cov[Xi, Yi]/Var[Yi] exactly, so we need

some estimation method for it. Before analyzing it, we need the following Lemma.

Lemma 5.4

Var
[
eγi + eγ

(a)
i

]
= 2

(
eλT Ĵ − 2e2λT J̄ + eλT (ea+b−1)

)
,

whereĴ = (exp(2b) − exp(2a))/(2(b − a)) − 1 and recallJ̄ = (exp(b) − exp(a))/(b − a) − 1

from (2.3).

Proof: Using the properties of the antithetic pair
(
γi, γ

(a)
i

)
,

Cov
[
eγi , eγ

(a)
i

]
= E

[
eγieγ

(a)
i

]
− E [eγi ]E

[
eγ

(a)
i

]
= E

[
e(a+b)N(T )

]
− E2 [eγi ]

= eλT (ea+b−1) − e2λT J̄

and

Var[eγi ] = E[e2γi ] − E2[eγi ] = eλT Ĵ − e2λT J̄ = Var
[
eγ

(a)
i

]
.
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Thus,

Var
[
eγi + eγ

(a)
i

]
= Var[eγi ] + 2Cov

[
eγi , eγ

(a)
i

]
+ Var

[
eγ

(a)
i

]

= 2Var[eγi ] + 2Cov
[
eγi , eγ

(a)
i

]
= 2

(
eλT Ĵ − 2e2λT J̄ + eλT (ea+b−1)

)
.

From Lemma 5.4,σ2
Y ≡Var[Yi]=Var

[
0.5
(
eγi +eγ

(a)
i

)]
= 0.5

(
eλT Ĵ−2e2λT J̄ +eλT (ea+b−1)

)
.

Proposition 5.3 An unbiased estimator forα∗ is

α̂ =

(
1

n − 1

n∑

i=1

XiYi −
1

n(n − 1)

n∑

i=1

n∑

j=1

XiYj

)
1

σ2
Y

=
n

n − 1

XY n − XnY n

σ2
Y

,(5.20)

whereXn = 1
n

∑n
i=1 Xi is the sample mean,XY n andY n have the similar meaning.

Proof: It is necessary to show the condition for an unbiased estimateE[α̂] = α∗ is true. Using the

standard technique of splitting the diagonal part out of thedouble sum and the independence as

well as the identical distribution property of the random variables at different compound Poisson

sample points fori = 1 : n, then

E[α̂] = E

[
1

n − 1

n∑

i=1

(
XiYi −

1

n

n∑

j=1

XiYj

)
1

σ2
Y

]

=
1

n − 1

n∑

i=1

E

[(
1 − 1

n

)
XiYi −

1

n

n∑

j=1,j 6=i

XiYj

]
1

σ2
Y

=
1

n − 1

n∑

i=1

(
n − 1

n
E[XiYi] −

1

n

n∑

j=1,j 6=i

E[Xi]E[Yj ]

)
1

σ2
Y

=
n

n − 1

(
n − 1

n
E[XY ] − n − 1

n
E[X]E[Y ]

)
1

σ2
Y

= (E[XY ] − E[X]E[Y ]) /σ2
Y = Cov[X, Y ]/σ2

Y = α∗ .
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Sinceα̂ depends onYi for i = 1:n, the estimatêα of α∗ introduces a bias into the estimate

Ẑn =
1

n

n∑

i=1

Xi − α̂

(
1

n

n∑

i=1

Yi − eλT J̄

)
.(5.21)

Fortunately, in this case, we can compute the bias which asympotically goes to zero at the rate

O(1/n) as shown in the following Theorem.

Theorem 5.1 The estimatêZn of the call priceC(S0, T ) has bias

b ≡ E[Ẑn] − C(S0, T ) =
1

n
· Cov[X, (2µY − Y ])Y ]]

σ2
Y

,

whereµY = E[Yi] = E[Y ] = exp(λT J̄), σ2
Y = Var[Yi] = Var[Y ], Y has the same distribution as

Yi for i = 1 : n.

Proof: Setηk = σ2
Y α̂(Yk − µY ). Then,

ηk =

(∑n
i=1 XiYi

n − 1
−
∑n

i=1

∑n
j=1 XiYj

n(n − 1)

)

(Yk − µY )

=

∑n
i=1 XiYiYk

n − 1
−
∑n

i=1

∑n
j=1 XiYjYk

n(n − 1)
− µY

∑n
i=1 XiYi

n − 1
+

µY

∑n
i=1

∑n
j=1 XiYj

n(n − 1)

=
1

n

n∑

i=1

XiYiYk −
∑n

i=1

∑
j 6=i XiYjYk

n(n − 1)
− µY

∑n
i=1 XiYi

n
+

µY

∑n
i=1

∑
j 6=i XiYj

n(n − 1)

=
XkY

2
k +

∑
i6=k XiYiYk

n
−
∑

j 6=k XkYjYk +
∑

i6=k

∑
j 6=i XiYjYk

n(n − 1)

−µY

∑n
i=1 XiYi

n
+

µY

∑n
i=1

∑
j 6=i XiYj

n(n − 1)

=
XkY

2
k +

∑
i6=k XiYiYk

n
−
∑

j 6=k XkYjYk +
∑

i6=k XiY
2
k +

∑
i6=k

∑
j 6=i,k XiYjYk

n(n − 1)

−µY

∑n
i=1 XiYi

n
+

µY

∑n
i=1

∑
j 6=i XiYj

n(n − 1)
.
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By the independence of{Xi, Yi} and {Xj, Yj} for j 6= i as well as the identical distribution

properties,

E[ηk] =
XY 2 + (n − 1)XY µY

n
− (n − 1)XY µY + (n − 1)µXY 2 + (n − 1)(n − 2)µXµY

2

n(n − 1)

−n
µY XY

n
+

n(n − 1)µ2
Y µX

n(n − 1)
=

XY 2 − 2XY µY − µXY 2 + 2µXµ2
Y

n

=
Cov[X, Y 2] − 2µY Cov[X, Y ]

n
=

Cov[X, Y (Y − 2µY )]

n
,

whereµX = E[Xi], µY = E[Yi], XY = E[XiYi], Y 2 = E[Y 2
i ] andXY 2 = E[XiY

2
i ].

Therefore, the call price estimate bias

b ≡ E[Ẑn] − C(S0, T ) = E[−α̂(Yk − µY )] = −E[σ2
Y α̂(Yk − µY )]/σ2

Y

= −E[ηk]/σ
2
Y =

1

n

Cov[X, Y (2µY − Y )]

σ2
Y

.

Remark: From Theorem 5.1, we can make the following correction to theestimateẐn:

θ̂ = Ẑn − b̂,(5.22)

wherêb is an estimate ofb similar to the estimatêα of α∗ in (5.20) as the following:

b̂ =

(
1

n(n − 1)

n∑

i=1

XiY
′

i − 1

n2(n − 1)

n∑

i=1

n∑

j=1

XiY
′

j

)
1

σ2
Y

=
1

n − 1

XY ′

n − XnY
′

n

σ2
Y

,(5.23)

whereY
′

i = Yi(2µY −Yi), for i = 1 : n, XY ′

n, Xn andY ′

n are sample means. Then, the estimate

θ̂ is an unbiased estimate ofC(S0, T ).
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5.3 The Monte Carlo Algorithm

Now it is ready for us to give the Monte Carlo algorithm with antithetic variates and optimal control

variates techniques as the following:

The Monte Carlo Algorithm with antithetic and optimal control variates techniques

for i = 1, ..., n

Randomly generate Ni by Poisson inverse transform method;

for j = 1:Ni

Randomly generate IID uniform random variables Ui,j ;

end for j

Set γi = aNi + (b − a)
∑Ni

j=1 Ui,j;

Set γ
(a)
i = (a + b)Ni − γi;

Set C
(bs)
i = C(bs)

(
S0 exp

(
γi − λT J̄

)
, T ; K, σ2, r

)
;

Set C
(abs)
i = C(bs)

(
S0 exp

(
γ

(a)
i − λT J̄

)
, T ; K, σ2, r

)
;

Set Xi = 0.5
(
C

(bs)
i + C

(abs)
i

)
;

Set Yi = 0.5
(
exp(γi) + exp

(
γ

(a)
i

))
;

end for i

Compute α̂ according to (5.20);

Set Ẑn = 1
n

∑n
i=1 Xi − α̂( 1

n

∑n
i=1 Yi − eλT J̄);

Estimate bias b̂ according to (5.23);

Get European call option estimation θ̂ = Ẑn − b̂;

Get European put option estimation P̂

by put-call parity (4.7).

6. MONTE CARLO CALL AND PUT PRICE RESULTS

In this section we provide some numerical results and discussions to illustrate the particular algo-

rithm version of the Monte Carlo method used for the jump-diffusion process in this paper. First
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of all, we compare our Monte Carlo method using antithetic and optimal control variates (AOCV)

techniques having variance given in (5.16) to the elementary Monte Carlo estimation (EMCE)

method given in (5.3), as well as to other Monte Carlo variations.

The compound Poisson process is simulated by first using theinverse transform methodin the

leading step of the algorithm given by Glasserman (2004) forthe jump counting component process

Ni for i = 1 :n and then theNi jump amplitude antithetic pairs(γi,j, γ
(a)
i,j ) are simulated together

by a standard uniform random number generator to get theUi,j for j = 1 : Ni. We implement

them with MATLAB 6.5 and run them on the PC with a Pentium4 @ 1.6GHz CPU. The numerical

test results for elementary Monte Carlo estimation (EMCE) method are listed in Table 1, Monte

Carlo with antithetic variates (AV) only in Table 2, Monte Carlo with optimal control variates

(OCV) only in Table 3, and for the antithetic variates combined with the optimal control variates

in Table 4. The uniform distribution parameters in these first four tables were chosen arbitrarily

but satisfyinga/b ≃ −1 andexp(a + b) − 1 ≤ 2J̄ , i.e., a = −0.3 andb = 0.2. Another jump

parameter isλ = 100 per year, while the option parameters areS0 = $100 andT = 0.2 years with

interest rater = 5% per year for testing convenience in the first four tables. Sample volatilitiesσ

are given in the tables.

The results in these first four tables show that the antithetic variates combined with optimal

control variates (AOCV) achieves the smallest standard error than the other three Monte Carlo

algorithms. This confirms our theoretical results about thecomparisons of their variances in the

above section, but AOCV needs the longest time for computing. Therefore, we use standard error

multiplying square root of computng timeǫ
√

t as a benchmark for the trade-off in the estimate

variance and computing time. For a detailed explanation of the benchmarkǫ
√

t, please see Boyle,

Broadie and Glasserman (1997) and Glasserman (2004). Seen from these results, the Monte Carlo

method with AOCV is overall the best estimate among the four Monte Carlo methods mentioned

above. Also, these results show that the European call option price is a decreasing function of

strike priceK and the European put option is an increasing function of it. Both the call and put

option prices increase as the volatilityσ of stock price increases.
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Table 1: Call and Put Prices for Elementary Monte Carlo Estimation (EMCE) Method

σ K/S0 Call, C(emce) Put.P(emce) Std. Error,ǫ t (seconds) Benchmark,ǫ
√

t

0.9 29.980 19.085 0.569 2.671 0.929
0.2 1.0 25.851 24.856 0.540 2.469 0.848

1.1 22.293 31.199 0.511 2.579 0.821
0.9 30.588 19.693 0.566 2.546 0.903

0.4 1.0 26.524 25.529 0.538 2.547 0.858
1.1 23.011 31.916 0.510 2.515 0.808
0.9 31.574 20.678 0.563 2.531 0.896

0.6 1.0 27.599 26.604 0.535 2.562 0.857
1.1 24.148 33.054 0.508 2.594 0.817

The financial and jump-diffusion parameters areS0 = 100, T = 0.2, r = 0.05, λ = 100, a = −0.3 and

b = 0.2. The simulation number isn = 10, 000. The EMCE standard error is abbreviated byǫ = σ bCn
=

σ(bs)/
√

n andǫ
√

t is a combined benchmark index.

Table 2: Call and Put Prices for Monte Carlo with Antithetic Variates (AV) only

σ K/S0 Call, C(av) Put,P(av) Std. Error,ǫ t (seconds) Benchmark,ǫ
√

t

0.9 30.372 19.477 0.348 4.453 0.734
0.2 1.0 26.223 25.228 0.340 4.672 0.735

1.1 22.642 31.547 0.330 4.656 0.711
0.9 30.981 20.085 0.344 4.594 0.738

0.4 1.0 26.892 25.897 0.336 5.312 0.775
1.1 23.352 32.258 0.326 5.360 0.755
0.9 31.965 21.069 0.340 5.203 0.773

0.6 1.0 27.963 26.968 0.331 5.391 0.768
1.1 24.485 33.391 0.321 5.469 0.751

The financial and jump-diffusion parameters areS0 = 100, T = 0.2, r = 0.05, λ = 100, a = −0.3 and

b = 0.2. The simulation number isn = 10, 000. The AC standard error is abbreviated byǫ = σ bHn
, where

Ĥn =
∑n

i=1 Xi/n, Xi is given in (5.6) andǫ
√

t is a combined benchmark index.
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Table 3: Call and Put Prices for Monte Carlo with Optimal Control Variates (OCV) only

σ K/S0 Call, C(ocv) Put,P(ocv) Std. Error,ǫ t (seconds) Benchmark,ǫ
√

t

0.9 30.580 19.684 0.167 5.031 0.375
0.2 1.0 26.412 25.417 0.183 5.016 0.410

1.1 22.816 31.721 0.196 4.828 0.430
0.9 31.187 20.291 0.161 4.922 0.358

0.4 1.0 27.085 26.090 0.176 3.093 0.310
1.1 23.534 32.440 0.188 4.938 0.418
0.9 32.171 21.276 0.153 4.797 0.335

0.6 1.0 28.160 27.165 0.167 3.375 0.306
1.1 24.674 33.579 0.178 4.734 0.386

The financial and jump-diffusion parameters areS0 = 100, T = 0.2, r = 0.05, λ = 100, a = −0.3 and

b = 0.2. The simulation number isn = 10, 000. The AV standard error is abbreviated byǫ = σ
Z′

n

, where

Z ′

n is given in (5.17) andǫ
√

t is a combined benchmark index.

Table 4: Call and Put Prices for Monte Carlo with combined techniques (AOCV)

σ K/S0 Call, C(aocv) Put,P(aocv ) Std. Error,ǫ t (seconds) Benchmark,ǫ
√

t

0.9 30.645 19.749 0.106 5.656 0.253
0.2 1.0 26.487 25.492 0.114 5.531 0.267

1.1 22.895 31.800 0.119 5.781 0.286
0.9 31.251 20.356 0.102 5.797 0.245

0.4 1.0 27.154 26.159 0.109 6.250 0.272
1.1 23.604 32.509 0.114 6.672 0.294
0.9 32.232 21.337 0.096 5.593 0.227

0.6 1.0 28.222 27.227 0.103 4.922 0.227
1.1 24.735 33.640 0.107 6.109 0.265

The financial and jump-diffusion parameters areS0 = 100, T = 0.2, r = 0.05, λ = 100, a = −0.3 andb =

0.2. The simulation number isn = 10, 000. The AC standard error is abbreviated byǫ = σ bZn
= σZ/

√
n,

whereẐn is given in (5.21) andǫ
√

t is a combined benchmark index.
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Also, the Black-Scholes call priceC(bs)(S0, T ; K, σ2, r) are computed directly from the for-

mula (4.5) and from it the put priceP (bs)(S0, T ; K, σ2, r) is computed from the put-call parity

relation,

P (bs)(S0, T ; K, σ2, r) = C(bs)(S0, T ; K, σ2, r) + K exp(−rT ) − S0.(6.1)

The numerical results for call and prices for these Black-Scholes values and the AOCV values are

compared in Table 5. For Table 5, the estimated jump-diffusion model parametersσ = 0.1074,

λ = 64.16, a = −0.028 andb = 0.026 used come from the double-unform distribution paper of

Zhu and Hanson (2005). The option parameters areS0 = 1000, T = 0.25 year, andr = 3.45%

which is the 3-month U.S. Treasury bill yeild rate on August 2, 2005. These parameters are also

used to compute the Standard & Poor 500 index option prices. (Note that these parameters are

different from those for Tables 1-4.)

Table 5: Comparison of Call and Put Option Prices

K/S0 C(aocv ) P(aocv ) ǫ t (sec.) C(bs) P (bs) C(true) P(true)

0.8 206.927 0.057 0.003 6.219 206.870 8.e-5 206.937 0.067
0.9 110.787 3.058 0.043 6.516 108.040 0.3087 110.792 3.063
1.0 37.358 28.770 0.118 6.109 25.897 17.309 37.248 28.660
1.1 6.506 97.059 0.069 6.500 1.260 91.813 6.479 97.033
1.2 0.553 190.248 0.015 6.203 0.010 189.700 0.575 190.269

The option parameters areS0 = 1000, r = 0.0345, T = 0.25, σ = 0.1074, λ = 64.16, a = −0.028

and b = 0.026. The simulation number isn = 10, 000 for AOCV values, but a much larger number,
n = 400, 000 sample points, are used for the approximation to the true values. The Black-Scholes values
come from (4.5) and put-call parity (6.1). The standard error is abbreviated byǫ = σ bZn

= σZ/
√

n, where

Ẑn is given in (5.21) for AOCV.

The numerical results in Table 5 show that the estimated calland put values by the Monte Carlo

method with AOCV are within the95% confidence interval of the true callC(true) i.e.,

C(aocv) ∈ [C(true) − 1.96ǫ, C(true) + 1.96ǫ]
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and put valuesP(true), i.e.,

P(aocv ) ∈ [P(true) − 1.96ǫ,P(true) + 1.96ǫ]

by the central limit theorem except the case whenK/S0 = 0.8. In Table 5, the true call and put

prices are approximated with a much larger number of simulations,n = 400, 000 compared to

n = 10, 000 in Tables 1-4. Also, the estimated European call and put option prices are observed

to be bigger than the Black-Scholes call and put option prices, respectively. This is not just a

numerical fact, but can be stated and proven with the following theorem:

Theorem 6.1 The European call and put option prices based on the jump-diffusion model in (2.1)

are bigger than the Black-Scholes call and put option pricesrespectively, i.e.,

C(S0, T ; K, σ2, r) > C(bs)(S0, T ; K, σ2, r),

and

P(S0, T ; K, σ2, r) > P (bs)(S0, T ; K, σ2, r).

Proof: Since the Black-Scholes call option pricing formula (4.5) for C(bs)(S, T ; K, σ2, r) is a

strictly convex function aboutS and by Jensen’s inequality (see Hanson (2005, Chapter 0) for

instance), we have

C(S0, T ; K, σ2, r)
(5.1)
= Eγ(T )

[
C(bs)

(
S0e

γ(T )−λJ̄T , T ; K, σ2, r
)]

> C(bs)
(
Eγ(T )[S0e

γ(T )−λJ̄T ], T ; K, σ2, r
)

= C(bs)
(
S0, T ; K, σ2, r

)
.

By put-call parity and the above proven inequality,

P(S0, T ; K, σ2, r) = C(S0, T ; K, σ2, r) + Ke−rT − S0

> C(bs)(S0, T ; K, σ2, r) + Ke−rT − S0 = P (bs)(S0, T ; K, σ2, r).
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Remark: In the proof of the Theorem 6.1, no special jump mark distribution of Q in the jump-

diffusion model (2.1) is needed. Hence, this is a general result also suitable for the jump-diffusion

jump-amplitude models such as the log-normal of Merton (1976), the log-double-exponential of

Kou (2002) and Kou and Wang (2004) and the log-double-uniform of Zhu and Hanson (2005).

7. CONCLUSIONS

The original SDE is transformed to a risk-neutral SDE by setting the stock price increases at the

risk-free interest rate. Based on this risk-neutral SDE, a reduced European call option pricing

formula is derived and then by the put-call parity the European put option price can be easily com-

puted. Also, some useful binomial lemmas and a partial sum density theorem for the uniformly

distributed IID random variables are established. Unfortunately, the analysis of the log-uniform

jump-amplitude jump-diffusion density is too complicatedto get a closed-form option pricing for-

mula like that of Black-Scholes, excluding infinite sums. However, that is true for many complex

problems where computational methods are important. Hence, a Monte Carlo algorithm with both

antithetic variate and control variate techniques for variance reduction for jump-diffusions is ap-

plied. This algorithm is easy to implement and the simulation results show that it is also efficient

within seven seconds to get the practical accuracy. Finally, we show that the European call and put

option prices based on general jump-diffusion models satisfying linear constant coefficient SDEs

are bigger than the Black-Scholes call and put option prices, respectively.

Appendix A.
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SUMS OF UNIFORMLY DISTRIBUTED VARIABLES

The main purpose of this Appendix is to derive the partial sumdensity function for the uniformly

distributed IID variables, but first we need the following lemmas.

Lemma A.1 Partial Sum Density Recursion:

Let Xi for i = 1 : n be a sequence of independent identically distributed (IID)random variables

with uniform distribution over[0, 1]. Let

Sn =
n∑

i=1

Xn

be the partial sum forn ≥ 1 with distribution

ΦSn
(s) = Prob[Sn ≤ s]

and assume the density

φSn
(s) = Φ′

Sn
(s)

exists. Then for any real numbers, such that0 ≤ s ≤ n + 1,

φSn+1(s) =

∫ s

s−1

φSn
(y)dy.(A.1)

Proof: Application convolution theorem (see Hanson (2005, Chapter 0)) to the recursionSn+1 =

Sn + Xn+1 and the uniform IID of theXi on [0, 1] yield the density ofSn+1,

φSn+1(s) =
(
φSn

∗ φXn+1

)
(s) =

∫ +∞

−∞
φSn

(s − x)φXn+1(x)dx

=

∫ 1

0

φSn
(s − x)dx =

∫ s

s−1

φSn
(x)dx.

That is,φSn+1(s) =
∫ s

s−1
φSn

(x)dx.
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A.1 Preliminary Binomial Formulas

Lemma A.2 Binomial Formula Derivative Identity:

n∑

j=0

(
n

j

)
(−1)jji =






0, n = 0 or n ≥ i + 1

(−1)nn!ci,n, 1 ≤ n ≤ i





,(A.2)

for some set of constantsci,n.

Proof: Consider the basic binomial formula:

B0(x; n) = (1 − x)n =
n∑

j=0

(
n

j

)
(−1)jxj(A.3)

whose derivatives are easy to calculate by induction giving

B
(i)
0 (x; n) =






n!
(n−i)!

(1 − x)n−i, n ≥ i + 1

(−1)ii!, n = i

0, 0 ≤ n ≤ i − 1






,

so

B
(i)
0 (1±; n) = lim

x→1±
B

(i)
0 (x; n) = (−1)ii!δn,i ,

whereδn,i is the Kronecker delta. Consider the derivative form

xB′
0(x; n) =

n∑

j=0

(
n

j

)
(−1)jjxj

and defineB1(x; n) ≡ xB′
0(x; n), then

B1(1
±; n) =

n∑

j=0

(
n

j

)
(−1)jj = −δn,1 ,

which proves (A.2) for the casei = 1 with cn,1 = 1.
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For i > 1, note that eachx · d/dx operation on the basic binomial formula (A.3) introduces

another factor ofj in the binomial formula summand, leading to the inductive definition of higher

order binomial formulas,

Bi+1(x; n) ≡ x · B′
i(x; n)

for i ≥ 0. Straight-forward induction, shows that fori ≥ 0,

Bi(x; n) ≡
n∑

j=0

(
n

j

)
(−1)jjixj

and that

Bi(1
±; n) ≡

n∑

j=0

(
n

j

)
(−1)jji ,

which is the target binomial formula in (A.2). To evaluate this formula, a further application

of induction on the inductive or recursive form definition for Bi+1(x; n), leads to the induction

hypothesis,

Bi(x; n) =
i∑

j=1

ci,jx
jB

(j)
0 (x; n)(A.4)

where the constantsci,j are determined recursively by equating this induction hypothesis fori + 1

and the recursive form forBi+1(x; n). Thus for arbitraryx, equating the coefficients of thex terms

give ci+1,1 = ci,1 for i ≥ 1, soci,1 = c1,1 = 1 already found from thej = 1 case. Similarly, for

j = i + 1, i.e., orderxi+1, ci+1,i+1 = ci,i for i ≥ 1, soci,i = c1,1 = 1, completing the two boundary

cases. In general, comparing coefficients ofxj for 2 ≤ j ≤ i yields the recursion,

ci+1,j = ci,j−1 + j · ci,j ,

which can be used to get all constants needed, for exampleci,i−1 = i(i − 1)/2.

Finally, using (A.4) with the resultB(i)
0 (1±; n) = (−1)ii!δn,i implies the final result (A.2),

proving the lemma.
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Lemma A.3 Shifted Binomial Formula Identity:

n∑

j=0

(
n

j

)
(−1)j(n − j)i =






0, n = 0 or n ≥ i + 1

n!ci,n, 1 ≤ n ≤ i





,(A.5)

where the constantsci,n are given recursively in the above lemma.

Proof: This result follows quite easily from the derivative identity (A.2) by change of variable

j′ = n − j and a binomial coefficient identity,

(
n

n − j

)
=

n!

(n − j)!j!
=

(
n

j

)
,

so

n∑

j=0

(
n

j

)
(−1)jji =

n∑

j=0

(
n

n − j

)
(−1)n−j(n − j)i = (−1)n

n∑

j=0

(
n

j

)
(−1)j(n − j)i

=






0, n = 0 or n ≥ i + 1

(−1)nn!ci,n, 1 ≤ n ≤ i






and taking into account the extra factor of(−1)n proves the result (A.5) as well as the lemma.

Lemma A.4 Key Binomial Formula Application:

n∑

j=0

(
n

j

)
(−1)j((n − j)n − (n − j + ξ)n) = 0,(A.6)

wheren ≥ 0 is an integer andξ is any value.
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Proof: Primarily expanding the factor(n− j + ξ) about(n− j) by the binomial theorem leads to

n∑

j=0

(
n

j

)
(−1)j ((n − j)n − (n − j + ξ)n) = −

n∑

j=0

(
n

j

)
(−1)j

n−1∑

i=0

(
n

i

)
ξn−i(n − j)i

= −
n−1∑

i=0

(
n

i

)
ξn−i

n∑

j=0

(
n

j

)
(−1)j(n − j)i

Lemma
=
A.3

−
n−1∑

i=0

(
n

i

)
ξn−i · 0 = 0 ,

noting thatn > i in the application of Lemma A.3.

A.2 Density of Partial Sums of Uniformly Distributed IID Random Variables

Now, returning to the calculation of the probability density of the partial sum random variable

Sn =
∑n

i=1 Xi, where theXi for i = 1 : n are an IID sequence of uniform random variables.

Theorem A.1 Partial Sum Density:

Let Xi for i = 1 : n be a sequence of independent identity distribution (IID) random variables

each uniformly distributed on[0, 1]. LetSn =
∑n

i=1 Xi with n ≥ 1. Then, the probability density

function ofSn is

φSn
(s) =






1, 0 ≤ s ≤ 1, n = 1

1
(n−1)!

∑⌊s⌋
j=0

(
n
j

)
(−1)j(s − j)n−1, 0 ≤ s ≤ n, n > 1

0, else






,(A.7)

where⌊s⌋ denotes the integer floor function.

Proof: Again, we apply mathematical induction. Whenn = 1, the conclusion is true from the

uniform density given in (2.2) whena = 0 and b = 1. Whenn > 1, assume the induction
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hypothesis and0 ≤ s ≤ n, so

φSn
(s) =

1

(n − 1)!

⌊s⌋∑

j=0

(
n

j

)
(−1)j(s − j)n−1

is true, but otherwiseφSn
(s) = 0. The objective is to use the hypothesis to show the result

φSn+1(s) =
1

n!

⌊s⌋∑

j=0

(
n + 1

j

)
(−1)j(s − j)n,

if 0 ≤ s ≤ n + 1, but is0 otherwise.

• Case 1: Let s < 0 or s > n + 1, thenφSn+1(s) = 0 since the value ofSn+1 =
∑n+1

i=1 Xi and

0 ≤ Xi ≤ 1 for i = 1 : n + 1, soSn+1 ∈ [0, n + 1].

• Case 2: Let 0 ≤ s < 1, then−1 ≤ s − 1 < 0. Therefore, starting with Lemma A.1 and

using the fact thatφSn
(x) = 0 whenx < 0,

φSn+1(s) =

∫ s

s−1

φSn
(x)dx =

(∫ 0

s−1

+

∫ s

0

)
φSn

(x)dx =

∫ s

0

φSn
(x)dx

=

∫ s

0

1

(n − 1)!

⌊x⌋∑

j=0

(
n

j

)
(−1)j(x − j)n−1dx

=

∫ s

0

1

(n − 1)!

0∑

j=0

(
n

j

)
(−1)j(x − j)n−1dx

=

∫ s

0

1

(n − 1)!
xn−1dx =

sn

n!
.

However, for0 ≤ s < 1,

1

n!

⌊s⌋∑

j=0

(
n + 1

j

)
(−1)j(s − j)n =

1

n!

0∑

j=0

(
n + 1

j

)
(−1)j(s − j)n =

sn

n!
.
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Hence, on0 ≤ s < 1,

φSn+1(s) =
1

n!

⌊s⌋∑

j=0

(
n + 1

j

)
(−1)j(s − j)n.

• Case 3: n < s ≤ n + 1. Then,n − 1 < s − 1 ≤ n and⌊s⌋ = n or n + 1. Therefore, by

Lemma A.1,

φSn+1(s) =

∫ s

s−1
φSn(x)dx =

(∫ n

s−1
+

∫ s

n

)
φSn(x)dx =

∫ n

s−1
φSn(x)dx

=

∫ n

s−1

1

(n − 1)!

⌊x⌋∑

j=0

(
n

j

)
(−1)j(x − j)n−1dx

=

∫ n

s−1

1

(n − 1)!

n−1∑

j=0

(
n

j

)
(−1)j(x − j)n−1dx

=
1

(n − 1)!

n−1∑

j=0

(
n

j

)
(−1)j

∫ n

s−1
(x − j)n−1dx

=
1

n!

n−1∑

j=0

(
n

j

)
(−1)j [(n − j)n − (s − 1 − j)n]

=
1

n!

n−1∑

j=0

(
n

j

)
(−1)j+1(s − 1 − j)n +

1

n!

n−1∑

j=0

(
n

j

)
(−1)j(n − j)n

=
1

n!

n∑

j=1

(
n

j − 1

)
(−1)j(s − j)n +

1

n!

n−1∑

j=0

(
n

j

)
(−1)j(n − j)n

=
1

n!

n∑

j=1

((
n + 1

j

)
−
(

n

j

))
(−1)j(s − j)n +

1

n!

n−1∑

j=0

(
n

j

)
(−1)j(n − j)n

=
1

n!

n∑

j=0

((
n + 1

j

)
−
(

n

j

))
(−1)j(s − j)n +

1

n!

n∑

j=0

(
n

j

)
(−1)j(n − j)n

=
1

n!

n∑

j=0

(
n + 1

j

)
(−1)j(s − j)n +

1

n!

n∑

j=0

(
n

j

)
(−1)j ((n − j)n − (s − j)n) .

Lemma
=
A.4

1

n!

⌊s⌋∑

j=0

(
n + 1

j

)
(−1)j(s − j)n.

Therefore, the right boundary case forn < s ≤ n + 1 is proven.

• Case 4: Let 1 ≤ s ≤ n then by Lemma A.1, the fact thats− 1 ≤ ⌊s⌋ ≤ s and the induction
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hypothesis,

φSn+1(s) =

∫ s

s−1
φSn(x)dx =

∫ s

s−1

1

(n − 1)!

⌊x⌋∑

j=0

(
n

j

)
(−1)j(x − j)n−1dx

=

(∫ ⌊s⌋

s−1
+

∫ s

⌊s⌋

)
1

(n − 1)!

⌊x⌋∑

j=0

(
n

j

)
(−1)j(x − j)n−1dx

=

∫ ⌊s⌋

s−1

1

(n − 1)!

⌊s−1⌋∑

j=0

(
n

j

)
(−1)j(x − j)n−1dx

+

∫ s

⌊s⌋

1

(n − 1)!

⌊s⌋∑

j=0

(
n

j

)
(−1)j(x − j)n−1dx

=
1

(n − 1)!

⌊s−1⌋∑

j=0

(
n

j

)
(−1)j

∫ ⌊s⌋

s−1
(x − j)n−1dx

+
1

(n − 1)!

⌊s⌋∑

j=0

(
n

j

)
(−1)j

∫ s

⌊s⌋
(x − j)n−1dx

=
1

n!

⌊s−1⌋∑

j=0

(
n

j

)
(−1)j [(⌊s⌋ − j)n − (s − 1 − j)n]

+
1

n!

⌊s⌋∑

j=0

(
n

j

)
(−1)j [(s − j)n − (⌊s⌋ − j)n]

=
1

n!

⌊s−1⌋∑

j=0

(
n

j

)
(−1)(j+1)(s − 1 − j)n +

1

n!

⌊s⌋∑

j=0

(
n

j

)
(−1)j(s − j)n

=
1

n!

⌊s⌋∑

j=1

(
n

j − 1

)
(−1)j(s − j)n +

1

n!

⌊s⌋∑

j=0

(
n

j

)
(−1)j(s − j)n

=
1

n!

⌊s⌋∑

j=1

((
n

j − 1

)
+

(
n

j

))
(−1)j(s − j)n +

sn

n!

=
1

n!

⌊s⌋∑

j=1

(
n + 1

j

)
(−1)j(s − j)n +

sn

n!
=

1

n!

⌊s⌋∑

j=0

(
n + 1

j

)
(−1)j(s − j)n.

Therefore, from Case 1 to Case 4, the conclusion is true forn+1, so by the mathematical induction

the theorem is proved.

Corollary A.1 Partial Sum Density on [a,b]:
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Let Yi for i = 1 : n be a sequence of independent identically distributed random variables

uniformly distributed over[a, b]. Let Sn =
∑n

i=1 Yi, wheren ≥ 1, then, the probability density

function ofSn is

φSn
(s) =






1, a ≤ s ≤ b, n = 1

1
(n−1)!(b−a)

∑⌊ s−na
b−a ⌋

j=0

(
n
j

)
(−1)j( s−na

b−a
− j)n−1, na ≤ s ≤ nb, n > 1

0, else






.(A.8)

Proof: Fors < na or s > nb, it is obvious thatφSn
(s) = 0.

Now, we considerna ≤ s ≤ nb. Set

Xi =
Yi − a

b − a
,

whereYi is uniformly distributed random variable froma to b, then it is easy to prove that the

distribution ofXi is the transformable to the uniform distributed on[0, 1] (the proof is omitted) .

Set

Sn =

n∑

i=1

Xi.

So,

Sn =

n∑

i=1

Yi − a

b − a
=

∑n
i=1 Yi − na

b − a
=

Sn − na

b − a
.

The probability distribution function ofSn is

ΦSn
(s) = Prob[Sn ≤ s] = Prob [(b − a)Sn + na ≤ s]

= Prob

[
Sn ≤ s − na

b − a

]
=

∫ s−na
b−a

0

φSn
(x)dx.

So, forna ≤ s ≤ nb,

φSn
(s) =

φSn
( s−na

b−a
)

b − a
=

∑⌊ s−na
b−a ⌋

j=0

(
n
j

)
(−1)j( s−na

b−a
− j)n−1

(n − 1)!(b − a)
.
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The Corollary is proved.
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