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1. Introduction

The empirical distribution of daily log-returns for actual financial instru-
ments differs in many ways from the ideal pure diffusion process with its
log-normal distribution as assumed in the Black-Scholes-Merton option
pricing model [4, 27]. The log-returns are the log-differences between
two successive trading days, representing the logarithm of the relative
size. The most significant difference is that actual log-returns exhibit
occasional large jumps in value, whereas the diffusion process in Black-
Scholes [4] is continuous. Statistical evidence of jumps in various finan-
cial markets is given by Ball and Torous [3], Jarrow and Rosenfeld [18]
and Jorion [19]. Hence, some jump-diffusion models were proposed in-
cluding Merton’s pioneering log-normal [28] (also [29, Chap. 9]), Kou
and Wang’s log-double-exponential [21, 22] and Hanson and Westman’s
log-uniform [13, 15] jump-diffusion models.

Another difference is that the empirical log-returns are usually negatively
skewed, since the negative jumps or crashes are likely to be larger or more
numerous than the positive jumps for many instruments, whereas the
normal distribution associated with the diffusion process is symmetric.
Thus, the coefficient of skew [5] is negative,

η3 ≡ M3/(M2)1.5 < 0, (16.1)

where M2 and M3 are the 2nd and 3rd central moments of the log-return
distribution here. A third difference is that the empirical distribution is
usually leptokurtic since the coefficient of kurtosis [5] satisfies

η4 ≡ M4/(M2)2 > 3, (16.2)

where the value 3 is the normal distribution kurtosis value and M4 is
the fourth central moment. Qualitatively, this means that the tails are
fatter than a normal with the same mean and standard deviation, com-
pensated by a distribution that is also more slender about the mode
(local maximum). A fourth difference is that the market exhibits time-
dependence in the distributions of log-returns, so that the associated
parameters are time-dependent.

For option pricing with jump-diffusions, in 1976 Merton [28] (see also
[29, Chap. 8]) introduced Poisson jumps with independent identically
distributed random jump-amplitudes with fixed mean and variances into
the Black-Scholes model, but the ability to hedge the volatilities as with
the Black-Sholes options model was not possible. Also for option pric-
ing, Kou [21, 22] used a jump-diffusion model with a double exponential
(Laplace) jump-amplitude distribution, having leptokurtic and negative



Optimal Portfolio Applicationwith Double-Uniform Jump Model1 333

skewness properties. However, it is difficult to see the empirical jus-
tification for this or any other jump-amplitude distribution due to the
problem of separating the outlying jumps from the diffusion (see Aı̈t-
Sahalia [1]), although separating out the diffusion is a reasonable task.

For optimal portfolio with consumption theory Merton in another pio-
neering paper, prior to the Black-Scholes model, [25, 26] (see also [29,
Chapters 4-6]) analyzed the optimal consumption and investment port-
folio with geometric Brownian motion and examined an example of hy-
perbolic absolute risk-aversion (HARA) utility having explicit solutions.
Generalizations to jump-diffusions consisting of Brownian motion and
compound Poisson processes with general random finite amplitudes are
briefly discussed. Earlier in [24] ([29, Chapter 4]), Merton also examined
constant relative risk-aversion problems.

In the 1971 Merton paper [25, 26] there are a number of errors, in par-
ticular in boundary conditions for bankruptcy (non-positive wealth) and
vanishing consumption. Some of these problems are directly due to using
a general form of the HARA utility model. These errors are very thor-
oughly discussed in a seminal collection assembled by Suresh P. Sethi
[32] from his papers and those of his coauthors. Sethi in his introduc-
tion [32, Chapter 1]) thoroughly summarizes these errors and subsequent
generalizations. In particular, basic papers of concern here are the KLSS
paper with Karatzas, Lehoczhy, Shreve [20] (reprint [32, Chapter 2]) for
exact solutions in the infinite horizon case and with Taksar [33] (reprint
[32, Chapter 2]) pinpointing the errors in Merton’s [25, 26] work.

Hanson and Westman [10, 16] reformulated an important external events
model of Rishel [31] solely in terms of stochastic differential equations
and applied it to the computation of the optimal portfolio and con-
sumption policies problem for a portfolio of stocks and a bond. The
stock prices depend on both scheduled and unscheduled jump external
events. The complex computations were illustrated with a simple log-bi-
discrete jump-amplitude model, either negative or positive jumps, such
that both stochastic and quasi-deterministic jump magnitudes were es-
timated. In [11], they constructed a jump-diffusion model with marked
Poisson jumps that had a log-normally distributed jump-amplitude and
rigorously derived the density function for the diffusion and log-normal-
jump stock price log-return model. In [12], this financial model is ap-
plied to the optimal portfolio and consumption problem for a portfo-
lio of stocks and bonds governed by a jump-diffusion process with log-
normal jump amplitudes and emphasizing computational results. In
two companion papers, Hanson and Westman [13, 14] introduce the
log-uniform jump-amplitude jump-diffusion model, estimate the param-
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eter of the jump-diffusion density with weighted least squares using the
S&P500 data and apply it to portfolio and consumption optimization.
In [15], they study the time-dependence of the jump-diffusion parameter
on the portfolio optimization problem for the log-uniform jump-model.
The appeal of the log-uniform jump model is that it is consistent with
the stock exchange introduction of circuit breakers [2] in 1988 to limit
extreme changes, such as in the crash of 1987, in stages. On the contrary,
the normal and double-exponential jump models have an infinite domain,
which is not a problem for the diffusion part of the jump-diffusion distri-
bution since the contribution in the dynamic programming formulation
is local appearing only in partial derivatives. However, the influence
of the jump part in dynamic programming is global through integrals
with integrands that have shifted arguments. This has important con-
sequences for the choice of jump distribution since the portfolio wealth
restrictions will depend on the range of support of the jump density.

In this paper, the log-double-uniform jump-amplitude, jump-diffusion
asset model is applied to the portfolio and consumption optimizaition
problem. In Section 2, the jump-diffusion density is rigorously derived
using a modification of the prior theorem [11]. In Section 3, the time
dependent parameters for this log-return process are estimated using this
theoretical density and the S&P500 Index daily closing data for 16 years.
In Section 4, the optimal portfolio and consumption policy application
is presented and then solved computationally. Also, in this section, the
big difference in borrowing and short-selling limits is formulated in a
lemma. Concluding remarks are given in Section 5.

2. Log-Double-Uniform Amplitude
Jump-Diffusion Density for Log-Return

Let S(t) be the price of a single financial asset, such as a stock or mu-
tual fund, governed by a Markov, geometric jump-diffusion stochastic
differential equation (SDE) with time-dependent coefficients,

dS(t) = S(t)



µd(t)dt + σd(t)dG(t) +
dP (t)∑

k=1

J(T−
k , Qk)



 , (16.3)

with S(0) = S0, S(t) > 0, where µd(t) is the mean appreciation return
rate at time t, σd(t) is the diffusive volatility, dG(t) is a continuous
Gaussian process with zero mean and dt variance, dP (t) is a discon-
tinuous, standard Poisson process with jump rate λ(t), with common
mean-variance of λ(t)dt, and associated jump-amplitude J(t,Q) with
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log-return mark Q mean µj(t) and variance σ2
j (t). The stochastic pro-

cesses G(t) and P (t) are assumed to be Markov and pairwise indepen-
dent. The jump-amplitude J(t,Q), given that a Poisson jump in time
occurs, is also independently distributed, at pre-jump time T−

k and mark
Qk. The stock price SDE (16.3) is similar in prior work [11, 12], except
that time-dependent coefficients introduce more realism here. The Qk

are IID random variables with Poisson amplitude mark density, φQ(q; t),
on the mark-space Q.

The infinitesimal moments of the jump process are

E[J(t,Q)dP (t)] = λ(t)dt

∫

Q
J(t, q)φQ(q; t)dq

and
Var[J(t,Q)dP (t)] = λ(t)dt

∫

Q
J2(t, q)φQ(q; t)dq.

The differential Poisson process is a counting process with the probability
of the jump count given by the usual Poisson distribution,

pk(λ(t)dt) = exp(−λ(t)dt)(λ(t)dt)k/k!, (16.4)

k = 0, 1, 2, . . ., with parameter λ(t)dt > 0.

Since the stock price process is geometric, the common multiplicative
factor of S(t) can be transformed away yielding the SDE of the stock
price log-return using the stochastic chain rule for Markov processes in
continuous time,

d[ln(S(t))] = µld(t)dt + σd(t)dG(t) +
dP (t)∑

k=1

ln(1 + J(T−
k , Qk)), (16.5)

where µld(t)≡µd(t)−σ2
d(t)/2 is the log-diffusion drift and ln(1+J(t, q))

is the stock log-return jump-amplitude or the logarithm of the relative
post-jump-amplitude. This log-return SDE (16.5) is the model that
will be used for comparison to the S&P500 log-returns. Since jump-
amplitude coefficient J(t, q) > −1, it is convenient to select the mark
process to be the log-jump-amplitude random variable,

Q = ln (1 + J(t,Q)) , (16.6)

on the mark space Q = (−∞,+∞), so J(t,Q) = eQ − 1 in general. Al-
though this is a convenient mark selection, it implies the independence of
the jump-amplitude in time, but not of the jump-amplitude distribution.
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Since market jumps are rare and limited, while the tails are relatively
fat, a reasonable approximation is the log-double-uniform (duq) jump-
amplitude distribution with density φQ on the finite, time-dependent
mark interval [a(t), b(t)] as in [15]. However, since the optimistic strate-
gies that play a role in rallies should be different from the pessimistic
strategies used for crashes, it would be better to decouple the positive
from the negative jumps giving rise to the log-double-uniform jump-
amplitude model. The double-uniform density is the juxtaposition of two
uniform densities, φ1(q; t) = I{a(t)≤q≤0}/|a|(t) on [a(t), 0] and φ2(q; t) =
I{0≤q≤b(t)}/b(t) on [0, b(t)], such that a(t) < 0 < b(t) and IS is the indi-
cator function for set S. The double-uniform density can be written,

φQ(q; t) ≡






0, −∞ < q < a(t)
p1(t)/|a|(t), a(t) ≤ q < 0
p2(t)/b(t), 0 ≤ q ≤ b(t)
0, b(t) < q < +∞





, (16.7)

essentially undefined or doubly defined at q = 0, except p1(t) is the
probability of a negative jump and p2(t) is the probability of a non-
negative jump, conserving probability by assigning the null jump to the
uniform sub-distribution with the positive jumps. Otherwise, φQ(q; t)
is undefined as the derivative of the double-uniform distribution for the
point of jump discontinuity at 0, but the distribution

ΦQ(q; t) = p1(t) q−a(t)
|a|(t) I{a(t)≤q<0} +

(
p1(t) + p2(t) q

b(t)

)
I{0≤q<b(t)}

+I{b≤q<∞}

is well-defined and continuous since points of zero measure do not con-
tribute. The assumption that a(t) < 0 < b(t) is to make sure that both
negative jumps (including crashes) and positive jumps (including rallies)
are represented. The form of this double-uniform model was motivated
by Kou’s [21] double-exponential model.

The density φQ(q; t) yields the mean

EQ[Q] = µj(t) = (p1(t)a(t) + p2(t)b(t))/2

and variance

VarQ[Q] = σ2
j (t) = (p1(t)a2(t) + p2(t)b2(t))/3 − µ2

j(t)

which define the basic log-return jump-amplitude moment parameters.
The third and fourth central moments are, respectively,

M (duq)
3 (t) ≡ EQ

[
(Q − µj(t))3

]

= (p1(t)a3(t)+p2(t)b3(t))/4 − µj(t)(3σ2
j (t)+µ2

j (t))
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and

M (duq)
4 (t) ≡ EQ

ˆ
(Q − µj(t))

4˜

= (p1(t)a
4(t)+p2(t)b

4(t))/5 − 4µj(t)M
(duq)
3 (t) − 6µ2

j (t)σ
2
j (t) − µ4

j (t).

The log-double-uniform distribution is treated as time-dependent in this
paper, so a(t), b(t), µj(t) and σ2

j (t) all depend on t.

The difficulty in separating out the small jumps about the mode or maxi-
mum of real market distributions is explained by the fact that a diffusion
approximation for small marks can be used for the jump process that
will be indistinguishable from the continuous Gaussian process anyway.

The first four moments of the difference form stock log-return,

∆ ln(S(t)) ≡ ln(S(t +∆t)) − ln(S(t)),

assuming that a sufficiently close approximation of the double-uniform
jump-diffusion (dujd) by (16.5), i.e.,

∆ ln(S(t)) % µld(t)∆t + σd(t)∆G(t) +
∑∆P (t)

k=1 Qk

= (µld(t) + λ(t)µj(t))∆t + σd(t)∆G(t)

+µj(t)(∆P (t) − λ(t)∆t) +
∑∆P (t)

k=1 (Qk − µj(t)) ,

(16.8)

the latter in a more convenient zero-mean and independent terms form,
are

M (dujd)
1 ≡ E[∆ ln(S(t))] = (µld(t) + λ(t)µj(t))∆t, (16.9)

M (dujd)
2 ≡ Var[∆ ln(S(t))] =

(
σ2

d(t) + λ(t)
(
µ2

j (t) + σ2
j (t)

))
∆t,(16.10)

M (dujd)
3 (t) ≡ E

[(
∆[ln(S(t))] − M (dujd)

1 (t)
)3
]

= (p1(t)a3(t) + p2(t)b3(t))λ(t)∆t/4,
(16.11)

M (dujd)
4 (t) ≡ E

[(
∆[ln(S(t))]−M (dujd)

1 (t)
)4
]

= (p1(t)a4(t) + p2(t)b4(t))λ(t)∆t/5

+3(σ2
d(t) + λ(t)(µ2

j (t) + σ2
j (t)))

2(∆t)2.

(16.12)

The M (dujd)
4 (t) moment calculation, in particular, needs a lemma from

[9, Chapter 5] for the fourth power of partial sums of zero-mean IID
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random variables Xi, i.e.,

E

" 
nX

i=1

Xi

!4#
= nE

ˆ
X4

i

˜
+ 3n(n − 1)

`
E
ˆ
X2

i

˜´2
.

The log-double-uniform jump-diffusion density can be found by basic
probabilistic methods following a slight modification to time-dependent
coefficients from the constant coefficients assumption used in the theo-
rem of Zhu [36],

Theorem 1 (Probability Density). The log-double-uniform jump-amplitude
jump-diffusion log-return difference, written as

∆ ln(S(t)) = G(t) +
∆P (t)∑

k=1

Qk

specified in the SDE (16.8) with non-standard Gaussian G(t) = µld∆t +
σd∆G(t), has a probability density given by

φ(dujd)
∆ ln(S(t))(x) %

∑∞
k=0 pk(λ(t)∆t)φ(dujd)

G(t)+
Pk

i=1 Qi
(x)

≡
∑∞

k=0 pk(λ(t)∆t)φ(dujd)
k (x),

(16.13)

for sufficiently small ∆t and −∞ < x < +∞, where pk(λ(t)∆t) is the
Poisson distribution (16.4) with parameter λ(t)∆t with multiple-convo-
lution, Poisson coefficients

φ(dujd)
k (x) =

(
φG(t)

k∏

i=1

(∗φQi)

)
(x). (16.14)

In the case of the corresponding normalized second order approximation,

φ(dujd,2)
∆ ln(S(t))(x) =

∑2
k=0 pk(λ(t)∆t)φ(dujd)

k (x)/
∑2

k=0 pk(λ(t)∆t), (16.15)

where the density coefficients are given by

φ(dujd)
0 (x) = φ(n)

(
x;µ, σ2

)
, (16.16)

for k = 0, where φ(n)(x;µ, σ2) is the normal distribution with mean µ
and variance σ2, while here (µ, σ2) = (µld, σ2

d)∆t, for k = 1,

φ(dujd)
1 (x) = + p1(t)

|a|(t)Φ
(n)(a(t), 0;x − µ, σ2)

+p2(t)
b(t) Φ

(n)(0, b(t);x − µ, σ2),
(16.17)



Optimal Portfolio Applicationwith Double-Uniform Jump Model4 339

where Φ(n)(a, b;µ, σ2) is the normal distribution on (a, b) with density
φ(n)(x;µ, σ2), and for k = 2,

φ(dujd)
2 (x) = σ2

“
(p1(t)/a(t) + p2(t)/b(t))2φ(n)(0, ∗)

+(p1(t)/a(t))2φ(n)(2a(t), ∗) + (p2(t)/b(t))2φ(n)(2b(t), ∗)

−2
`
(p1(t)/a(t))2 + p1(t)p2(t)/(a(t)b(t))

´
φ(n)(a(t), ∗)

−2
`
(p2(t)/b(t))2 + p1(t)p2(t)/(a(t)b(t))

´
φ(n)(b(t), ∗)

+2p1(t)p2(t)/(a(t)b(t))φ(n)(a(t) + b(t), ∗)
”

+(p1(t)/a(t))2
“
(x − 2a(t) − µ)Φ(n)(2a(t), a(t), ∗)

−(x − µ)Φ(n)(a(t), 0, ∗)
”

+(2p1(t)p2(t)/(a(t)b(t)))
“
(x − µ)Φ(n)(0, b(t), ∗)

−(x − a(t) − µ)Φ(n)(a(t), a(t) + b(t), ∗)
”

+(p2(t)/b(t))2
“
(x − µ)Φ(n)(0, b(t), ∗)

−(x − 2b(t) − µ)Φ(n)(b(t), 2b(t), ∗)
”

−2(p1(t)p2(t)/a(t))Φ(n)(a(t) + b(t), b(t), ∗)

(16.18)

where the symbol ∗ means that the common parameter argument x−µ, σ2

has been suppressed.

Proof. The sum in (16.13) is merely an expression of the law of total
probability [9, Chapters 0 and 5] and the multiple or nested form (16.14)
follows from a convolution theorem [9]. When k = 0 there are no jumps
and ∆ ln(S(t)) = G(t), the purely Gaussian term, so the distribution
is normal and is given in (16.16). Note in this case

∑0
i=1 Qi ≡ 0 by

convention.

When k = 1 jump, consider the double sum of IID random variables
∆ ln(S(t)) = G(t) + Q1 near the jump for sufficiently small ∆t and
letting (µ, σ2) = (µld, σ2

d)∆t,

φ(dujd)
1 (x) =

(
φG(t) ∗ φQ1

)
(x)=

∫ +∞

−∞
φ(n)(x − q;µ, σ2)φQ1(q; t)dq

=

(
p1(t)
|a|(t)

∫ 0

a(t)
+

p2(t)
b(t)

∫ b(t)

0

)

φ(n)(x − q;µ, σ2)dq

=
p1(t)
|a|(t)

Φ(n)(a(t), 0;x−µ, σ2)+
p2(t)
b(t)

Φ(n)(0, b(t);x−µ, σ2),

verifying (16.17) by the normal argument-mean shift identity [9, Chapter
0], φ(n)(x−q;µ, σ2) = φ(n)(q;x−µ, σ2). The density Φ(n)(ξ, η;µ, σ2)/(η−
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ξ) is a secant-normal density as the secant approximation to the
derivative to the normal distribution [9, Chapter 5].
For k = 2 jumps, we consider the triple IID random variables G(t) +
Q1 + Q2, first treating the sum of the two double-uniform IID RVs,

(φQ1 ∗ φQ2) (x)=
R +∞
−∞ φQ2(x − q; t)φQ1(q; t)dq

=
p2
1(t)

a2(t)

R 0

a(t)
I{a(t)≤x−q<0}dq +

p2
2(t)

b2(t)

R b(t)

0
I{0≤x−q≤b(t)}dq

+ 2p1(t)p2(t)
b(t)|a|(t)

R 0

a(t)
I{0≤x−q≤b(t)}dq

=
p2
1(t)

a2(t)
min(x − 2 ∗ a(t),−x)I{a(t)≤x<0}

+
p2
2(t)

b2(t)
min(x, 2 ∗ b(t) − x)I{0≤x≤b(t)}

+ 2p1(t)p2(t)
b(t)|a|(t) min(x−a(t),min(|a|(t), b(t)), b(t)− x)I{a≤x≤b(t)},

comprising two triangular densities [9, Chapter 5] plus one trapezoidal
density. On substituting this density composite and again using the
argument-mean normal shift identity again into the double convolution
leads to

φ(dujd)
2 (x) =

`
φG(t) ∗ (φQ1 ∗ φQ2)

´
(x)

=
p2
1(t)

a2(t)

“R a(t)
2a(t)

(q − 2a(t))φ(n)(q; ∗)dq +
R 0

a(t)
(−q)φ(n)(q; ∗)dq

”

+
p2
2(t)

b2(t)

“R b(t)

0
qφ(n)(q; ∗)dq +

R 2b(t)

b(t)
(2a(t) − q)φ(n)(q; ∗)dq

”

+ 2p1(t)p2(t)
b(t)|a|(t)

“Rmin(a(t)+b(t),0)

a(t)
(q − a(t))φ(n)(q; ∗)dq

+min(|a|(t), b(t))
Rmax(a(t)+b(t),0)
min(a(t)+b(t),0)

φ(n)(q; ∗)dq

+
R b(t)
max(a(t)+b(t),0)

(b(t) − q)φ(n)(q; ∗)dq
”

,

(16.19)

where again the symbol ∗ denotes x − µ, σ2. The last equation follows
from using the following normal integral identity,

±
Z β

α

(q − γ)φ(n)(q; ∗)dq=±(x−µ−γ)Φ(n)(α, β; ∗) ∓ σ2
“
φ(n)(β; ∗)−φ(n)(α; ∗)

”
.

Finally after some analysis for two cases: a(t)+b(t) < 0 or a(t)+b(t) >=
0, the equation (16.19) for φ(dujd)

2 (x) can be recollected and simplified
as the form in (16.18). However, there are also practical computational
considerations since some naive collections of terms lead to exponen-
tial catastrophic cancellation problems which are detected by checking a
form for φ(dujd)

2 (x) for conservation of probability since φ(dujd)
2 (x) must

be a proper density. The problem arises for the double-uniform jump-
amplitude model coupled with difficulty of computing normal distribu-
tions with very small variances and combining similar exponential as well
as distribution terms. Corrections to this problem require a very robust
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normal density integrator like the MATLABTM [23] basic erfc comple-
mentary error function and a proper collection of terms. Note that the
two forms (16.18) and (16.19) of φ(dujd)

2 (x) are analytically equivalent in
infinite precision, but not computationally in finite precision.

Using the log-normal jump-diffusion log-return density in (16.13), the
third and fourth central moment formulas (16.11,16.12) can be confirmed
[36].

3. Jump-Diffusion Parameter Estimation

Given the log-normal-diffusion, log-double-uniform jump density (16.13),
it is necessary to fit this theoretical model to realistic empirical data to
estimate the parameters of the log-return model (16.5) for d[ln(S(t))].
For realistic empirical data, the daily closings of the S&P500 Index dur-
ing the years from 1988 to 2003 are used from data available on-line [35].
The data consists of n(sp) = 4036 daily closings. The S&P500 (sp) data
can be viewed as an example of one large mutual fund rather than a sin-
gle stock. The data has been transformed into the discrete analog of the
continuous log-return, i.e., into changes in the natural logarithm of the
index closings, ∆[ln(SP i)] ≡ ln(SP i+1) − ln(SP i) for i = 1, . . . , n(sp) − 1
daily closing pairs. For the period, the mean is M (sp)

1 % 3.640 × 10−4

and the variance is M (sp)
2 % 1.075 × 10−4, the coefficient of skewness is

η(sp)
3 ≡ M (sp)

3 /(M (sp)
2 )1.5 % −0.1952 < 0,

demonstrating the typical negative skewness property, and the coefficient
of kurtosis is

η(sp)
4 ≡ M (sp)

4 /(M (sp)
2 )2 % 6.974 > 3,

demonstrating the typical leptokurtic behavior of many real markets.

The S&P500 log-returns, ∆[ln(SP i)] for i = 1 : n(sp) data points, are
partitioned into 16 yearly (spy) data sets, ∆[ln(SP (spy)

jy,k )] for k = 1 : n(sp)
y,jy

yearly data points for jy = 1 : 16 years, where
∑16

jy=1 n(sp)
y,jy

= n(sp). For
each of these yearly sets, the six parameters

yjy =
(
µld,jy , σ

2
d,jy

, µj,jy , σ
2
j,jy

, p1,jy , λjy

)
,
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are estimated for each year jy to specify the jump-diffusion log-return
distribution by maximum likelihood estimation objective,

f(yjy) = −
n

(sp)
y,jy∑

k=1

log
(
φ(dujd,2)
∆ ln(S(t))(xk;yjy)

)
. (16.20)

The time step ∆t=∆Tjy is the reciprocal of the number of trading days
per year, close to 252 days, but varies a little for jy = 1 : 16 years used
here for parameter estimation. The maximum likelihood estimation is
performed for convenience directly on the set

ŷjy =
(
µld,jy , σ

2
d,jy

, ajy , bjy , p1,jy , λjy

)
,

since it is easier to get the pair {µj,jy , σ
2
j,jy

} from {ajy , bjy}, rather then
the other way around which would require a quadratic inversion.

Thus, we have a six dimensional global minimization problem for a highly
complex discretized jump-diffusion density function (16.5). Due to the
high level of flexibility with six free parameters, barrier techniques using
large values in excluded regions are adopted to avoid negative variances
σ2

d,jy
, non-positive ajy , negative bjy , p1,jy /∈ [0, 1) and negative λjy . The

analytical complexity indicates that a general global optimization meth-
od that does not require derivatives would be useful. For this purpose,
such a method, the Nelder-Mead downhill simplex method [30], imple-
mented in MATLABTM [23] as the function fminsearch is used, since
simple techniques are desirable in financial engineering. The method is
quite efficient since it requires only one new function evaluation for each
successive step to test for the best new search direction from the old
simplex.

The jump-diffusion estimated yearly parameter results in the present
log-double-uniform-jump amplitude case are summarized in the Figures
16.1 and 16.2. The graphs are piecewise linear interpolations of the
yearly averages when the averages are assigned to the mid-year. Per-
haps cubic splines or moving averages would portray the parameters
better, but since a total of eight or more time dependent parameters
are needed for the optimal portfolio and consumption application that
follows, the piecewise linear interpolation is more convenient due to time
constraints. Figure 16.1 displays the time-variation from 1988 to mid
2004 for the diffusion mean µd(t) and variance σd(t) in Subfigure 16.1(a)
and the jump mean µj(t) and variance σj(t) in Subfigure 16.1(b). The
average values of (µd, σd, µj , σj) are (0.1654, 0.1043, 3.110e-4, 8.645e-3),
respectively. In Figure 16.2, more jump parameters are displayed, but
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the three double-uniform distribution parameters p1(t), a(t) and b(t)
determine the jump mean µj(t) and variance σj(t). The biggest inter-
est here is that the jump rate λ(t), scaled by 500 to keep on the same
graph, with both λ(t) and p1(t) similarly variable in Subfigure 16.2(a).
The double-uniform bounds, a(t) and b(t), vary quite a bit as would be
expected from the variability of µj(t) and σj(t).
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(a) Diffusion parameters: µd(t) and σd(t).
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(b) Jump parameters: µj(t) and σj(t).

Figure 16.1. Jump-diffusion mean and variance parameters, (µd(t), σd(t) ) and
(µj(t), σj(t)) on t ∈ [1988, 2004.5], represented as piecewise linear interpolation of
yearly averages assigned to the mid-year.
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(a) Jump parameters: λ(t)/500 and p1(t).
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(b) Jump parameters: a(t) and b(t).

Figure 16.2. More jump parameters, (λ(t)/500, p1(t) ) and (a(t), b(t)) on t ∈
[1988, 2004.5], represented as piecewise linear interpolation of yearly averages assigned
to the mid-year.

The fminsearch tolerances are tolx = 0.5e-6 and toly = 0.5e-6. All
yearly iterations are converged in a range from 399 to 750 steps each.
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The time needed for the yearly estimations is in a range from 2 to 5
seconds using a Dual 2GHz PowerPC G5 computer processor.

In Figure 16.3 a sample comparison is made for the empirical S&P500 his-
togram on the left for the year of 2000 with the corresponding theoret-
ical jump-diffusion histogram on the right using the fitted, optimized
parameters and the same number of centered bins on the domain. The
jump-diffusion histogram is a very idealized version of the empirical dis-
tribution, with the asymmetry of the tails clearly illustrated.
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(a) Histogram sample of S&P500 log returns for
year 2000.
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(b) Histogram sample of S&P500 log returns for
fitted jump-diffusion in the same year.

Figure 16.3. Sample comparison for year 2000 of the empirical S&P500 histogram
on the left with the corresponding fitted theoretical log-double-uniform jump-diffusion
histogram on the right, using 50 bins.

For reference, the summaries of the coefficients of skewness and kurtosis
are given in Figure 16.4 for both the estimated theoretical jump-diffusion
model and the empirical S&P500 data to facilitate comparison. The
jump-diffusion skewness values η(dujd)

3 in Subfigure 16.4(a) are in the
range of -308% to +204% of the empirical S&P500 values, except in
the case of the year 2000 when the empirical value is near zero and the
relative error is ill-defined. Note that contrary to the legendary long-
term negative market skewness, the skewness for some years is positive
and the change in sign of the skewness is reflected in the large differences
from the empirical results. The jump-diffusion kurtosis values η(dujd)

4 in
Subfigure 16.4(b) are in the range of -19% to +24% with a mean of 3.2%
of the empirical values, which is very good considering the difficulty
of accurately estimated fourth moments and the results are very much
better than that the skewness results. Any discrepancy between the
estimated theoretical and observed data for kurtosis is likely due to the
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relative smallness of the yearly sample as well as the bin size and the
fixed yearly double-uniform domain. The concept that the market data
is usually leptokurtic refers to long term data and not to shorter term
data.
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Figure 16.4. Comparison of skewness and kurtosis coefficients for both the
S&P500 data and the estimated double-uniform jump diffusion values on t ∈
[1988, 2004.5], represented as piecewise linear interpolation of yearly averages assigned
to the mid-year.

The main purpose of this parameter estimation has been to have an
estimate of the many time-dependence parameters . Hence, we use the
simple piecewise linear interpolation to fit the jump-diffusion parame-
ters in time assigning the estimate yearly averages to the mid-year as
interpolation points.

4. Application to Optimal Portfolio and
Consumption Policies

Consider a portfolio consisting of a riskless asset, called a bond, with
price B(t) dollars at time t years, and a risky asset, called a stock, with
price S(t) at time t. Let the instantaneous portfolio change fractions
be U0(t) for the bond and U1(t) for the stock, so that the total satisfies
U0(t) + U1(t) = 1. This does not necessarily imply bounds for U0(t)
and U1(t), as will be seen later that their bounds depend on the jump-
amplitude distribution in the presence of a non-negative of wealth (no
bankruptcy) condition.

The bond price process is deterministic exponential,

dB(t) = r(t)B(t)dt , B(0) = B0 . (16.21)
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where r(t) is the bond rate of interest at time t. The stock price S(t)
has been given in (16.3). The portfolio wealth process changes due to
changes in the portfolio fractions less the instantaneous consumption of
wealth C(t)dt,

dW (t) = W (t)
(
r(t)dt + U1(t)

(
(µd(t) − r(t))dt

+σd(t)dG(t) +
∑dP (t)

k=1

(
eQk − 1

)))
− C(t)dt ,

(16.22)

such that, consistent with non-negative constraints Sethi and Taksar [33]
show are needed, W (t) ≥ 0 and that the consumption rate is constrained
relative to wealth 0 ≤ C(t) ≤ C(0)

maxW (t). In addition, the stock fraction
is bounded by fixed constants. U (0)

min ≤ U1(t) ≤ U (0)
max, so borrowing and

short-selling is permissible, and U0(t) = 1 − U1(t) has been eliminated
[12].

The investor’s portfolio objective is to maximize the conditional, ex-
pected current value of the discounted utility Uf (w) of terminal wealth
at the end of the investment terminal time tf and the discounted utility
of instantaneous consumption U(c), i.e.,

v∗(t, w) = max{u,c}
[
E
[
e−β(t,tf )Uf (W (tf ))

+
∫ tf
t e−β(t,s)U(C(s)) ds

∣∣∣ C
]]

,
(16.23)

conditioned on the state-control set C = {W (t) = w,U1(t) = u,C(t) =
c}, where the time horizon is assumed to be finite, 0 ≤ t < tf , and β(t, s)
is the cumulative time discount over time in (t, s) with β(t, t) = 0 and
discount rate β̂(t) = ∂β/∂s(t, t) at time t. In order to avoid Merton’s
[25] problems with utility functions, U ′(C) → +∞ as C → 0+ will be
assumed for the utility of consumption, while a similar form will be
used for the final bequest Uf (W ). Thus, the instantaneous consumption
c = C(t) and stock portfolio fraction u = U1(t) serve as control variables,
while the wealth w = W (t) is the single state variable.

Absorbing Boundary Condition at Zero Wealth: Eq. (16.23) is
subject to zero wealth absorbing natural boundary condition (avoids ar-
bitrage as pointed out by Karatzas, Lehoczky, Sethi, Shreve and Taksar
([20] or [32, Chapter 2] and [33] or [32, Chapter 3]) that it is neces-
sary to enforce non-negativity feasibility conditions on both wealth and
consumption. They formally derived explicit solutions for consumption-
investment dynamic programming models with a time-to-bankruptcy
horizon that qualitatively corrects the results of Merton [25, 26] ([29,
Chapter 6]). See also Sethi and Taksar [33] and much more in the Sethi
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volume [32], which includes Sethi’s very broad and excellent summary
[32, Chapter 1].

Here the Merton correction [29, Chap. 6]) is used,

v∗(t, 0+) = Uf (0)e−β(t,tf ) + U(0)
∫ tf
t e−β(t,s)ds, (16.24)

where the terminal wealth condition, v∗(tf , w) = Uf (w), has been ap-
plied, following from the fact that the consumption must be zero when
the wealth is zero.

Portfolio Stochastic Dynamic Programming: Assuming the opti-
mal value v∗(t, w) is continuously differentiable in t and twice contin-
uously differentiable in w, then the stochastic dynamic programming
equation (see [12]) follows from an application of the (Itô) stochastic
chain rule to the principle of optimality,

0 = v∗t (t, w)−β̂(t)v∗(t, w) + U(c∗(t, w))
+ [(r(t)+(µd(t) − r(t))u∗(t, w))w − c∗(t, w)] v∗w(t, w)

+1
2σ

2
d(t)(u

∗)2(t, w)w2v∗ww(t, w)+λ(t)
(

p1(t)
|a|(t)

∫ 0
a(t)+

p2(t)
b(t)

∫ b(t)
0

)

· (v∗(t, (1+(eq − 1)u∗(t, w))w)−v∗(t, w)) dq,

(16.25)

where u∗ = u∗(t, w) ∈ [U (0)
min, U

(0)
max] and c∗ = c∗(t, w) ∈ [0, C(0)

maxw] are
the optimal controls if they exist, while v∗w(t, w) and v∗ww(t, w) are the
partial derivatives with respect to wealth w when 0 ≤ t < tf .

Non-Negativity of Wealth and Jump Distribution: The non-
negativity of wealth implies an additional consistency condition for the
control since the jump in wealth argument (1 + (eq − 1)u∗)w in the
stochastic dynamic programming equation (16.25) requires κ(u, q) ≡
1 + (eq − 1)u ≥ 0 on the support interval of the jump-amplitude mark
density φQ(q; t). Hence, it will make a difference in the optimal portfolio
stock fraction u∗ bounds if the support interval [a(t), b(t)] is finite or if
the support interval is (−∞,+∞), i.e., had infinite range. Our results
will be restricted to the usual case when a(t) < 0 < b(t), i.e., when both
crashes and rallies are modeled.

Lemma 1. Bounds on Optimal Stock Fraction due to
Non-Negativity of Wealth Jump Argument
If the support of φQ(q; t) is the finite interval q ∈ [a(t), b(t)] with a(t) <
0 < b(t), then u∗(t, w) is restricted by (16.25) to

−1(
eb(t) − 1

) ≤ u∗(t, w) ≤ 1(
1 − ea(t)

) , (16.26)



348

but if the support of φQ(q) is fully infinite, i.e., (−∞,+∞), then u∗(t, w)
is restricted by (16.25) to

0 ≤ u∗(t, w) ≤ 1. (16.27)

Proof. Since κ(u, q) = 1 + (eq − 1)u and it is necessary that κ(u, q) ≥ 0
so that κ(u, q)w ≥ 0 when the wealth and its jump argument need to be
non-negative. The most basic instantaneous stock fraction case is when
u = 0, so κ(0, q) = 1 > 0.

First consider the case when the support is the finite a(t) ≤ q ≤ b(t).
When u > 0, then

0 ≤ 1 −
(
1 − ea(t)

)
u ≤ κ(u, q) ≤ 1 +

(
eb(t) − 1

)
u.

Since ea(t) < 1 < eb(t), the worse case for enforcing κ(u, q) ≥ 0 is on the
left, so

u ≤ +1(
1 − ea(t)

) .

When u < 0, then

0 ≤ 1 −
(
eb(t) − 1

)
(−u) ≤ κ(u, q) ≤ 1 +

(
1 − ea(t)

)
(−u).

The worse case for enforcing κ(u, q) ≥ 0 is again on the left so upon
reversing signs,

u ≥ −1
eb(t) − 1

,

completing both sides of the finite case (16.26).

In the infinite range jump model case when −∞ < q < +∞, then
0 < eq < ∞. Thus, when u > 0,

0 ≤ 1 − u < κ(u, q) < ∞,

so u ≤ 1. However, when u < 0, then

−∞ < κ(u, q) < 1 − u,

so u < 0 leads to a contradiction since κ(u, q) is unbounded on the left
and u ≥ 0, proving (16.27), which is just the limiting case of (16.26).

Remark 1. This lemma gives the constraints on the instantaneous stock
fraction u∗(t, w) that limits the jumps to the jumps that at most just wipe
out the investor’s wealth. Unlike the case of pure diffusion where the
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functional terms have local dependence on the wealth mainly through par-
tial derivatives, the case of jump-diffusion has global dependence through
jump integrals over finite differences with jump modified wealth argu-
ments, leading to additional constraints under non-negative wealth con-
ditions that do not appear for pure diffusions. The additional constraint
comes not from the current wealth or nearby wealth but from the new
wealth created by a jump. The more severe restrictions on the opti-
mal stock fraction in the non-finite support case for the jump-amplitude
models compared to the compact support case such as the double uniform
model gives further justification for the uniform type models.

Note that the compact support bounds can be rewritten in terms of the
original jump-amplitude coefficient

−1/J(t, b(t)) ≤ u∗(t, w) ≤ −1/J(t, a(t)).

In the case of the fitted log-double-uniform jump-amplitude model, the
range of the jump-amplitude marks [a(t), b(t)] is covered by the estimated
interval

[amin, bmax] =
[
min

t
(a(t)),max

t
(b(t))

]
% [−8.470e-2, 5.320e-2]

over the whole period from 1988-2003. The corresponding overall esti-
mated range of the optimal instantaneous stock fraction u∗(t, w) is then

[umin, umax] =
[

−1
(ebmax − 1)

,
+1

(1 − eamin)

]
% [−18.30,+12.31] (16.28)

in large contrast to the highly restricted infinite range models where
[min(u∗(t, w)),max(u∗(t, w))] = [0, 1] is fixed for any t.

Regular Optimal Control Policies: In absence of control constraints,
then the maximum controls are the regular optimal controls ureg(t, w)
and creg(t, w), which are given implicitly, provided they are attainable
and there is sufficient differentiability in c and u, by the dual critical
conditions,

U ′(creg(t, w)) = v∗w(t, w) , (16.29)

σ2
d(t)w

2v∗ww(t, w)ureg(t, w) = −(µd(t) − r(t))wv∗w(t, w)

−λ(t)w
(

p1(t)
|a|(t)

∫ 0
a(t) +p2(t)

b(t)

∫ b(t)
0

)
(eq − 1)v∗w(t, κ(ureg(t, w), q)w) dq ,

(16.30)

for the optimal consumption and portfolio policies with respect to the
terminal wealth and instantaneous consumption utilities (16.23). Note
that (16.29-16.30) define the set of regular controls implicitly.
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CRRA Utility and Canonical Solution Reduction: Assuming the
investor is risk adverse, the utilities will be the constant relative risk-
aversion (CRRA) power utilities [29, 10], with the same power for both
wealth and consumption,

U(x) = Uf (x) = xγ/γ , x ≥ 0 , 0 < γ < 1 . (16.31)

The CRRA utility designation arises since the relative risk aversion is
the negative of the local change in the marginal utility (U ′′(x)) relative
to the average change in the marginal utility (U ′(x)/x), or here

R(x) ≡ −U ′′(x)/(U ′(x)/x) = (1 − γ) > 0,

i.e., a constant, and is a special case of the more general HARA utilities.

The CRRA power utilities for the optimal consumption and portfolio
problem lead to a canonical reduction of the stochastic dynamic pro-
gramming PDE problem to a simpler ODE problem in time, by the
separation of wealth and time dependence,

v∗(t, w) = U(w)v0(t), (16.32)

where only the time function v0(t) is to be determined. The regular
consumption control is a linear function of the wealth,

creg(t, w) ≡ w · c(0)
reg(t) = w/v1/(1−γ)

0 (t), (16.33)

using (16.29) and U ′(x) = xγ−1 in (16.31). The regular stock fraction u
in (16.30) is a wealth independent control, but is given in implicit form:

ureg(t, w) = u(0)
reg(t)

= 1
(1−γ)σ2

d(t)

[
µd(t) − r(t) + λ(t)I1

(
u(0)

reg(t)
)]

,
(16.34)

I1(u) =
(

p1(t)
|a|(t)

∫ 0
a(t) +p2(t)

b(t)

∫ b(t)
0

)
(eq − 1)κγ−1(u, q)dq, (16.35)

The wealth independent property of the regular stock fraction is essen-
tial for the separability of the optimal value function (16.32). Since
(16.34) only defines u(0)

reg(t) implicitly in fixed point form, u(0)
reg(t) must

be found by an iteration such as Newton’s method, while the Gauss-
Statistics quadrature [34] can be used for jump integrals (see [12]). The
optimal controls, when there are constraints, are given in piecewise form
as c∗(t, w)/w = c∗0(t) = max[min[c(0)

reg(t), C(0)
max], 0], provided w > 0, and

u∗(t, w) = u∗
0(t) = max[min[u(0)

reg(t), U (0)
max], U

(0)
min], is independent of w
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along with u(0)
reg(t). Substitution of the separable power solution (16.32)

and the regular controls (16.33-16.34) into the stochastic dynamic pro-
gramming equation (16.25), leads to an apparent Bernoulli type ODE,

0 = v′0(t) + (1 − γ)
(

g1(t, u∗
0(t))v0(t) + g2(t)v

γ
γ−1

0 (t)
)

, (16.36)

g1(t, u) ≡ 1
1−γ

[
−β̂(t) + γ (r(t) + u(µd(t) − r(t)))

− γ(1−γ)
2 σ2

d(t)u
2 + λ(t)(I2(t, u) − 1)

]
,

(16.37)

g2(t) ≡
1

1 − γ

[(
c∗0(t)

c(0)
reg(t)

)γ

− γ

(
c∗0(t)

c(0)
reg(t)

)]
, (16.38)

I2(t, u) ≡
(

p1(t)
|a|(t)

∫ 0

a(t)
+

p2(t)
b(t)

∫ b(t)

0

)
κγ(u, q) dq , (16.39)

for 0 ≤ t < tf . The coupling of v0(t) to the time dependent part of
the consumption term c(0)

reg(t) in g2(t) and the relationship of c(0)
reg(t) to

v0(t) in (16.33) means that the differential equation (16.36) is implicitly
highly nonlinear and thus (16.36) is only of Bernoulli type formally. The
apparent Bernoulli equation (16.36) can be transformed to an apparent
linear differential equation by using θ(t) = v1/(1−γ)

0 (t), to obtain,

0 = θ′(t) + g1(t, u∗
0)θ(t) + g2(t),

whose general solution can be inverse transformed to the general solution
for the separated time function,

v0(t) = θ1−γ(t)

=
[
e−g1(t,tf )(tf−t)

(
1+

∫ tf
t g2(τ)eg1(τ,tf )(tf−τ)dτ

)]1−γ
,

(16.40)

given implicitly, where g1(t, tf )(tf − t) ≡ −
∫ tf
t g1(x, u∗

0(x))dx.

In order to illustrate this stochastic application, a computational approx-
imation of the solution is presented. The main computational changes
from the procedure used in [12] are that the jump-amplitude distribution
is now double-uniform and the portfolio parameters as well as the jump-
amplitude distribution are time-dependent. Parameter time-dependence
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is approximated by piecewise linear interpolation over the years from
1988-2003. The terminal time is taken to be tf = 2004.5, one half year
beyond this range.

For this numerical study, the economic rates are taken to be federal
funds historical rates [6] from the U.S. Federal Reserve Bank, because
they are readily available. For feasibility of the computation, the daily
rates, r(t) for interest and β̂(t) for discounting, are transformed into
approximate piecewise linear interpolation representations of the yearly
averages of daily rates over the period 1988-2003. As for other time-
dependent parameters the yearly averages are assigned to the mid-years
as interpolation points. The federal funds rates are shown in Figure 16.5.
Note that the economic rates are much more variable that the stock mar-
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Figure 16.5. Federal funds rate [6] for interest r(t) and discounting bβ(t) on a daily
bases, represented by piecewise linear interpolation with yearly averages assigned to
the midpoint of each year for t = 1988.5:2003.5 .

ket parameters displayed early. Also, the typical approximate ordering
of interest and discount rates, β̂(t) ≤ r(t), is not valid in the recent
anomalous low interest period, 2002-present.

The portfolio stock fraction constraints are chosen so that there is at
least one active constraint within the time horizon,

[U (0)
min, U

(0)
max] = [−18,+12],
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since in a realistic trading environment there would be some bounds
on the extremes of borrowing and short-selling, but not as severe as
constraining the control to [0,1] as in (16.27). Also, the bound on con-
sumption relative to wealth are assumed to be

C(0)
max = 0.75,

meaning that the investor cannot consume more that 75% of the wealth
in the portfolio and 0 ≤ c(t, w) ≤ C(0)

maxw.

Subfigure 16.6(a) shows the regular or unconstrained optimal instanta-
neous portfolio stock fraction. Although the ureg(t) results appear to be
out of the conservative range of [umin, umax] in (16.28) using [amin, bmax],
the results are consistent with the worst case scenario range

[ũmin, ũmax] % [-1.150e+02, 1.940e+12]

using the tighter distribution range [amax, bmin] of [-5.156e-13, 8.658e-
03] in (16.26). In Subfigure 16.6(b), the optimal portfolio stock fraction
u∗(t) is displayed. The portfolio policy is not monotonic in time and
the maximum control constraint at U (0)

max is active during the interval
just prior to the end of the time horizon t ∈ [0, tf ], while the minimum
constraint U (0)

min remains unused since the stock fraction remains mostly
in the borrowing range with the corresponding bond fraction negative,
1 − u∗(t) < 0. The u∗(t) non-monotonic behavior is very interesting
compared to the constant behavior in the constant parameter model in
[12] or Merton’s [25] mainly pure diffusion results.

In Figure 16.7 on the left, the optimal, expected, discounted utility of
terminal wealth and cumulative consumption, v∗(t, w), is displayed in
three dimensions. The behavior of v∗(t, w) for fixed time t reflects the
CRRA utility of function U(w) template of the separable canonical so-
lution form in (16.32), while the decay in time toward the final time
tf = 16.5 and final value v∗(tf , w) = 0 for fixed wealth w derives from
the separable time function v0(t). The optimal value function v∗(t, w)
results, and the following optimal consumption policy c∗(t, w) results in
Fig. 16.7 on the right, in this computational example, are qualitatively
similar to that of the time-independent log-normal jump parameter case
in [12] and the time-independent log-uniform jump parameter case in
[15] computational results. Note that the wealth grid uses a specially
constructed transformation tailored to the CRRA utility to capture the
non-smooth behavior as w → 0+.
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Figure 16.6. Regular and optimal portfolio stock fraction policies, ureg(t) and u∗(t)

on t ∈ [1988, 2004.5], the latter subject to the control constraints set [U (0)
min, U (0)

max] =
[−18, 12].
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Figure 16.7. Optimal portfolio value v∗(t,w) and optimal consumption policy
c∗(t, w) for (t, w) ∈ [1988, 2004.5] × [0, 100].

5. Conclusions

The main contributions of this work are the introduction of the log-
double-uniformly distributed jump-amplitude into the jump-diffusion
stock price model and the development of time-dependent jump-diffusion
parameters. In particular, a significant effect on the variation of the
instantaneous stock fraction policy is seen to be due to variations in
the interest and discount rates. The double-uniformly distributed jump-
amplitude feature of the model is a reasonable assumption for rare, large
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jumps, crashes or buying-frenzies, when there is only a sparse popula-
tion of isolated jumps in the tails of the market distribution. Additional
realism in the jump-diffusion model is given by the introduction of time
dependence in the distribution and in the associated parameters. Finally,
the large difference in the severity of the limits on borrowing and short-
selling is made clear for the bounds on the instantaneous stock fraction
with respect to compact support and non-compact support models of
jump-amplitudes.

Further improvements, but with greater computational complexity,
would be to estimate the double-uniform distribution limits [a, b] by
fitting the theoretical distribution to real market distributions, using
longer and overlapping (moving-average) partitioning of the market data
to reduce the effects of small sample sizes.
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