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ABSTRACT. We continue our extension of the groundbreaking results of Gromov and Lawson, [GL83], to
Dirac operators defined along the leaves of foliations of non-compact complete Riemannian manifolds. Given
two leafwise Dirac operators on two foliated manifolds which agree near infinity, we have the topological
indices of [BH23|, and using Bismut superconnections, we define analytic Connes-Chern characters, all in
Haefliger cohomologies. We show that they are pairwise equal.

In this paper we do not assume that our foliations are Riemannian. Thus, in order to relate our invariants
to the invariants of the so called “index bundles” of the operators, we must strengthen the assumptions in
[BH23] on the Novikov-Shubin invariants of the foliations and require that our manifolds satisfy a stronger
growth condition. This allows us to use results in [HL99] to extend our higher relative index bundle theorem
for Riemannian foliations to a much broader class of foliations.

We construct examples of non-Riemannian foliations and use our results to show that their spaces of
leafwise metrics of positive scalar curvature have infinitely many path-connected components.
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1. INTRODUCTION

This paper is a continuation of our program, [BH19, BH21, BH23], of extending the groundbreaking
relative index theorem, Theorem 4.18, [GL83], of Gromov and Lawson, to Dirac operators defined along the
leaves of foliations whose holonomy groupoids are Hausdorff. We assume that the foliations are on (possibly
non-compact) complete Riemannian manifolds, and that all of our structures have bounded geometry. In
[BH23], we sometimes assumed that our foliations were Riemannian. Here we make no such assumption.
This necessitates strengthening our conditions on the Novikov-Shubin invariants of the foliations. The reason
we need more restrictive assumptions is that, in the Riemannian case, the results we use from [BH08] are
valid only for foliations whose holonomy maps are isometries, which is precluded in the general case. Our
assumptions do allow us to use the more general results of [HL99].

Our approach is quite similar to that in [BH23]. In particular, we assume that we have a foliated manifold
(M, F) as above, and a Clifford bundle Ej; — M over the Clifford algebra of the co-tangent bundle to F,
along with a Hermitian connection V¥ compatible with Clifford multiplication. This determines a leafwise
Dirac operator, denoted Dp. We assume that we have a second foliated manifold (M’, F’) with the same
structures. We further assume that there are compact subspaces Ky = M \ Vi and Ky, = M’ \V},, so
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that the situations on Vj; and Vj,, are identical. Objects which are identified “near infinity”, that is off
compact neighborhoods of Ky and K, are called ® compatible, or indicated by the notation ¢.

As in [BH23], we work on the holonomy groupoids G and G’ of F and F”, with their canonical foliations
F, and F!. Thus we lift everything to G using the map r : G — M, which maps the leaves of Fy to those
of F, and similarly for M’. In particular, we have the G invariant leafwise Dirac operator D for F,, and
similarly D’ for F!.

For each U; in a good cover of M by foliation charts, let T; < U; be a transversal and set T' = | J T;. The
Haefliger forms associated to F' are uniformly bounded smooth differential forms on 7" which have compact
support in each T;, modulo forms minus their holonomy images. Their dual spaces are the Haefliger currents.
The Haefliger cohomology of F, denoted HY(M/F), is the associated cohomology, which is independent of
the choice of good cover.

The relative Haefliger cohomology for the pair ((M, F), (M’, F")), denoted H} (M /F, M'/F’; o) is the
cohomology of pairs of ® compatible Haefliger forms (that is, on T} far enough away from Kp, and similarly
for the T}), modulo pairs of forms minus their holonomy images, which are ® compatible.

Using the Atiyah-Singer characteristic differential forms AS(Dp) and AS(Dpg+), which agree near infinity,
we define topological indices
Ind,(D) € H*(M/F), Ind,(D') e H*(M'/F’), and Ind,(D,D') e H*(M/F, M'/F'; ).
Using Bismut superconnections B = By + B + By, [B86], we define analytic Connes-Chern characters,
ch,(D) e H¥*(M/F), ch,(D") € H¥*(M'/F’), and ch,(D,D") e HX(M/F,M'/F’; p).
Our first result is

Theorem 3.2 Suppose that (M, F), (M',F"), and (D, D’) are as above. Then,
chy (D) = Indy (D), chy(D") = Ind(D’), and ch,(D,D’) = Ind;(D, D’).

Denote by P, the leafwise spectral projection to the kernel of D?, and by Po,) the spectral projection
associated to the interval (0,¢). In general these are not transversely smooth (although they are always
leafwise smooth), so that in general we cannot define their Connes-Chern characters in Haefliger cohomology.
When they are transversely smooth, we do have

Cha(Po) and Cha<P(075)) € H:(M/F),
and similarly for P} and P(/O,e)'
The gap at zero non-Riemannian Foliation Higher Relative Index Theorem is the following.

Theorem 3.3 Assume that:

(1) the holonomy groupoids G and G' are Hausdorff;

(2) Py is transversely smooth, By (Py) € N and is bounded, and similarly for P};
(3) for sufficiently small e, Py ) = P(/O,e) =0;
)
)

(4) Py satisfies J tr (Po) dx < o0, and similarly for Pj;

M
(5) M, so also M', has sub-exponential growth.

Then, for C and C' closed bounded ® compatible continuous holonomy invariant Haefliger currents, the
pairings {chq(FPo),C) and {chy(P}),C") are well defined, and

(cha(D, D), (C,C")) = {cha(Fy),C) = {cha(Fy),C") = <[J

AS(DF),J AS(Dp1)], (C,C)).
F

’

See [HL99] and Section 2 below for the meaning of B1(Py) € N. The element dx is the volume form on
M.
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The Novikov-Shubin invariants N.S(D) of D are a measure of the density of the image of P ). The larger
NS(D) is, the sparser the image of Py ) is as ¢ — 0. We also need the notion of sub-super polynomial
growth. See Definition 3.4.

The general non-Riemannian Foliation Higher Relative Index Theorem is the following.

Theorem 3.5 Assume that:
(1) the holonomy groupoids G and G' are Hausdorff;
(2) for sufficiently small €, Py and P ) are transversely smooth, and B1(Fy), B1(P.)) € N, and are
bounded independently of €, and similarly for P} and P(/O,e);

(3) for e sufficiently small, Py ) satisfies f tr (P[076)) dx < oo, and similarly for P[’07€),'
M
(4) NS(D) and NS(D') are greater than 3q, where q is the codimansion of F and F';

(5) M, so also M’, has sub-super polynomial growth.

Then, for C and C' closed bounded ® compatible continuous holonomy invariant Haefliger currents, the
pairings {cha(Py),C) and {chy(P}),C") are well defined, and

(cho(D,D),(€,€)) = (cha(R).C) = (cha(F).C) = <[ | ASDr). | AS(Dr)].(C.C)-

Remarks 1.1.

(1) The reader should note carefully that, for simplicity, the equalities in our theorems are up to universal
non-zero constants. As an example, chy(D) actually equals (2mi) /) Ind, (D), where p = dim F.
(2) Under Conditions (1)-(4) of Theorems 3.8 and 3.5, the proofs actually show that

cha(D) = cha(Py) = UF AS(DF)] in H*(M/F),

and similarly for chy,(D'). The growth conditions (5) are needed so that that the pairings will be as
claimed.

(3) The finite integral assumptions are satisfied when the zeroth order operator RE in the associated
Bochner Identity for D is uniformly positive near infinity on M. As RE is locally defined, this
means that Rg: is also uniformly positive near infinity on M’. In particular, Theorem 4.6 of [BH23]
1s the following.

Theorem 1.2. Suppose RE is uniformly positive near infinity on M. In particular, we may assume
that ko = sup{k € R|RE — k1 >0 on M \ Ky} is positive. Then, for 0 < € < kg,

< MJ- tI‘(P[OVE])d.’L‘ < o0,
Km

tr(Pyg ) dr <
J-ZV[ (Fro.q) (ko —€)

where k1 = sup{k € R|RE — k1> 0 on M}.

The proof of Theorem 3.2 is straightforward. The idea behind the proofs of Theorems 3.3 and 3.5 is to
use the results and techniques of [HL99], see also [BGV92]. The family of foliation Bismut superconnec-
tions associated to D is denoted B(t). The Connes-Chern character ch, (D) is the Haefliger class denoted

ST (e‘B(t)2/2) determined by the Haefliger form J Str(e_B(t)2/2), where Str is the supertrace of the Schwartz
F

kernel of the leafwise operator e~B®*/2 Denote by Q. the spectral projection of D? associated to the interval
[€,00). Then

B(t) = Be,t + Ae,ta
where

Ber = (Po+ Qo)B(t)(Fo + Qc) and Acy = (Po + Qc)(B(t) —B(0)) Po,e) + Plo,e)(B(t) = B(0))(P + Q(0,0))-

As in [HL99], we show that the Haefliger cohomology class determined by tlirrog f Str(e_Efyt/ %) is cha(Py). If
—*eJr

P,y = 0, then we have the essential result we need for the proof of Theorem 3.3. In order to extend the
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proof of Theorem 3.3 to Theorem 3.5, the essential result we need is that the term A.; does not affect the
limit as t — 0.

The final section contains the application of the main results to non-Riemannian foliations which admit
positive scalar curvature. In particular we show how to construct families of such foliations whose spaces of
positive scalar curvature metrics have infinitely many path connected components.
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2. THE SETUP

In order for this paper to be self contained we repeat some of Section 2 of [BH23|.

Denote by M a smooth (if non-compact, then complete) Riemannian manifold of dimension n, and by
F an oriented foliation (with the induced metric) of M of dimension p, and codimension ¢ = n — p. The
tangent and cotangent bundles of M and F' are denoted TM,T*M,TF and T*F. The normal and dual
normal bundles of F' are denoted v and v*. A leaf of F' is denoted by L. In [BH23|, we assumed that F' is
Riemannian. Here we make no such assumption.

If M is non-compact, we assume that both M and F are of bounded geometry, that is, the injectivity radii
on M and on all the leaves of F' are uniformly bounded below, and the curvatures and all of their covariant
derivatives on M and on all the leaves of F' are uniformly bounded (the bound may depend on the order of
the derivative).

Let U be a good cover of M by foliation charts as defined in [HL90]. Bounded geometry foliated manifolds
always admit good covers. For each U; € U, let T; < U; be a transversal, and set T = J T;. We may assume
that the closures of the T; are disjoint. Given (U;,T;) and (U;,T;), suppose that ;50 : [0,1] — M is
a path whose image is contained in a leaf with 7;;,(0) € T; and ~;j,(1) € T;. Then ~;j, induces a local
diffeomorphism h.;, : T; — T}, with domain Dom.,,;, and range Ran.,,. The space A¥(T) consists of all
uniformly bounded smooth k-forms on T" which have compact support in each T;. The Haefliger k-forms for
F, denoted A¥(M/F), consists of elements in the quotient of A¥(T) by the closure of the vector subspace
W generated by elements of the form o, — hiu Qe where a0 € .A’C“(T) has support contained in Ranwﬂ.
We need to take care as to what this means. Members of W consist of possibly infinite sums of elements
of the form ayjp — h:i], ,@ije, with the following restrictions: each member of W has a bound on the leafwise
length of all the 7;;¢ for that member, and each ~;j, occurs at most once. Note that these conditions plus
bounded geometry imply that for each member of W, there is n € N so that the number of elements of that
member having Dom,,;, contained in any 7; is less than n, and that each U; and each U; appears at most a
uniformly bounded number of times. The projection map is denoted

[1: AZ(T) — AZ(M/F).

Denote the exterior derivative by dp : A¥(T) — AF¥+1(T), which induces d : AX(M/F) — A1 (M/F).
Note that A¥(M/F) and dy are independent of the choice of cover U. The cohomology H* (M /F) of the
complex {A*(M/F),dy} is the Haefliger cohomology of F'.

Denote by APT*(M) the space of p + k-forms on M which are smooth and uniformly C* bounded, and
denote its exterior derivative by dys. Its cohomology is denoted HP**(M;R). As the bundle T'F is oriented,
there is a continuous open surjective linear map, called integration over F',

| s arran - 4,
F
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which commutes with the exterior derivatives. This map is given by choosing a partition of unity {¢;}

w to be the class of Z ¢;w. It is a standard result, [Ha80],

subordinate to the cover U, and setting j
U;

F

that the image of this differential form [J

w] e A*(M/F) is independent of the partition of unity and of
F

the cover U. As J

commutes with dp; and dg, it induces the map J s HPTF(M;R) — HF(M/F).
F

F

Note that f

is integration over the fibers of the projection U; — T;, and that each integration w — f P;w
Ui Ui

is essentially integration over a compact fibration, so J satisfies the Dominated Convergence Theorem on
F
each U; eU.

The holonomy groupoid G of F' consists of equivalence classes of paths v : [0, 1] — M such that the image
of 7y is contained in a leaf of F. Two such paths v, and 7, are equivalent if v1(0) = v2(0), v1(1) = 72(1), and
the holonomy germ along them is the same. T'wo classes may be composed if the first ends where the second
begins, and the composition is just the juxtaposition of the two paths. This makes G a groupoid. The space
G of units of G consists of the equivalence classes of the constant paths, and we identify G(© with M.

G is 2p + g dimensional (in general, non-Hausdorff) manifold. We restrict to foliations for which G is
Hausdorff. The maps r,s : G — M are given by s([y]) = ~v(0) and r([y]) = «v(1). G has two natural
foliations, Fs and Fj., whose leaves are the fibers of s and r. We will primarily use Fs, whose leaves are
denoted EI = s !(x), for z € M. Note that r : Zm — L is the holonomy covering map.

If F is a bundle, the smooth sections are denoted by C*(E), and those with compact support by CX(E).
We assume that any connection or any metric on E, and all their derivatives, are uniformly bounded. See
[Sh92] for material about bounded geometry bundles and their properties.

In [BH21] we worked on M, while in [H95, HL99, BH04, BH08, BH23|, we worked on G. The results in
[BH21] extend readily to G with the only change being that the spectral projections used on G are for the
operator lifted to Fs. This represents another extension, in the spirit of Connes’ extensions in [C79, C81],
of the classical Atiyah L? covering index theorem, [A76]. In addition, the results in the above cited papers
where M was assumed to be compact still hold provided both M and F' are of bounded geometry.

Our basic data will be taken from (M, F). In particular, denote by D a generalized leafwise Dirac
operator for the foliation F. It is defined as follows. Let Ej; be a complex vector bundle over M with
Hermitian metric and connection, which is of bounded geometry. Assume that the tangent bundle TF is
spin with a fixed spin structure. Denote by Sp = Sj @ Sy the bundle of spinors along the leaves of F.
Denote by V¥ the Levi-Civita connection on each leaf L of F. V¥ induces a connection V¥ on Sp|L, and
we denote by VEE the tensor product connection on Sp ® Ep|L. These data determine a smooth family
Dp = {D;} of leafwise Dirac operators, where Dy, acts on sections of Sp ® Ear|L as follows. Let Xi,...,X,
be a local oriented orthonormal basis of T'L, and set

d

Dy = Y p(X)Vi?
i=1

where p(X;) is the Clifford action of X; on the bundle Sy ® FEj|L. Then Dy, does not depend on the choice
of the X;, and it is an odd operator for the Z, grading of Sp ® Ep; = (S;Z ® Eum) @ (Sp ® En). Thus
Dr : CP(SE®Ey) — CX(SE®Ew), and D7 : CX(SE® Ey) — CP(SE ® Eyy). For more on generalized
Dirac operators, see [LM89].

All the data above may be lifted to (G, Fs) using the map r : G — M. The notation we will use is obtained
from that above by:

Ev—E, Sr—S8, VP v, L—->L,, Dp—D; Dy— D,.
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Thus the smooth family D = {D,} of G invariant leafwise Dirac operators acting on sections of S ® E |Zz is
given as follows. Let X1,..., X}, be a local oriented orthonormal basis of T'L,. Then,

p
D, =) p(Xi)Vx,, where D:CF(S*QE) - CP(ST®E), and D*: CF(S*QE) — CX(S* ®E).
=1

Denote by av¥, the exterior powers of the dual normal bundle v¥ of Fs which we identify with s*(T*M) =
s*(TF*)® s*(v*). We extend D to

D:CP(SQFERAvY) — CP(S®EQ® av)),

by using the leafwise flat connection on Av¥ determined by the pull-back of the Levi-Civiti connection on
T*M.

Given a leafwise operator A on S ® E ® Av¥, denote its leafwise Schwartz kernel by k4. Then we have
the usual pointwise trace tr(ka(Z,T) and supertrace Str(ka(Z,T) defined on M < G. The element T € L, is

the class of the constant path at z € L < M.
We also have the Haefliger traces, Tr(A) and Tt(A) which are,

Tr(A) = J-F tr(ka(z,T))dzp € AX(M/F) and Sr(A) = [JF tr(kA(x,x))dxF] e H¥(M/F),

where dzr is the leafwise volume form associated with the fixed orientation of the foliation F. If A is an
even Zs graded operator, that is A = AT @ A~, where

AT CP(STRE® AvE) - CP(STQE® AvY),
we have the supertraces,

STr(A) = Tr(A") — Tr(A~) and STr(A) = Te(AT) — Te(A7).

Now suppose that we have the situation in Section 4 of [BH21]. That is, we have:

foliated manifolds (M, F') and (M', F');

Clifford bundles Ey; — M and Ejp;r — M', with Clifford compatible Hermitian connections;
leafwise Dirac operators Dp and Dp;

compact subspaces Kpr = M \ Vi and K, = M/ N Vi

an isometry ¢ : Vay — Vi, with p=}(F) = F;

e an isomorphism ¢ : Enlv,, — Ejplv:  with o (VE vy ) = VEE |,

The pair ® = (¢, ¢) is called a bundle morphism from Ej/|Vas to EY|Vy,. The well defined (since they are
differential operators) restrictions of Dp and Dp- to the sections over V), and Vj,, agree through ®, i.e.

(®7)* o Dpo®* |y, , = Dpr vy,

M

Such operators are called ® compatible. Without loss of generality, we may assume that Kp; and K, are
the closures of open subsets.

Recall the following material from [BH21]. Denote by g : M — [0,00) and ¢’ : M’ — [0,00) compatible
smooth approximations to the distance functions 9y (Kas, x) and 0 (K, 2), where 2y is the distance
function on M. So we assume that g and ¢’ are 0 on Ky and K, respectively and they satisfy ¢’ o p = g.
Hence, for s = 0, the open submanifolds M(s) = {g > s} and M'(s) = {¢’ > s} agree through ¢, that is
©(M(s)) = M'(s) and g|pr(s) = 9’ © @|an(s)- For s = 0 denote by T the set

Ts = {TicT| T 0 M(s) # &},
and similarly for 7.

Suppose that (¢,(") € W x W' < AX(T) x AF(T"), with ¢ = X, ,ya —hia and (' =3,/ o' —h¥a'.
For simplicity, we have dropped the subscripts. The vector subspace W x, W' c W x W' consists of elements
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(¢, ") which are ® compatible. This means that all but a finite number of the («,~) and (a’,v’) are paired,
that is

a = ¢*(d) and o = poy, so a—hja = ¢*(a —hid).
Definition 2.1. Given 5 € A*(T) and B’ € A*(T"), the pair (8,8') is ®-compatible if there exists s = 0 so

that 8 = ¢*(B') on Ts. Set
A (M/F M F50) = {(B,5) € AX(T) x AX(T)| (B, 8') is ® compatible} (W, T7).

The de Rham differentials on A% (T) and A*(T") yield a well defined relative Haefliger complex, whose
homology spaces are denoted

H*(M/F,M'/F’; 0) = ®o<k<g HY (M /F, M'/F'; ).

Definition 2.2. Suppose (£,¢') € A¥(M/F,M'/F'; ), and C and C' are closed bounded ® compatible con-
tinuous holonomy invariant Haefliger currents. Set

<(€7£l>7 (C7CI)> = SILIEIO (C(€|T\Tb> - C/(§/|T’\T;)) .

This is well defined because any representative in (£, £’) is ® compatible, so the right hand side is eventually
constant. In addition, every (¢,¢") € W x, W’ is ® compatible, so satisfies

Jim (C(Elrar) = C'(Elrmy) = 0.

To see this, recall that there is a global bound on the leafwise length of the v and 4" in ¢ and ¢’. This, and
the fact that there are only finitely many unpaired («,v) and (o/,~"), insures that for large s, every unpaired
(e, ) will have both Dom., and Ran, < T'\ T, so C(a — h,’:a) will be zero, and similarly for every unpaired
(¢/,7"). Those (a,7) and (¢/,+") which are paired and appear in the integration, will have Dom., and/or
Ran, ¢ T'\. T with corresponding Dom, and/or Ran,, < 7"\ T}. In both cases, their integrals will cancel.

Remark 2.3. Ezamples of such currents include the following.
(1) Invariant transverse measures A and A’ on T and T’ which are ® compatible as in [BH21].
(2) Suppose w € C*P(A*v*) and W' € CP(A*V'*) are closed holonomy invariant forms on M and M’
which are ® compatible, i.e.  compatible basic cohomology classes, [R58]. They determine ® com-
patible closed holonomy invariant Haefliger currents, also denoted w and w'. In particular,

<(£a€/)7 (W,W/)> = lim ( ENwp — SN w%) .

S0\ JraT, T'\T!
Here wr = w7, which is well defined and is holonomy invariant, as is wip, .

Next, consider the ‘fiber bundle’ W = C*(S ® E) over M whose ‘fiber’ over x € M is the space W, =
C*(Ly; S ® E). Filter the space M of all sections of AT*M @ End(W, W) over M by the subspaces M, of
sections of 3, AIT* M@ End(W,W). Filter the space A of all sections of AT*M ® Endg(W, W) similarly,
where Endg (W, W) is the space of leafwise smoothing operators. An element A € M assigns to each k vector
X € APTM, an operator A(X) on the space W, or more properly its L? completion. We say A € M is
bounded if

[ Al = sup{|AX) || X € A*TM, | X] = 1} < o0,

and it is smooth if it is a smooth section of AT*M ® End(W,W). Denote by | | s the Sobolev r, s norm
on End(W,,W,). We say A € N is bounded if for each r and s,

[Allr.s = sup{e(X) s [ X € A*TM, | X] = 1} < 0.

Note that Py, and P,y are bounded elements of N. We will be assuming that Py and, for sufficiently
small €, P(g ) are smooth elements of N.
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Recall the Bismut superconnection B for F' and E associated to the metric on M. See [B86, BV87, HI5]
for the details of its construction. It is a Dirac type odd operator on CL(Av ® S ® E), and B satisfies the
usual properties (suitably interpreted) for a Bismut superconnection. The operator B may be written as

B = By + B + Bo,
where each B; is a uniformly bounded smooth differential operator, B; € M; and By = D.

For ¢t > 0, denote by B(¢) the Bismut superconnection associated to the metric obtained by scaling the
original metric by 1/¢t. By [BV87, H95],

2.4. B(t) = \/ED + B, + %BQ,
SO,
2.5. B(t)?2 = tD? + Vt[D,B1] + B +--- = tD? — Cy,

where C} is a smooth leafwise differential operator of order at most one, with uniformly bounded coefficients.
As such, its Sobolev norm ||Cy||¢,¢—1 is uniformly bounded. C, is also nilpotent since it is in Mj.

3. THE THEOREMS

Denote by AS(Dp) the Atiyah-Singer characteristic form for Dp, and similarly for Dgs. These agree
near infinity on M and M’. For technical reasons, we will replace the variable ¢ € [0, 00) by S(t), a smooth
function with domain [0, 1), which is increasing, with 3 = t near 0, and 3(¢) = (1 —t)~! near 1.

Definition 3.1. The topological indices are,
Ind;(D) = U AS(DF)] e HY(M/F), Ind,(D') = [ AS(D}W)] e HX(M'/F),
F F

and
Ind;(D,D’) = [J AS(DF),J AS( %,)] e HX(M/F,M'/F'; o).
F 7
The Bismut analytic Connes-Chern characters are
che (D) = STt (aBW W))Q/?) € H¥ (M/F), chy(D') = STt (e*B'(vﬂ@))?/?) e HF (M'/F),

and

cha(D, D) = (8Te (X' (B(V/BWM)). STe (' (B'(VB(D))) € HX (M/F,M'/F's ).

For the definition of the Schwartz function X!, see Section 4. It is an approximation of e~/ 2. whose Fourier
transform is compactly supported, which insures that ch,(D, D’) is defined. We cannot use e‘mm)z/ 2
and ¢ (VB®)*/2 iy that definition because, in general, they are not ® related. We also show in Section 4
that these characters are well defined, and that STr (x* (IB%(\/%))) = STt (e*B(\/M)Q/Z).

Theorem 3.2. Suppose that (M, F), (M',F’), D and D' are as above. Then,
ch,(D) = Ind;(D) € H¥*(M/F), chy(D’") = Ind,(D’) e HX(M'/F"),
and
ch,(D,D") =Ind,(D,D") e H¥*(M/F,M'/F’; ).
Recall that P ) is the leafwise spectral projection for D? associated to the interval (0, ¢). The Novikov-
Shubin invariants NS(D) of D are greater than k > 0 provided that there is 7 > k so that
Tr(P,e)) is O(e) as € — 0.

A Haefliger form ¥ depending on € is O(€™) as € — 0 means that there is a representative ¢ € ¥ defined on
a transversal T, and a constant ¢, > 0, so that the function on T, |[¢|r < c¢y€™ as e — 0. Here | |7 is the
pointwise norm on forms on the transversal T induced from the metric on M.
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Recall that P, is the leafwise spectral projection onto the kernel of D?. In general the leafwise operators Py
and P, are not transversely smooth (although they are always leafwise smooth), so that, in general, their
Haefliger supertraces in A¥* (M /F) do not have transversely smooth representatives. When P, is transversely
smooth,

cha(Py) = S‘It(PoeXp (W)) e H*(M/F),

where ¢ is a certain differential operator, and similarly for Pj. For details see [BHOS8], Section 3. When P .
is transversely smooth,

—(5(Py))?
Cha(P(O,e)> = STt(P(O,e) exp (<((0’)))

sl )) e mroum),

and similarly for P(’07€) For simplicity of notation, we will uniformly suppress the constant 27 in what follows.
The gap at zero non-Riemannian Foliation Higher Relative Index Theorem is the following.

Theorem 3.3. Assume that:

(1) the holonomy groupoids G and G' are Hausdorff;

(2) Py is transversely smooth, By (Py) € N and is bounded, and similarly for P};
(3) for sufficiently small €, Py = P(IO,E) =0;

(4) Py satisfies J- tr (Pp) dx < oo, and similarly for Pj;

(5) M, so also ]\/.Jf\{, has sub-exponential growth.

Then, for C and C' closed bounded ® compatible continuous holonomy invariant Haefliger currents, the
pairings {chq(FPo),C) and {chy(P}),C") are well defined, and

(cha(D, D), (C.C)> = (chy(Fo),C) — (chy(FY).C"y = <[L AS(DF>,f AS(Dp)]. (C.C).

’

As an immediate corollary, we have that if Py = P} = 0, then,
A As(we). | asoe)e.cn 0.
F F

See [HL99] for the precise meaning of By (FPy) € A. In essence it means that the transverse derivatives of
Py are bounded smoothing leafwise operators. Note that leafwise smoothness of the projections is automatic
because of the bounded geometry of the leaves, so with transverse smoothness this implies that their Schwartz
kernels are smooth.

We will need the following notion.
Definition 3.4. A function f(t) has super polynomial decay if for all m € Z,
ft) = Ot™), ast— oo.
A function g(t) has sub-super polynomial growth, if lim;_,« f(t)g(t) =0, for all f(t) with super polynomial
decay.

The general non-Riemannian Foliation Higher Relative Index Theorem is the following.

Theorem 3.5. Assume that:

(1) the holonomy groupoids G and G' are Hausdorff;
(2) for sufficiently small €, Py and Py are transversely smooth, and B1(Py), B1(P,)) € N, and are
bounded independently of €, and similarly for P and P(lo,e)"

(3) for e sufficiently small, Py ) satisfies J tr (P[o,e)) dr < o0, and similarly for P[’0 o7
o ,

(4) NS(D) and NS(D') are greater than 3q;
(5) M, so also M', has sub-super polynomial growth.
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Then, for C and C' closed bounded ® compatible continuous holonomy invariant Haefliger currents, the
pairings {cha(Py),C) and {chq(F}),C") are well defined, and

{cha(D,D"),(C,C")) = (chq(F),C) — {cha(Fp),C") = <[J AS(Dp), | AS(Dp)].(C.C)).
F F’
The growth conditions (5) are needed for the proof that the pairings will be as claimed. The proofs of
Theorems 3.3 and 3.5 show the following.

Corollary 3.6. Under Conditions (1)-(4) of Theorems 3.3 and 3.5,
chy(D) = ch,(Py) = [J AS(DF)] in H*(M/F),
F
and similarly for ch, (D).

4. PROOFS OF THE THEOREMS

A basic fact we will use repeatedly is that uniformly bounded geometry and standard estimates insure that
any bounded A € A has Schwartz kernel K4 which is leafwise smooth and pointwise uniformly bounded, as
are all its leafwise derivatives. In particular, for sufficiently large ¢, and for any x € M and v, € L,, the
Schwartz kernel K4 of A satisfies | K a (7, &)| < c¢| Al —¢,¢ where ¢ is a constant depending only on ¢. Thus
estimates on ||A|_, translate directly into uniform pointwise estimates on Tr(A) and STr(A). See the proof
of Theorem 2.3.9 and the statement of Theorem 2.3.13 of [HL90]. In particular, if a family A; € A satisfies
[As|—e.e = O(t*) as t — a, this implies || Tr(A4:)|| = O(t*) and || STr(A,)|| = O(t*), uniformly pointwise as
t— a.

Recall that S(t) a smooth function with domain [0, 1), which is increasing, with § = ¢ near 0, and
B(t) = (1 —t)~! near 1. We proceed as in [HL99, BH23], and consider the operator

B(y/B(1)?/2 _ (=B(t)D?/2+Cp1))

The Volterra series for the exponential of a perturbed operator, [BGV92] p. 78, gives
o8]
o B( B(t)2/2 _ Z f 2—ke—z1,3(t)D2/2CB(t)e—xzﬁ(t)D2/2CB(t) ... C’B(t)e_$k+16(t)D2/2dl-k .dx,
k=0 A%

where Ay, is the standard k simplex Ag = {(z1,...,2x11) |2 = 0,22 = 1}. Recall that Cg(; is a smooth
leafwise differential operator of order at most one, whose Sobolev norm ||Cg)||¢,¢—1 is uniformly bounded,
which is also nilpotent since it is in M;. Thus the sum is finite, in particular £k < n = dim M, (in fact,
k < g = codim(F'), see the proof of Lemma 13 of [HL99]). This series allows us to extend results for D to

B(v/5(1))-

Next, we construct a family of operators with finite propagations which converges to e (V5 (1)*/2 To do
we follow Section 5 of [BH23].

Denote the Fourier Transform of a real function g by g and FT(g), and its inverse transform by § and
FT=1(g). If h is also a real function, denote the convolution of g and h by g * h. Set gx(z) = g(\z), for
non-zero A € R. We have the following facts:

FT(gx) = %FT(g)% FT(g*h) = 2rnFT(g)FT(h); and FT(3) = FT~*(3) = g, if g is even.

Fix a smooth even non-negative function ¢ supported in [—1,1], which equals 1 on [—1/4,1/4], is non-
increasing on R, and whose integral over R is 1. Note that FT(zZ) = 1) since 9 is even. The family %12%
is an approximate identity when acting on a Schwartz function f by convolution, since, up to the constant
V27 which we systematically ignore,

1 ~ ~ x

7 L*f = FITYFT(—z¢a + f)) = FT7'(Wysf) > f = f,

g
Sk
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in the Schwartz topology as t — 0.

Denote by «a(t) a smooth function with domain [0, 1], with a(t) = ¢ near 0, «(t) = 1—¢ near 1, is increasing
on [0,1/2] and symmetric about ¢ = 1/2. Set e(z) = e~*/2, and for t € (0,1), set

x'(z) =

1~
mq/;\/%*e} (2).

Note that e B(WA(1)?*/2, by [H95] and the Volterra series, and x*(B(4/8(t))), by [Roe87], and all their
derivatives are bounded smooth elements of A.
Lemma 4.1. The limits in the Schwartz topology as t — 0,1 of x'(z) — %12 are zero. So, ast — 0,1,
the Schwartz kernel of x'(B(+/B(t))) — e Blv B(1))*/2 converges uniformly pointwise to zero.

In addition, x*(B(+/B(t))) has finite propagation bounded by a multiple of A/B(t)/ca(t).

By the remarks above we have the first two statements. The proof of finite propagation proceeds as in
[BH21], using the Volterra series.

Thus, we have the following.

Proposition 4.2. Under the assumptions in Theorem 3.2,
lim Str(x'(B(v/(1))) = lim Str(e *VP0"/2) = AS(Dp),

uniformly pointwise on M, and similarly for B'(1/B(t)).
Under the assumptions in Theorems 3.8 and 3.5,

lim Str(x' (B(v/B(1)))) = lim Str(e™*(VPE2) = Str(Ppe(WHR 2Py,

uniformly pointwise on M, and similarly for B'(1/B(t)).

These equalities are from Lemma 4.1 and [H95] and [HL99], respectively. From Theorem 5.2 of [BHOS]
we have

) _ 2
STr(Pye~ (FoBF0)" /2 py — STr(PO exp (W)) e AXT),

and

[STr(PO exp <_(5(P°))2>)] - Sst(Po exp (W)) — chy(Py) € H*(M/F).

27 211

As J involves integrating over compact subsets, we may interchange the limits with J , thus extending
F F

Proposition 4.2 to STr(x!(B(+/A(t)))), where AS(DF) is replaced by J AS(Dp), and Str(Pye~(PoB1F0)*/2 )
P
is replaced by STr(Pye~(PoB1P0)*/2pyy.

We show below that STr(x*(B(1/3(t)))) is a closed Haefliger form and that STe(x!(B(+/8(¢)))) is inde-
pendent of t. The same proof works for STr(e B(v ﬁ(t))2/2) and STr(eBV 5(t))2/2). Thus we have Theorem
3.2.

Now for the proofs of Theorems 3.3 and 3.5.

Lemma 4.3. If fi and fa are even Schwartz functions, the operators B(t), f1(B(t)) and f2(B(t)) commute,
and

(f1.f2)(B(t)) = f1(B(t)) f2(B(2)).
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Proof. Recall that f(B(t)) = f f(x) cos(zB(t))dx. We first show this for cos(xB(t)) and cos(yB(t)). For a
R
fixed ug € CL(v* A S® E) and yo € R, the section v, given by
vi(x) = cos(yoB(t)) cos(xB(t))uo,

satisfies the equation (02 + B(t)?)v,(x) = 0 with initial data v,(0) = cos(yoB(t))ug and (,v;)(0) = 0. By
the uniqueness theorem for this equation, we have

cos(yoB(t)) cos(xB(¢))ug = ve(z) = cos(zB(t))ve|z=0) = cos(zB(t)) cos(yoB(t))uo
A similar argument gives B(¢) cos(zB(t)) = cos(zB(t))B(t).

The Fourier transform of f; fo is fl * fg, )

(1 ®0) = [ [ A - neostas@ans = [ ) ([ 2ot + B0
By the uniqueness of the solution to the wave equation with initial data,
cos((y + 2)B(t)) = cos(yB(t)) cos(zB(t)) — sin(yB(t)) sin(zB(t)).

Since sin is odd and f; and f5 are even, we have

[ 7 ([ ey eostt + 2pmenaz) ay -
fR Fily) cos(yB(t) ( f Fa(2) cos(=B(t ))dz) dy — J i) sin(yB(L)) ( Jng(z) sin(zIB%(t))dz) dy =

| A eostumn (j Fa(z) cos(zB(t >>dz)d — A(B0)f2(B().
O

For definiteness and simplicity of notation, we will assume that our Haefliger currents are closed holonomy

invariant forms w € C®(A*v*) and W' € COO(/\*I// ), which are ® compatible. In that case, for example,

(chy(Py),w) = J chy (Po) A wr,
T
where wr is the Haefliger form determined by w.

Proposition 4.4. Fort € (0,1), the Haefliger forms STr(x*(B(+/B(t)))) and STr(x*(B'(1/B(t)))) are closed.
As they have finite propagation, they are ® compatible, and so give

(STe(! (B(V/B®), STe(' (B (V/B(®) ) € HE(M/F,M'/F'); ).
The pairing,
((STe(x BOV/B))), STe( (B (VBD))) » (w0, )
is independent of t.

Proof. Note that we may assume that x!(z) = ¥'(z)?, where x!(2) is an even positive Schwartz function,
and has the same properties as y*. If this is not the case, we may systematically replace x!(2) by X*(2)?
where

X'(2) =

1
lmwm *61 (2),

and &(z) = e=*"/4.
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Denote the Levi-Civita connection on TM by VM, and set V= S dxy A Va/w , where (z1,..,2,) are

local coordinates on M. Note that V is well defined, and that for a smooth differential form &,

dTLH _ LdM(H) _ L[%,n].

dr(STr(x"(B(8(1)))) = STr(dn (X' B(v/B(1))) =
STr ,xt(B BN = STe({
B(1))), X" (B(VBM®))])

As the Schwartz kernels of V HB(+\/B(1))), X! (B(x/B(t))) and X! (B(
and uniformly bounded, and STr is a graded trace for such operators, we have

STr([VR' (B(v/B(1))), X' (B(VB()])
STr(VX' (B( BODX B(VA(2)) - STr(X B(vB(1)))
STr(X' (B(v/B(1)))) VX' (B(v/B(1)) — STr(X' (B(v/ B(1)V

and similarly for the second term. So, we have the first result.

Thus,

S—
S
—~
=
—
Nt
S~—
SN—
Qe
o
=
¢}
©
—
w
=
1S
o
-+
=
E
=
g
=
Qo
=3
D
w

For the ¢ independence of the pairing, consider the smooth foliation Fg of M x (0,1) whose leaves are
L x {t}. The metric on M x (0,1) is the metric corresponding to 8(t) on M x {t} product with the usual
metric on R. The resulting Bismut superconnection for Fp is
0
a )
and B = B(y/B(t))? + dt A w. Now the smooth bounded Haefliger form STr(x!(Bg)) in A¥(Tk) can
be written for each ¢ € (0,1) as vy + dt A d; with ~;, §; Haefliger forms for F. It is clear that +; is given by
killing all the terms appearing in STr(x*(Bg)) containing dt, so v; = STr(x*(B(1/B(t)))). Since STr(x*(Br))
and ~y; are closed Haefliger forms for the foliations Fr and F, respectively, we have

0
0 = dr, STr(x'(Br)) = dr, (¢ + dt A 8;) = dt A % — dt Adpd, = dt A (21

Br = B(\/B(0) + di—

N gra,).

ot
So,
_om_ 0
4.5. drd, = T = £ ST (BVAD))
It is also clear that,
4.6. 515 = i&/&t STI‘(Xt(B]R)) = J i&/&t Str(xt(IB%R)),
F

where iy/¢; is the interior product of the vector field 0/0t. We have the same results for 77, and d;. Note
that ig/o Str(x"(Br)) and ig/e Str(x*(Bg)) are @ related, so also are dpd; and dyd;.

Since w and w’ are closed ® related forms, we have,

(ft (STr(x"(B(v/B(1)))), STr(x" (B'(v/B(1)))): (w,o)) =
i, (L ST EWEO ner — [ G ST ﬁ(ﬂ)))Awa) -
lim ( drdy A wp — dr0; /\wT/> = lim ( dr(6; A wr) — dr (0] /\wT/)> =
T\ JrNT, T/\TY TR\ JTNT, T/\T.

lim 8 Awp — & Awp | =0,
r=0 \ Jor, T,
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as the two integrals agree for r sufficiently large. O

Note that ch,(D, D’) is now well defined. This is because Str(x*(B(y/3(t)))) and Str(x*(B'(1/B(t)))),
Str(x*(Bg)) and Str(x*(Bg)), and iy Str(x*(Br)) and iy, Str(x*(Bg)) are all ® related. So, their corre-
sponding Haefliger forms are also ® related, and Equations 4.5 and 4.6 give that

cho(D,D') = (STe (x'(B(V/B(1)))), 5T (X' (B'(v/B(?)) ) € HEM/F, M'/F';5).
is independent of ¢, as was promised, completing the proof of Theorem 3.2.

Lemma 4.7.

fim (Se(x' (B(/B0). ST (B (VBO))) () = (1] AS(Dr). | ASDeO)). ()

F

Proof. We may assume that the two integrands agree on the co-compact subsets M (sg) and M’ (sg) (actually
on fixed penumbras of their complements). Then we have,

lim( (STe(x' (B(V/B(1)))), STe(x' (B'( ﬁ(t))))) (w,w)y =
oy ([ 510 (@A) o = [ ST (@ E)) nr ) -
lim ( jM\ Ms(g)(f(m( /3(:5)))) Nw - fM,\M%Eiﬁ )) )
JM llmStr( YB(+/B(t) J \M/(é)th_r)r(l)Str< >)

<M (s0 )t—>0

JM\M@)}E%SH(G( " J\qu %T%Str( oy /2»

| 4sDr ne- L, AS(Dhp) ne’ = (L] ASDr). | ASDRO). (@)

As we are integrating over compact subsets, we may interchange the limits with the integrations, and we
may change the integrands thanks to Lemma 4.1. O

Given Lemma 4.7, to prove Theorems 3.3 and 3.5, we need to show that
tim (STe(x' (B(v/B(1)))), STe( (B (VBN ) (w,6)) = ((cha(Po), cha(P5)), ().
Now for the proof of Theorem 3.3. Denote by Q. the spectral projection of D? associated to the interval
[€,00).
Proposition 4.8. Under the assumptions in Theorem 3.3:
(1) STr(e BWBM*/2) = STy(Pye~(PoB1P)*/2+0(™ ")) By 4 STr(Q e~ (QBW/B(1)Q)?/2+0()) g )y,
(2) limy_,; STr(Q.e~(QB( 'B(t))Qf)z/%O(to))QE) = 0, uniformly exponentially pointwise;

(3) lim STr(e BWAO/2) A oy = f STr(Pye~PoB1P) 2Py A wp = {chy(Py),w).
- T\T/g(t) T

The same holds for B'(/B(t)) and W .

Proof. These follow directly from the arguments on pp. 188-195 of [HL99]. When discussing the material in
[HL99], we will adopt the notation there, in particular, ¢ € (0,00). Thus, we are assuming that Py ) = 0 and
that e is fixed, that is, it is not a function of ¢. Next, first replace the term ¢~/ by e where appropriate,
that is where € had been replaced by t~%/¢. Remove any remaining term involving a, and replace the term
a by —1/2. More specifically, now ||G||s,s < €1, Aes =0,

By = (Po+ Qo)B(t)(Po + Qc) = B(t),
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and T, = QB(1)Qe.
The equation just before Lemma 10, where V = PyB1 Py, gives
B(t)” = ¢ug 0y Aegey !

where

4 - [ (P0B1P0)20+ o(t=1?) (Qﬁ(t)@?)2+0(f0) ] = [ Aé’l A(2),2 ]

1y multiplies a section of A*¥T*M @ End(W, W) by t~*/2, and g, is a measurable section of M, with g, — I
and g-' —1 e M.

Lemma 4.9. (Lemma 10 of [HL99]). We may assume without loss of generality that Vygep;' = I =
Peg byt

Proof. Using the notation of [HL99] we have
-1
wtgn+1w—l =1+ |: gi,1 gi,2 ] and ,lptg—l 'l)[}_ =1+ [ gl 1 917% :|
! 92,1 92,2 n+1¥t 9. ! 92

where each matrix entry is O(¢~2). We show below that the Schwartz kernel of Q.e~(Q<B()Q:)?*/2+0(")) g —,
0 exponentially pointwise as ¢t — o0. So e~4t1 = O(t%) and we may assume that e=422 = O(e™?). In
addition, the matrix entries with a subscript 1 contain a Py, and those with a subscript 2 contain a Q.. For
example, g; o contains both Py and @, but g2 » only contains Q..

Next, the long equation on p. 193 becomes

STr(e ™) = STr(vygy i e M igniathy!) =

([ 3 o Dl i) -
STr(e™) + STr(O(t™2)e™) + STr(e A0(t™2)) + STr(O(t™2)e 20Ot 7)) =
st )+ st gg; ot-Hoe 1) * 5| oeoi-b oenoih |) *
st (| G} Lot ot o6+ oi o |):

The important thing to note here is that all the entries in the last three terms either are at least (’)(t_%)
and contain the operator Py, or have the entry O(e™*). We can ignore the terms of the first type because
they are dominated by a multiple of the form (’)(t_%)Po which is integrable. Then using the Dominated
Convergence Theorem we have that they go to zero in the limit. We can ignore the terms containing O(e™?t)
because the sub-exponential growth condition insures that they will disappear when we integrate and then
take the limit. ]

Thus, we may assume that
STr(e BWAM*/2) = STy(Pye~ (PB1P)*/2+0G ") py 1 Ty (Q, e (@B AR /2+0(7) g )
so we have (1). Note that in [HL99], we abused notation by writing this equality as
STr(e B/2) = STr(e~ (PoB1P0)*/2+0(t72))y STr (e (QB()Q)?/2+0(t%))).

In the Volterra series proof of Proposition 11, at the bottom of p. 194 the equation now becomes,

t3e Tk QD Qe _ ymm (e M5 (QtD2Q, ) E e Th+1QetD Qe
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where G, is the Green’s operator for Q.tD?Q., and m is a positive integer as large as we please. Denote
by 0[c,.0) the characteristic function for the interval [e,00). The resulting estimate then becomes, replacing
—0,0 by r, s,

(QetD2Qem+FemernQetriar

< max(1 4 22) V2@ () (122) " B e (0t ()

T"S [67@)

max(1 + 22) (72 (12 E et
z=e€
A straightforward computation shows that this maximum occurs when z satisfies an equation of the form
az? + b(1 + 2%)
22(1+22) 7
for constants a and b. In particular, as t — o0, z must go to 0. Thus, for large ¢, the maximum must occur
at z = ¢, and we have,

[(QetD2Q)m* e mmQetbie

Tp1t =

)

_ E 2
rs < (14 )T2@mbkymt s pmzene’t

exponentially as t — c0. Then, the argument in the proof of Proposition 11 translates to,
STr(Qee~(RBMR* /240 g ) _, 0,
uniformly exponentially pointwise as t — c. So we have (2).

As for (3), since lim;_,; STr(Q.e~(Q<E( ﬁ(t))Qé)Q/HO(tO))QG) = 0, uniformly exponentially pointwise and
T \. T; grows sub-exponentially,

lim STr(Qee~(QBGBWIQ)*/2+0UN Q) A wp = 0.
—LIT\T,

Finally, the family (PyBy Py)?+PyO(t~/?) Py consists of uniformly bounded elements of AV, so the Schwartz

kernel of e~ ((PoB1P0)?+PoO(t™ %) Po)/2 ig uniformly bounded pointwise due to bounded geometry. In addition,

a multiple of tr(FPy(Z,T)) dominates | Str(Poe_((Po]BlP0)2+P°O(t71/2)P0))Po))H pointwise. This combined with
assumption (3) in Theorem 3.3 and the Dominated Convergence Theorem gives,

thirolo TSEr(Poef((PoIBlP0)2+P0(9(t—1/2)Po)/2P0)/\wT _

j tlirgoSTr(POe—((POIBlP0)2+P0(9(t*1/2)P0)/2P0) Awp =
T —>

J STr(Poe_(POBlP°)2/2PO) A wr = {chy(Py),w).
T
The last equality follows from Section 5 of [BHO8]. Translating this to our notation here gives (3). O

To finish the proof of Theorem 3.3, we have the following.

Proposition 4.10. Under the assumptions in Theorem 3.3, STr(x*(B(+/B(t)))) and STr(x*(B'(\/B(t))))
satisfy the conclusions in Proposition 4.8, so

<<Sit(xt(]3(vﬁ(t)))),Sit(xt(B’( 5(t))))) , (w,w')) = (([cha(FD)], [cha (Fp)]; (w,w')).

Proof. We need to transfer the results above to x?.
We first note that x!(z) is a power series. In particular,

t 1 ~ —(z—x)?/2
X'(z) = lmwﬁ*e] (2) = [FT(wm)*e] (2) = JRFTW@)(Q?)@ P dr =

(_1)kZ2k+€

URFT(zpm)(x)e—zz/Qe” dm] e F 2 = i URFTWM)(@@“”Q%ZW] YTV

k=0
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[r/2]
i Z B Gl D* J FT (¢ )(x)e_xz/gxr_% dr | 2"
2| R — 2k Jy T VO ’

where [r/2] is the greatest integer less than or equal to r/2. This is actually an even power series, since x*(z)
is even because its Fourier transform is even. That is,

X' (2) ;O [Z 2RI 27~ J FT(, o) (@)e o[22 2k dx} 2%

k
Set

Y Ay D* —2?/2_2r—2 r
X () ; [Z MJ FT(¥ jo)@)e™ Za kdx]z :

Next, note that if B; and By satisfy B1By = BBy = 0, then for any power series f(z), f(B1 + Bs) =
f(B1) + f(B2). Arguing just as we did above, we may assume that as t — 1

s | (PoB1Py)* + O(B(t)~1/2) 0
BlVA®) = [ 0 (QB(/BD)Q? + O(3(1)°) ]

So, just as above, we may conclude that,

STr(x' (B(+/B(1)))) = STr(X'(B(/B(1)?) =
STr(PoX' ((PoB1Po)* + O(B(t)™2))Py) + STr(QX'((QB(VB(1)Qe) + O(B()°))Qc)

STr(Po(PoB1 Py + O(B(1)™1?)) o) + STr(Qe(QB(v/B(1))Qe + O(B(1)"))Qe)-
Thus we have (1) of Proposition 4.8.

Because only the even powers of ¢** play a role, it can be replaced by cosh(zx), and using the Volterra
series twice, we get the following. See Equation 2.5.

CEWEO) = (| [ T mm@e s ot do| ) B/G0) -

lfFT(d)r <Z f * cosh(zyz4/B(t )D)Cp4) - - Cps) cosh(zp 124/ B(t) D) H dxg> dx}

L=k
x ZJ 9 kemm AP 20 ) e~ mPOD 20y ) o Oy e PP 2y diry
k=0 A%k

Applying the techniques of the proof that STr(Qee*((QEB(t)Qf)2/2“9“0))@5) — 0, uniformly exponentially
pointwise as ¢ — o0 to this Volterra expression shows that the same holds for

STr(Qex' (QB(v/A(1))Qe + O(B(1)°))Qe)
and its twin, as t — 1, that is, we have (2) of Proposition 4.8 and we may ignore those terms when computing
fig | | STOCBWEON) nwr — [ STOCEVEO) 2w
t—1 T\Tg() T~\Tp)

For property (3), we are now reduced to computing,

lim | STr(PoX'((PoB1Fo)* + PoO(B(t)~Y/%)) Po) A wr.
- T\T[j(t)

As above, the family (PyB;Py)? + PoO(B(t)~"/?)Py consists of uniformly bounded elements of A, so the
Schwartz kernel of X! ((PyB1 Py)? + PoO(B(t)~/2)) is uniformly bounded pointwise due to bounded geometry
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Thus, a multiple of tr(Py(Z,7)) dominates || STr(PoX!((PoB1Po)? + PoO(B(t)~/?))Py)| pointwise. This
combined with assumption (3) in Theorem 3.3 and the Dominated Convergence Theorem gives,

lim [ STe(PoX' ((PoB1Fo)? + PoO(B(1) ™) Po) A wr =
- T\Tg()

| i STHROR(PBLP) + RO ) Po) o =

T e

J thH% STI‘(P())N(/t((PoBlpo)2)P0) ANWp = J %IH% STI‘(P()Xt(PoBlpo)Po) ANWp =
T T

STr(Poe_(POBlp‘))Z/QPO) A wr = {chy(Fy),w).
T
The last equality again follows from Section 5 of [BHOS]. O
That finishes the proof of Theorem 3.3. To finish the proof of Theorem 3.5, we have the following.

Proposition 4.11. Under the assumptions in Theorem 3.5,
((37e! (BB, ST B (VB ) (@) = (([cha(Bo)], [cha(B)], (@),

Proof. The proof follows [HL99], pp. 193-199. So, we no longer assume that there are spectral gaps at zero.

Now € =t~/ where a € (6,2NS(D)/q) # &, and a > 6 is needed in the expression for B2, on p. 192.
In particular, now

By = (Po+ Q)B(t)(Po + Qc) + Plo,oB(t) P, and B2, = g7 o7 " Aygety; !,

where, for some 5 > 0,

(PoB1Po)* + Ot ) 0 0
A= 0 (QB(1)Qe)* + Ot**) 0
0 0 (Po,0)BtPo,e))?

We may again assume that ¢tge—1¢;1 = igp; ' =1, so we are reduced to considering just A.

The proof in [HL99] shows that if B; = A, then lim; o STr(e_Bf?) = STr(e_(P‘)]BlPO)2 in Haefliger coho-
mology, which by [BHO8] equals ch,(Fp). It then shows that the terms in By — A contribute nothing in the
limit. As above, to prove Proposition 4.11, we need to show that that proof can be adapted to our case here.

With this in mind, note that the proof of Proposition 11 of [HL99] uses the Volterra series and estimates
from the Spectral Mapping Theorem to show that, for any § > 0, as t — oo,

STr(Q.e~(Q:BiQI*+OW ™) g ) — O(t~9),

that is, STr(QEe’((QEBfQE)2+O(t2/a))QE) has pointwise uniform super polynomial decay as ¢ — co. Thus the
corresponding terms, || STr(Qe)zt((QEB[;(t)QE)2 + O(B(t)**))Q.) and its twin, also have pointwise uniform
super polynomial decay as t — 1, and may be disregarded as above, because of the growth assumption (5).

The proof of Proposition 12 of [HL99], again using the Volterra series and estimates from the Spectral
Mapping Theorem, shows that for ¢ large,

_ 2
H S’I‘T<P(O,e)e (Plo.0)BiPro.e)) P(O,e))” < ||C’I‘r(P(0,e))H7
where ||t=9/2C| is bounded. Now,
NS(D)

ICTr(Poo)ll = [[t2Ct7> Te(Pog)ll < [[t772C|t/2eNSP) = [jt=92C| |2~
uniformly pointwise as t — o0, since € = ¢t~/ where a € (6,2NS(D)/q) and NS(D) > 3¢. This combined

— 0,

with the assumption that J tr(Po,e))dp < 00, and the Bounded Convergence Theorem once again give that
M

(STr(Po,)X" (P0,e)BstyPro,e))*) P0,e)), wry — 0,
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ast — 1, and so it and its twin may be ignored.

Thus we have the Proposition for IBE + and ]B that is,

hm<[STr( (Bee(VB(1)))), STr(x" (B ,( B(t))))],(w,w’» = {([cha(Po)], [cha(Fp)], (w,w')).

Finally, consider the remaining missing terms in [HL99], namely,
B —Be: = (Po+ Q. )B:Po,e) + Po,o)Bi(Po +Qc) =
(Po + Qe)(B: — VtBo)Po.c) + Plo,e)(Br — ViBo)(Po + Qe),

since (Py + Qc)Bo P,y = (Po + Qc)Po,c)Bo = 0, as By = D, and similarly for the other term. The proof of
Proposition 14 of [HL99] shows that

STr(e %) — STr(e ®) = Tr(CPp.) = Tr(Po.oCPo.o),

where C is a bounded leafwise smoothing operator, with a bound depending on ¢, and t~%?||C|| is bounded
independently of ¢ for ¢ large. Just as above we get,

S(D)

| Tr(Pio,)C Pl < [18(8)"2C| 80725 = |a(t)~2C||p(t)2 == —0,
uniformly pointwise as t — 1.
Next, consider the corresponding term
STr(x t(B( (1)) — STr(x' (B(v/A(1)))) =
(STr(x! (B(v/B(1)))) — STe(e BWEON)) — (STr(x'(B(/B(1)))) — STa(e BWIO) 4
(STr(e BWB1)) _ gTy(e BWBE1))),
The term
(STa(e BWPO?) — STa(e BWAOP)) = Ta(Pg 0 CPp.0) =0,
uniformly pointwise as t — 1 by the result quoted above. Using this, the assumption that f tr(Po,e))dp <
o0, and the Bounded Convergence Theorem shows that we may ignore this term. M
The term
STr(x' (B(v/B(1))) — STe(e 2VIO)) — STr(Q. (' (B(v/B() — e *VIO)Q,) +
STr(Po,0 (' (B(v/B() — e PVIOD) P ) + STr(Po(x' (B(VB(D) — e PVIO) ).

The first term on the right can be treated as in the proof of Proposition 11 of [HL99] to show that it goes
to zero uniformly pointwise super-polynomially, so may be ignored thanks to the growth condition. The

second term may be handled using the assumption that J tr(Po,e))du < 00, and the Bounded Convergence
Theorem, so it too contributes zero. The third term also goes to zero using the facts that its two parts have

the same limit as ¢t — 1, that f tr(Py)dp < f tr(Po,e))dp < o0, and the Bounded Convergence Theorem.
M M

Finally, the term STr(x*(B'(1/3(t)))) — STr(x*(B'(1/B(t)))) may be treated the same way. O
Remark 4.12. The reader may wonder why we can’t just use the operators e B and e B, That 18, why

do we need operators with finite propagations? The answer is two fold. Even though we know that for any
6>0, ast — oo,

STr(Q.e (QeB:QI*+OW N gy — O~9),
there in no growth condition (save zero, i.e. compactness) which will insure that
(STH(Qee™ (9P @IHOENQ,) wor)
is well defined.
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A way around this problem is to define

(STr(eB), STe(e B)), (wrywlp)) = lim J STe(e ) A wp — f STr(eB%) A wp ||
SO JrT, T'\T!
and then show that this is well defined and independent of t. We do not know how to prove these. Note that
our proof of these for STr(x!(B'(1/B(t)))) and STr(x!(B'(1/B(t)))) uses the fact that they agree near infinity,

which is not necessarily true for STr(e*Bf) and STr(e*]B'tz).

5. EXAMPLES

We first give the properties needed for general examples of the type of 5.1 below.

e Let N be a compact n dimensional Riemannian manifold whose fundamental group I' acts on a
compact manifold S.

e Denote by N the universal cover of N , and set M = N xr S, and denote by F' the foliation given
by the fibration 7 : M — N. M also has the natural flat bundle foliation which is transverse to F.

e Assume that the tangent bundle of F', namely the tangent bundle along the fiber TF = N xp TS , is

spin, has a nowhere zero cross section (e.g. /06 as in 5.1 below), and J A(TF) #0in H¥*(M/F) =
F

H*(N;R).

e Denote by X a vector field on N with at least two zeros and a trajectory which starts at one zero
and ends at another. These always exist.

e Since M is compact, TF admits metrics of bounded scalar curvature.

Then, as we show below, the manifold M x S*~1 k > 1, admits a non-Riemannian spin foliation Fx
with Hausdorff holonomy groupoid, and the space of PSC metrics on Fx has infinitely many path connected
components.

Recall the following example in [BH23|, which is an adaptation of Example 1 of [H78].

Example 5.1. Let G = SLaR x--- x SLyR (q copies) and K = SO x - --x SO2 (q copies). G acts naturally
on R24 ~ {0} and is well known to contain subgroups I' with N = T'\G/K compact, (in fact a product of q
surfaces of higher genus). Set

M =T\G xg (R*  {0})/Z) ~T\G x (S**~*! x St),

where n € Z acts on R4~ {0} by n-z = e"z.

M has two transverse foliations, F' which is given by the fibers S?3~1 x St of the fibration M — N, and a
transverse foliation coming from the foliation T of Example 1 of [HT8]. T is the natural foliation on the flat
vector bundle K\G xt R??, and the zero section is a leaf of it. In addition, K\G xr R?? is diffeomorphic
to T\G x i R%4, and the action of 7 preserves T, fizing the zero section, so it descends to a foliation on M,
also denoted T.

The following modification of F' preserves the needed properties, but it is not Riemannian. In particular,
the facts that T'F is orientable, spin, has Hausdorff holonomy groupoid, and admits a metric with bounded
(actually positive-but this is non-essential) scalar curvature are preserved. We alter F' as follows. The base
space N = [[{_, 2;, where each ; is a surface of higher genus. On each ¥; choose a smooth vector field X;
with isolated simple singularities so having indexes +1. We may assume that there are integral curves of X;
starting at one singularity and ending at another. This insures that the resulting foliation is not Riemannian.
The vector field Hg{:l X,; on N determines the vector field X on M which is tangent to the foliation 7. We
also have the vector field /00 which is tangent to the fiber S of M. Denote by Fx the foliation determined
by the fibers S9! and the vector field 9/00 + X. First note that the tangent bundle T Fy is a equivalent to
the tangent bundle T'F, so it is also spin and has the same characteristic classes. However, F' is Riemannian
but Fx is not. This is because there are families of leaves of Fx which become arbitrarily close to two
different leaves of F', and this cannot happen in a Riemannian foliation. Note that the holonomy groupoid
of F'x is Hausdorff, and that Fx admits a metric of positive scalar curvature.
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As in [BH23], we have

Proposition 5.2. There is a non-zero constant C, so that f A(TFx) = Cyvol(N).
N Jry

Thus J A(TFx) # 0 in H*(M/Fx).
Fx

In [C88], Carr constructs examples of “exotic” PSC metrics g;, i € Z, on S**~1, for k > 1, and compact
Riemannian 4k dimensional spin manifolds X; with boundary S*~1, so that the metric g; on X; is g; x dt?
in a neighborhood of S**~!, and g; also has PSC. Set

X = Xiv (S™ 1 x[0,1]) u X;,

where the metric on S**~1 x [0,1] is g; x dt?, and g, is a path of metrics from g; to g;. These examples have
the property that the integer valued Gromov-Lawson invariant i¢r(gs,9;), [GL83], is

~

igr(9i,95) = JX A(TX i 5)) = Crl(i—3),
(i,5)

where Cj # 0.

Consider the manifold M x S**~1 with the foliation TFx x TS**~!, and the metric g;, which is the product
of the metric on TFx and g; on TS*~!. These metrics have PSC and we claim that for i # j they are not
in the same path component of the space of PSC metrics on TFx x TS*~1. To see this, set

j/\j = M X A)((ZJ)7
with the foliation Fx x X(; j). In [BH23], we define the invariant

i(gi,9;) = A(TFx x TX(i ;) € HY(M/Fx x X)),
Fx xX(i’]»)

and show that if g; and g; are in the same path component of the space of PSC metrics on T'Fx x TS*=1,

then i(g;, g;) = 0. However, if ¢ # j, then

A(TFx x TX(; ) = A(TFx)A(TX5) = j A(TFx) | A(TXq;) =
Fx xX(ij) Fx xX(ij) Fx X (i.5)

A(X(i7j))J A(TFyx) = Ck(i—j)f A(TFx) #0in Hf(M/Fx x X 1)),
FX FX

s0 i(gi, g;) # 0.
Further examples can be constructed using other examples in [H78], as well as those in [KS93].

Note that in Example 5.1, the fact that F' admits a metric of positive scalar curvature is non-essential.
What is essential is that it admits metrics of bounded scalar curvature. Then we may multiply the metrics
g; by constants so that their scalar curvatures overwhelm the scalar curvature on the leaves of F'x, so the
resulting metric on TFx x TS*~! has positive scalar curvature.
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