INDEX THEORY AND
NON-COMMUTATIVE GEOMETRY
I. HIGHER FAMILIES INDEX THEORY

MOULAY-TAHAR BENAMEUR AND JAMES L. HEITSCH

ABSTRACT. We prove an index theorem for foliated manifolds. We do so by constructing a push forward
map in cohomology for a K-oriented map from an arbitrary manifold to the space of leaves of an oriented
foliation, and by constructing a Chern-Connes character from the K-theory of the compactly supported
smooth functions on the holonomy groupoid of the foliation to the Haefliger cohomology of the foliation.
Combining these with the Connes-Skandalis topological index map and the classical Chern character gives
a commutative diagram from which the index theorem follows immediately.

CONTENTS
1. Introduction 1
2. Notation and Review 3
3. Traces 4
4. The algebraic Chern character 8
5. Push forward maps 10
6. The index theorem 19
References 22

1. INTRODUCTION

This is the first in a series of papers on the different approaches to the higher index and Lefschetz theorems
for foliations. In this paper, we give an alternative proof of the cohomological index theorem for families
of elliptic operators defined along the leaves of a foliation of a compact manifold obtained in [HL99]. We
do so by constructing a push forward map in cohomology for a K-oriented map from an arbitrary manifold
to the space of leaves of the foliation, and by constructing a Chern-Connes character from the K-theory
of the compactly supported smooth functions on the holonomy groupoid of the foliation to the Haefliger
cohomology of the foliation. Combining these with the Connes-Skandalis topological index map and the
classical Chern character gives a commutative diagram completely analogous to the commutative diagram
of classical families index theory. As in the classical case, this immediately gives the cohomological index
theorem obtained in [HL99].

In [CS84] and [Con81], Connes and Skandalis proved a families index theorem for foliations. Their theorem
and its proof are algebraic in nature, showing that two push forward maps in K-theory are the same. Our
constructions are more geometric and we get computable invariants in Haefliger cohomology. In addition,
these invariants are more easily related to the geometry and topology of the foliation. The algebraic approach
to invariants for non-commutative spaces is in some sense more fully developed than the geometric. It is
our contention that the further development of the geometric approach will lend deep insight into these
invariants. We expect that the application of the results here will give a much fuller understanding of the
relationship of the index theory of leafwise operators with the geometry and topology of the foliation. Such
insight is also likely to have applications to the Novikov conjecture, one of the central problems in topology.

This version of the paper incorporates its Corrigendum, [BHO05].
1
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In [A75], Atiyah identified the index of an elliptic differential operator D on a compact manifold with
the trace in an associated von Neumann algebra of a primary K-theory invariant of the operator. This
latter fundamental invariant lives in the K-theory of the C*-algebra associated with the fundamental group
of M and is a generalized index of the lifted operator D of D to the universal cover M. The invariance
of D under the deck transformations insures that this deeper index class is well defined even though M is
non-compact in general. This construction led to many deep results in the topological and harmonic analysis
of discrete groups, see for instance [BC84, BCH90, CM91, HK99, K88]. Atiyah’s covering index theorem
was generalized by Connes and Moscovici to higher traces in [CM91], giving a cyclic cohomology proof of
the Novikov conjecture for hyperbolic groups.

In [Con79, Con81], Connes extended this construction to leafwise elliptic operators on compact foliated
manifolds which are endowed with a holonomy invariant measure. To do so he replaced the lifting and deck
transformations by a lifting to the holonomy covers of the leaves invariant under the natural action of the
holonomy groupoid. Moreover, he defined an analytic index map from the K-theory of the tangent bundle
to the foliation to the K-theory of the C* algebra of the foliation, which plays the role of the K-theory of the
space of leaves. In [CS84], Connes and Skandalis defined a push forward map in K-theory for any K-oriented
map from a manifold to the space of leaves of a foliation of a compact manifold. This allowed them to define
a topological index map from the K-theory of the tangent bundle of the foliation to the K-theory of its C*
algebra. Their main result is that the analytic and topological index maps are equal, an extension of the
classical Atiyah-Singer families index theorem.

It is well known that the Atiyah-Singer families index theorem follows immediately from the commutative
diagram

i

KJ(N) K" (M)
ch() ATd(f) | L ch
H(N;R) I H*(M;R).

Here N and M are manifolds, with M compact. ch is the usual Chern character, and f: N — M is a K-
oriented map with associated push forward map fi. T'd(f) is the Todd class of f, and f. is the push-forward
map in cohomology defined using f, : Hy(V;R) — H,(M;R) and Poincaré Duality.

We extend this result to foliations. Let F' be an oriented foliation of M and f : N — M/F a K-oriented
map to the space of leaves of F. Denote by H)(M/F) the Haefliger cohomology of F. We construct
a push forward map in cohomology f. : Hi(N;R) — H:(M/F). We also construct a Chern character
ch, : Ko(C(G)) — HL(M/F), where C°(G) is the space of smooth functions with compact support on G,
the holonomy groupoid of F'. Denote by F the foliation of M xR2* induced by F with the same leaf dimension.
Its holonomy groupoid is QR% ~ G x R?* and its leaf space is M x R%/ﬁ ~ M/F x R?*. Composing
che : Ko(C52(GF™)) — HI (M x R2*/F) with integration over R2*, / : HA(M x R?*/F) — H*(M/F),

R2k
gives the map ch]f% : KO(CEO(QR%)) — HX(M/F). Given an imbedding of N in R?* there is a Connes-
Skandalis push forward map fIR% :KYN) — KO(C’SO(Q]R%)). We are forced to work with this latter space

because in general there is no Bott isomorphism between KO(C’é’o(QR%)) and Ko(C2°(G)). Our main result
is a complete extension of the above result to foliations.

Theorem 5.11. The following diagram commutes,

R2k,
KJ(N) : Ko(C(GF™))
ch(-) ATd(f) | LoochE”
HY(N;R) — 2 H: (M/F).
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This result extends immediately to other interesting algebras, e.g. the space of superexponentially decay-
ing operators in Connes’ C*-algebra, [HL02].

Denote by TF the tangent bundle of F, and by # : TF — M — M/F the natural map. Then for k
sufficiently large, there is a Connes-Skandalis push forward map m : KS(TF) — Ko(C2° (QR% )). By standard
methods, Theorem 5.11 immediately yields a cohomological index theorem, namely

Theorem 6.2. For any u € KY(TF), chfzk om(u), the algebraic Chern character of the topological index of
u, is given by
2k

ch® om(u):(—l)p/ T (ch(u) TA(TF®C) € HL(M/F),
F

where / : H*(M;R) — H:(M/F) is integration over the leaves of F, m,, : H(TF;R) — H*(M;R) is

integratil(;n along the fibers, and Td is the Todd class.

Finally, in [Con86], A. Connes showed that the pairing of any holonomy invariant current extends to
the K—theory of the C*—algebra of the foliation. Therefore, our theorem 6.2 proves, using the Connes-
Skandalis index theorem in K —theory [CS84] a cohomological index formula in Haefliger cohomology. In
particular, our results partially answer a conjecture stated in [He95], namely that the index formula in
Haefliger cohomology, for all elliptic pseudodifferential operators on foliations, compare [He95, HL99], is a
consequence of the Connes-Skandalis index theorem.

Note that a similar index formula was obtained independently, for Dirac operators on foliations with
Hausdorff graph, by Gorokhovsky-Lott, [GL03, GL05].

Acknowledgments. We are indebted to J-M. Bismut, A. Connes, M. Crainic, T. Fack, J. Lott, I. Moerdijk,
V. Nistor, H. Oyono-Oyono and G. Skandalis for many useful discussions.

Part of this work was done while the first author was visiting the University of Illinois at Chicago, and
while the second author was visiting the Erwin Schrédinger Institute in Vienna, and the University of Lyon
I. Both authors are most grateful for the warm hospitality and generous support of their hosts.

2. NOTATION AND REVIEW

Throughout the paper, M denotes a smooth compact Riemannian manifold of dimension n, and F' denotes
an oriented foliation of M of dimension p and codimension q. So n = p + q. The tangent and cotangent
bundles of F' will be denoted T'F and T*F respectively. If £ — N is a vector bundle over a manifold
N, we denote the space of smooth sections by C*°(E) or by C*(N; E) if we want to emphasize the base
space of the bundle. The compactly supported sections are denoted by C°(FE) or C°(N; E). The space
of differential k-forms on N is denoted A¥(N), and we set A(N) = @®>0.A*(N). The space of compactly
supported k-forms is denoted A¥(N), and A.(N) = @x>0A¥(N). The tangent and cotangent bundles of N
are denoted T'N and TN respectively.

The holonomy groupoid G of F consists of equivalence classes of paths v : [0, 1] — M such that the image
of 7 is contained in a leaf of F'. Two such paths v; and 7, are equivalent if 1 (0) = 72(0), y1(1) = 72(1),
and the holonomy germ along them is the same. T'wo classes may be composed if one ends where the second
begins and the composition is just the juxtaposition of the two paths. This makes G a groupoid. The space
G of units of G consists of the equivalence classes of the constant paths, and we identify G(© with M.

G is a (in general non-Hausdorfl) dimension 2p 4+ ¢ manifold. The basic open sets defining its manifold
structure are given as follows. Let U be a finite good cover of M by foliation charts, [HL90]. Given U
and V in this cover and a leafwise path «y starting in U and ending in V, define (U,~, V) to be the set of
equivalence classes of leafwise paths starting in U and ending in V' which are homotopic to = through a
homotopy of leafwise paths whose end points remain in U and V respectively. It is easy to see, using the
holonomy defined by v from a transversal in U to a transversal in V, that if U,V ~ RP x R?, then we have
the local diffeomorphism (U, v, V) ~ RP x RP x RY.

If G is non-Hausdorf, it is not true that compact sets are always closed, nor that the closure of a compact
set is compact. Because of this, we define the notion of having compact support as follows. Given a
bundle E over G and any set (U,v,V) as above, consider E|(U,~,V), the restriction of E to (U,~,V).
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The space CX(E|(U,v,V)) has a natural inclusion into the space of sections of E over G by extending
any element of C°(E | (U,~,V)) to all of G by defining it to be zero outside (U, v, V). We define the space
C*(E) = C°(G; E) of smooth sections of E over G with compact support to be all finite sums > s; where
each s; is the image of an element $; in some C°(E | (U, ,V)). The space of smooth functions with compact
support, namely C2°(G; G x R), will be denoted C2°(G).

The source and range maps of the groupoid G are the two natural maps s, 7 : G — M given by s([’y]) =

7(0), 7([+]) = 7(1). G has two natural transverse foliations F, and F, whose leaves are respectively L, =

s Ya), L* = r~Y(z) for z € M. Note that r : L, — L is the holonomy covering of L.

The Haefliger cohomology of F', [H80], is given as follows. For each U; € U, let T; C U; be a transversal and
set T = |J T;. We may assume that the closures of the T; are disjoint. Let H be the holonomy pseudogroup
induced by F on T. Denote by A¥(M/F) the quotient of A*(T') by the vector subspace generated by elements
of the form o — h*« where h € H and « € A¥(T) has support contained in the range of h. Give A¥(M/F)
the quotient topology of the usual C* topology on A¥(T), so this is not a Hausdorff space in general. The
exterior derivative dr : A¥(T) — A¥+1(T) induces a continuous differential dg : A¥(M/F) — AL (M/F).
Note that A¥(M/F) and dy are independent of the choice of cover U. The complex {A.(M/F),dy} and
its cohomology H’(M/F) are, respectively, the Haefliger forms and Haefliger cohomology of F.

As the bundle T'F is oriented, there is a continuous open surjective linear map, called integration over
the leaves,

/ c APTR(M) — AF(M/F)
F

which commutes with the exterior derivatives dy; and dp. Given w € A(M), write w = ), w; where

w; € A(U;). Integrate w; along the fibers of the submersion 7; : U; — T; to obtain / w; € Ac(T;). Define

i

/ w € A(M/F) to be the class of Z / w;. It is independent of the choice of the w; and of the cover U.

As / commutes with dj; and dg, it induces the map / : HPPF(M)) — HY(M/F).
F F

3. TRACES

In this section, we give some algebraic background and construct the trace which will be used in the
sequel.

There is a canonical lift of the normal bundle v of F' to a bundle vg C T'G so that TG =TFs; @ TF, G vg
and r,vg = v, s,vg = v. It is given as follows. Let [y] € G with s([7]) = z, r([7]) = y. Denote by
exp : v — M the exponential map. Given X € v, and ¢t € R sufficiently small, there is a unique curve
vt : [0,1] = M so that

i) %(0) = exptX ii) v C Lexptx iii) 7¢(s) € exp(vy(s))-
In particular 79 = 7. Thus the family [v;] in G defines a tangent vector Xe TGy It is easy to check that

~ ~

54(X) = X and r,(X) is the parallel translate of X along 7 to v,.

The metric go on M induces a canonical metric gy on G as follows. TG = TF, @ TF, @ vg and these
bundles are mutually orthogonal. On TF,. @ vg we define gy to be s*gp and on TFs we define gg to be
r*(go|TF).

The foliation Fy has normal bundle vy = TF,. ® vg, so vs ~ s*(T'M) and v} ~ s*(T*M). Denote the
space of smooth sections of the bundle A*T*F, ® A"v¥ by A¥"(G, F,). The exterior derivative d splits with
respect to the decomposition

A™G)~ P AMG.F)
k+h=m
into three bihomogeneous components
d=dp+d, +d_1p2,
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where dp is the leafwise differential for Fy with bidegree (1,0) with respect to the splitting but which is
independent of the choice of v [BNO03], d, is the (0,1) homogeneous component, and d_; o is an extra
differential which has bidegree (—1,2), see [T97] for more details.

Let E4 be a complex vector bundle over M with Hermitian metric and connection, and set F = r*FE;
with the pulled back metric and connection, denoted V. We may regard V as an operator of degree one on
C*(E @ AT*G) where on decomposable sections ¢ @ w, V(¢ ® w) = (V) Aw + ¢ ® dw. Then V defines a
quasi-connection V¥ acting on C*°(E ® Av¥) by the composition

Co(E® Av?) -5 CF(E @ AT*G) s C®(E @ AT*G) 2% C(E @ Av}),

where 4 is the inclusion and p, is induced by the projection p, : T*G — v*. Given w € C*°(Av}), denote by
M, : C*(E ® Avy) — C°(E ® Avy) the operator given by exterior multiplication on the left by w. Then
for any w € C*®(A7v}) and any ¢ € C°(E ® Av}), V¥ satisfies the relation

VY (wp) — (—1)1wV¥¢ = (d,w)e.
In other words, the graded commutator [V¥, M,,] of these operators on C>°(FE ® Av}) is the operator My, .,
of exterior multiplication (on the left) by d,w.
If T € End(C*°(E ® Av})) we say that T is homogeneous of degree k if it maps E ® A/v? to E®@ AJTryz.
C>*(E ® Av}) is an A(M)-module where for ¢ € C*(E @ Av}), and w € A(M), we set

My,¢ = p,(s"(w))e,
where again the map p, : A(G) — C®(Av}) is induced by the projection p, : T*G — vZ. Denote by QF the
space of A(M)-equivariant endomorphisms of C*°(E ® Av?) with degree k and set

Q=_ok
k

Then T € QF if and only if for all w € A(M),
[T,M,|=ToM,—(-1)"M,oT =0.
A pseudo-differential G-operator with uniform support acting on E is a smooth family (P,)zen of G-

invariant pseudo-differential operators, where for each z, P, is an operator acting on F | L,. The G-invariance
property means that for any v € LY = L, N LY, we have

(v-P)y EU,YOPEOUV_l =P,
where U, : CZ° (Ly, E) = C° (Ey, E) is the induced action of the groupoid G defined by

[U26(v) =€(v"7), 2 € Ly

The smoothness assumption is rigorously defined in [NWX96]. If we denote by K, the Schwartz kernel of
P,, then the G-invariance assumption implies that the family (K,)zens induces a distributional section K of
the bundle Hom(£) over the holonomy groupoid, whose fiber at a point + is a homomorphism from E,(,) to
E,(4), which is smooth outside G© = M. Since M is compact, the uniform support condition becomes the
assumption that the support of K is compact in G. We denote by U™ (G; E) the space of all such uniformly
supported pseudo-differential G-operators of order m, i.e. such that each P, has order m. ¥™(G; FE) is a
C*°(M) module, where f € C°°(M) acts by multiplication by s*(f). The space of all uniformly supported
pseudo-differential G-operators is denoted ¥*°(G; E) and the space of uniformly supported regularizing G-
operators is denoted ¥~°°(G; E). So,

V(G E) = | J ¥™(G; E) and ¥~(G;E) = (] ¥"(G; E).
mEZ meZ

The Schwartz Kernel Theorem identifies ¥~°°(G; E) with C°(G, Hom(E)), see [NWX96]. We may consider
the algebra

U™°(G; E)®cee (ar) A(M)
as a subspace of 2 by using the A(M) module structure of C®°(E @ AvY).
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Denote by 9, : End(C*(E ® AvY)) — End(C*(F ® Av})) the linear operator which on homogeneous
elements of degree k is given by

0,(T)=[V",T]=V"oT — (-1)fT o V".
Lemma 3.1. 9, preserves the subspace 2, and (8,)? is given by the commutator with 6 = (V¥)? € Q2. In
addition, 0, preserves the subspace ‘P‘“(Q;E)@CW(M)A(M).
Proof. Let T be a homogeneous endomorphism of C*°(E ® Av?) of degree k and let w € A7(M). Then
[0,(T),M,] = V'oToM,—(~1)"ToV"oM, —
(_1)(k+1)jM oV’oT + (_1)(k’+1)j(_1)ka oT oV
(—1)F (VY o M) o T — (=1)*T o ((—1)"M,, 0 V¥ 4+ Mgy, .,) —
(=) M, 0 VY o T + (1) HITF M, 0 T o V¥
= (=DM M, oV oT + (—1)M My, oT — (—1)* TR M, 0 T o V¥ —
(=DM o T — (~1)MH M, 0 VY o T + (~1)M M, 0 T 0 V”
0

In the same way we have

(0, 00,)(T) = VY08, (T)— (=1)*18,(T) o V"
VYo (Vo T — (~1)T V) — (~)MUTY 0 T — (1T o V¥) o V¥
— 5,7

Finally, in order to prove that 0, preserves \II’OO(Q;E)@)Coo(M)A(M), we use the A(M)-module struc-
ture to reduce to the case where the element 7' under consideration actually belongs to ¥~>°(G; E) =
C°(G;Hom(E)). By linearity, we may assume that T' comes from a compactly supported smooth Schwartz
kernel K € C°((U,~,V); Hom(E)) for some basic open set (U,7,V). But then it is obvious that 9, (K) is
also smooth. Thus the proof is complete. (]

For T € U=°(G; E)®ce () AF (M) = C(G; Hom(E))®ce (ar)AF (M), define the trace of T' to be the
Haefliger k-form Tr(7T') given by

Tr(T):/Ftr(K(JE,f))dx,

where K is the smooth Schwartz kernel of T, Z is the class of the constant path at z, tr(K(z,z)) is the
usual trace of K (Z,z) € End(Ez) ® A¥T* M, and so belongs to A*T* M,,, and dx is the leafwise volume form
associated with the fixed orientation of the foliation F'.

Lemma 3.2. The map Tr : V=°°(G; E)@ce ) A(M) = A(M/F) is a graded trace which satisfies Tr 00, =
dg o Tr.

Proof. This is a corollary of Lemma 2.5, p. 443 of [HL02] which says that if K is a smooth section of
HOm(E)@coc M).A( ) over G which is uniformly exponentially decaying (considered as a family of sections

over the L, x Ly) and H is a continuous section of Hom(E)®cw (ar)A(M) over G with uniformly bounded
coefficients, then Tr([H,K]) = 0. As the the kernels in question here are all uniformly supported, they
always have uniformly bounded coeflicients. Likewise, for any such kernel, there is an R > 0 so that on
any L, x L,, the kernel is zero off the R neighborhood of the diagonal and so is uniformly exponentially
decaying.

Now suppose that T' € ¥~°°(G; E)@coo(M)A(M). As VY is local operator and everything is linear, we
may assume that T is given by a section K € C°((U,w,U); Hom(E) @ AT*U), where w € U. The foliation
chart U ~ R? x R?, and (U, w,U) ~ R? x R? x RP, with coordinates (z,y, z). The map s: (U,@,U) = U is
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given by s(z,y,2) = (z,y) and the foliation Fj restricted to (U, w,U) has leaves of the form (z,y) x RP. In
this setting, V¥ = d, + dy + A where A € C°°((U,w,U); Hom(E))®ce (1) A' (U). Thus

Tr(&,T):/Ftr([d$+dy+A,K]dx:/Ftr(de)dx—i—/Ftr(dyK)dx—i—/Ftr([A,K])da:.

The term / tr(d,K)dzx is obviously zero. A direct computation shows that / tr([A, K])dx = 0. Finally,
F F

note that in these coordinates, dg is d, if we take the transversal in U to be (0, 0) xR?. Thus / tr(d,K)dz =
F
/ dytr(K)dz = dy / tr(K)dz = dg Tr(T). O
F F

Since 9?2 is not necessarily zero, we now employ Connes’ X —trick to construct a new graded differential
algebra (A_,8) out of the graded quasi-differential algebra (A% (G|Fy; E), d,), see [Con94], p. 229. Write
A_ for AX(G|Fs; E) and note that the curvature operator § = V¥ o V¥ is a multiplier of A_,. As a vector
space A_so = My(A_s). An element T € A_ is homogeneous of degree 9T = k if

]{i:aTH28T12+1:6T21+1:8T22—|—2.

0 0

57:, _ GKTH (—1)8T11T11 ,
T 0

The differential § on A_. is defined on elements of the form ( T 0 > by

for homogeneous Ti1 € A_s. On homogeneous elements of /T,OO it is given by

5 &,TH 8VT~12 0o -6 =~ _ T 0 1
5T‘<—8VT21 —aVT22>+(1 0 >T+( 1 T(—a 0)'

A straightforward computation gives 62 = 0. Set
1 0
(v 4)

T+«T =TOT".
This makes (.Z,OO, 0) a graded differential algebra.
The graded algebra A_ ., embeds as a subalgebra of A_,, by using the map

T — ( g 8 > .
We shall therefore also denote by T the image in A_o of any T' € A_.
For homogeneous T' € A_, define
O(T) = Tr(Th) — (—1)°7 Tr(Tha0),
and extend to arbitrary elements by linearity.

Theorem 3.3. The map ® : A_o, — A*(M/F) is a graded trace, and ® 0§ = dg o .

and define a new product on .Z,Oo by

Proof. Let T, S be two homogeneous elements of ./Z,OO with degree respectively k and ¢. Then
O[T, 8]) = Te([T11, Su]) + Tr([T120, S21]) + (=1)" ! Te([Thn, S126]) + (—1)F T Tr([T220, 5200]) = 0,

by Lemma 3.2. o
For a homogeneous element T' € .A]i;l,,

(@0 0)(T) = (Trod,)(T11) + (—=1)*(Tr 00, )(T220) — (Tro(9,)?)(T21),
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since 9, (f) = 0. Using Lemma 3.2 again gives
(©00)(T) = (du o Tr) (Thx + (~1)"T220) — (dfy 0 To)(Ti).
Since d% = 0, we get
(® 0 8)(T) = dy (TrTu +(—1)* TTT229> :
and the proof is complete. |

4. THE ALGEBRAIC CHERN CHARACTER
In this section, we use the map ® to construct an algebraic Chern-Connes character
chy : Ko(CZ(G)) —> HZ(M/F).

As Ko(C(9)) ~ Ko(C(G; Hom( ))) ~ Ko(¥~>°(G; E)), we may work with Ko(P~°(G, E)) in place of
Ko(C2°(G)). Denote by My (¥~>°(G; E)®C) the space of N x N matrices with coefficients in ¥~>°(G; E) ®C.

Theorem 4.1. Let B = [é1] — [é2] be an element of Ko(V™°°(G; E)), where é; = (e1, A1) and é2 = (ea, A2)
are idempotents in My (¥~°(G; E) ® C), which we consider as elements of Mn(A_o ® M2(C)). Then the

Haefliger form —(ber)? —(8e2)?
e () 0 (52

is closed and its Haefliger cohomology class depends only on B. Here tr : MN(./T_OO) — A_o is the usual
trace.

Definition 4.2. Let B = [é1] —[é2] € Ko(V~>°(G; E)) where €1 = (e1, A1) and éz = (e2, A2) are idempotents.
The algebraic Chern character ch,(B) of B is the Haefliger cohomology class

cho(B) = [(® o tr) (el exp (-(551)2 ) )] (@ o tr) (62 exp (_(‘5,62)2 ) )].

2im i

Proof. The derivation § extends to a derivation on A_, @ C (and so also to My(A_, @ C)) by setting
§(e, ) = (de,0). In addition, ® extends to a graded trace ® : A_., & C — A (M/F) by setting ®((e, \)) =
®(e), and Theorem 3.3 remains valid for this extended trace.

Let € € My(A_oo @ M(C)) be an idempotent, and set u = 2e — 1. Then

u?=1and u-de+de-u=0.
By Theorem 3.3, dg (P o tr) (6((56)2k) = (Potr) ((56)2k+1) and we have

(®otr) ((56)2k+1) = (®otr) (u2(5e)2k+1) — _(@otr) (u(56)2k+1u),

The last equality is a consequence of the relation u - je = —de - u. On the other hand, since ® o tr is a trace,
we have

—(®otr) (u(5e)2k+1u) = —(Potr) ((56)2k+1u2> =—(Dotr) ((66)2’“*1),

SO

dir ((cp o tr)(e(6e)2k)> —0.

d
Now suppose e; is a smooth path of idempotents in My (¥~>°(G; E) @ C) and set a; = %(Zet —1). Then

[ataet] = Qi€ — €¢0y
de
= dtt (2615 — 1)6t — Eet—— dt (26,5 — 1)
_ dey de; de;
= dte +€tdt Zetdte.
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Since e? = e; for any t, we have

det det det d
ot i and —
a T = Mg =Y
S0
des _ [az, ]
dt - tyCt]-
d _ 2
This implies that the zero th order component of %(@ o tr) <€t exp| (;f;) }) is zero.
For any k£ > 1 we have by multilinearity
L@ o) (e (5e )%) = (®otr) (@((k )%) + ik:(@ o tr) (e (Geny =1 (5260 (e )%—j)
7 t(0€y 7 et t(0€y 7 t

=(® Otr)([at’et 1(6er)? ) + Z (® o tr) ( (Ser) 5[at,et](5et)2k_j>

2k

= (®otr) ([at’ et](éet)2k> + Z((I) © tr)([et((set)jflat(fset)%*jﬂ - et(5et)jat(5et)2k*j])+
2k
Z((I) o tr) (et(§et)j_l[(5at)€t - €t(5at)](5et)2k_j>.
j=1

The first sum collapses to

(P otr) (etat(det)%) —(Potr) (et(éet) at) —(Dotr) ([at, et]((Set)zk),

so the first two terms cancel.
To analyze the second sum, note that since e; is an idempotent and J is a derivation, by induction we
have

(56,5) ey = €t((56t) (5et)2h’et, €t((5€t)2h+1€t = 07

and e, (de)2M 4+ (0e) 2t e, = (de)?M L VR > 0.

The second sum is then
2k

Z(‘I’ o tr) <€t(5€t)j_l(5Gt)€t(5€t)2k_j - et(éet)j_let(éat)(5et)2k_j).
j=1
Using the fact that ® o tr is a graded trace, this equals
2k 2%k

> (@ o) ((—1)jet(6et)2k_jet(5et)j_1((5at)) +)(@o) ((—1)(7+1)(5et)2k_jet(5et)j_let(6at))
k k
=Y (@om) (et(aet)%*%t(aet)%l(5at)) +Y (@0t ((5@)2’@*2”16,5(5et)2i*2et(5at))
k k
=Y (@ou) (et(éet)zk_l(éat)) Y (@o) (—et(éet)%_l(éat) + ((5et)2k_1(5at))
k

=Y (@o tr)((éet)%_l(dat)) = kdg(® o tr) (et(éet)2k_2(5at)).
=1

Thus ch,(B) does not depend on the choice of representative of B.
Now suppose that 'V is a smooth family of connections on E; with associated differentials 9;, and &;.
On M x I, where I = [0,1], we have the foliation F' whose leaves are of the form L x {t},t € I. Then
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Gp = G x 1, and M x I/ﬁ = M/F x I. Denote by m : G x I — G the projection. On the bundle
7*E, we have the connection V determined by V. In particular, for ¢ € C>®(E), and X € T(G x I),
Vx(pom)(x,t) = "Vr, (x)(¢)(x), where we identify 7*E, ;) with E,. Thus on G x {t}, V = 'V +d,, where
dy = dt ® 0/8t, so the associated partial connection V¥ on A(Gg,n*E) is V¥ = 'V¥ 4 d;. Therefore, the
curvature 0 of V¥ satisfies ij () = 6, the curvature of *V”, where i; : G — G x I is i;(x) = (z,t). Finally,
the differential 9, associated to V is 0, = 0; + d;.

Denote by / s Ao(M x ]/ﬁ) — A.(M/F) integration along the fiber of M x I/ﬁ =M/FxI— M/F,
I
and let r; : M/F — M x I/F be given by r;(z) = (z, j). The usual proof shows that

rf—réz/IOdﬁidHo/I.

For any idempotent (e,\) € Myn(V~°(G; E) @ C), the associated idempotent in My (¥~°(G x I; E) & C)
is denoted by (7*e, ). As
di (®o tr)(w*e(&r*e)%)) =0,
we have
i (@ otr)(m*e(67%e)?*)) — 15 (P o tr)(n*e(d7%e)?)) = £dy ( /(<I> o tr)(w*e(éw*e)%)).
I

Now (up to signs whose ambiguity is the same in both expressions below)

w2 [ (Bym*e)® + (m*e)f(n*e) (D m*e)me

(077€)” = ( T e(dyme) (e )

N @50 + ety (95¢)

. 0je)” +ebje (0je)e

Y7 AV J J J = (§.e)?

Zj (57’(’ 6) = ( 6(8_76) e2 ) - (5Je)
as dj(7*(e)) = 0. Since i5(f) = 6;, we have i((67%€)**) = (d;¢)**. But i o ® otr = ® o troi}, and

ir(m"e) = e, so

T ((@ o tr)(w*e(&r*e)%)) = ((<I> o tr)(i;(ﬂ*e(éw*e)%))) =(do tr)(e(éje)%),

and we have the theorem. O

5. PUSH FORWARD MAPS

In this section we construct a push forward map in cohomology for oriented maps from a manifold N to
the space of leaves M/F. We will also give a geometric construction of the Connes-Skandalis push forward
map [CS84] in K-theory.

Recall the following from [CS84].

Definition 5.1. A map f: N — M/F is a cocycle (Va, fap) on N with values in G.

Here V = {V,} is a locally finite open cover of N and the maps fo5 : Vo NV — G satisfy fog(x)fsy(z) =
fany(z) forall z € Vo NV NV,

Note that as foafaa = faas faa maps V, into the space of units G(°) = M. The holonomy maps along
the fop provide the gluing maps to glue the local bundles f: v — V, together to get the pull-back vector
bundle f*r — N of the normal bundle v. The map f is oriented if the vector bundle TN @ f*v is oriented.
It is a submersion provided that each f,, : V,, — M is transverse to F'. We assume that f is an oriented
submersion until further notice. As above, i = {U;} is a finite good cover of M by foliation charts for F. We
may assume that each fno(V,) C U; for some i, for if not, we may replace V with a locally finite refinement
for which this is true. For each «, choose i(a) so that faa(Va) C Usa)-

Since the f,o are submersions, they induce foliations of the V,, and because of the cocycle condition, these
local foliations fit together to give a global foliation Fy of N. We may assume that the V, are foliation
charts for Fiy. Let S, be a transversal of V,,. The map fu, induces a map f, : So — Tjo) Which is a
diffeomorphism onto its image, so we get a map fax : Ac(Sa) = Ac(Ti(a)). Let w = (wa) € Ac(N/Fn), be a
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Haefliger form, where w, € A.(S,). As w has compact support and the cover V is locally finite, there are at
most a finite number of o for which w, # 0. It then follows easily that ) fa« induces a well defined map
denoted f. : A(N/Fn) = A.(M/F). Since f is oriented, Fiy is an oriented foliation on N. Recall the map

: A (N) = A (N/Fy).

Fn

Definition 5.2. For an oriented submersion f : N — M/F, / : Ac(N) = A(M/F) is defined to be
!

/f—f*o/FN,

Denote the cohomology class of any closed differential form « by [«], and similarly for Haefliger forms.
Definition 5.3. For an oriented submersion f : N — M/F, the push forward map fi : Hy(N;R) —
HL(M/F) ds defined by () = o

f

That this is well defined follows immediately from

dHO/:/OdN.
! f

Proof. Denote the Haefliger differentials on M and N by d¥ and d% respectively. The result then follows
from the fact that d¥ o f. = f. o d¥ and d% 0/ = ody. O

Fn Fn

Proposition 5.4.

This construction may be generalized as follows. Suppose that F} is another foliation of N and that
f:N/Fy — M/F is a submersion. This means that there is a submersion f : N — M/F so that the leaves

of Fy are submanifolds of the leaves Fyy. We can then construct a map f, : H:(N/F}) — H*(M/F) using the
techniques above. Assume that the cover V is a cover by foliation charts for F; as well as for Fy. Denote
the transversal of V,, for F} by S,. We may assume that S, is a fiber bundle over S, with projection .

Integration over the fibers of these bundles defines a map / : A(N/Fy) — A (N/Fy). We then define

fi: HX(N/Fy) — H:(M/F) to be fi(jw]) = [f*(/ w)]. Our particular case above is given by taking F; to be
the foliation of N by its points, so that H}, (N/FTlr) = H(N;R).

Recall that a map f: N — M between two manifolds is oriented if the bundle TN & f*T'M is oriented.
Given such a map, there is a push forward map f, : H:(N;R) — H}(M;R) which is defined using Poincaré
duality. If g : M — W is another oriented map, then (go f)i = g o fi. If f is a submersion, f; is also given
by integrating over the fibers of f. (This is just the construction above, taking F to be the foliation of M
by its points).

Now suppose that f : N — M/F is an arbitrary oriented map. We shall show below that there is a
manifold W and oriented maps ¢ : N — W and f: W — M/F where f is a submersion, and f = f o1.

Definition 5.5. Suppose f: N — M/F is written as f = foi as above. Define fi : HI(N;R) = HI(M/F)
to be the composition fi = fyoi.

Proposition 5.6. fi is well defined. In particular, if Wi, Ws are smooth manifolds, and i; : N — W;
and f; : W; — M/F are oriented smooth maps where f = f; oi; and each f; is a submersion, then
fryoin = fa; 0.

Proof. [See [CS84], p.1169] First note that if we have maps X Sow L M/F where both g and f are
oriented submersions, then f o g is an oriented submersion, and (f o g); = fi o gr. This is just Fubini’s
Theorem, coupled with the fact that g can be defined by integration over its fibers.
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In [CS84], the following commutative diagram is constructed

Wi
11 1 fi
1
i f
N W M/F
19 fo
)
Y
Wy

where W is essentially the fibered product of W7 and Ws over M/F, and f, m; and o are submersions. It
is clear that since i; and is are oriented, so is the fibered product map 4. In the same way the maps m; and
7o are clearly oriented. Then we have

fuyoin = fiyo(moi), = fiyomyoi = (fiom)odi = fioi.

Similarly, f2! o ’I:Q! = f! [©) Zl O

To construct a manifold W and oriented maps i : N — W and ]?: W — M/F where ]?is a submersion and
f= fo i, we follow [Con81], Section 11. For the benefit of the reader, let us sketch briefly the construction
of W. Recall the foliated microbundle N z# Wy P N associated to a I'y structure F on N introduced by
Haefliger, [H58, H70]. Suppose the foliation F is given by the submersions k; : U; — R? with changes of
coordinates kj; : k;(U; NU;) — k;(U; NU;). For each 4, let k; ' : R? — U; be a transversal (so kik; ' = Id).
Note that in general, £k, 1k:1(:1:) # x, but these points are always on the same placque of U;. As above, assume
that faa(Va) C Ui(a)- The Ty structure F on NN associated to f and F is then given by F = (Vu, ha, hig),
where hy = kz(a)faa Vo — R%. For each x € V,, N V3, the local diffeomorphism h{, 5 from a neighborhood
of hg(x) to a neighborhood of ha(z) is hgy = ki) H 6kz(;3)7 where H; is the holonomy determmed by
the path fug(x) from fgg(x) to faa(z) acting from its domain in k; (ﬁ)( 7) to its range in ki ( 7). Note
that {h{,5} is then a cocycle. Set Vo = Va x R? and consider the disjoint union ][ V,. Each of the sets V,

has the codimension ¢ foliation whose leaves are given by V,, x {r} where r € R%. Define i, : Vo — Va,
by ia(z) = (2, ha(z)) and pa : Vo — Vi by pa(z,7) = 2. The space W is then obtained from []V, by
identifying (z, s) € Vg with (@, h{5(s)) € V... The maps iy and p, determine well defined maps, iy : N — W,

and p : W — N. The map p is a submersion, and p oi; = Id. The local foliations also fit together to give
a global foliation Fy;; of W7 and it is easy to see that F is induced by i; and Fj;. Note that W is not a
manifold in general as it will not be locally Euclidean due to the fact that the h” op are only locally defined.
This problem is eliminated by taking Wi to be a sufficiently small neighborhood of the image of the i; in
wW.

Next we construct a submersion f; : W3 — M/F so that f = fl o i1 Each foliation chart U; has
coordinates U; ~ RP x R? with the placques glven by the R? x {r}. Set V = p~1'V,, which we may consider
as a subset of V, = V,, x R?. Define Jia,a 2 Vo = Uia) by

fla,a(mvr) = fa,a(x) + (0,7”).

We may assume that W7 is a sufficiently small enough neighborhood of the image of i; in W so that the
J1a,q are well defined. It is obvious that each f1, , is transverse to F. Now suppose that Va N VB <0, A
point z in this intersection has two different coordlnates namely (z,7) € V, x R? and (z, hB,a( r)) € Vz x RY.
Define fi, : Vo ‘75 — G by f15.4(2) is the class of the leafwise path starting at f1, ,(z,7), ending at the
point fig g(x, h§ ,(r)) and parallel to the leafwise path determined by fs (). We leave it to the reader to
check that this is well defined and gives a submersion f; : W, — M/F. Tt is obvious that f = fj 0 4;.
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To finish the construction of W, ¢ and ]?, we take care of the problem of making both fand 1 oriented.
Let £ — N be the normal bundle of an imbedding of N in some Euclidean space. Let W = p*¢ and denote
by m: W — W the projection, and by s: W; — W the zero section. Set

i=s0i: N—>W and f:floﬂ':W—>M/F.

Then f = foz' since mo s = Id, and fis a submersion.
It is easy to see that iiTW1 ~ TN @ f*v and s*TW = s*Tp*¢ =TW; @ p*E, so i*TW ~TN & f*v @ &.
Thus TN @ *TW ~TN & f*v @ TN @ £ is oriented since f is oriented and TN @ £ is a trivial bundle.
Finally, using the fact that 41 (IV) is a deformation retract of Wi, which implies that (iy o p)*E ~ FE for
any bundle E over Wy, we have

TW & f*v ~ a*(TW) &p*¢) @ fiv
~ 7r( (TN @ f*v )@p*&@(ilop)*ffV>
m (p (TN & f* )@p*é@p*i’{f{‘l/)

mTp (TN & ffv e fv)
Tp (TN e ffve fv),

R

1R

which is oriented.

We now give a geometric construction of the push forward map f, : K2(N) — Ko(C*(M, F)) associated
to the K-oriented map f : N — M/F constructed by Connes and Skandalis in [CS84]. C*(M, F') is Connes’
foliation C* algebra for F'. We will use the fact that fi takes values in the image of Ko(C2°(G)) under the
inclusion map in K-theory. The map f is K-oriented provided that the bundle T*N @ f*(v) is endowed with
a Spin® structure. If f is K-oriented, it is oriented. The fact that f is K-oriented implies that i is K-oriented,
so we have the push forward map i, : K°(N) — K%(W).

Denote by F the foliation of M x R2* whose leaves are of the form L x {z} where L is a leaf of F and
x € R If we denote the holonomy groupoid of F by G®”, then G®” = G x R2*, and the space of leaves of
Fis M x ]R%/F M/F x R?*. Let the map f be represented by the cocycle {fag, Vo } where V = {V,} is
a locally finite open cover of W. Choose an imbedding g : W — R?* and let h: W — M x R2k/F be given
by the cocycle {hag, Vo } where

hap(x) = (fap(z), 9(2)).
Now denote by U = {U;} a locally finite good cover of M x R?* by foliation charts for F. As above, we may
assume that each haa(Va) C U; for some 4, and for each o we may choose i(c) so that haa(Va) C Usa).-
Note that for each «a, hy, is an imbedding of V,, in a transversal of the foliation F. This implies that each
hag is an imbedding in a transversal of the combined foliation ﬁs &) 13,. of QR%.

Recall the open cover of QR% associated to the cover U of M x R?*. For each U; € U choose a smooth
connected transversal T; C U;. We may assume that these transversals are pairwise disjoint. Let U; and Uj;
be in U, and let v;; be a smooth map ~;; : T; — G®*" 5o that for each y € domain(vy,;) C T3, s(vi5(y)) € T;
and 7(7;;(y)) € T;j. The open subset of grR™

(Uzw Yij U j)
consists of the classes of all leafwise paths o which start in U;, end in Uj, and if the path o is in the leaf
of v;;(y) then o is parallel to 7;;(y). We may also describe (U;,7;5,U;) as the classes of all leafwise paths
of the form ~y; o v;;(y) o v;, where ;, respectively ~;, is entirely contained in the placque of U;, respectively
Uj, containing s(v;;(y)), respectively r(v;;(y)). Note that the i image 'y”( i), denoted Tj;, is a submanifold
of (U;,7i;,U;) which is a transversal of the combined foliation FaF.

The image of any map hag : Vo N'Vg — G®”" is contained in a chart of the form (Uita), Yap: Uicpy) as
above. We now alter the hap so that the new hap satisfy hag(Va NVp) C Vap(Ti(a)). For each x € V, NV,
hap(x) may be written as the class of some yg(x) © 7ag(y) © Yo (z), where y € Tj(4) is in the leaf containing
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hap(z), and the paths v, (z),vs(x) are entirely contained in the placques of Uj(,) and Uj) respectively
determined by the end points of v,5(y). We define the new h(z) to be v,3(y). We leave it to the reader to
check that this does define a map h: W — M x R}/ F which is equivalent to the original h, and with each
new hqq an immersion of V,, in a transversal of the foliation F , s0 each new hg is still an immersion in a
transversal of the combined foliation ﬁs @ ﬁr.

Remark 5.7. Given any finite subset VC V, we may alter the map h by sliding images along leaves as

above and refining the cover U to obtain an equivalent map h which satisfies, UsoyNUjg) = 0 forVy, Vs € ]7,
a # B. This will be useful later.

We now extend the map h so that it is étale. Let v9 be the normal bundle to the image of TFyy in R2*.
In particular, v = [g.(TFw,.)]*. Denote by my : v9 — W the projection and by j : W — 19 the zero
section. On 9, we have the open cover by the sets V, = T (Va). The map h:v9 — M x R?/F is given
by the cocycle {iAzag, V..}, where

hap(2,) = (fas(x), g(x) + €).

We may choose an open neighborhood X of the zero section j(WW) C 19 so that each ﬁaﬁ satisfies
hap(Va NV N X) C (Uita), Yap: Uics))»

and Ea[g is aAdiﬁfe(A)morphism of ‘Afaﬂ‘/}/ﬂWX onto an openfubset of the transversal T;(q)i(3) of (Ui(a), Vas,> Ui(s))-
Set hX = {hap, Va N X)}. Then hX : X — M x R?*/F is an étale map, and h = h¥ o j.

The map j : W — X is K-oriented. To see this, denote by Fy, the foliation of W induced by fand F,
and denote its normal bundle by v, . Then TW @ j*TX ~TW @ TW ©v? ~ (pom)* (TN & §) ® v, &
Vi @ TFy@®vI. AsTN &€ and TFy d 19 are trivial and Ve ® Vi, has a complex structure, so is Spin€,
j is K-oriented. Thus we have the push forward map j : K(W) — K2(X).

We need two more constructions in order to complete the definition of f; The first is the non-commutative
space R associated to the open cover Vx = {\A/a N X} of X. See [Con94] Section I1.2.c. Consider the space
X which is the disjoint union of all the ‘7a N X. There is an obvious map ¢ : X — X, and we write
z ~ 2 for 2,2/ € X if q(z) = ¢(z’). This is an equivalence relation and we define R C X x X to be
the graph of this relation with the induced topology Note that R is the disjoint union of the open sets
Rap ={(z,7) € (Vo N X) x (Vg NX)|zn~2}~Von Vg N X. The space of compactly supported smooth
functions C°(R) on R is a * algebra with the operations being given by

Fro)e) = X S0l

f(z2) = f(#,2).
The C* algebra associated to this x algebra is Morita equivalent to the C* algebra associated to C°(X),
see Proposition 1 of [Con94]. This equivalence is effected by the x—algebra homomorphism T : C°(X) —
C*(R), given by

T(f)=(foq) a
where a € C°(R) is constructed as follows. Choose a partition of unity {¢,} on X subordinate to the cover
Vx. The value of a at the point (z,2’) € Rap is

') = \/bala())85(a(=").

Note that a is an idempotent, i.e. a = a® = a*, and it has rank one when thought of as a matrix of functions
[ang] where ang € C°(Rap). Y induces the isomorphism

T KI(X) = Ko(C2°(X)) = Ko(C2(R).

2

The second construction is the sub-groupoid Gr C QR%7 which consists of the classes all leafwise paths
which start in the transversal T; C U; and end in the transversal T; C Uj, where U;, U; run over all elements
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of U. Gr is the union of all the transversals T;; of the sets (U;,~i;,U;). The algebra structure on C2°(Gr)
is given by
(fx9)M) = > flm)gho)
Y1Yo=Y
fr)=fh.
As above the C*-algebras associated to C2°(Gr) and CZ° (QR%) are Morita equivalent, where the equivalence
is effected as follows. For each transversal T;, let ¢ : D; — T; be an imbedded normal disc bundle. We may

assume that the D; are pairwise disjoint. Let ¢ = dim 13, and choose a smooth function 1 : D — R with
compact support so that

2 =1.
D¢
On each D; ~ T; x D’ with coordinates (z,y), define v;(x,y) = v (y). Then 1); has fiber compact support

and for all x € Tj,

Define ¥ : C°(Gr) — CSO(QR%) by

() = ils())f (i ()b (r (7)),
where v € (U;,7i5,U;), s(v) € D;, () € Dj, and s(v) is in the plaque determined by y € T;. For any ~
which does not start in some D; or does not end in some Dj, U(f)(y) = 0. It is easy to check that ¥ is a
well defined *-algebra homomorphism, so it induces the map

W, Ko(CF°(Gr) = Ko(CZ(G™).

Now it is quite clear that h¥ : X — M x R%/I/5 induces a well defined map hX R = Gr and also a
well defined *-algebra map hX : C°(R) — C°(Gr), and so the map h{ : Ko(C®(R)) — Ko(C(Gr)).
Recall that C*(M, F) and C*(M x R?* F) are Connes’ foliation C* algebras for F' and F respectively.
As GF" = G x R?* we have Ko(C*(M x R?* F)) ~ Ko(C*(M, F)®Cy(R?*)) which by Bott periodicity
is isomorphic to Ko(C*(M, F)). Denote the composition of these two isomorphisms by B : Ko(C*(M x
R?**, F)) — Ko(C*(M, F)).

Definition 5.8. The push forward map fi : K°(N) — Ko(C*(M, F)) is the composition of the following

maps
2k
i

KJ(N) = Ko(C2(GF)) — Ko(C (M x B, ) = Ko(C*(M, F)),
where KO(C’SO(QR%)) — Ko(C*(M x R?, ﬁ)) is induced by the inclusion CEO(QR%) < C*(M x R?F, ﬁ), and
e " is the composite map

A 1 « ) h!X ) « ) 2
KJ(N) = K(W) =5 K2(X) = Ko(C(R)) == Ko(CZ2(Gr)) = Ko(C2(G").
The following result is proved in [CS84].
Theorem 5.9. The map fi: KJ(N) = K,.(C*(M, F)) is well defined.

Proof. This is a consequence of the homotopy invariance of K-theory for C*-algebras by using the homotopy
described in [ASI][page 498]. For more details, see [CS84]. O

Definition 5.10. Let f: N — M/F be a K-oriented map and g : W < R?** an imbedding of W as above.
Set

W = [ ochy Ko(CR(@ ) — 100/,
R2k
where ch, : KO(C’;’O(QR%)) — HI(M x R2*/F) is the Chern character associated to the foliation F on

M x R?** and / CHY (M x R**/F) ~ H:(M/F) @ H!(R**;R) — H(M/F) is integration over R2*.
R2k
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2k 2k . . . . .
The fact that chy  off : KO(N) — Hi(M/F) is well defined is an immediate consequence of our main
theorem.

Theorem 5.11. Let F be an oriented foliation of a compact manifold M, and f : N — M/F a K-oriented
map. Then the following diagram commutes.

RZk
KO(N) : Ko(C2°(GF"))
ch(-) ATd(f) | Lent”
HE(V: R) f H: (M]F).

Proof. We need only show that the following diagram commutes.

iy Ji hi*

K2(N) K2 (W) K2 (X) Ko(C(GF™))
Leh(-)ATA(f) | ch()ATd(j) | ch I ch,
HE(N:R) —e H(WIR) —2 e HE(XR) — e HO(M x B2 /F),

where h¥ : KO(X)— KO(C’E’O(QR%)) is the composition

KI(X) 5 Ko (C(R)) ™5 KolC22(Gr)) 2 KolC(GF),
Td(f) = TA(TN)/ Td(f*v), and Td(j) = Td(TW)/ Td(j*TX). To see this, observe that

A :/ ohX o jody : HE(N;R) = H(M/F).
R2k

The classical results of [ASIII] and [CS84] imply that the second rectangle commutes up to sign. The sign
comes from the definition of the Chern character, see again [ASIII]. By the same token, the left rectangle
would commute if we removed the term ATd(j) and replaced Td(f) by Td(i) = Td(TN)/ Td(:*TW). Thus
to see that it does commute, we need to show that Td(f) = Td(i) A i*(Td(j)). Let p : M x R?** — M be

the projection and denote the normal bundle of F by vz. Then
f=poh*ojoi,
so f*v =1"j*h**p*v and f*(v & R**) = i*j*hX*p* (v @ R?*) = i*j*hX*(vp) = i*j* (T X), since A is etale.
Thus Td(f*v) = Td(f*(v & R?*)) = Td(i*5*TX), so
Td(f) = TATN)/ Td(i*j*T X).
As Td(:) = Td(TN)/ Td(@*TW) and Td(j) = TA(TW)/ Td(j*TX),
Td(i) Ad*(Td(j)) = Td(TN)/ Td(@*j*T X),

and the left rectangle commutes.

To finish the proof we show that the third rectangle commutes by a direct computation. Let € = (e, A) be
an idempotent in My (C°(X) @ C). We now apply Remark 5.7 to the open sets of Vx covering the support
of e to obtain a representative of the map h which satisfies the conclusions of that remark. In particular,
this implies that the image of e on the transversal T;(,) under the composition hX o ch is the Haefliger form

for F

. (00 tr(eexp( LY ),

2m
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where d is the deRham differential on X. The degree 2j part of this form is
—1\i1 o y
(35) 1 e (Do e(e(de)))

The map hX : ‘A/a NX — Tj(q) is a diffeomorphism onto its image, so we may assume that we have coordinates
(w0,50) on Dj(qy C Ujia) C M x R?* of the form (VanX) x D¢, and the transversal coordinate x( is given
by (hX)~!. Then the degree 2j part of hX che in these coordinates at the point (x¢,0) € Ti(a) is just
1\7 1 .
(WX che)a; (—) = Pa tr(e(de)®)(xo),
4!

A%

where d is now the deRham differential on Tj(,).
We now compute the degree 24 part of ch, hXe on Ti(a) in these coordinates and show that it is the same as

(h™ che)a;. Asabove, we have coordinates (f/\'aﬁX) x D¢ x D on the open subset of the chart (Uia)s Yap: Uiga))
of QR% determined by D;(,) and D;(z). The local coordinate functions are denoted (o, 5o, 70), where s is the
fiber coordinate on Dj(,) and rq the fiber coordinate on D;(zy. Note that hXe can be non-zero on the chart
(Uita), Yaps Uicpy) only if Vay m73 NX ## 0, and it has support contained in the open subset (XA/Q NX)xDf x D
The element A¥Xe in these coordinates is given by

h¥e = 1) (10)Vi(a) (50) (e7/Pa0a) (o).

—1\71
If we ignore the constant (—) - the degree 2j part of Haefliger form ch, hXe on the transversal Ti(a) is
in/ gl

(chy h¥e)q; = /W try (hXe(5(hXe))2j>dso,

where try takes into account the 2 x 2 matrix J(h*e) obtained from the definition of §. An easy induction
argument using the fact that h*e(d,(h¥e))?~1hXe =0 for all £ > 0, shows that

i B¥e ((8,(h¥e)? + (hXe)8(h¥e))’ 0
h¥e(6(h¥e))¥ = ( ( 0 ) 0 >

Thus
(chy h¥ e)a; = /D (WY e((0, (0% 0))? + (¥ )0 €))7 )dso.

We will show below that we can choose the connection we use to define § so that 8§ = 0, so
(cha h¥€)a; = / tr (W e(@, (¥ ) ) dso.
D¢

At the point (z9,0) € Tj(,), this is given by
Lu(f [ 0Fa6maue e am oo - i )ds.
D

g(’Yz ) Lty
where s(v9) = (xo,80) € (Va NX)xDc Ui(a), and g5 -7 is equivalent to the constant path at the
point (29, 50). The element vy € (Uj(a); Vas, Uis,)), and for a = 1,...,25, va € (Uig,)s V8uBasr> Ui(Basr))
where we have the convention Usg,, ) = Ui(a)- (Ui(8.)s V8uBasrs Ui(Basr)) has coordinates (24, 5q,74) from

(Vga N X) x DY x D’ In these coordinates h¥e is given by

h¥e | (Ui(Ba)VBaBas1 ViBay1) — wi(ﬂa«{»l) (Ta)wi(,ﬁ’a) (54) (e\/ ¢[3a+1 ¢ﬁn,) (q(xa))-

A straightforward computation shows that the above integral is the same as

La(CS [ [ oo, sa)eyfoutn,ata)

B1---B2;
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{1/% (B2;) (T2 —1)Vi( B2y 1) (S25-1) (€7 Do, Dy 1 ) (@251 } A
81/{%@1)(7“0)%(&)(30)( V65, 00)( }d81 e d32j)d30-

The sum is over all 3, with z¢ € q(YA/Ba N X). Note that ¢(z,) = 2o and 1, = 441 for a = 0,...2j, where
we set s2;41 = S9. Thus the integral is

LS [ ] vansovin (o) ey/0nta, o)

B1-+-B2j

8”{%(/3%)(821)%(/3%71)(52j—1)(e\/m)(x°)} Ao A

00 {Wita0) (1)1 (50) (/D 0) (w0) s -+ disa; ) dso.

Now, the computation is local and in order to get the local expression for the transverse differential 9, on
(Ui(84)> V8aBasr> Ui(Barr)) We apply the material from the proof of Lemma 3.2 where E) is the N dimensional

trivial bundle over M x R?*  since hXe € MN(CSO(QR%)). We choose the connection on E; to be the
canonical flat connection. Then V¥ on (Uj(g,), Y8, 80111 Ui(Basy)) is given by

VY =d,, +ds,,
and # = (V¥)? = 0 as promised above. Locally
o, (h*e) = (do, +ds,)(h¥e).

Using these facts, the fact that we may identify each d., with d on Tj(,), as well as the fact that / Vids, P =
D¢

0, the integral becomes

/W tr(ﬂ1§2j /W . /DI’« ilJz’(a)(so)wi(@j)(ng)(eM)(%).
{wi(ﬁzj)(Szj)%‘(ﬁzj,l)(Szj_l)d(em)(xo)} A-ee A

{¢i(ﬂ1)(51)¢i(a)(So)d(e\/mxxo)}d& r dSQj)dSo.

Since 1/)12 =1, this equals

D¢
( \/d)aqsﬂzj (6\/¢sz d)ﬂm‘—l) AREERA d(em)> (330)7
- Baj

which equals
tr( Z Ga®p,,; - Ppede N+ A de) (x0) + other terms.
B1B2j
As ZB ¢p = 1 the first term above is just

Pa tr(e(de)™) (zo),
so we need only show that the “other terms” are zero in Haefliger cohomology. These terms come in several

types.
(1) Those which have a repeated dgg,, such as

w( Y ev/oa ‘bj)ﬁ ‘bj)ﬁ N (ev/85,60))

B1-+-B2;

which are obviously zero as forms.
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(2) Those which have a d¢g, which is not repeated, such as
1 1
(D ev/Bagdon, Aesdon, , Ao Ad(ey/d5,0a))-
B1:--B2;
These are zero as forms since they equal
1 1
tr( Z €y ¢a§d/(z ¢52j) /\eid(bﬂ%fl /\"'/\d(e\/ ¢61¢a))7
B1B2j—1 B2;

and > 5 ds,; =1 near xo.
(3) Those with no d¢g,, in which case we have the form

tr(a;gy /0, e[ B,y 8,y N+ Nden/Ba05, A en/Fa N %dqﬁa).

The Haefliger class determined by all these local forms is zero since it is the local image under h¥
of the global form on X

tr( Z e\/¢521de\/¢ﬁ2j¢521—1 N Nden/gp,dp, N e\/%/\ %d(z ¢a))a

Bi-+Ba2;

which is zero since ) ¢ = 1.
O

Remark 5.12. As pointed out to us by G. Skandalis, the results of [Con86] hold for any holonomy invariant
current. Therefore, the pairing of the Chern-Connes character ch, with any holonomy invariant current
extends to the K—theory of the foliation C*—algebra. Hence, the proof above shows using the Connes-

Skandalis index theorem in the K—theory of the foliation C*—algebra that ch]f% Of!R% s given by
Chlg% O.f!]R2I€ =chg 0 !Lmv

where f*" is the analytic shrieck map described in [CS84].

6. THE INDEX THEOREM

In this section, we compute the Chern character of the topological index of any class u € KS(TF ). This
permits us to translate the Connes-Skandalis index theorem [CS84] to Haefliger cohomology and yields an
alternative proof of the longitudinal index theorem in Haefliger cohomology for all longitudinal pseudodif-
ferential operators, compare [HL99, GL03, GL05].

We first describe the Chern character of the topological index, i.e. the homomorphism ch,(Ind;) :
K%TF) — H:(M/F). Choose a smooth imbedding g : M < R?**. Denote by nr : TF — M the pro-
jection, and by 7x : N — M the normal bundle to TF in R?*. Let j : M < N be the zero section of N and
f:TF — N the composite map

f=jomp.
The map f is K-oriented by a complex structure since T(T'F) ~ 15 (TF®TM) and f*(T'N) ~ n(N&TM),
SO
T(TF)& f*(TN) ~75(TF& N & TM & TM) = np(g* (TR*) @ TM & TM).
Therefore the Atiyah-Singer shrick map f; : K&(TF) — K%(N) is well defined, see for instance [ASI].
Moreover the Todd class of f is given by

Td(f) = TA(T(TF))/ Td(f*(TN)) = Td(x}a(TF & TM))/ Td(r}s(N & TM)) =

5(TA(TF)/ TA(N)) = w4(Td(TF) - TA(TF)) = np(Td(TF & TF)) = 74(Td(TF ® C)),
since 1/ TA(N) = Td(TF) as N @& F ~ M x R,
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Recall the foliation F of M x R2* and its holonomy groupoid G®" = G x R%*. The bundle N may be
identified with an open transversal of F' by the map i : N — M x R?* where

i(x,8) = (z,9(x) + §).
On a suitable neighborhood of the zero section, this gives an open transversal and we may assume that the
neighborhood is in fact all of N. Thus we have the map
iy KO(V) — Ko (C2(GF)).
The inclusion pR% : C'SO(QR%) s C* (M xR?F, ﬁ) gives pﬂfzk : KO(CSO(QRM)) — K(C* (M xR?*, ﬁ)) Finally,
we have the Bott isomorphism B : Ko(C*(M x R** | F)) ~ Ko(C*(M, F)®Co(R?**)) — Ko(C*(M, F)).
Definition 6.1. [CS84] The topological index morphism is the composite map
Ind; = Bo %" oiyo fi : K9TF) — Ko(C*(M, F)).

Ind; is well defined, see [CS84]. Moreover if 7 : TF — M/F is the natural map, then 7 is a K-oriented
submersion and it is clear that i o fy = 71', . We therefore denote by ch,(Ind;) the map

chy(Indy) = ch®" on®™ . KO(TF) — H' (M/F).

a

Theorem 6.2. For any u € KY(TF), ch,(Ind;)(u), the algebraic Chern character of the topological index of
u, 1§ given by

chy (Indy ) (1) = (—1)7 /F 7 (ch(u) TATF ©C) ¢ H'(M/F),

where 7, : H(TF;R) — H*(M;R) is integration along the fibers, and ch : KY(TF) — H*(TF) is the usual
Chern character.

Proof. Asi: N — M x R?! is a transversal to ﬁ, we may regard ¢ as a map from N to M X R%/ﬁ and we
have the push forward map

iy s HE(N;R) — HE (M x R?F/F).
The essence of the theorem is that the following diagram commutes up to sign.

f

1)

KY(TF) KJ(N) Ko(C2(9%))
L ch()) ATA(f) ! ch L enf” [
“(TF;R) — *(N;R) N H(M x R%/F) WM/

\ / ' N\ e

H(M/F) ® H (R*;R)

The classical results of [ASIH] and [CS84] imply that the left rectangle commutes up to sign. The sign comes
from the definition of the Chern character and can be fixed by inspecting trivial examples, see again [ASIII].
The triangles commute by definition. The fact that the rest of the diagram commutes is just Theorem 5.11.

Now observe that
/ o~ o1 0) = / .
R2k F

The theorem follows immediately since Td(f) = 7} Td(TF @ C). O

‘We now discuss the relationship of the results here with the Connes-Skandalis index theorem, and answer
a question asked in [He95]. As in Section 3, let P be a uniformly supported elliptic pseudo-differential
G-operator acting on the bundle E = r*(E;). Restricting P to the holonomy cover of a leaf L of F' gives a
G(L)-invariant pseudo-differential operator, where G(L) is the holonomy group of the leaf L. Therefore, the
principal symbol of P can be defined using the induced operator on E; | L. We get in this way a section o (P)
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of the bundle Hom(n},Eq) over TF. An element P € U™ (G; E) is elliptic if o(P)(§) : (npEr)e = (mhE1)e
is an isomorphism for all £ # 0, ¢ € TF. Denote by Ind, : KS(TF) — K¢(C>(G)) Connes-Skandalis
analytic index map [CS84]. This map associates to an element u the analytic index Ind,(P) of any elliptic
pseudo-differential G-operator P with symbol o(P) = u. The construction of P from u is given in [Con79].
Denote by

px : Ko(CZ(G)) — Ko(CT(M, F)),
the homomorphism induced by the inclusion map p : C°(G) — C*(M,F). Note that p. need not be
injective. Recall the Connes-Skandalis leafwise index theorem.
Theorem 6.3. [CS84]  p, oInd, = Ind; : KS(TF) — Ko(C*(M, F)).

Let A be any x-subalgebra of C*(M x R?*, F ) which contains the smooth convolution algebra CSO(QRM),
and denote by pA : A — C*(M x R%,ﬁ) the inclusion. An example of such algebra is the algebra of
operators in C*(M x R F ) with smooth kernels having superexponential decay, see [HL02]. In that case,
the Chern character ch]f% extends to the K-theory of A.

Theorem 6.4. Suppose that the Chern character chfzk extends to K(A) and that Ker(p) C Ker(ch]f%).
Then for all u € KY(TF),

ch, (Indy) (u) = ch, (Ind, (u)).

Proof. The Connes-Skandalis index theorem gives

2k 2k
B lop,olnd, = p% onf

Denote by ¢ : Ko(C°(G)) — KO(CSO(QR%)) the Bott homomorphism. Then

k

B lop, = p]§2 o .
Denote by & : Ko(CS® (QR%) — Ko(A) the map induced by the inclusion, and set
Ind(u) = (" 0 p)(Inda(w))  and  Indf(uw) = (& ol )(u).
These satisfy
p(Ind7 (u)) = p2(Indz' (w)),
SO
Ind (u) — Indfl(u) e Ker(ph),
and
2k 2k ~

ch®" (Ind# (u)) = cb® " (IndP(w)) €  HI(M x R*/F).

Integrating over R?*, we get by definition of the Chern character of the topological index
chy (Ind, ) (u) = / b (IndA (u)) = / ch®" (IndA (u)) = chg (Ind, ().
R2k R2k
([l

From the deep extension theorem of [Con86], it follows that Ker(p®™") c Ker(ch]f%) i.e. Theorem 6.4

holds for the case A = Cg° (QR%). Therefore, we deduce from our computation of the Chern character of
the topological index, the cohomological formula for all elliptic pseudodifferential operators on foliations.

Corollary 6.5. For any u € KY(TF),ch,(Ind;)(u) = chy(Ind,(u)) and

chy (Ind, (1)) = (—1)7 /F 7 (ch(w) TATF ©C) € HY(M/F).

Thus we have the following.
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Theorem 6.6. Suppose that P is a leafwise elliptic pseudodifferential operator defined along the leaves of
a foliation. Then
chy(Indy)([o(P)]) = chy(Ind, (P))

in Haefliger cohomology.
A particularly interesting case is that of spin® Dirac operators. Compare with [GL03, GLO05]:
Corollary 6.7. Suppose TF admits a Spin® structure and denote by L the line bundle corresponding to that
structure. Let o : KO(M) — K%(TF) be the corresponding Thom isomorphism. Then for any u € K°(M),
chy(Tndy (a(u))) = / ATF)er W2 ch(u) € HY(M/F),
F

where ¢, (L) is the Chern class of L, A(TF) is the A-genus of TF, [LM89], and ch : K°(M) — H*(M;R) is

the usual Chern character.

Proof. The Thom isomorphism « is exactly the Gysin shriek map corresponding to the K-oriented inclusion
of the zero section of TF [ASI]. Therefore, by functoriality of the Gysin shriek maps [CS84], the composite
map fioa coincides with the Gysin shriek j; map corresponding to the inclusion of the zero section j : M — N
of the K-oriented bundle N. Hence

chy (Indy ) (a(u)) = (—1)7 /F Td(j) ch(u).
Now an inspection of the cohomology class Td(j) shows that
Td(j) =1/ Td(N) = Td(TF),
where here Td means the Todd class of the Spin® bundle, see [LM89, BD81]. But the Spin® Todd class of
the bundle TF is precisely (—1)? A(TF)e(1)/2 [BD81]. O
As an immediate corollary, we have an index formula for twisted spin Dirac operators [LM89].

Corollary 6.8. Assume that the foliation F is spin and let D be a leafwise Dirac operator associated to
the spin structure on TF and complex vector bundle E over M. Then

chy(Indy([0(D)])) = /F A(TF)ch(E) € HY(M/F).

Proof. The integrand of Theorem 6.2 is known to be equal to /T(T F) ch(FE) for such Dirac operators by

classical characteristic computations, [ASIII]. O
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