Math 313 Homework 1
 Due Friday January 25

Q1 Prove carefully, making clear at each step which axioms you are using, that in an ordered field, $-1<0$. (I.e., $-1 \leq 0 \&-1 \neq 0$.) Then use Theorem 3.2 (iv) to deduce that the complex numbers \mathbb{C} cannot be an ordered field.

For discussion Do you think that field $\mathbb{Q}(t)$ of rational functions (i.e. fractions with polynomial numerator and denominator) having rational number coefficients can be an ordered field?

Q2 Suppose x is a rational number such that $x^{3}+a x^{2}+b x+1=0$ for some integers a and b. Show that x must be +1 or -1 , and furthermore that either $a=b$ or $a+b=-2$.

Q3 Define a sequence of natural numbers $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ as follows: $a_{1}=1$, and once given a_{n}, define a_{n+1} to be $2 a_{n}+1$. (Such a definition is known as a recursive definition.) Prove that all $n \in \mathbb{N}$, we have $a_{n}=2^{n}-1$.
Q4 Ross, exercise 3.4.
Q5 Ross, exercise 4.6

