Math 313 Homework 2

Due Friday January 31

Q1 Ross 8.2 a), b), e)
Q2 Ross 8.9
Q3 Suppose $d_{1}, d_{2}, d_{3}, \ldots$ is a sequence such that $\lim _{n \rightarrow \infty} d_{n}=L$ where L is finite. Let $e_{n}=\frac{d_{n}+d_{n+1}}{2}$ for all n. Show that $\lim _{n \rightarrow \infty} e_{n}=L$ as well.
Extra Credit, for discussion Suppose $d_{1}, d_{2}, d_{3}, \ldots$ is a sequence such that $\lim _{n \rightarrow \infty} d_{n}=L$ where L is finite. Let $f_{n}=\left(\sum_{i=1}^{n} d_{i}\right) / n$. Show that $\lim _{n \rightarrow \infty} f_{n}=$ L as well.
Q4 Prove that if $\lim _{n \rightarrow \infty} c_{n}=L$ for some $L \in \mathbb{R}$ then $\lim _{n \rightarrow \infty}\left(c_{n}\right)^{2}=L^{2}$. On the other hand, give an example of a sequence c_{n} and a real number L where $\lim _{n \rightarrow \infty}\left(c_{n}\right)^{2}=L^{2}$ but where it is not true that $\lim _{n \rightarrow \infty} c_{n}=L$.

Q5 Let $a_{n}, n \geq 1$ be the sequence defined recursively by $a_{1}=1, a_{n+1}=$ $\left(a_{n}+2 / a_{n}\right) / 2$. Prove that the sequence converges to the limit $\sqrt{2}$.

