Math 215 Sample Final Exam

2 Hours. Show all work – unsupported answers will not receive credit. Complete, correct, answers to 8 questions get 100%. (There will be more questions on the actual final)

Q1 a) Prove by induction that $\sum_{i=1}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}$

b) Assuming the well ordering principal – i,e, that every non-empty subset of \mathbb{N} has a least element, prove the principal of mathematical induction.

Q2 a) Compute the truth table for $(S \land \sim T) \Rightarrow (T \land \sim S)$

b) Let $f : \mathbb{N} \to \mathbb{R}$ be the function f(n) = 1/n. Which of the statements $\forall n \in \mathbb{N}, \exists j \in \mathbb{R}, j > 0, \forall e \in \mathbb{R}, (j > e > 0) \Rightarrow (f(n) < e)$ and $\forall e \in \mathbb{R}, (e > 0) \Rightarrow (\exists k \in \mathbb{N}, \forall n > k, f(n) < e)$ is true.

Q3 a) If S is a set, define the power set $\mathcal{P}(S)$ of S.

b) Let *S* be a finite set. Write #(S) for the cardinality of *S*. Prove that the power set $\mathcal{P}(S)$ of *S* has $2^{\#(S)}$ elements.

Q4 Recall that two numbers *m* and *n* are coprime (i.e. have g.c.d 1) if and only if $\exists x \in \mathbb{Z}, \exists y \in \mathbb{Z}, mx + ny = 1$. Recall that a number *p* is prime if it has no divisors other than 1 and itself. Prove

- a) A number *n* and a prime number *p* are coprime if and only if *p* does not divide *n*.
- b) That p is a prime, and if a and b are natural numbers, then $p \mid ab \Rightarrow (p \mid a) \lor (p \mid b)$

Q5 a) State the axioms for a group. b) Prove that if $G = (G, \bullet, e)$ is a group, then

 $\forall g \in G, \forall h \in G, \forall k \in G, (gh = gk) \Longrightarrow (h = k)$

Q6 Let *X* and *Y* be sets. Define the Cartesian product $X \times Y$, define what is a meant by function $f: X \to Y$. Define what is meant by saying that such a function is *injective*, *surjective*, *bijective*. Prove that if *W*,*X*,*Y*,*Z* are all sets, $f: X \to Y$ is a function, and $g, h: Y \to Z$ and $a, b: W \to X$, are all functions, then:

- a) f injective and $fa = fb \Rightarrow a = b$
- b) f surjective and $gf = hf \Rightarrow g = h$

Q7 Define <u>equivalence relation</u> on a set *X*. Prove that congruence modulo *n* (i.e.

 $a \equiv b \pmod{n} \iff n \mid (a-b)$ is an equivalence relation on \mathbb{Z} .

Q8 Prove that the rational numbers and the natural numbers have the same cardinality. OR Prove that the set of all sequences of 0's and 1's (*i.e.* the set of all functions from \mathbb{N} to the set $\{0,1\}$) is uncountable