Math 215 Sample Final Exam

2 Hours. Show all work - unsupported answers will not receive credit.
Complete, correct, answers to 8 questions get 100%. (There will be more questions on the actual final)

Q1 a) Prove by induction that $\sum_{i=1}^{n} i(i+1)=\frac{n(n+1)(n+2)}{3}$
b) Assuming the well ordering principal - i,e, that every non-empty subset of \mathbb{N} has a least element, prove the principal of mathematical induction.

Q2 a) Compute the truth table for $(S \wedge \sim T) \Rightarrow(T \wedge \sim S)$
b) Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be the function $f(n)=1 / n$. Which of the statements
$\forall n \in \mathbb{N}, \exists \varphi \in \mathbb{R}, \varphi>0, \forall \varepsilon \in \mathbb{R},(\varphi>\varepsilon>0) \Rightarrow(f(n)<\varepsilon)$ and
$\forall \varepsilon \in \mathbb{R},(\varepsilon>0) \Rightarrow(\exists k \in \mathbb{N}, \forall n>k, f(n)<\varepsilon)$ is true.
Q3 a) If S is a set, define the power set $\mathcal{P}(S)$ of S.
b) Let S be a finite set. Write \#(S) for the cardinality of S. Prove that the power set $\mathcal{P}(S)$ of S has $2^{\#(S)}$ elements.

Q4 Recall that two numbers m and n are coprime (i.e. have g.c.d 1) if and only if $\exists x \in \mathbb{Z}, \exists y \in \mathbb{Z}, m x+n y=1$. Recall that a number p is prime if it has no divisors other than 1 and itself. Prove
a) A number n and a prime number p are coprime if and only if p does not divide n.
b) That p is a prime, and if a and b are natural numbers, then $p \mid a b \Rightarrow(p \mid a) \vee(p \mid b)$

Q5 a) State the axioms for a group.
b) Prove that if $G=(G, \bullet, e)$ is a group, then
$\forall g \in G, \forall h \in G, \forall k \in G,(g h=g k) \Rightarrow(h=k)$
Q6 Let X and Y be sets. Define the Cartesian product $X \times Y$, define what is a meant by function $f: X \rightarrow Y$. Define what is meant by saying that such a function is injective, surjective, bijective. Prove that if W, X, Y, Z are all sets, $f: X \rightarrow Y$ is a function, and $g, h: Y \rightarrow Z$ and $a, b: W \rightarrow X$, are all functions, then:
a) $\quad f$ injective and $f a=f b \Rightarrow a=b$
b) $\quad f$ surjective and $g f=h f \Rightarrow g=h$

Q7 Define equivalence relation on a set X. Prove that congruence modulo n (i.e.
$a \equiv b \quad(\operatorname{Mod} n) \quad \Leftrightarrow n \mid(a-b))$ is an equivalence relation on \mathbb{Z}.
Q8 Prove that the rational numbers and the natural numbers have the same cardinality. OR Prove that the set of all sequences of 0 's and 1's (i.e. the set of all functions from \mathbb{N} to the set $\{0,1\}$) is uncountable

