Q1

(a) Let σ be a permutation of order 12 of a finite set X. Suppose that σ can be written as a product of disjoint cycles, no two of which have the same length. What are the possible lengths of the cycles in this product?
(b) Suppose that σ is a permutation of order p, with p prime, of a finite set X. Let $X^{\sigma}:=\{x \in X \mid \sigma(x)=x\}$. Prove that p divides the order of the complement $X \backslash X^{\sigma}$.
(c) If G is a group, and $\sigma: G \rightarrow G$ is an automorphism of G, prove that G^{σ} is a subgroup of G.
(d) Suppose that G is a group with $|G|=27$, prove that it cannot have an automorphism $\sigma: G \rightarrow G$ of order 5 .

Q2

(a) Prove that the intersection $H \cap K$ of two subgroups H, K of a group G is a subgroup of G.
(b) Given an example to show that the union $H \cup K$ need not be a subgroup.
(c) Extra Credit: Show that if H and K are proper subgroups, (i.e not equal to G), then their union cannot be equal to G.

Show that H is a subgroup of S_{n}, the either all the elements of H are even permutations, or exactly half the members are even.

Q4
(a) Define what a group homomorphism is.
(b) Define the kernel of a groups homomorphism
(c) Define Normal subgroup.
(d) Prove that the kernel of a group homomorphism is a normal subgroup.
(e) Prove that the cosets G / N form a group with respect to multiplication, if $N \triangleleft G$ is a normal subgroup.
Q5
(a) Define integral domain.
(b) Define field.
(c) Prove that any finite integral domain is a field.

Q6 Is the homomorphic image of a principal ideal domain (PID) also a PID?
Q7 Show that $\mathbb{Z}[i] /<1+i>$ is a field. How many elements does it have?

