Math 330 Questions

- (a) Let σ be a permutation of order 12 of a finite set X. Suppose that σ can be written as a product of disjoint cycles, no two of which have the same length. What are the possible lengths of the cycles in this product?
- (b) Suppose that σ is a permutation of order p, with p prime, of a finite set X. Let $X^{\sigma} := \{x \in X \mid \sigma(x) = x\}$. Prove that p divides the order of the complement $X \setminus X^{\sigma}$.
- (c) If G is a group, and $\sigma: G \to G$ is an automorphism of G, prove that G^{σ} is a subgroup of G.
- (d) Suppose that G is a group with |G| = 27, prove that it **cannot** have an automorphism $\sigma: G \to G$ of order 5.

$\mathbf{Q2}$

Q1

- (a) Prove that the intersection $H \cap K$ of two subgroups H, K of a group G is a subgroup of G.
- (b) Given an example to show that the union $H \cup K$ need not be a subgroup.
- (c) **Extra Credit:** Show that if H and K are proper subgroups, (*i.e.* not equal to G), then their union cannot be equal to G.

$\mathbf{Q3}$

Show that H is a subgroup of S_n , the either **all** the elements of H are even permutations, or **exactly half** the members are even.

$\mathbf{Q4}$

- (a) Define what a group homomorphism is.
- (b) Define the *kernel* of a groups homomorphism
- (c) Define Normal subgroup.
- (d) Prove that the kernel of a group homomorphism is a normal subgroup.
- (e) Prove that the cosets G/N form a group with respect to multiplication, if $N \triangleleft G$ is a normal subgroup.

Q5

- (a) Define *integral domain*.
- (b) Define *field*.
- (c) Prove that any finite integral domain is a field.

 ${\bf Q6}~$ Is the homomorphic image of a principal ideal domain (PID) also a PID?

Q7 Show that $\mathbb{Z}[i]/\langle 1+i\rangle$ is a field. How many elements does it have?