Math 330: Abstract Algebra Sample Final Exam

Look also at the problems on the midterm and sample midterm

1) Define the following concepts:
a) H is a normal subgroup of G and K is the factor group G / H.
b) $I \subseteq R$ is a maximal ideal;
c) $a \in R$ is irreducible.
d) $\phi: R \rightarrow S$ is a ring homomorphism.
2) Decide if the following statements are TRUE or FALSE. If FALSE give a counterexample or an explanation why the statement is false.
a) If R is a commutative ring and $I \subseteq R$ is an ideal, then R / I is commutative.
b) If G is a finite Abelian group and n divides $|G|$, then G has an element of order n.
c) If F is a field, then $F[X, Y]$ is a principal ideal domain.
d) There is a field F with $|F|=81$.
e) If G is a group, H is a subgroup of G and H is Abelian, then H is a normal subgroup of G.
f) If R is a ring and $a b=a c$, then $b=c$.
g) If F is a field, $I \subseteq F$ is an ideal, $a \in F \backslash\{0\}$ and $a \in I$, then $I=F$.
3) State the following theorem:
a) LaGrange's Theorem
b) The Fundamental Theorem of Field Theory
4) a) Find all Abelian groups (up to isomorphism) of order 16.
b) Which of these groups is isomorphic to $\mathbb{Z}_{4} \times \mathbb{Z}_{24} /\langle(2,4)\rangle$?
5) a) Show that $p(X)=X^{3}+X+1$ is irreducible in $\mathbb{Z}_{2}[X]$.
b) Suppose F is an exension field of $\mathbb{Z}_{2}, \alpha \in F$ and $p(\alpha)=0$. Find $a, b, c \in \mathbb{Z}_{2}$ such that

$$
a \alpha^{2}+b \alpha+c=\left(\alpha^{2}+1\right)(\alpha+1)
$$

6) Find a noncylic subgroup of order 4 in $\mathbb{Z}_{4} \oplus \mathbb{Z}_{10}$.
7) Show that the homomorphic image of a principal ideal domain is a prinipal ideal domain.
8) Suppose R is a commutative ring and $I \subset R$ an ideal. Let

$$
\sqrt{I}=\left\{a \in R: a^{n} \in I\right\}
$$

for some n.
a) Show that \sqrt{I} is an ideal.
b) Show that the factor ring R / \sqrt{I} has no nonzero nilpotent elements (recall that $a \in R$ is nilpotent if $a^{n}=0$ for some $\left.n=1,2, \ldots\right)$.

