Q1 Let G be a non empty set, together with a binary operation \cdot, which is to be written as multiplication $(a, b) \mapsto a b$, for $a, b \in G$.
a. What three properties of the pair (G, \cdot) must be satisfied for it to be a group?
b. Prove that for each element a in a group G, there is a unique element b such that $a b=b a=e$.

Q2 State the following theorems:
a. The Orbit-Stabilizer theorem.
b. Lagrange's theorem.

Q3 Let $\alpha \in S_{8}$ be the permutation

$$
\left[\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
4 & 6 & 5 & 7 & 3 & 2 & 8 & 1
\end{array}\right]
$$

a. What is the cycle decomposition of α ?
b. What is $|\alpha|$?

Q4 Prove that any group of even order has an element of order 2.

Q5 Let G be a group.
a. Define the center $Z(G)$ of G.
b. Prove that $Z(G)$ is a subgroup of G

Q6 Prove that if m and n are both positive integers, then $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is cyclic if and only if $\operatorname{gcd}(m, n)=1$

