
LINE BUNDLES ON STACKS

HENRI GILLET

Vector Bundles

We begin by defining Vn, the stack of rank n bundles. We assign to every
scheme a groupoid Vn(S), the objects of which are the rank n bundles on S,
and the morphisms of which are the isomorphisms between bundles. Given
a morphism f : S → T of schemes, we have the usual pullback of vector
bundles, corresponding to the Cartesian diagram:

f∗F //

��

F

p

��
S

f // T

This defines the base change functor f∗ : Vn(S) → Vn(T ).
Observe that a bundle over a scheme S determines a morphism of stacks

S → Vn. This motivates the following definition:

Definition. A rank n bundle over a stack X is a morphism of stacks

X → Vn.

For example, consider X = M1,1, the stack of families of elliptic curves.

The objects of M1,1 are the families E
p−→ S for which the fibers Es are

elliptic curves. A morphism from M1,1 → Vn means that for every scheme
S, we have a morphism of groupoids M1,1(S) → Vn(S), in other words, it is
a rule which associates to a family of elliptic curves E → S a vector bundle
V (E) → S, and these morphisms should be compatible with base-change.

If S = SpecK is a point, it associates to a single elliptic curve a K-vector
space of dimension n. This association must be functorial: an isomorphism
between elliptic curves should give an isomorphism on vector bundles, it
should behave well under pullbacks, i.e. given

f∗E //

��

E

��
T

f // S
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we must have V (f∗E) = f∗(V (E)).

Example. Such an assignment compatible with these assignments takes E 7→
H0(E,Ω1) on points, which gives us a 1-dimensional K-vector space. On

the family E
p−→ S, we associate p∗ω

1
E/S , a rank 1 vector bundle over S.

What about X = Vn; what does it mean to give a vector bundle E
on Vn? We must give a morphism Vn → Vm, which means in particular
we must associate to every n-dimensional vector space an m-dimensional
vector space in a functorial and “continuous” fashion, as above. Even the
first property is fairly restrictive: given a morphism of stacks Φ : Vn → Vm,

for every field K we obtain a functor between the groupoids Vn(K)
ΦK−−→

Vm(K). Now, since any two n-dimensional K-vector spaces are isomorphic,
the groupoid Vn(K)is connected - i.e. the all n-dimensional vector spaces
are isomorphic to Kn, and the groupoid is equivalent to the category with
the single object Kn and morphisms Gln(K). Therefore a functor Vn(K) →
Vm(K) is determined, up to equivalence, by a vector space V associated to
Kn, and a homomorphism Gln(K) → Aut(V ). Thus, if we fix attention
on the free module Kn 7→ Φ(Kn), the image some m-dimensional vector
space, we obtain a non-canonical isomorphism GLn(K) → Aut(Φ(Kn)) ∼
GLm(K), i.e. we obtain a representation of GLn(K). If we insist that this
association be functorial and behave well in families, then one can show that
a general Φ corresponds to a representation of the group scheme GLn over
SpecZ. In other words, the representation is given by polynomial equations
in the coefficients of the matrix with integer coefficients.

As examples, we have exterior powers, symmetric powers, etc. In particu-
lar, to any n-dimensional vector bundle E → S, we can associate

∧nE → S,
a line bundle.

Recall that if G is a discrete group then BG/S is the stack of sheaves
of G-torsors in the étale topology over some fixed base S. If we consider
the torsors which are constant - i.e. which are just G-sets, then the functor
associates to every G-set X a vector bundle EX on S, and to every isomor-
phism of G-sets an isomorphism of bundles. Since the groupoid of G-sets is
connected this is equivalent to giving a bundle EG and an action of G on this
bundle - i.e. to a representation of G. If BG is over an affine S = SpecR,
then this representation is into Aut(V ) for some free module V over R.

In fact this determines the functor on the whole of BG. Since this is a
morphism of stacks, it respects the sheaf property of the stacks involved.
Thus given EG as above, and a sheaf T of G-sets which is only locally
isomorphic to G, we get a bundle ET , which is locally isomorphic to EX .

Vector Bundles and Charts

If you open any book on differential topology, a vector bundle is described,
given a covering of a manifold by open charts, by giving, for each open chart,
a trivialization of the restriction of the bundle to the chart, such that on
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the overlap of two charts there is a continuous map to GLn which gives
the transition matrices between the two trivialization. This may seem to
be absent from the description above, but this is only because we need to
rethink what we mean by charts.

Let X be a stack. Although there are many different ways of understand-
ing charts, with corresponding assumptions on them, let us assume that
there exists a “faithfully flat” representable morphism ε : X0 → X with X0

a scheme. To say that ε is representable means that for any scheme S, in
the fiber product diagram of stacks,

X0 ×X S
εS //

��

S

��
X0

ε // X

the stack X0 ×X S is a scheme. To be faithfully flat means that it as a map
of schemes, εS is always flat and surjective.

In particular, we may take S = X0, and we obtain X1 = X0×X X0 → X0

with two maps to X0, and a diagonal map X0
∆−→ X1. This gives a “groupoid

presentation” of X .

X0

∆

''OOOOOOOOOOOO

X1 = X0 ×X X0
t //

s

��

X0

��
X0

ε // X

Observe that if E0 → X0 is a vector bundle, we obtain an isomorphism
s∗E0 ≃ t∗E0, since it doesn’t matter which way around the diagram we go,
and this isomorphism is a “transition function”.

For instance, if you have a vector bundle F → M over a manifold, then

given charts in the usual sense, and local trivializations of the bundle Uα
ϕα−→

M , we obtain

(
⨿

Uα ∩ Uβ)× Cn
gαβ //

��

⨿
Uα × Cn //

��

F

��⨿
Uα ∩ Uβ

// //
⨿

Uα
ε // M
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Returning to the example of the finite group G, if we view a point as a
trivial G-torsor (viewing G itself as a G-torsor), then the fiber product is

G
t //

s

��

{·}

��
{·} // BG

since the only isomorphisms of G as a G-torsor are multiplications by el-

ements on G. The map s∗E
θg−→ t∗E obtained above must then satisfy

θgθh = θgh, which encodes the information about the representation of G
discussed earlier.

Picard Group of M1,1

Given two line bundles on a stack, one can take the tensor product by
taking it on the line bundles over the schemes themselves. The Picard group
corresponds to isomorphism classes of these line bundles with this group
operation.

¿From now on, lets work over a field of characteristic not 2 or 3. Any
elliptic curve over this ring can be embedded with an affine Weierstrass
equation y2 = x3+Ax+B. Two elliptic curves are isomorphic (over C, say)
if and only if their j-invariants are equal, where

j(E) = 1728
(4A)3

16(4A3 + 27B2)
.

The only nontrivial automorphism for a general curve is sending y 7→ −y, of
order 2; for j-invariants j = 0 one has the automorphism (x, y) 7→ (−x, iy)
and for j = 1728 one has the automorphism (x, y) 7→ (ωx,−y) of order 6,
where ω is a primitive cube root of unity.

¿From these two elliptic curves with non-trivial automorphisms, we obtain
maps Bµ6 → M1,1 and Bµ4 → M1,1. Given a line bundle L on M1,1, we
can pull these back to line bundles on Bµ6 and Bµ4 (recall that µn is the
group of n-th roots of 1), getting one dimensional representations of these
two groups. But a one-dimensional representation of a group G over a ring
R, is nothing more than a homomorphism from the group to R∗, indeed
for G finite of order n to the group µn of n-th roots of 1. Hence every line
bundle over Bµ6 determines a homomorphism µ6 → µ6, i.e. an element
of Z/6Z. Thus we get a homomorphism Pic(M1,1) → Z/6Z corresponding
to resrtiction to j-invariant 1728, and similarily, for j-invariant 0, we get a
homomorphism Pic(M1,1) → Z/4Z, combining these (and composing with
the map Z/6Z → Z/63Z), we get map Pic(M1,1) → Z/4Z×Z/3Z ≃ Z/12Z.
In fact, one can show that this is an isomorphism as follows.

Consider the line bundle E → H0(E,Ω1). This really has order 12, which
one can see by writing down the generator dx/y and checking how the roots
of unity act on it: hence the above map is surjective. To show that it is
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injective, one can show that for any line bundle L on Pic(M1,1), we have
L⊗12 trivial since we can pull it back from the j-line A1, and there are no
nontrivial line bundles on A1. This completes the proof.

In the usual construction of the coarse moduli space of elliptic curves,
recall that an elliptic curve corresponds to an equivalence classes of lattices
(modulo the action of SL2(Z)). The set of such equivalence classes is the
quotient h/SL2(Z) of the upper half plane by the action of SL2(Z) where we
glue together the boundaries of the classical fundamental domain to obtain
a sphere with one point removed (corresponding to j = ∞, a singular curve),
and where there are two points associated to the elliptic curves with groups
of automorphisms of order 4 and 6. This is an orbifold representation of the
moduli space.

To conclude, do the following exercise: explain why the 12 in ζ(−1) =
−1/12, is the same 12 of that of the Picard group Pic(M1,1). Hint - it has
to do with h/SL2(Z).

The discussion above is based, in large part, on the paper by David
Mumford, entitled “Picard groups of moduli problems”. Which appears
in pp. 33–81 of the 1965 book Arithmetical Algebraic Geometry published
by Harper & Row, New York (MR 34 #1327).


