Ann. Global Anal. Geom.
Vol. 3. No. 2 (1985). 197-217

SINGULARITIES ARE DETERMINED BY THE COHOMOLOGY

of their cotangent complexes

Bernd Martin

0 . The cohomology of the cotangent complex characterizes analytic singularities (resp. analytic mapping germs) up to isomorphism. The present paper generalizes a result by J.N.Mather and S.S.T. Yau [6] that says that isolated hypersurface singularities are isomorphic iff their moduli algebras are isomorphic. This result turns out to be a special case of a general principle. [3] and [4] contain preliminary versions of the mentioned result. where it was shown e.g. for the R-equivalence of functions and for the \mathcal{K}-equivalence of complete intersections that the isomorphism type of the module of infinitesimal deformations of first order $T^{1}\left(x_{0}, 0\right)$ determines the singularity $\left(x_{0}, 0\right)$ up to isomorphism.
0.1. If the deformations of $\left(X_{0}, 0\right)$ are non-obstructed. then the above statement is always correct. Otherwise, the higher cohomology groups or all "infinitesimal families" of first order of $\left(X_{0}, o\right)$ have to be taken into consideration. We proceed as follows: We choose $n, p \in \mathbb{N}$ such that the singularity $\left(X_{0}, 0\right)$ can be embedded into $\left(A^{n}, 0\right)$ and is defined by, p equations $£ \in J(n, p):=m \mathbb{C}\left\{x_{1}, \ldots, x_{n}\right\}^{p}$. The set of all possible representations of $\left(x_{0}, 0\right)$ in $J(n, p)$ corresponds to an orbit of the contact group $\mathcal{K}(n, p)$ in $J(n, p)$. In addition. we fix the integers $p_{2} \ldots \ldots p_{s} \in \mathbb{N}$ such that the equations $£$ have at most p_{i} relations of ($i-1$)-st degree. Now the generating relations can be represented by an element of a larger space $J\left(n, p_{1}, \ldots, p_{s}\right)$,
and all these representations form an orbit of a generalized contact group $\mathcal{K}(n, p)$. To each of those elements of $J(n, p)$ a cotangent complex is assigned. The attion of $\mathcal{K}(n, p)$ on $J(n, p)$ induces isomorphisms of the assigned cotangent complexes and their cohomology.

We have the "Mather-Yau equivalence":
If (n, p_{1}, \ldots, p_{s}) is admissible with respect to ($X_{0}, 0$), then the following statements are equivalent:
(i) $\left(x_{0}, 0\right)$ is isomorphic to $\left(X_{0}^{\prime}, 0\right)$.
(ii) For $i \geq 1 \quad T^{i}\left(X_{0}, 0\right)$ is isomorphic to $T^{i}\left(X_{0}^{1}, 0\right)$ as $\mathbb{C}\left\{x_{1}, \ldots, x_{n}\right\}$-module, where the isomorphism is induced by the action of $\mathcal{K}(n, p)$.
(iii) $T_{(1)}^{1}\left(X_{0}, 0\right)$ is isomorohic to $T_{(1)}^{1}\left(X_{0}^{1}, 0\right)$ as $\mathbb{C}\left\{\left(x_{1}, \ldots, x_{n}\right\}\right.$-module.
(Here $T_{(r)}$ denotes the cohomology of the restricted cotangent complex).
0.2. Similar statements hold both for singularities over a fixed basis ($S, 0$) (this generalizes the right-equivalence) and for mapping germs (this generalizes the right-left-equivalence). The proof involves transcendental methods. Simple examples show (cf.[6]) that the Mather-Yau equivalence fails over non-algebraically closed fields or over fields of characteristic $p \neq 0$.
0.3. The concept of infinitesimally trivial families will be an essential tool in proving the main theorem. We shall show that these families are trivial. For hypersurface singularities this was shown by K. Saito [8]. The statement is an analogue to the fact that the triviality of the Kodaira-Spencer map implies the local triviality of a deformation.

1. THE GENERALIZED CONTACT GROUP
1.0. Let φ be the category of analytic 'germs of finite type over \mathbb{C}. A singularity over a base germ $S \in O b \varphi$ is a morphism $\varphi_{0}: x_{0} \rightarrow S$. A family of φ_{0} over $T \in O b \varphi$ is a pair consisting of a T-morphism $\varphi: X \longrightarrow S \times T$ and a fixed isomorphism $X x_{T}\left\{t_{0}\right\} ¥ x_{0}$. If $X \longrightarrow T$ is flat, φ is called a deformation of φ_{0}. Now we describe the set of all possible coordinate representations of φ and the associated syzygies as an orbit of a generalized contact group. Together with S we fix a minimal embedding:
$s \hookrightarrow \mathbb{A}^{q}, o_{S}=\mathbb{C}\left\{u_{1}, \ldots, u_{q}\right\} / I(S)=\mathbb{C}\left\{u_{1}, \ldots, u_{q}\right\}, I(S) \leq(\underline{u})^{2}$.
Let $J_{T}(n, p):=(\underline{x}) o_{T}\left\{x_{1} \ldots, x_{n}\right\}^{p}$.
1.1. A representative of φ in $J_{T}(n, q+p)$ is a tuple
$F^{*}=\left(H_{1}, \ldots, H_{q}, F_{1}, \ldots, F_{p}\right) \in J_{T}(n, p+q)$, such that
$o_{X} \cong o_{T}\{\underline{x}\} /\left(F_{1}, \ldots, F_{p}\right) \cong o_{S} \times T\{\underline{x}\} /\left(u_{1}-H_{1}, \ldots, u_{Q}-H_{Q}, \underline{F}\right)$
and $\varphi^{*}\left(u_{j}\right)=H_{j} \bmod (\underline{F}), j=1, \ldots, a$.
This implies:
$G(\underline{U}) \in I(S) \longrightarrow G(H) \in(\underline{F})$,
$\left.(\underline{H}, \underline{F})\right|_{T=t_{0}}=(\underline{h}, \underline{f}) \in J(n, a+p)$ represents φ_{0}.
Remark: φ_{0} has a representative in $J(n, p+q)$ iff
$n \geqslant$ emb $\operatorname{dim}\left(x_{0}\right)=\operatorname{dim}_{\mathbb{C}}\left(\underline{m} 0_{x_{0}} / \underline{m}^{2}\right)$ and
$p \geq i\left(X_{0}\right):=\operatorname{dim}_{\mathbb{C}}\left(I\left(X_{0}\right) / \underline{m} I\left(X_{0}\right)\right)^{0}$ for a minimal embedding $0_{x_{0}}=\mathbb{C}\{\underline{x}\} / I\left(x_{0}\right), I\left(x_{0}\right) \in \underline{m}^{2}$.
1.2. A resolution of the $O_{S \times} T^{\text {-algebra }} O_{X}$ by free $O_{S \times T}\{\underline{x}\}-$ modules

$$
0 \rightarrow M_{s} \xrightarrow{I_{s}} \ldots \xrightarrow{I_{1}} M_{0}=o_{S} \times T\{\underline{x}\} \xrightarrow{I_{0}} o_{X}
$$

be representented as follows:
Let $r k M_{i}=p_{i},\left(p_{0}=1\right),\left\{e_{1}^{(i)}, \ldots, e_{p_{i}}^{(i)}\right\}$ be a basis of M_{i} :

$$
\begin{equation*}
I_{i}\left(e_{j}^{(i)}\right)=\sum F_{j k}^{(i)} e_{k}^{(i-1)} \quad(i>1) \tag{ia}
\end{equation*}
$$

and, without loss of generality, we choose only representations (1) where $F^{(1)}$ has the form:

$$
F_{j}^{(1)}= \begin{cases}U_{j}-H_{j} & j \leqslant q \tag{lb}\\ F_{j-q} & \text { otherwise }\end{cases}
$$

and $\underline{F}^{*}=(\underline{H}, \underline{F}) \in J_{T}\left(n, P_{1}\right)$ is a representative of φ.
Then (1) is completely described by

$$
=j_{T}\left(n, p_{1}, \ldots, p_{s}\right), \underline{m}=\underline{m}_{T} \cdot(\underline{x}) .
$$

By construction we have:
(i) $\quad F^{(r)} \cdot F^{(r-1)}=0, r=2, \ldots, s ; F^{(r)}$ is a $p_{r} \times p_{r-1}$-matrix; (ii) $\quad F_{1}^{(r)}, \ldots, F_{D_{r}}^{(r)}$ generate the $(r-1)$ st syzygy module of $E^{(1)}$.
(iii) pr $\geq\binom{ p_{1}}{r-1}$.

Remark: 1.) Let n_{r} be the rank of the ($r-1$)-st syzygy module of a minimal representative of φ_{0}, then:
There is a representative of the described type for each resolunion (1) of $O_{x_{0}}$ in $J\left(n, p_{1}, \ldots, p_{s}\right)$ iff $n \geq$ mb dim x_{0}, $p_{1} \geq q+i\left(x_{0}\right)=n_{1}$ and $p_{i} \geq n_{i},(i \geq 2)$.
Such a tuple is called ($n, q, p_{1}, \ldots, p_{s}$) is called admissible with respect to φ_{0}.

$$
\text { 2.) if } n_{r}=\binom{n_{1}}{r-1} \text { for } r \geqslant 1 \text {, then } \varphi_{0} \text { is called }
$$

non-obstructed. This is the case iff $0_{X_{0}}$ is a complete intersection
and O_{S} is smooth.
1.3. Let two families φ and φ^{\prime} of φ_{0} over T, and two representatives E^{\prime} and F^{\prime} of resolutions of the same type (n, a, p^{\prime}) be given. A T-isomorphism $\bar{\psi}$ from φ to φ^{\prime} :

can be lifted to a T-isomorphism ψ of $T \times \mathbb{A}^{n}$ such that

$$
\begin{equation*}
\psi^{*}\left(F_{1}^{\prime}, \ldots, F_{s}^{\prime}\right)=\left(F_{1}, \ldots, F_{s}\right) \tag{2}
\end{equation*}
$$

and

$$
\psi^{*}\left(H_{j}^{\prime}\right)=H_{j} \bmod \left(F_{1}, \ldots, F_{s}\right)
$$

It is possible to extend Ψ^{*} to an isomorphism of the free resolutions:
$0 \longrightarrow M_{s} \xrightarrow{\mathrm{I}_{s}} \ldots \longrightarrow M_{1} \longrightarrow 0_{S} \times T\{\underline{x}\} \longrightarrow o_{X}$
$A_{s}|\quad| \begin{array}{ll}A_{1}\end{array}\left|\psi^{*}\right| \psi^{*}$
$0 \rightarrow M_{s} \xrightarrow{I_{s}} \ldots \rightarrow M_{1} \rightarrow O_{S} \times T\{\underline{X}\} \longrightarrow O_{X \prime} \quad$.
We identify A_{r} with the associated matrix

$$
\begin{aligned}
& \left(a_{i j}^{(r)}\right) \in G I_{p_{r}}\left(O_{S} \times r\{\underline{X}\}\right)=: G_{p_{r}}, \\
& A_{r}\left(e_{i}^{(r)}\right)=\sum_{j} a_{i j}^{(r)} e_{j}^{(r)}, \quad r=2, \ldots, s
\end{aligned}
$$

and, because of (2), A_{1} belongs to

$$
\widetilde{G}_{p_{1}}(a)=\left\{\left(\left.\frac{E_{0}}{} \right\rvert\, \ddots \cdot \square\right)\right\} \subset G_{p_{1}}\left(O_{T}\{x\}\right)
$$

We obtain:

$$
\left.\begin{array}{l}
F^{*}=A_{1}^{-1} \quad F^{\prime *}\left(\psi^{*}\right) \quad \text { (written as column vector) } \tag{3}\\
E^{(r)}=A_{r}^{-1} \quad F^{\prime}(r)\left(\psi^{*}\right) \cdot A_{r-1}, r \geq 2
\end{array}\right\}
$$

1.4. The generalized contact group $\mathcal{K}_{T}=\mathcal{K}_{T}\left(n, q, p_{1}, \ldots, p_{s}\right)$ is defined as the semi-direct product of the groups

$$
A^{u} t_{T}\left(T \times \mathbb{A}^{n}\right) \times \widetilde{G}_{p_{1}}(q) \times G_{p_{2}} \times \ldots \times G_{p_{s}}
$$

K_{T} is acting on $J_{T}(n, \underline{p})$ according to the formulas (3).

Remark: 1.3. implies that the set of all representations of resolutions of φ of type $\left(n, q, p_{1}, \ldots, p_{s}\right)$ is a K_{T}-orbit in $J_{T}(n, p)$.

Example: With one exception we consider only the "absolute" contact group $K=K_{\left\{t_{0}\right\}}$. For $s=1 K(n, q, p)$ contains a lot of known groups:
(i) $\mathcal{K}(n, q, q)=R(n)$ is the group of right-equivalences on $J(n, q)$.
(ii) $\mathcal{K}(n, o, p)$ is a subgroup of $\mathcal{K}(n, p)$, the contact group in the sense of J.N. Mather [5], but the orbits of both groups coincide in $J(n, p)$.
(iii) Let $S=\mathbb{C}^{1}, q=1: \mathcal{K}(n, 1, p)$ defines a generalized rightequivalence of functions on singularities. For hypersurfaces this equivalence was introduced by A. Dimca in [1], where the simple $K(n, 1,2)$-orbits have been classified as well.
2. INFINITESIMAL DEFORMATIONS

Infinitesimal deformations of first order are classified by the first cohomology group of the cotangent complex. Now we give a short description of Palamodov's construction of the Tjurina-resolvent [7]:

2.1. The Tjurina-resolvent:

Let $\varphi_{0}^{*}: 0_{S} \longrightarrow 0_{X_{0}}$ be a local homomorphism of analytic algebras.
$(R, 1)$ is called a Tjurina-resolvent of φ_{0}^{\prime} if the following conditions are satisfied:
(i) $\quad R=R_{0}\left\lceil v_{1}, \ldots, v_{n}\right\rceil$ is a tree graded anticommutative R_{o}-algebra, deg $v_{i}=\left|v_{i}\right|<0, v_{i} \cdot v_{j}=(-1)^{\left|v_{i}\right| l v_{j} v_{j} v_{i}}$.
(ii) $R_{0}=O_{S}\left\{x_{1}, \ldots, x_{n}\right\}$ is a free o_{S}-algebra and

is a resolution of $O_{X_{0}}$ by free R_{0}-modules.
(iii) $\quad 1: R \longrightarrow R$ is a derivation of degree 1 , ie.
$\|(a \cdot b)=\|(a) b+(-1)^{|a|} a \mid(b)$.
The Tjurina-resolvent is uniquely determined up to homotopy.
R has at least $n_{r}-\binom{n_{1}}{r-1}$ generators of degree $-r, r>1$, and n_{1} generators of degree -1 , respectively, (cf. 1.2.). To each representative F° of a resolution (1) of φ_{0}^{*} a Tjurina-resovent is assigned:
$R:=o_{S}\left\{x_{1}, \ldots, x_{n}\right\}\left\lceil v_{1}, \ldots v_{N}\right\rceil, N=\sum_{i=1}^{S} p_{i} p_{i-1}$
The v_{i} 's are associated with the generators of M_{r} and get the degree $-r, r=1 \ldots ., s$. Due to (ia) and (ib) 1 is defined on the generators by the corresponding map 1 of the $e^{(r)}$. The resolvent (R, I) constructed in this way is not minimal.

Example: Let $\varphi_{0}^{*}: \mathbb{C}\left\{u_{1}, \ldots, u_{q}\right\} \rightarrow o_{x_{0}}$. $o_{x_{0}}=\mathbb{C}\left\{x_{1}, \ldots, x_{n}\right\} /\left(f_{1}, \ldots f_{p}\right)$ be a complete intersection, $n=$ mb $\operatorname{dim} X_{0}, p=i\left(x_{0}\right)$. Then φ_{0}^{*} is non-obstructed and a minimal resolvent is obtained by:

$$
R=\mathbb{C}\{u, x\}\left\lceil v_{1}, \ldots, v_{p+q}\right\}, \text { deg } v_{i}=-1
$$

$I\left(v_{i}\right)=f_{i}(1)= \begin{cases}u_{i}-h_{i}, i=1, \ldots, q ; h_{i} \text { a representative of } \varphi_{0}^{*}\left(u_{i}\right) \\ f_{i-q}, & \text { otherwise } .\end{cases}$

2.2. The cotangent complex

Let $\widetilde{R}:=\operatorname{Der}_{O_{S}}(R, R) ; \widetilde{R}$ is a graded O_{S}-module and
$\widetilde{R}_{k}:=\left\{\delta: R \rightarrow R \quad \begin{array}{l}\delta \text { be } O_{S} \text {-linear, } \delta\left(R_{1}\right) \subset R_{1+k} . \\ \delta(a b)=\delta(a) b+(-1)^{k|a|} a \delta(b)\end{array}\right.$.
Every $\delta \in \widetilde{R}_{k}$ is uniquely determined by the images of the v_{i}, $\left|v_{i}\right|=\alpha=-k, \delta\left(v_{i}\right) \in R_{d+k}$ and by $\left.\delta\right|_{R_{0}}=\sum_{i=1}^{n} r_{i} \frac{\partial}{\partial x_{i}}, r_{i} \in R_{k}$ for $k \leq 0$.
Therefore, \widetilde{R}_{k} is a free R_{0}-module:
$\widetilde{R}_{k}=R_{k}^{n}+\underset{\alpha<0}{\oplus} R_{\alpha+k}^{n(\alpha)}$ and $n(\alpha)=\#\left\{v_{i}| | v_{i} \mid=\alpha\right\}$.
By $\left[\delta^{\prime}, \delta^{\prime}\right]:=\delta \delta^{\prime}-(-1)^{\mid \delta \|} \delta^{\prime} \mid \delta^{\prime} \delta \quad \widetilde{R}$ is a graded Lie-algebra
and a cotangent complex by $d(\delta):=[\delta, 1]=\delta 1-(-1)^{1 \delta 1} \mid \delta$.
The cohomology of the cotangent complex $T^{i}=$ ken $d_{i} / l m d_{i-1}$ is independent of the choice of a resolvent and has the structure of an R_{0}-module. By direct calculations we obtain:
(i) $T^{i}\left(\varphi_{0}^{*}\right)=0$ for $i<0$,
(ii) $\quad T^{0}\left(\varphi_{0}^{*}\right)=\operatorname{Der}_{O_{S}}\left({ }^{(0} X_{0} \cdot{ }^{0} X_{0}\right)$,
(iii) If φ_{0}^{*} is non-obstructed, then $T^{i}\left(\varphi_{0}^{*}\right)=0$ for $i>1$ (cf. the following example),
(iv) $T^{1}\left(\varphi_{0}^{*}\right)$ classifies the infinitesimal deformations of first order of φ_{o}^{*} up to isomorphy: $[\delta] \in T^{1}$ is uniquely deter-

$$
\begin{aligned}
& \text { mined by } \\
& \delta\left(v_{i}\right)=f_{i}^{*}=\left\{\begin{array}{ll}
\tilde{h}_{i} & i \leq a \quad \text { for } \quad\left|v_{i}\right|=-1 \\
\tilde{f}_{i-a} & , \text { otherwise }
\end{array}\right. \text { }
\end{aligned}
$$

then φ_{δ} is represented by $(h+\varepsilon \widetilde{h}, f+\varepsilon \tilde{f}) \in J_{\mathbb{C}[\varepsilon]}\left(n, p_{1}\right)$.

2.3. Example (continued):

$\widetilde{R}_{i}=0$ for $i \geqslant 2$, then $\delta \in R_{i}$ is determined by $\delta\left(v_{i}\right) \in R_{i-1}=0$, and thus $T^{i}=0$ for $i \geqslant 2$ and ger $d_{1}=\widetilde{R}_{1}$.
Let $\delta \in \widetilde{R}_{0}$ be given by $\left.\delta\right|_{R_{0}}=\sum g_{i} \frac{\partial}{\partial X_{i}}$ and $\delta\left(v_{i}\right)=\sum g_{i j} v_{j}$; $g_{i}, g_{i j} \in R_{0}$, then $d(\delta)$ is determined by $d \delta\left(v_{i}\right)$:

$$
\begin{aligned}
d \delta\left(v_{i}\right) & =\delta\left(f_{i}^{(1)}\right)-1\left(\sum_{j} g_{i j} v_{j}\right) \\
& =\sum_{k} g_{k} \frac{\partial f_{i}^{(1)}}{\partial x_{k}}-\sum_{j} g_{i j} f_{j}^{(1)} .
\end{aligned}
$$

This means: lm $d_{0}:=\sum R_{0} \frac{\partial}{\partial X_{i}} f^{(1)}+\left(f^{(1)}\right) \widetilde{R}_{1}, \widetilde{R}_{1}=R_{0}^{D_{1}}$ and thus

$$
\begin{align*}
& T^{1}\left(\varphi_{0}\right)=\mathbb{C}\{x\}^{p+q} / t(h, f)=0_{x_{0}}^{p+q} / \bar{t}(h, f) \tag{4}\\
& t(h, f)=\sum_{i} \mathbb{C}\{x\}^{\frac{\partial f^{*}}{\partial x_{i}}}+(f) \mathbb{C}\{x\}^{p+q} \\
& \bar{t}(h, f)=t(h, f) o_{x_{0}}^{p+q} .
\end{align*}
$$

2.4. The restricted cotangent complex

If we consider only the syzygies up to order k, we obtain the k-th restricted resolvent:
$R_{(k)}:=R_{0} \oplus R_{-1} \oplus \ldots \oplus R_{-k}=R / I_{k}$. Let $\widetilde{R}_{(k)}$ be the $k-t h$ isociated cotangent complex and let $T_{(k)}$ be the k-th restricted cohomology. By construction: $T_{(k)}^{r}=0$ for $r>k$ and $T_{(k)}^{k}=\widetilde{R}_{k} / \operatorname{Im} d_{k-1}+I_{k} \widetilde{R}_{k}$. Similar to example 2.3 we have: $T^{\prime}(1)\left(\varphi_{0}^{*}\right)=0_{X_{0}^{\prime}}^{p_{1}} / \bar{t}(h, f)$ if $f^{*}=(h, f) \in J\left(n, p_{1}\right)$ represents φ_{0}^{*}.
The O_{S}-module structure of $T_{(1)}^{1}$ is given by $u_{i} \xi:=h_{i} \xi, \xi \in T_{(1)}^{1}$.
Remark:

- $T^{\top}(1)$ classifies all infinitesimal families of φ_{0} of first order up
- to isomorphy.
- T^{1} is an O_{S}-submodule of $T_{(1)}^{1}$, cf. 2.2 (iv).

2.5. The action of the generalized contact group

Let ($n, q, o_{1}, \ldots, p_{s}$) be admissible with respect to φ_{0}, then $T^{\prime}\left(\varphi_{0}\right)$ has a natural $O_{S}\{x\}$-module structure.
Let $f^{\cdot}=\left(f^{*}, f^{(2)}, \ldots, f^{(s)}\right)$ be a representative of given type of a resolution of φ_{0}. Any other representative $f^{\prime \prime}$ has the form $k \cdot f^{\cdot}, k \in \mathscr{H}\left(n, q, p_{1}, \ldots, p_{s}\right) . k$ induces an isomorphism ξ of the associated resolvents $R \cong R$, which is compatible with 1 : $k=\left(\psi, A_{1}, \ldots A_{s}\right)$

$$
\xi: R=o_{S}\{x\}\left\lceil v_{1}, \ldots, v_{N}\right\rceil \longrightarrow R^{\prime}=o_{S}\left\{x^{\prime}\right\}\left\lceil v_{1}, \ldots, v_{N}\right\rceil
$$

$$
x_{i} \longmapsto \psi^{*}\left(x_{i}\right)
$$

$$
v_{\alpha} \longmapsto A_{i}\left(\begin{array}{c}
v^{\prime} \beta_{1} \\
\vdots \\
v_{\beta_{r}^{\prime}}
\end{array}\right), \quad\left|v_{\beta}^{\prime}\right|=\left|v_{\alpha}\right|=-i
$$

and ξ induces an isomorphism $\tilde{\xi}$ of the cotangent complex because ξ is compatible with 1 .

$$
\widetilde{\xi}: \widetilde{R} \longrightarrow \widetilde{R} \quad, \tilde{\xi}(\delta):=\xi \delta \xi^{-1}
$$

Analogously, $k_{(r)}=\left(\psi, A_{1}, \ldots, A_{r}\right) \in\left(n, q, p_{1}, \ldots, p_{r}\right)$ induces an isomorphism of the restricted cotangent complex.
Restricted to elements of degree i $\widetilde{\xi}$ is an $O_{S}\{x\}$-module isomorphism and we get $O_{S}\{x\}$-module isomorphisms $T^{i}\left(\varphi_{0}\right) \longrightarrow T^{i}\left(\varphi_{0}^{\prime}\right), \varphi_{0}^{\prime}$ is represented by $f^{\prime *}$.

3. INFINITESIMALLY TRIVIAL FAMILIES

The notion of infinitesimally trivial families is an effective tool to prove the triviality of a family. Roughly spoken, a family is called infinitesimally trivial if the lifting of a family to each tangent direction of the basis T is trivial, i.e. isomorphic to $\varphi \times \mathrm{id}_{\mathrm{I}}, \mathrm{I}=\operatorname{Spec} \mathbb{C}[\varepsilon], \varepsilon^{2}=0$. If T is smooth, then every infinitesimally trivial family is trivial, i.e. $\varphi \cong \varphi_{0} \times$ id $_{\mathrm{T}}$. In other words, we obtain a local version of the theorem on the Kodaira-Spencer map associated to a deformation of a complex space: A deformation is trivial ff the Kodaira-Spencer map vanishes.

3.1. The Kodaira-Spencer map

The Kodaira-Spencer map of a deformation $\varphi: X \longrightarrow S \times T$ of a singularity φ_{0} is a map $\quad \vartheta_{\varphi}: \operatorname{Der} O_{T} \longrightarrow T_{(1)}^{1}(\varphi)$ defined as follows:
For every derivation δ_{a} of O_{T} there is a morphism $t_{a}: I \longrightarrow T$ which can be lifted to a T-morphism
$\tilde{t}_{a}: T \times I \longrightarrow T \times t_{a}(\mathrm{I}) \longrightarrow T \times T \xrightarrow{\mathrm{pr}} \mathbf{1} \quad T$.
v_{φ} assigns to δ_{a} the class in $T_{(1)}^{1}(\varphi)$ of the family of φ over $1 \quad \varphi_{a}:=\varphi x_{T} \tilde{t}_{a}$ induced from φ by \tilde{t}_{a}.

Definition: A family φ of φ_{0} over T is called infinitesimally trivial if the Kodeira-Spencer map v_{φ} vanishes identically or, in other word, if for every tangent vector a of T the family φ_{a} induced by φ over I is trivial.

Example: Let T be smooth, $O_{T}=\mathbb{C}\left\{T_{1}, \ldots, T_{r}\right\}, t_{a}^{*}\left(T_{i}\right)=\varepsilon a_{i}$, $a_{i} \in \mathbb{C}$ be a tangent vector of T, then $\tilde{t}^{*}(h(T))=h+\sum \varepsilon a_{i} \frac{\partial h}{\partial T_{i}}$ is the restricted Taylor expansion of h in direction a. Let X_{0} be an arbitrary singularity, $o_{x_{0}}=\mathbf{c}\left\{x_{1}, \ldots, x_{n}\right\} /\left(f_{1}, \ldots, f_{p}\right)$ and let $\varphi: X \rightarrow T=\mathbb{C}_{0}^{r}$ be a family of $X_{0}, O_{X}=\mathbb{C}\{T . X\} /(F)$. Then φ is infinitesimally trivial ff $\tilde{\mathrm{t}}_{\mathrm{a}}^{*}(F)=F+\varepsilon \sum a_{i} \frac{\partial}{\partial T_{i}} F$ is a trivial deformation of F iff $\frac{\partial F}{\partial T_{i}} \in t(F) \subseteq \mathbb{C}\{T, X\}^{D}$. This example can be generalized:

Lemma: Let φ be a family of φ_{0} over $T=\mathbb{C}_{10}^{r}$ and let $\tilde{F}^{*}=F^{*}+\varepsilon F^{\prime *}$ be a representative of $\varphi_{a}, F^{* *}=(H, F)$ be a representative of φ. Then φ_{a} is trivial of $F^{* *} \in \mathfrak{t}(H, F)$.

Proof: Let $F^{\prime *} \in t(H, F)$ have the form
$F^{\prime}=\sum a_{i} \frac{\partial}{\partial X_{i}} F^{*}+\left(b_{k_{j}}\right) F, a_{i}, b_{k j} \in \mathbb{C}\{T, X\}$, then (ψ, A)
determines an element k from $K_{1}(r+n, a, p+a)$, where $\psi^{*}: x_{i} \longrightarrow x_{i}+a_{i} \varepsilon, T_{j} \longmapsto T_{j}$ and $A=E_{p+q}+\left(01 b_{k j}\right) \cdot \varepsilon$.

It holds that $k F^{*}=\tilde{F}^{*}$.
On the other hand, let $F^{*}=(H, F) \in J(r+n, q, p+q)$ be an arbitrary representative of φ and let $\vec{F}^{*} \in J_{1}(r+n, q, p+q)$ be a representative of φ_{a}. If φ_{a} is trivial, then there exists
$k=(\psi, A) \in K_{I}(r+n, q, p+q)$ such that $k F^{*}=\tilde{F}^{*}$. Without loss of generality, let $\left.k\right|_{\mathcal{E}=0}=1_{\mathcal{H}}$. Then k is given by $\psi^{*}: x_{i} \longmapsto x_{i}+\varepsilon a_{i}, A=E_{p+a}+\varepsilon\left(0 \mid b_{k j}\right)$ and $k F^{*}=F^{*}+\varepsilon\left(\sum a_{i} \frac{\partial}{\partial X_{i}} F^{*}+\left(b_{k j}\right) F\right)=\tilde{F}^{*}$.

Comparing the coefficients of the last equation we obtain (5).
3.2. The following proposition is a generalization of Lemma 3.5 of [8] :

Proposition: Let φ be a family of φ_{0} over T, T be smooth, then φ is trivial iff φ is infinitesimally trivial iff the Kodaira-Spencer map v_{φ} vanishes identically.

Proof: Let F^{*} be a representative of φ. If φ is infinitesimally trivial, then, by Lemma 3.1:

$$
\frac{\partial}{\partial T_{i}} F^{*} \in t(H, F) \text { for } i=1, \ldots, r, \quad r=\operatorname{dim} T \text {. }
$$

Induction on r :
$r=1$: Let $\frac{\partial}{\partial T} F^{*}+\sum_{i} a_{i} \frac{\partial}{\partial X_{i}} F^{*}=\sum_{k=1}^{p}\left(b_{j k}(T, X)\right) F_{k}$.
The vector field $\frac{\partial}{\partial T}+\sum a_{i}(X, T) \frac{\partial}{\partial X_{i}}$ has an integral curve through (T, X) given by $\left(V_{0}, \ldots, V_{n}\right) \in \mathbb{C}\{T, X, Y\}^{n+1}$:

$$
\begin{aligned}
& \frac{\partial V_{i}}{\partial Y}=a_{i}(V), \quad V_{i}(T, X, 0)=X_{i}, \quad i=1, \ldots, n, \\
& \frac{\partial V_{i}}{\partial Y}=1, \quad v_{0}(T, X, 0)=T,
\end{aligned}
$$

Then $F_{1}^{*}(V), \ldots, F_{p+q}^{*}(V)$ are the solutions of the differential equation

$$
\begin{equation*}
\frac{\partial z_{j}}{\partial y}=\sum_{k=1}^{p} b_{j k}(v) z_{k}, j=1, \ldots, p+q \tag{6}
\end{equation*}
$$

for the initial value $Z(T, X, 0)=F$.
We give the following formulation:

$$
\begin{aligned}
F^{*}(V)-\binom{H}{0}=\left(S_{j k}\right) F^{*}, \quad j & =1, \ldots, p+q \\
k & =1, \ldots, p
\end{aligned}
$$

and

$$
\left.S_{j k}\right|_{y=0}= \begin{cases}\delta_{j-q k} & j>q \\ 0 & \text { otherwise }\end{cases}
$$

Inserting this into (6) we obtain:

$$
\frac{\partial S_{j l}}{\partial y} F^{*}=\left(b_{j k}(V)\right)\left(S_{k l}\right) F^{*} \quad \begin{align*}
& j=1, \ldots, p^{+q} \tag{7}\\
& 1, k=1, \ldots, p .
\end{align*}
$$

Hence, we get the solution of (7) by the differential equation

$$
\begin{aligned}
& \frac{\partial w_{j l}}{\partial y}=\sum_{k} b_{j k}(V) w_{k l} \\
& \left.w_{j l}\right|_{y=0}= \begin{cases}\delta_{j-a l} & \text { with the initial value } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Let Ψ^{*} be defined by $X_{i} \longrightarrow V_{i}(0, X, T)$ and
$A=\left(\left.\frac{E_{Q}}{0} \right\rvert\, S_{j k}(0, X, T)\right)$, then $k=(\Psi, A) \in K_{T}(n, q, p+q)$ and
$k \cdot(H, F)=(h, f), \quad(h, f)=\left.(H, F)\right|_{T=0}$ represents φ_{0}, hence
$\varphi_{0} \times \mathrm{id}_{T} \cong \varphi$.
Induction step:
Let $T^{\prime}=\operatorname{Spec} \mathbb{C}\left\{T_{1}, \ldots, T_{r-1}\right\}, T_{0}=\operatorname{Spec} \mathbb{C}\left\{T_{r}\right\}$, $T=T^{\prime} \times T_{0}, F^{\prime *}=\left.F^{*}\right|_{T_{r}=0} . F^{\prime *} \widetilde{K} \quad F^{*}$ by the basis of the induction and $F^{\prime *} \widetilde{\mathscr{H}} f^{*}$ by the induction hypothesis.

Corollary: Let $\phi: X \longrightarrow S \times \tau$ be a family of S-germs over a smooth connected curve τ. If the germ of ϕ is infinitesimally trivial at any point $t \in \tau$ of the curye, then ϕ is a τ-trivial family.

Proof: The trivialization of each germ ϕ_{t} has a representative defined in the neighbourhood $U(t) \subset \tau$ of t. Pasting together the local trivialization then yields a global one.
4. THE GENERALIZED MATHER-YAU EQUIVALENCE

Proposition: Let $\varphi_{0}: X_{0} \longrightarrow S$ be a singularity and ($n, q, p_{1}, \ldots, p_{s}$) be admissible, then the following statements are equivalent:
(i) φ_{0} and φ_{0}^{\prime} are isomorphic in φ_{S}.
(ii) For all $r \geqq r: T^{r}\left(\varphi_{0}\right) \cong T^{r}\left(\varphi_{o}^{\prime}\right)$ as $0_{S}\left\{x_{1}, \ldots, x_{n}\right\}-$ module, where the isomorphism is induced by $\mathcal{K}\left(n, a, p_{1}, \ldots, p_{r}\right)$.
(iii) $T_{(1)}^{1}\left(\varphi_{0}\right) \cong T_{(1)}^{1}\left(\varphi_{0}^{\prime}\right)$ as $0_{S}\{x\}$-module, where the isomorphism is induced by $\mathcal{K}\left(n, a, p_{1}\right)$.

4.1. Proof:

(i) \longrightarrow (ii) by 1.3 and 2.5 .
(ii) \longrightarrow (iii) by 2.3.
(iii) \longrightarrow (i) We choose representatives f^{*} and f^{*}, respectively, in $J\left(n, p_{1}\right)$.
The isomorphism in (iii) is induced by some $k \in \mathcal{K}\left(n, a, p_{1}\right)$. We replace f^{*} by $k \cdot f^{*}$, then $t(h, f)=t\left(h^{\prime}, f^{\prime}\right)$.
$F^{*}:=(1-T) f^{*}+T f^{*}$ represents a family ϕ of S-germs over \mathbb{A}^{1}, such that the germ ϕ_{t} of ϕ at $t=0$ (resp. $t=1$) defines a family of φ_{0} (resp. φ_{0}^{\prime}).

Lemma: Up to a finite number of values $t \notin t_{1}, \ldots, t_{Q}$ we have $t\left(h_{t}, f_{t}\right)=t(h, f)$.

Proof: We have $t\left(h_{t}, f_{t}\right) \subseteq t(h, f)=t\left(h^{\prime}, f^{\prime}\right)$. $t\left(h_{t}, f_{t}\right)$ is a finitely generated submodule of $\mathbb{C}\{x\}^{D_{1}}$ with a system of generators $m_{q}(t), \ldots, m_{M}(t)$ and $m_{j}(t)=\sum c_{j k}(t) m_{k}(0)$. Up to a finite number of values that are the zeros of $\operatorname{det} c_{j k}(T) \in \mathbb{C}[T] c_{j k}(t)$ is a regular matrix.
Let $U=\mathbb{C}-\left\{t_{1}, \ldots, t_{Q}\right\}$, at every point of U the germ ϕ_{t} is infinitesimally trivial, because
$\frac{\partial}{\partial T} F_{t}^{*}=f^{*}-f^{*} \in t(h, f) \subseteq t\left(H_{t}, F_{t}\right)$. This statement is obvious for the last p components F_{t} of F_{t}^{*}. As the O_{S}-module structures of $T_{(1)}^{1}\left(\varphi_{0}\right)$ and $T_{(1)}^{1}\left(\varphi_{0}^{\prime}\right)$ coincide, we have $\left(h_{j}-h_{j}\right) e_{k} \in t(h, f)$. Now U is connected and by the corollary $\left.\phi\right|_{U}$ is a trivial family over U, hence, $\left.F_{o}^{*}\right|_{T=0}$ and $\left.F_{i}^{*}\right|_{T=0}$ represent isomorphic S-germs.

4.2. Interpretation of special cases

Due to the proposition it is sufficient to know the cohomology $T^{\cdot}\left(\varphi_{0}\right)$ to determine the singularity up to isomorphism. But, it is difficult to decide whether an isomorphism of T^{-}is induced by the contact group or not. If we consider non-obstructed singularities, then the statements (ii) and (iii) coincide (cf. 2.3):
(a) Let $S=\{0\}$ and X_{0} be a complete intersection: Any $\mathbb{C}\{x\}-$ module isomorphism of $T^{1}\left(\varphi_{0}\right)$ has a lift to $\mathbb{C}\{x\}^{p}$ (cf. (4)). Any such isomorphism is given by an isomorphism ψ^{*} of $\mathbb{C}\{x\}$ and a matrix $A \in G L_{p_{1}}(\mathbb{C}\{x\})$, i.e. induced by the contact group $\mathcal{K}\left(n, 0, p_{1}\right)$. Hence, we obtain a generalization of the Mather-Yau result for isolated hypersurface singularities to the case of complete intersections with arbitrary singularity.
(b) Let $S=\mathbb{A}^{a}$, o be smooth and let $X_{o}=\mathbb{A}^{n}, \circ$ be smooth, then an isomorphism of $T^{1}\left(\varphi_{0}\right)$ is induced by $\mathcal{K}(n, a, a)=R(n)$ iff it is induced by a ring-isomorphism ψ^{*} of $\mathbb{C}\{x\}$. This corresponds
to the right-equivalence of q-tuples of functions on $\mathbb{C}^{n}, 0$.
For $a=1$ the Mather-Yau equivalence implies:
Two functions $f, f^{\prime}: \mathbb{C}^{\boldsymbol{n}}, 0 \longrightarrow \mathbf{C}^{\mathbf{1}}$, o are right-equivalent iff the local algebras $a_{f}=\mathbb{C}\{x\} /\left(\frac{\partial f}{\partial x_{1}} \ldots, \frac{\partial f}{\partial x_{n}}\right)$ and a_{f} are isomorphic as $C\{T\}$-algebras.
for functions with isolated critical points at 0 this was shown by J. Scherk [9], who used the methods of [6].
(c) Let S be smooth and X_{0} be a complete intersection: The isomorphy of such singularities corresponds to a "rightequivalence" of q-tuples of functions on complete intersections. As in (a) an isomorphism of T^{1} lifts to an isomorphism of $\mathbb{C}\{x\}^{\rho}{ }^{1}$ given by ψ and A. A sufficient condition, that (ψ, A) on T^{1} induces an $O_{S}\{x]$-isomorphism, is that A is an element of $\tilde{G}_{p_{1}}(q)$, i.e. is induced from an element of $\mathcal{K}\left(n, a, p_{1}\right)$. For obstructed singularities we conclude the following:
(d) Let $S=\{0\}, X_{0}$ be arbitrary:
$T^{r}\left(\varphi_{0}\right)$ is a submodule of $\widetilde{R}_{r} / I m d_{r-1}, \widetilde{R}_{r}$ a free $\mathbb{C}\{x\}$-module.
An isomorphism $T^{r}\left(\varphi_{0}\right) \cong T^{r}\left(\varphi_{0}^{0}\right)$ is induced by \mathcal{K} if it can be extended to a $\mathbb{C}\{X\}$-module isomorphism of \widetilde{R}_{r}. Analogous to (a) each of these isomorphisms is admissible.
(e) In the general case $T^{r}\left(\varphi_{0}\right),(r>1)$, is a submodule of $\widetilde{R}_{r} / \operatorname{lm} d_{r-1}, \widetilde{R}_{r}$ a free $0_{S}\{x\}$-module. An isomorphism is induced from the contact group if it can be extended to an $0_{S}\{x\}$-isomorphism of \widetilde{R}_{r}. For $T^{1} c T_{(1)}^{1}=\mathbb{C}\{x\}^{D_{1}} / t(h, f)$ we have in addition (cf. (c)):
An isomorphism of $T_{(1)}^{1}$ is admissible if it has a lift to $\mathbb{C}\{x\}^{P_{1}}$, given by (ψ, A) and $A \in \mathbb{G}_{P_{1}}(a)$. It is still an open question whether the condition $A \in \widetilde{G}_{p_{1}}^{1}(a)$ is really necessary, i.e. whether any $O_{S}\{x\}$-module isomorphism of $T_{(1)}^{1}$ is induced from \mathcal{K}.

5. THE MATHER-YAU EQUIVALENCE FOR MAPPING GERMS

For mapping germs and their deformations the present theory can be established in a rather analogous way. The main points will shortly be described here. Thereby we shall. ignore the higher cohomology groups and equivalence will be given only for the restricted cohomology $T_{(1)}^{1}$. The theory of the cotangent complex of a morphism between analytic spaces has been developped by H. Flenner [2].

5.1. The group of the generalized right-left equivalences

In contrast to families of singularities φ_{0} over S, where the base germ S is fixed, we now also deform the image germ. By a family η of a mapping germ $\eta_{0}: x_{0} \longrightarrow S_{0} \in \mathscr{G}$ over T we mean a T-morphism $\eta: X \longrightarrow S$ with an isomorphism $\eta_{t=0}=\eta 0^{\circ}$

A family η can be represented by $F^{*}=(H, F, G) \in J_{T}:=J_{T}(n, p+q) \times J_{T}(q, r)$, such that

$$
\begin{aligned}
& o_{X} \cong o_{T}\left\{x_{1}, \ldots, x_{n}\right\} /\left(F_{1}, \ldots, F_{D}\right) \\
& o_{S} \cong o_{T}\left\{u_{1}, \ldots, u_{q}\right\} /\left(G_{1}, \ldots, G_{r}\right) \\
& \eta\left(u_{j}\right)=H_{j} \bmod (F) \quad j=1, \ldots, q .
\end{aligned}
$$

A tuple (n, q, p, r) is called admissible with respect to η_{0} if η_{0} has a representative in \tilde{J}.
This is the case iff

$$
\begin{aligned}
& n \geq \text { emb } \operatorname{dim} x_{0}, \\
& q \geq \text { emb } \operatorname{dim} S_{0}, \\
& p \geq i\left(x_{0}\right) \text { and } r \geq i\left(S_{0}\right) .
\end{aligned}
$$

The set of all representatives of fixed type forms an orbit of a group $\mathscr{A}_{T}(n, p, q, r)$ in $J_{T} \cdot \mathcal{A}_{T}$ is the semidirect product of
$\mathcal{H}_{T}(n, q, p+q)$ and $\mathcal{K}_{T}(q, 0, r)$.
\mathscr{A}_{T} acts on \tilde{J}_{T} as follows: Let $a \in \mathscr{A}_{T}$ be represented by $\left(\psi_{1},\left(\begin{array}{l|l}E_{q} & A_{1} \\ \hline 0 & A_{2}\end{array}\right)\right) \in \mathcal{K}_{T}(n, a, p+a)$ and $\left(\psi_{2}, A_{3}\right) \in \mathcal{K}_{T}(a, 0, r)$;
then a $F^{*}=\tilde{F}^{*}$ and
$\widetilde{F}:=A_{2}^{-1} \psi_{i}^{*}(F)$
$\widetilde{G}:=A_{3}^{-1} \psi_{2}^{*}(G)$
$\tilde{H}:=\psi_{1}^{*}\left(H \cdot \psi_{2}^{*-1}\right)-A_{1} A_{2}^{-1} \psi_{1}^{*}(F)$.
If $T=\{0\}$ and $p=r=0$ (i.e. X_{0} and S_{0} are smooth), then $\mathscr{A}=\mathscr{R}(n) \times \mathscr{L}(n)$ and the action of \mathscr{A} on $J(n, q)$ is just the right-left-equivalence in the sense of Mather ([5]).

5.2. Infinitesimal families

Infinitesimal families η^{\prime} of η_{0} on $I=\operatorname{spec} \mathbb{C}[\varepsilon]$ have representatives of the form $f^{*}+\varepsilon f^{\prime *}, f^{*}=\left(h^{\prime}, f^{\prime}, g^{\prime}\right) \in \mathbb{C}\{x\}^{p+a} \oplus \mathbb{C}\{u\}^{r}$. A family η^{\prime} is trivial iff $\boldsymbol{F}^{*}{ }^{*} \in \mathfrak{t}(h, f, g) . t(h, f, g)$ is a submodule of $\mathbb{C}\{x\}^{a+p} \oplus \mathbb{C}\{u\}^{r}$, which is composed of
$t_{1}=t(h, f)=\Sigma \mathbb{C}\{x\} \frac{\partial}{\partial x_{i}}\binom{h}{f}+\sum \mathbb{C}\{x\}^{\rho+q} f_{j}, \quad$ a $\mathbb{C}\{x\}-$ submodule of $\mathbb{C}\{x\}^{p+q}$,
$t_{2}=\sum \mathbb{C}\{u\}^{r} g_{j}, \quad$ a $\mathbb{C}\{u\}$-submodule of $\mathbb{C}\{u\}^{r}$
and
$t_{3}=\left\{\left.\sum_{i=1}^{a} \lambda_{i} \frac{\partial}{\partial u_{i}} f^{*}+\lambda(h) \right\rvert\, \lambda=\left(\lambda_{1}, \ldots, \lambda_{a}, 0\right)^{t}, \quad \lambda_{i} \in \mathbb{C}\{u\}\right\}$,
a $\mathbb{C}\{u\}$-submodule of $\mathbb{C}\{x\}^{a} \oplus \mathbb{C}\{u\}^{r}$.
${ }^{T}(1)\left(\eta_{0}\right):=\mathbb{C}\{x\}^{0+a} \oplus \mathbb{C}\{u\}^{r} / t(h, f, g)$ classifies all infinitesi-
mal families of first order of η_{0} up to homotopy.
The structure of $T_{(1)}^{1}$ is richer than that of a $\mathbb{C}\{u\}$-module, due to the subdivision into the three components. The action of $A \neq$ on \mathcal{J} induces $\mathbb{C}\{u\}$-module isomorphisms of $T^{1}(1)\left(\eta_{0}\right)$, which preserves this finer structure.

5.3. Infinitesimal triviality

The notion of infinitesimal triviality (cf. Definitiort 3.1) can also be applied to families of mapping germs and we get the same proposition.

Proposition: Let T be smooth and let η be a family of η o over T. η is infinitesimally trivial iff η is trivial.

Proof: The proof is almost the same as in 3.2. Without loss of generality let dim $T=1$ and let F^{*} be a representative of η. The infinitesimal triviality of η implies:
$\frac{\partial}{\partial T} F^{*}+\sum_{i=1}^{n} a_{i}(T, X) \frac{\partial}{\partial X_{i}} F^{*}+\sum_{j=1}^{q} c_{j}(T, U) \frac{\partial}{\partial U_{i}^{*}} F^{*}=B F^{*}+c(T, \mu)$
where B is a $(q+p+r, q+p+r)$-matrix of the form

$$
\left(\begin{array}{ccc}
0 & B_{1}(T, x) & 0 \\
0 & B_{2}(T, x) & 0 \\
0 & 0 & B_{3}(T, u)
\end{array}\right)
$$

and $c=\left(c_{1}, \ldots, c_{q}, 0, \ldots, 0\right)$.
We obtain integral curves
$v_{0}=T+y, v_{1}, \ldots, v_{n}$ of $\frac{\partial}{\partial T}+\sum a_{i} \frac{\partial}{\partial x_{i}}, v_{i} \in \mathbb{C}\{T, x, y\}$
and $v_{0}, v_{n+1}, \ldots, v_{n+q}$ of $\frac{\partial}{\partial T}+\sum c_{j} \frac{\partial}{\partial u_{j}}, \quad v_{n+j} \mathbb{C}\{T, u, y\}$.
Then $F^{*}(V)$ is the solution of the differential equation
$\frac{\partial Z}{\partial y}=B(V) \cdot Z+c(Z)$.
Here formulation (7) has the form:

$$
\begin{aligned}
& F^{*}(V)-\binom{H}{0}-c(H)=S \cdot F^{*}, \\
& S=\left(\begin{array}{lll}
0 & S_{1} & 0 \\
0 & S_{2} & 0 \\
0 & 0 & S_{3}
\end{array}\right)
\end{aligned}
$$

and S fulfills the differential equation $\frac{\partial W}{\partial Y}=B(V) \cdot W$.
Hence we obtain $a \in \mathcal{A}_{T}$ by

$$
\begin{aligned}
& \psi_{i}^{*}: x_{i} \longmapsto v_{i}(0, x, T) \\
& \psi_{2}^{*}: u_{j} \longmapsto v_{n+j}(0, u, T)
\end{aligned}
$$

$$
A_{i}:=\left.S_{i}\right|_{T:=0, y:=T}
$$

and then

$$
\begin{aligned}
& \psi_{1}^{*} F=A_{2}^{\dagger} \\
& \psi_{2}^{*} G=A_{3}^{g} \\
& \psi_{1}^{*} H=h \psi_{2}^{*}+A_{1} \dagger=h \cdot \psi_{2}^{*}+A_{1} A_{2}^{-1} \psi_{1}^{*} F
\end{aligned}
$$

hence,

$$
a F^{*}=f^{\infty} .
$$

a.e.d.
5.4. Proposition: Let $\eta_{0}: x_{0} \rightarrow S_{0}$ be a mapping germ and let (n, p, Q, r) be admissible with respect to η_{0}. Then the following statements are equivalent:
(i) η_{0} is isomorphic to η_{0}
(ii) $T_{(1)}^{1}\left(\eta_{0}\right) \cong T^{1}(1)\left(\eta \eta^{\prime}\right)$ as $\mathbb{C}\{u\}$-modules induced by an lement of $\mathcal{A}(n, p, q, r)$.

The proof is a repetition of the arguments of 4.1.

Remark: If X_{0} and S_{0} are smooth, then an isomorphism $T^{1}(1)\left(\eta_{0}\right)=T_{(1)}^{1}\left(\eta{ }^{\prime}\right)$ is admissible of it is induced by a pair of ring-isomorphisms of $\mathbb{C}\{x\}$ and $\mathbb{C}\{u\}$.

REFERENCES

[1] Dimca, A., Function germs defined on isolated hypersurface singularities. Prepr. 4/83, Increst, Bucaresti.
[2] Flenner, H., Über Deformationen holomorpher Abbildungen, Osnarbrücker Schriften zur Mathematik, Heft 8, 1979.
[3] Martin, 3., A generalized Mather-Yau Equivalence, Prepr. $\mathrm{Nr} .60 . \mathrm{HUB}, 1983$.
[4] Martin, B., Singularitäten sind bestimmt durch ihre infinitesimale Familien, Prep. Nr. 75, HUB, 1984.
[5] Mather, J.N., Stability of C^{∞}-mappings, III, IHES, Publ. Math. 35(1969), p. 127-156.
[6] Mather, J.N., Yau, S.S.T., Classification of isolated hypersurface singularities by their moduli algebra, Invent. Math. 69(1982), p. 243-251.
[7] Palamodov, V.P., Deformations of complex spaces (Russian), Uspech. mat. nauk, 31:3(1976), p.129-134.
[8] Saito, K., Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Uni. Tokyo, 27:2(1981), D. 265-291.
[9] Scherk, J., A propos d'un theoreme de Mather et Yau, C.R. Acad. Sc., Paris, t. 296, ser. 1, No. 12,1983.

Bernd Martin, Humboldt-Universität zu Berlin, Sektion Mathematik, DDR-1086 Berlin, PF 1297, German Democratic Republic

