Math 313 , Introduction to Analysis

uniform continuity - worked example 1

Example: Show that the function $f(x)=x^{2}$ on the closed interval $[1,3]$ is uniformly continuous.
Solution: Given $\epsilon>0$ we want to find $\delta>0$ that works for every point in the interval $[1,3]$.
This means that for all $1 \leq c \leq 3$ and any $|h|<\delta$, we have $|f(c+h)-f(c)|<\epsilon$.
Step 1 - use the definition of $f(x)$ to reduce what we are trying to obtain to a simpler form

$$
|f(c+h)-f(c)|=\left|(c+h)^{2}-c^{2}\right|=\left|\left(c^{2}+2 c h+h^{2}\right)-c^{2}\right|=\left|2 c h+h^{2}\right| \leq|2 c h|+\left|h^{2}\right|
$$

So it is enough to find $\delta>0$ small enough so that the two terms on the right side above satisfy $|2 c h|<\epsilon / 2$ and $h^{2}<\epsilon / 2$ for every $1 \leq c \leq 3$.

So if $6|h|<\epsilon / 2$, or $|h|<\epsilon / 12$, then $|2 c h|<\epsilon / 2$ is satisfied.
Step 3 - find a condition on δ which makes $h^{2}<\epsilon / 2$. Take square roots of both sides to see that we $\overline{\text { need }|h|}<\sqrt{\epsilon / 2}=\sqrt{\epsilon} / \sqrt{2}$. There is no c in this equation, so assume $\delta \leq \sqrt{\epsilon} / \sqrt{2}$ and this works for any value of c.

Step 4 - we need both upper bounds on δ to be true, so take $\delta=\min \{\sqrt{\epsilon} / \sqrt{2}, \epsilon / 12\}$. That'll do it.
Since $\delta \leq \sqrt{\epsilon} / \sqrt{2}$ then $|h|<\delta$ implies $h^{2}<\epsilon / 2$.
Since $\delta \leq \epsilon / 12$ then $|h|<\delta$ implies $|6 h|<\epsilon / 2$ so that $|2 c h|<\epsilon / 2$ for all $1 \leq c \leq 3$.
Combine these two, so $|h|<\delta$ implies

$$
|f(c+h)-f(c)|=\left|(c+h)^{2}-c^{2}\right|=\left|2 c h+h^{2}\right| \leq|2 c h|+\left|h^{2}\right|<\epsilon / 2+\epsilon / 2=\epsilon
$$

