## Math 313 , Introduction to Analysis

uniform continuity - worked example 2

Example: Show that the function $f(x)=\ln (x)$ on the interval $[1, \infty)$ is uniformly continuous.
Solution: Given $\epsilon>0$ we want to find $\delta>0$ such that for all $1 \leq c$ and any $|h|<\delta$, then $|f(c+h)-f(c)|<\epsilon$. By the definition of $f(x)$ this means we need

$$
|f(c+h)-f(c)|=|\ln (c+h)-\ln (c)|<\epsilon
$$

The first problem is now, we need a definition of the function $\ln (x)$ ! Recall from Calculus I that $\ln (x)$ is the unique differentiable function defined for $x>0$ satisfying the two conditions

$$
\ln (1)=0 \text { and } \ln ^{\prime}(x)=\frac{1}{x}
$$

Since $\ln (x)$ is differentiable at every point $x>0$, it is also continuous at every point $x>0$.
We also need the rules of $\ln (x)$, that $\ln (a \cdot b)=\ln (a)+\ln (b)$.
Then since $\ln (1)=0$, this implies $0=\ln (b / b)=\ln (b)-\ln (1 / b)$, and so $\ln (1 / b)=-\ln (b)$.
Combining these two properties we get $\ln (a / b)=\ln (a)-\ln (b)$.
Now we can rewrite the estimate we need to be

$$
|f(c+h)-f(c)|=|\ln (c+h)-\ln (c)|=\left|\ln \left(\frac{c+h}{c}\right)\right|=\left|\ln \left(1+\frac{h}{c}\right)\right|<\epsilon
$$

When $h \rightarrow 0$ the argument $1+\frac{h}{c} \rightarrow 1$, so we need continuity of $\ln (x)$ at $x=1$, or continuity of the composition $y \mapsto \ln (1+y)$ at $y=0$. This is true since $\ln (1+y)$ has a derivative at $y=0$ so it is continuous at $y=0$. We write out what this means:

For $\epsilon>0$ given, there is some $\lambda>0$ so that

$$
|y|=|y-0|<\lambda \Longrightarrow|\ln (1+y)-\ln (1)|=|\ln (1+y)|<\epsilon
$$

This means that if $\left|\frac{h}{c}\right|<\lambda$ then $\left|\ln \left(1+\frac{h}{c}\right)\right|<\epsilon$. Rewrite this as $|h|<c \cdot \lambda$ then $\left|\ln \left(1+\frac{h}{c}\right)\right|<\epsilon$.
Since $c \geq 1$, if we assume $|h|<\lambda$ then $|h|<c \cdot \lambda$, and then $\left|\ln \left(1+\frac{h}{c}\right)\right|<\epsilon$.
We need to find $\delta>0$ so the conclusion $\left|\ln \left(1+\frac{h}{c}\right)\right|<\epsilon$ is true, so take $\delta=\lambda$, the same $\lambda$ chosen using continuity of $\ln (1+y)$ at $y=0$. Then

$$
|h|<\delta \Longrightarrow\left|\ln \left(1+\frac{h}{c}\right)\right|<\epsilon \Longleftrightarrow|\ln (c+h)-\ln (c)|<\epsilon
$$

