Improper Integrals¹

The integrals considered so far $\int_a^b f(x) dx$ assume implicitly that a and b are finite numbers and that the function f(x) is nicely behaved on the interval. *Improper* integrals arise when

- The function f(x) blows up (goes to $\pm \infty$) at one of the endpoints, or
- One of the end points a and/or b is infinite,
- A combination of both of the above

Examples.

• Find the total area under the curve $y = xe^{-x}$, $0 \le x < \infty$.

The integral to calculate is

$$\int_0^\infty x e^{-x} \, dx$$

Since $\int xe^{-x} dx = -xe^{-x} - e^{-x}$, the area out to b is $\int_0^b te^{-t} dt = (-te^{-t} - e^{-t})\Big|_{t=0}^{t=b} = -be^{-b} - e^{-b} + 1$, which tends to 1 as b tends to ∞ . Thus the area is finite and should be said to be 1. We say the improper integral $\int_0^\infty xe^{-x} dx$ converges to the value 1.

We are really calculating $\int_0^\infty x e^{-x} dx = (-xe^{-x} - e^{-x})|_0^\infty$ and interpreting the expression $(-xe^{-x} - e^{-x})$ at $x = \infty$ as 0 in the sense of limits.

• Find the total area under the curve $y = \frac{1}{x \ln(x)}, e \le x < \infty$.

The integral to calculate is

$$\int_{e}^{\infty} \frac{1}{x \ln(x)} \, dx.$$

Since $\int \frac{1}{x \ln(x)} dx = \ln(\ln(x)) + C$, $\int_e^\infty \frac{1}{x \ln(x)} dx = \ln(\ln(x))|_{x=e}^{x=\infty}$, and $\ln(\ln(\infty))$ is to be interpreted as ∞ in the sense of limits.

We thus say that the improper integral diverges $[to \infty]$ and the total area is infinite. Note that

$$\int_{1}^{\infty} \frac{1}{x \ln(x)} \, dx$$

is improper for an additional reason - at the initial end point x = 1, $\ln(1) = 0$.

• The improper integral $\int_0^1 \frac{1}{\sqrt{1-x^2}} dx$

converges because $\arcsin(x)|_{x=0}^{x=1}$ can be evaluated because $\arcsin(1) = \frac{\pi}{2}$ in the sense of limits. The integral is improper since the integrand blows up near the right hand end point.

The Method

• In each of the examples, we took the lim as $x \to \text{singular point of the anti-derivative function}$ created *after* the integration.

¹This note was written by J. Lewis, and slightly revised by S. Hurder 1/23/2001

Comparison Tests

For non-negative functions f(x), the improper integrals $\int_{a}^{\infty} f(x) dx$ converges if and only if the approximating integrals $\int_{a}^{b} f(t) dt$ are bounded as $b \to \infty$. This is because $\int_{a}^{b} f(t) dt = F(b) - F(\cdot)$ and F(b) is increasing and F(b) has a limit if and only if F(b) is bounded.

A similar statement can be made for integrals of the form $\int_a^{\cdot} f(x) dx$ (f(x) blows up at a) or $\int_a^{\cdot} f(x) dx$ (f(x) blows up at b).

- If $0 \le f(x) \le g(x)$, then $0 \le \int_{\cdot}^{\cdot} f(x) dx \le \int_{\cdot}^{\cdot} g(x) dx$
- If $0 \le f(x) \le g(x)$, and $\int_{\cdot}^{\cdot} g(x) dx$ converges, then $\int_{\cdot}^{\cdot} f(x) dx$ converges also.
- If $0 \le f(x) \le g(x)$, and $\int_{-}^{\cdot} f(x) dx$ diverges, then $\int_{-}^{\cdot} g(x) dx$ diverges also.

p-tests for improper integrals:

- $\int_{a}^{\infty} \frac{1}{x^{p}} dx \begin{cases} \text{converges if } p > 1, \\ \text{diverges if } p \le 1. \end{cases}$
- $\int_0^b \frac{1}{x^p} dx \begin{cases} \text{ converges if } p < 1, \\ \text{ diverges if } p \ge 1. \end{cases}$
- $\int_0^\infty \frac{1}{x^p} dx$ diverges for all p.

Examples

- $\int_{1}^{\infty} \frac{\cos^2(\phi)}{\phi^2} d\phi$ converges by comparison with $\int_{1}^{\infty} \frac{1}{\phi^2} d\phi$ or simply by the p test with p = 2.
- $\int_{1}^{\infty} \frac{\cos^2(\phi)}{\phi} d\phi$ diverges, but cannot be handled directly by the comparison with $\int_{1}^{\infty} \frac{1}{\phi} d\phi$.
- $\int_0^\infty e^{\frac{-x^2}{2}} dx$ The integral converges since $e^{\frac{-x^2}{2}} \ll e^{-x}$ for large x, and $\int_{\cdot}^\infty e^{-x} dx$ converges.
- $\int_{-4}^{3} \frac{1}{x^2} dx$ DIVERGES.