# Solving a quadratic equation a case study

Steven Hurder

University of Illinois at Chicago www.math.uic.edu/ $\sim$ hurder

Math 589 Presentation - October 30, 2007



- 1 The Problem
- 2 Picturing the Solution
- 3 Some Algebra
- 4 The Formula

Your paycheck has been held up, and they keep asking,

"Are you really a mathematician?"

Your paycheck has been held up, and they keep asking,

"Are you really a mathematician?"

How to convince them?

Your paycheck has been held up, and they keep asking,

"Are you really a mathematician?"

How to convince them?

What to do?

Your paycheck has been held up, and they keep asking,

"Are you really a mathematician?"

How to convince them?

What to do?

And then the idea hits you - you'll show them you can solve a quadratic equation!

Your paycheck has been held up, and they keep asking,

"Are you really a mathematician?"

How to convince them?

What to do?

And then the idea hits you - you'll show them you can solve a quadratic equation!

If that doesn't convince the admin type, what will?



Now, it is only a matter to select a quadratic equation which will impress them.

•  $x^2 = 0$  (nah, too obvious. it would be shameful if this worked)

- **1**  $x^2 = 0$  (nah, too obvious. it would be shameful if this worked)
- $2x^2 2x + 1 = 0$

- **1**  $x^2 = 0$  (nah, too obvious. it would be shameful if this worked)
- ②  $x^2 2x + 1 = 0$  (more of the same)

- **1**  $x^2 = 0$  (nah, too obvious. it would be shameful if this worked)
- ②  $x^2 2x + 1 = 0$  (more of the same)
- $3x^2 3x 1 = 0$

- **1**  $x^2 = 0$  (nah, too obvious. it would be shameful if this worked)
- ②  $x^2 2x + 1 = 0$  (more of the same)
- **3**  $x^2 3x 1 = 0$  (sort of fancy... just right!)

# Grab your calculators:

A picture may be worth a thousand words, but is it worth a thousand bucks?

### Grab your calculators:

A picture may be worth a thousand words, but is it worth a thousand bucks?

Let's try! If they buy this, we are done. So plot  $y = x^2 - 3x - 1$ 

### Grab your calculators:

A picture may be worth a thousand words, but is it worth a thousand bucks?

Let's try! If they buy this, we are done. So plot  $y = x^2 - 3x - 1$ 





#### Not even close...

"You want money for your one lousy graph?"

#### Not even close...

"You want money for your one lousy graph?"

"Give the solution to 10 decimals, and we'll show you the money!"

#### Not even close...

"You want money for your one lousy graph?"

"Give the solution to 10 decimals, and we'll show you the money!"

"Oh, for @#%& sake!"

$$0 = x^2 - 3x - 1$$

$$0 = x^2 - 3x - 1$$
  
$$0 = x^2 - 3x + (-3/2)^2 - (3/2)^2 - 1$$

$$0 = x^{2} - 3x - 1$$

$$0 = x^{2} - 3x + (-3/2)^{2} - (3/2)^{2} - 1$$

$$0 = (x - 3/2)^{2} - 9/4 - 4/4$$

$$0 = x^{2} - 3x - 1$$

$$0 = x^{2} - 3x + (-3/2)^{2} - (3/2)^{2} - 1$$

$$0 = (x - 3/2)^{2} - 9/4 - 4/4$$

$$0 = (x - 3/2)^{2} - 13/4$$

Now let's solve it:

$$0 = (x - 3/2)^2 - 9/4 - 4/4 \implies (x - 3/2)^2 = 13/4$$

Now let's solve it:

$$0 = (x - 3/2)^2 - 9/4 - 4/4 \implies (x - 3/2)^2 = 13/4$$
$$\implies (x - 3/2) = \pm \sqrt{13/4}$$

Now let's solve it:

$$0 = (x - 3/2)^{2} - 9/4 - 4/4 \implies (x - 3/2)^{2} = 13/4$$

$$\implies (x - 3/2) = \pm \sqrt{13/4}$$

$$\implies x = 3/2 \pm \sqrt{13/4}$$

Now let's solve it:

$$0 = (x - 3/2)^{2} - 9/4 - 4/4 \implies (x - 3/2)^{2} = 13/4$$

$$\implies (x - 3/2) = \pm \sqrt{13/4}$$

$$\implies x = 3/2 \pm \sqrt{13/4}$$

Think this is enough to get the money?



Now let's solve it:

$$0 = (x - 3/2)^{2} - 9/4 - 4/4 \implies (x - 3/2)^{2} = 13/4$$

$$\implies (x - 3/2) = \pm \sqrt{13/4}$$

$$\implies x = 3/2 \pm \sqrt{13/4}$$

Think this is enough to get the money?

Not likely...



# Pay Up!

There are two solutions:

### Pay Up!

There are two solutions:

$$x = 3/2 + \sqrt{13/4}$$
, or

x = 3.30277563773199464655961063373524797312564828692262310635

# Pay Up!

There are two solutions:

$$x = 3/2 + \sqrt{13/4}$$
, or

x = 3.30277563773199464655961063373524797312564828692262310635

and 
$$x = 3/2 - \sqrt{13/4}$$
, or



#### Mathematical Proof

The final proof that we are Mathematicians?

#### Mathematical Proof

The final proof that we are Mathematicians?

Give them the Magic Formula,

$$ax^2 + bx + c = 0 \Longrightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

#### Mathematical Proof

The final proof that we are Mathematicians?

Give them the Magic Formula,

$$ax^2 + bx + c = 0 \Longrightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

and tell them to try this first next time...