INTRODUCTION

The purpose of this thesis is to comstruct a new theory of foliation
invariants using Sullivan's theory of minimal models [63], to relate the
new invariants obtained this way with the theory of secondary characteristic
classes of foliations, and then to use this relationship to answer questions
raised by bothvtheories. The dual homotopy invariants which we construct
can be thought of as a homotopy theoretic version of the cohomology
characteristic classes of a foliation. It is not surprising that a link
can be forged between a theory of invariants developed via the theory of
minimal models, and the secondary characteristic class theory as developed
by Kamber and Tondeuf [38], since both theories rely heavily on the
techniques of H. Cartan [12] and Koszul [41], and have a common root in
the work of Chern and Simons [15].

This marriage of techniques from Sullivan's theory and that of Kamber
and Tondeur proves very fruitful; we are able to establish the non-triviality
of the secondary classes of foliations in many geometric contexts.

We show for the first time that there exists a foliated manifold with
a non-trivial rigid class (Proposition 8.3), and are thus able to answer a
question posed by Lawson (Remark 8.4). We also give a considerable extension
of the results of Heitsch [32] on the independence and variability of the
secondary classes for foliations (Corollary 8.13 and Theorem 8.14).

We prove that all of the dual homotopy invariants of Riemannian
foliations are non-trivial, which implies that all of the indecomposable
secondary classes of Riemannian foliations are non-trivial (Thedrem 9.4).

Since the introduction by Haefliger of the classifying space be of

G-foliations, a central problem has been to determine the homotopy groups



of this space [24], [43]. This proBlem is addressed repeatedly in this
thesis, beginning in Chapter 6 where we show Bis and BG have the same
homotopy groups in degrees less than q, the codimension of the foliationm.
That is, the fiber Ffé of the map v:Bfé - BG is shown to be (gq-1)-connected.
Various theorems regarding the rank of the homotopy groups ﬂh(th)

are given; one of our main results asserts there are epimorphisms of

v
- abelian groups ﬂﬁ(Bfé) -R n’ where {vn} is a sequence of integers with a

subsequence tending to infinity.

An Outline of the Thesis

We now give a brief survey of the theory developed in this thesis.

Let M be a manifold with a G-foliation & of codimension q. The Bott

Vanishing Theorem [5] implies the Chern-Weil homomorphism h of the normal

-bundle of & defines a differential algebra map h:I(G)q - QM) from the

truncated polynomial algebra I(G)q to the deRham complex of M. It is shown

in Theorem 4.4 that this determines a characteristic map
# % *
h™:m (I(G)q) - M

*
of the concordance class of &F. Here, T (I(G)q)'denotes the algebraic dual
homotopy of I(G)q; this is an infinite dimensional space for q > 1. If M

is simply connected, then there is a natural isomorphism [62]
* ~
m (M) = Hom(m (M) ,R)

For this reason, the elements in the image of h# are called the dual

homotopy invariants of the foliatiom.



Depending on the foliation &, there exists a subgroup H of G, where
H is usually taken to be either the trivial group {e} or a maximal compact

subgroup of G, for which a characteristic map is defined [38],
* *
A :H (A(G,H)q) -5 ™ ,

whose image consists of the secondary characteristic classes of & The
dual of the Hurewicz homomorphism gives a map H?:H*(M) - ﬂ*(M), and the
composition H? 0 A, defines dual homotopy invariants of F. These are
related to the elements in the image of h# by Proposition 4.24, which

asserts there is a universal map

CH (AG,H) ) ~ (1) )
q q

such that H? oA, = h# o . In terms of the classifying spaces of G-

foliations, this is given by the following commutative diagram
o
* : * o
i (I(G)q) — > n (BI’G)

ke

C 3¢

B (ACG, {e]) ) > B (FF)

From this diagram, it is seen that the determination of the map E#
yields information about the map Zm. Conversely, conditions for the

injectivity of H? are established in Theorem 5.1 so that results on Z*
~3F

translate into similar results about h". This give and take process is

used repeatedly to gain information about the non-triviality of both maps,
& and A,. This is the idea behind Propositions 5.5 through 5.7 and 5.10

through 5.12.



To facilitate the analysis of the map ﬁ# for the case of Riemannian
foliations, where G = SO(q) or 0(q), we were led to Theorem 6.1, which states
that the classifying space Ffé is (q-l)-connected.for any group G.

Using Theorem 6.1 with G = SO0(q), we are able to show ﬁ# is injective
(Theorem 9.1), hence the kernel of Z* is contained in the kernel of ,
which consists of the decomposable secondary classes. Further results on

the variability of the classes in the image of

- . * o * ~q

are also established (Theorem 9.4), using a theorem of Lazarov and
Pasternack [46].

For the classifying space of real foliatioms, BFq, where G = G(q,R),
we show the results of Heitsch [327] on the variability and independence of
the classes in the image of A, imply the image of £* contains many non-
trivial, variable classes (Proposition 8.1l and Theorem 8.12). From this,
we obtain a significant extension of the results of Heitsch on the
variability and independence of the classes in the image of A,

(Corollary 8.i3 and Theorem 8.14).

Chapter 10 gives a similar extension of the results of Baum and Bott
[3] on the independence of ;he secondary classes in the image of A, for
integrable complex foliations (Theorem 10.7).

For each of the three types of G-foliations considered, namely real,
Riemannian or integrable complex, it is shown that the homotopy groups of
the corresponding classifying space be are uncountably generated; there
are epimorphisms of abelian groups ﬂh(Bfé) -R n, where {vn} is a sequence
of non-negative integers depending on G, and has a subsequence {vn } which

k|
‘tends to infinity (Theorems 8.15, 9.6 and 10.8). These theorems can be



interpreted as saying that for n arbitrarily large, there exists an open
manifold M with the homotopy type of an n-sphere such that there areiRvn
distinct concordance classes of foliations on M. This follows because
there are vn distinct dual homotopy invariants for these foliations which
can assume any real value independently. The dual homotopy invariants
thus provide a means for showing, given a fixed codimension q, that there
are foliated manifolds with arbitrarily high dimension and CW-dimension
having non-trivial foliations. This contrasts to the secondary cohomology
invariants, which lie in the cohomology groups of M of degree < q2 + 2q.
For M with the homotopy type of an n-sphere, these invariants would all
vanish.

Finally, in Chapter 7, it is shown that if a codimension q foliation
& on a manifold M is defined by a mapping f:M - N to a p~dimensional
foliated manifold N with p < 2q, then all the dual homotopy and secondary
invariants of ¥ are rational valued (Theorems 7.1 and 7.3). For Riemannian
or integrable complex foliations, it is required that p = q and f be a
submersion. In the interpretation of Theorems 8,15, 9.6 and 10.8 given
above, this hés the consequence that almost all of theIRyn-distinct

foliations on M = S™ are not defined by a submersion, or by a map to a

manifold N of dimension < 2q.

Notation and Conventions

Throughout this thesis the following conventions will be used. We let
%k denote either the field of rational numbers @, of real numbers R or of
complex numbers L. Given a real number X, the symbol [x] denotes the
greatest integer n < x. For a given subset ¥ of a vector space V, we

denote by (¥) the subspace of V spanned by the set 7.



If V is a graded vector space, the subspace of elements of degree p
in V is denoted by VP, so that V £ @ VP. An element of VP is said to be
homogeneous of degree p.

All algebras have an identity denoted by 1. An algebra A is
associative, graded and commutative, unless otherwise noted. For two
elements a in AP and b in Aq, the commutativity of A is given by

a-b= (-l)qu » a. For an element a in AP, we use Ja to denote (-l)pa.

A differential algebra is an algebra A with a derivation dA of degree +1

satisfying d2

A" 0 and dA(a-b) = dAg * b+ Ja - dAb. A dlfferentigl algebra

will be denoted (A,dA) when it is necessary to emphasize the differential

d,.
A
An algebra A is said to be of finite type if each vector space AP is

finite dimensional. An algebra A is said to be connected if Ap

n

k, and

n-connected if it is comnected and AP = {0} for 1 <p < n.

) *
A differential algebra (A,dA) is h-connected-if H (A) is a connected

algebra.

A map £:A - B of differential algebras is a weak isomorphism if

f*:H*(A) *'H*(B) is an isomorphism of algebras.

We use A ® B to denote the tensor product algebra of A and B.

All topological spaces are assﬁmed to be connected, and all maps
between spaces are continuous. When necessary, it is assumed that each
space has a base point and that maps preserve base points. Given topological
spaces X and Y, let [X,Y] denote the set of (pointed) homotopy classes of
maps from X to Y.

For a topological space X, we use H*(X) to denote the singular
cohomology of X with coefficients in k. By H*(X;R) we mean the singular
cohomology of X with coefficients in a ring R. A space X is said to be of

finite-type if the algebra H*(X) is of finite-type.



All manifolds are ¢c® and maps between manifolds are c®. Unless

otherwise noted, a manifold M is assumed to be paracompact and Hausdorff,

%
We use O (M) to denote the deRham complex of M.



CHAPTER 1

G-FOLIATIONS

The objects of our study will be the G-foliations on a manifold M,

a generalization of the usual notion of a foliation on M.

1.1 DEFINITION. A codimension q foliation on a manifold M" is an

integrable subbundle & of rank (n-q) of the tangent bundle TM.,

An equivalent way of defining a foliatiom on M is given by the

Frobenius Theorem [40]:

1.2 THEOREM. Let & be a codimension q foliation on M. Then there is an
open covering {Ua\a € 7% of M and local submersions ¢Q:Ua —ﬁRq such that

ﬂu=kad%fueuha€¢
o .

The collection {¢§:Uu —ﬁRq]a € ¢} is called a defining system of

charts for & For each q,B € ¢ with UG = Ua NU_, # ¢, and each x € Ua

8 B

by the Implicit Function Theorem there is a local diffeomorphism Yd

e(X)

from a neighborhood of ¢ (x) €RY to a neighborhood of by o) e RY with

e:

¢B(y) = y&s(x) ] ¢a(y) for y in a neighborhood of x. The transition

functions ¥y
o!

g

(x) give rise to a well-defined map

YCLB:UQa - ¢ dgf{germs of local diffeomorphisms of?Rq} .

The set of data {Ua’¢a’Yqﬂ‘a’B € &} is called a non-singular Iq-cocycle

defining the foliation &.

We want to study a generalization of the above construction of a

foliation & on M, in which the normal bundle Q=gg£ T™/& is required to



-

have some additional geometric structure. Let G be a closed subgroup of

the general linear group GA(q,R). Let FM denote the G4(q,R)-frame bundle

of the tangent bundle TM. We need the following concept.

1.3 DEFINITION {40]. A G-structure on a manifold M is a reduction of
the G4(q,R)-bundle FM - M to a principal G-bundle P — M., That is, at
each point x € M there is specified a set of frames of TMX, on which G
acts transitively and ffeely, and the set Px = n-l(x) < FMX varies
smoothly with x.

A G-structure on M is equivalently determined by giving a section s

of the quotient bundle P/G T-EM, [407.

The manifold R? has a canonical G-structure, unique up to the action
of G4(q,R). Let {xl,...,xq} be linear coordinates on Rq, and let
{a/axl,...,B/BXq} be the corresponding vector fields. These vector
fields define a global framing of TRY, The right action of G on _this
frame defines a G-reduction of the frame bundle FE!. This is called the
flat G-structure on RrY,

A G-strﬁcture P - M% is said to be integrable if for each x € M
there is an open neighborhood Ux of x and a coordinate chart
¢x:Ux -R? such that P ]U is given by the pull-back via ¢, of the flat
G-structure on RY, *

We next introduce the notion of a G-foliation. The basic idea is
illusttrated by the following example. Let M be a manifold with a
G-structure P' — M. A submersion f:N - M defines a foliation & of N,
whose leaves are the components of the fibers of £. The normal bundle

Q = TN/& is then isomorphic to the pull-back via f of the tangent

bundle TM™.
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Let FQ denote the G4(q,R)=frame bundle of Q. If the G-structure on
M is defined by a section s':M — FM/G, there is a G-reduction of FQ = N
determined by a map s which satisfies

f
FQ/G ——> FM/G

A
s s' T (1.4)

> M .

N

If U €M is a coordinate neighborhood, then FMlU = U X G4(q,R).
Setting V = f'l(U), this defines a trivialization FQ\V 2V xG4(q,R). It

follows from (l.4) that the composition

S‘V | roj
> V X GL(q,R)/G > GL(q,R)/G

is constant along the leaves of &,
More generally, a foliation & on M is a G-foliation if the normal
frame bundle FQ admits a G-reduction whose defining section s:M — FQ/G

has the above local constancy along the leaves of 3&:

1.5 DEFINITION (247, [25], [17]. A codimension q foliation & on M is said
to be a G?foliation if.

(é) There is given a g-dimensional manifold B with a G=structure
P' - B,

(b) There is an open covering {Ua} of M and local submersions

¢G:Ua - B such that ker d¢a = E\Ua.

(¢) For each x € Ua N UB the transition function yhﬁ(x) is a local

G-morphism of B, That is, the differential dYa (x) maps the G-frames in

g

a neighborhood of ¢a(x) € B to G-frames in a neighborhood of ¢

B(x).



11

Locally, a G-fol?ation is given by a submersion into a manifold with
a G-structure, and condition (c) implies the local reductions of the frame
bundle FQ are compatible.

The manifold B in Definition 1.5 is called the model for &, and the

set of maps {¢Q:Ua - B} is called a defining system of charts for the

G-foliation.

A G-foliation is said to be integrable if the model manifold can be

taken to be RY with the flat G~structure.

Examples of G-foliationmns

We describe some contexts in which G-foliations arise. Of course,
for G = GL(q,R), any foliation of codimension q is an integrable

G-foliation., Some more interesting cases are as follows.

1.6 EXAMPLE. Let M be a manifold with a G-structure. The point foliation
on M is clearly a G-foliation. More generally, if £:N - M is a submersion,

then the fibers of f define a G-foliation on N.

1.7 EXAMPLE. An 0(q)-foliation is called a Riemannian foliation in the
litgrature, Riemannian foliations were first defined and studied by
B. Reinhart [56].

(a) A Riemannian metric on a manifoid M determines an 0(q)-structure,
so that examples of type (1.6) always give rise to Riemannian foliatioms.
It will be shown in Chapter 7 that not all Riemannian foliatioms arise in
~this fashion.

~(b) Let M be a Riemannian manifold with a nowhere—yanishing Killing

vector field V,[40]. Then the span (V) € TM defines a Riemannian
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foliation, as the normal bundle Q = TM/(V) has a Riemannian metric which
is invariant under the flow of V.

(¢) Let K be a compact Lie group which acts effectively on M. Then
the action of K defines a Riemannian foliation on M, as any metric on the
normal bundle Q can be averaged over the action of K to give an invariant
metric [517]. Typical examples of this are obtained by choosing a compact
subgroup K of a Lie group H and letting K act on H via the left group
action.

AN

1.8 EXAMPLE. (a) An integrable Gf(n,L)-foliation, for q = 2n, is
called a complex foliation; A complex manifold with the point foliation
proﬁides one type of example, Another common family of examples of complex
foliations arises from submersions f£:N - M into a complex manifold M.

(b) If M is a complex manifold with a nowhere-vanishing complex

vector field V, then (V) defines a complex foliatiom om M,[ 3 ].

1.9 EXAMPLE. Let G be a non-trivial, closed subgroup of a Lie group G.
Then the left cosets of G in G determine a G-foliation JF on G. The G-

reduction P = G of the normal frame bundle is given by the pull-back

- .
L

G > G/G .

diagram .

Note that P - G is isomorphic, as a G-bundle, to the trivial bundle

G X G - G. However, the section of P -G defining this trivialization

will not be parallel along the leaves of &, so that this coset foliation
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of G is not an.{e}-foliation. Many examples of foliations of this type

can be found in the works of Kamber and Tondeur [37], [38].

A Universal G-foliated Manifold

‘We describe a construction due to Haefliger [24], [25], [44] of a
"semi-simplicial, non-Hausdorﬁf, non-paracompact manifold Bfé with a
universal G-foliatibn: Every foliation on a manifold M is induced by a
classifying map £:M - Bfé.

Recall that FR? ~RY is the frame bundie of Y. Let N(G) be the
sheaf of local C -sections of the quétient bundle FRY/G -RY. The space
W(Gj has a Cé-manifold structure, though it is neither paracompact nor

Hausdorff.

1.10 LEMMA. 7(G) has a canonical G-structure.

.gzggg. For én open set U E;Rq and a section s € T(U,ERq/G), let S,
denote the germ of s at x € U. A basis for the topology of W(G) is given
by the collection of sets US = {éx‘x €U} for U E;Rq open and
s € T'(U,/RY/G). There is a canonical map p:7(G) -RY defined by
P(SX) = x. Note that p\U :Uslﬂ U is a homeomorphism, and in fact defines
the C”-structure on 72(G).s

For a basic open set US, theA corresponding open set U ERq has a
G-structure determined by the section s. Let U have the G-structure
induced by p:US - U. The definition of the sheaf topology on N(G) implies

that these locally defined G-structures are compatible, giving 7(G) a

G-structure. o
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The space 7(G) is a universal model manifold for G-foliatioms. It is
clear from Definition 1.4 that every G-foliation on M has a defining

system of charts {¢Q:Ua - N(G)}. The transition function Ya (x) for these

g

charts are local G-diffeomorphisms of 7(G). This is the motivation for the

next definition.

1.11 DEFINITION. Let Jb denote the pseudogroup of all local, Cw, G-

diffeomorphisms of N(G). We define fb to bé the associated topological

groupoid of éb,[ZS]. For an element f in 4, and x in the domain of f, let

fx denote the germ of f at x. Then the underlying set of ?E is given by
Tg = {fx]f € & and x € domain £3 .

There is a natural map pozfG - N(G), defined by setting po(fx) = x. The

~

space Tb is given the sheaf topology with respect to the map Pg* The map

PO is then a local homeomorphism and defines a C®-manifold structure

on I‘G.

For a G-foliation & on M with defining system of charts

~

{¢G:Ua - N(G)}, the tramsition functions YGB(X) induce maps Y&B:Uaﬁ - fé.
The data {UQ’¢G’YG5} is called a non-singular fb-cocycle on M. By
abuse of language, this cocycle is often denoted simply by {YGE}' The

~

Tb-cocycle associated to a foliation & completely determines d&.

1.12 PROPOSITION [25], [17]. Let {Ua} be an open covering of a manifold

~

M, and suppose functions YGB:UGB - T', are given which satisfy:

G

(a) (cocycle condition) For all x € Uy Nu, N U, we have

B

YBX(X) o Yaﬁ(x) = Yak(x) when this composition is defined.
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(b) ' (non=-singularity) The maps Py © Yam:Ua - N(G) are smooth
submersions.

Then setting ¢a =p the charts {¢Q:Ua - N(G)} are a defining

0 ° Yoo

system for a G-foliation & on M, whose non-singular FG-cocycle is

{sel )
precisely {YQB}

This proposition implies the process of associating to a G-foliation
on M its non-~singular fb—cocycle gives an exact classification of the
G-foliations on M. A weaker but more practical classification is
accomplished by intfoducing topological methods. Let {Ua’¢a’YcB} be a
non-singular fb-cocycle on M, Let Y be the set of all non-empty inter=
sections U = Ua nu

c'e."Y B ‘
where the composition is defined to be intersections of the form

Neee N UY. The set Y has a groupoid structure,

Uggerny X Ugerep = Ugge..qs if the resulting set if non-empty. Giving

U the discrete topology, we obtain a topological groupoid. The cocycle
{YQB} gives rise to a map Y:%(-*fh of topological groupoids [ 7 ]. The
Milnor join comstruction [ 7], [44] defines a functor, denoted by B, from
the category of topological groupoids to the category of topological spaces
and homotopy classes of maps. For the above situation, applying B gives

a continuous map BY:B%(-*BT&. It is well-known that there is a natural
equivalence M = B%G[ 7], and we let £:M -»th denote the map induced by

ByY. The homotopy class of £ depends only on the cocycle {YGB} on M, so

this construction defines a set map
{G-foliations on M} - [M,be] .

It is natural to ask what is the "kermel" of this set mapping; this is a

question which will be answered after some additional constructions are

introduced.



An element fX € fé can be represented as a local G-morphism
f:Us - U;, of 7M(G). The local diffeomorphisms p:U, » U gﬂRq and
p:U;, - U' EJRq define coordinate charts for 7(G). We denote by J(f)X

the Jacobian of f with respect to these charts. Then J(f)X € G, and the

correspondence fX —vJ(f)x defines a map Jac:fb - G of topological groupoids.

The corresponding map of classifying spaces is denoted y = BJac:Bfé - BG.
The map v has the following interpretation. If f:M - be classifies a
G-foliation & on M, then v 0 £:M - BG classifies the G-reduction P - M of
the normal frame bundle FQ.

Associated to the map v:Bfé - BG is a topological space Ff , the

homotopy theoretic fiber of v, and a diagram

which is a fibration in the homotopy category [60]. If a map £:M - be
is given for which v ¢ f is homotopic to a constant, then there is an

induced map £fM - Ffé and a homotopy commutative diagram

If a map £:M -*be classifies a G-foliation & on M, then the
composition v ¢ f will be homotopic to a constant precisely when the
G-bundle P - M associated to & admits a section. The space Ff& is there-
fore seen to classify the G-foliations on M with a trivial associated

G-bundle.
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We return now to the problem of interpreting the set [M,be]. The

following notion will play an essential role.

1.13 DEFINITION., Two codimension q G-foliations 30 and 31 on M are said

-

to be concordant if there is a codimension q G-foliation & on M X R such
that the inclusions i :M =M x {t} S M X R induce an equivalence

L% _
lt3 = 8% for t = 0,1.

We say 30 and 3& are integrably homotopic if, in addition, it is
transverse to & for all t €R.

Note that integrable homotopy implies concordance.

1.14 LEMMA [257. 1If 30 and 31 are concordant G-foliations on M, then

their classifying maps fO’fl:M“d be are homotopic.

There is a converse to this lemma, which gives the answer to our
question. First, note that a G-foliation & on M defines a splitting of

,the tangent bundle TM = Q & & Therefore, the classifying map of T™M

factors as
(gl,gz):M - BG X BO(n-q) < BO(n) .

If £:M - Bfé classifies &, then there is a commutative diagram

~

Bfé X BO(n-q)

(f’/gﬁ/ l (v,id) (1.15)
M

———— BG X BO(n-q) C BO )
(gl,gz) (n-q) < BO(n)

We will denote by [M,be X BO(n-q); BO(n)] the set of homotopy classes of

maps (f,gz) which satisfy (1.15), where the composition M - BO(n) classifies
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TM. There is a mapping
(4,8T, x BO(n-q); Bo(m)] ~ [,BT}]

given by (f,gz) - £. A very deep result of Gromov, Haefliger and Phillips

provides the following converse to Lemma 1.1l4.

1.16 THEOREM [23], [24], [52]. Let M be an open manifold. There is a

bijection between the set of‘integrable homotopy classes of G-foliations

on M and the set EM,Bfé X BO(n-q); BO(n)].

This is a result which we will use often. Note that it implies that
the integrable homotopy class of a G-foliation & on an open manifold M
is uniquely determined by the homotopy class of the classifying map
f: ~B~ .
M Té
For G = GL(q,R), a result correéponding to Theorem 1.16 for compact

manifolds has been shown by Thurston.

1.17 THEOREM (667, [67]. Let M be a compact manifold. There is a
bijection between the set of concordance classes of G4(q,R)-foliations on M

and the set [M,BT

G 4(q.R) X BO(n=-q); BO(n)].

1.18 REMARK. Suppose a finite CW complex X and a continuous map
g:X - Bfé are given., By a comnstruction of Haefliger [44], there is an open
manifold M with a G-foliation & classified by £f:M —>Bfé, and a homotopy

equivalence i:X - M such that the diagram
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homotopy commutes. The map g determines a singular fg-cocycle on X; the
manifold M can be thought of as an open thickening of X on which the

fé-cocycle determined by g has been desingularized.

It follows from Theorem 1,16 that the integrable homotopy class of
& on M depends only on the homotopy class of g. Therefore, for a finite
CW complex X, the set [X,BTE] is in 1-1 correspondence with the set of
integrable homotopy classes of G-foliations on open thickenings M of X.
It is in this sense which we will speak of a G-foliation on a CW complex
X determined by a ﬁap g:X = Bfé.

In the next chapters, we will produce invariants for a G-foliation
& on M which depend only on the concordance class of & and the homotopy
type of M. The above remarks allow us to consider these invariants as
being defined for pairs (X,f), where X is a finite CW complex and f is an
element of [X,Bfé]. For a fixed X, we obtain invariants defined on the
set [X,Bfé]. For example, letting X be the n-sphere Sn, this produces
invariants defined on the homotopy group ﬂﬁ(Bfé)' By studying these
invariants, we will obtain results on the homotopy groups of the space Bfé.

All of the above constrqctions can be repeated for integrable
G-foliations. Using the manifoldqu with the flat G-structure in place of
n(G), we let Rg denote the topological groupoid of germs of local
G-diffeomorphisms of RY, The associated space be then classifies
inteérable G-foliations, and the analog of Theorem 1.16 is wvalid. There is
a map‘v:BIé - BG classifying the G-structure on the normal bundle of a

G-foliation; we denote by Ffb the homotopy theoretic fiber of V.
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CHAPTER 2

SECONDARY CHARACTERISTIC CLASSES

In this chapter we give a survey of the theory of secondary character-
istic classes for G-foliations as developed by Kamber and Tondeur. A
detailed exposition of this theory is given in [38], which will be our
general reference. For the groups G = G4(q,R) and G{(q,T) there are
alternative constructions of these secondary classes, due tB Bott and
Haefliger [ 8], [ 6], Bernstein and Roéenfield [ 4] and Gelfand and Fuks
[20]. The construction of Kamber and Tondeur is particularly suifed to
our needs because it is a princiéal-bundle theoretic approach, and in a
uniform w;y gives secopdary classes for any groué G.

For this chapter we work over a field R =R or L. Let G C G4(q,R) be
a fixed, closed subgroup with a finite number of connected components. We
will consider a fixed codimension q G-foliation & on a manifold M. Let
mP — M be the principal G-bundle associated to &. We denote by 9 the
Iie algebra of G.

The analytical construction which is the basis for the theory of

secondary classes is the notion of an adapted connection on P.

2,1 DEFINITION [38]. A G-connection w on P is said ﬁo be adapted to &
if there is a foliation ¥ on P such that:

(a) % lies in the horizontal distribution of w; i.e., for each
P € P, the space ﬁp lies in the kernel of w:TPp =0 .

(b) For each x € M and p € P with m(p) = %, the differential
dﬂ:TPp -—»TMx is an isomorphism from gp to EX.

(c) The distribution & is invariant under the right action of G on P.
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An adapted connection w on P is basic if, in addition to (a), (b)

and (c) above, we also have:

(d) 8(F)w = 0 for all vector fields § € I'(P,%).

Adapted connections always exist. One construction goes as follows.
Let {¢G.:ch. - B} be a defining system of charts for & with P' - B the
associated G-structure on B. Choose a G-connection w' on P'. There is a

natural isomorphism between P and the pull-back via ¢G. of the bundle

U
a

P'\ . Let w' be the connection on ~P‘ - induced from w' under this
¢a(Ua) a u ;

isomorphism. Choose a partition of unity {)\a'} subordinate to the cover

{Ua} of M. Then

w dgfz(}\ e m »w
o e a.

defines a G-connection on P - M. A straightforward check, using the fact
that S\U = ker d¢a, shows that w is adapted to &.

We next fix some notation. For cg * = Hom(cg ,k), denote by:

*

[

|
g

I(g) = (Sg""')“,J » the adey ~invariant elements of Sg*

AcJ*, the exterior algebra on cg*, with Al"J*

*

SUJ*, the symmetric algebra on 2]*, with SZOJ*

]

I1(G) (Sg*)G, the Ad G-invariant elements of Sc;* .

Let W(‘J) denote the Weil algebra ofq ,[12], which as an algebra is
isomorphic to Aﬁ* ® ch*. - Define a filtration of W<°3) by letting F’QW(oJ)

be the ideal in W(oJ) generated by G>5 . SZp‘j*. The truncated Weil algebra
P =

is the quotient
Wep) 5 = W /F G

This is again a differential algebra with i(cg) and Ad G-actions [38].
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For any closed subgroup H € G, the relative truncated Weil algebra

def

WQG,H)Z GJQi)Z)H is defined to be the H-basic elements in WQy)

4o

Given a connection w on P - M, there is defined a differential
algebra map k(w):W(ﬁ) - Q(P), called the Weil homomorphism [12]. The map
k(w) commutes with the iGﬂ) and Ad G-actions on both algebras. The
distinguishing property of adapted connections is given by the important

result:

2.2 THEOREM [38]. If w be a connection adapted to & om P, then Fq+lWQ§)

is contained in the kernel of k(w).

2.3 COROLLARY. Given a closed subgroup H of G, an integer £ > q and an

adapted connection w, there is a well-defined differential algebra map

k(w) =W(3,H)£ = Q(P), = Qe/H) .

The existence of secondary characteristic classes of the foliation &
is a consequence of Theorem 2.2 and Corollary 2.3. The untruncated Weil

homomorphism
* *
k(w), :H (W(g,H)) - H(P/H)

defines the primary characteristic classes of the H-bundle P - P/H. It
is in the cohomology of the tfuncated Weil algebra that secondary classes
arise, The algebra H*(W(ﬂ’H)z) is described in more detail later in
this chapter.

When H = G, the algebra W(g,G) is just the ring I(G) of Ad G-invariant
polynomials on o . In this case, the map k(w) is called the Chern-Weil

homomorphism and denoted by
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h(w):I(G) - Q(P/G) = QM)

The induced map in cohomology, h(w)*:I(G) —»H*(M), defines the primary
characteristic classes of the bundle P - M, Theorem 2.2 implies that if

qt+l

w is an adapted connection, then h(w) anihilates the ideal F I(G) in

I1(G). The ideal Fq+lI(G) consists of the elements of degree > 2q, so we

obtain the famous Bott Vanishing Theorem:

2.4 THEOREM [5]. If w is a connection adapted to &, then h(w) anihilates

the elements of degree > 2q in I(G).

If a foliation & has a basic connection w, then the results of

Theorem 2.2 can be sharpened.

2.5 THEOREM [38]. Let w be a basic connection on P. Set q' = [q/2];

th q'+lw . . .:
en F Qg) is contained in the kernel of k(w).

Given the preceding constructions, we can now state the principal

result in the theory of secondary characteristic classes.

2.6 THEOREM [36].4 Let H € G be a closed subgroup, £ > q any integer and

w a G-connection adapted to & on P - M. Then the map of cohomology algebras
* *
k(w),:H (W(ﬂ’H)z) - H (P/H)

is independent of the choice of adapted connection w, and depends only, on

the concordance class of &.

2.7 REMARK. 1If @ is a basic connection for & on P, then for any
4>q' = [q/2] there is a map k(w) as above. However, for ¢ < q the map

k(w), is not necessarily independent of the choice of basic connection w
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and may depend on the representative & chosen within a given concordance
class of G-foliatioms.

For Riemannian foliations, where G = 0(q) or SO(q), basic connections
always exist. 1In fact, for a given 0(q)-foliation &, there is a unique

torsion-free 0(q)-connection w on P = M, [51]. Because of this, Theorem 2.6

remains valid when G = 0(q), w is basic and £ > q’.

Construction of the Secondary Classes

Theorem 2.6 gives us invariants of the concordance class of &, but

these invariants take their values in the cohomology of the space P/H.

To produce foliation invariants in the vector space H*(M), it is necessary
to assume that for some closed subgroup H of G, the G=bundle P — M admits
an H-reductioﬁ, Let this reduction be defined by a section s:M — P/H.

It is not being assumed that the section s is parallel along the leaves of
¥, so that we are not assuming & to be an H-foliation, In fact, if & is an
H-foliation then the invariants to be defined will all vanish [38,

Prop. 4.527.

For the given section s:M — P/H, define
Mw) = ds o k(w)WELH , -0 .
The next proposition then follows from Theorem 2.6.
2.8 PROPOSITION. For any { > q, the map
* *
A = M) x:H (WepLH) ) » H (M)
depends only on the concordance class of & and the homotopy class of s.

2.9 COROLLARY. If 4 > q and K is a maximal compact subgroup of G, then

there exists a characteristic map
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BE (WG, ) = ()

which depends only on the concordance class of .

!

Proof. The quotient G/K is contractible, so the bundle P/K - M, with

fiber G/K, admits a section s which is unique up to homotopy. o

The image of A, consists of, by definition, the secondary character-

istic classes of &.

2,10 REMARK. Any foliation & carries the structure of a G4(q,R)-foliation.

Hence there is always defined a characteristic map

B E (H(g4(aR), 0(@) ) = K G

for F. The classes in the image of this map are the same as the secondary
classes constructed by Bott-Haefliger [8] and Bernstein-Rozenfeld [4],
using different techniques.

Note that the map A, is_functorial under pullbacks. If £:N - M is a
smooth map which is transverse to the foliation & on M, then the diagram

below commutes:

ol
~

* *
HMN) «=— H ®™)
Ak\ | / A
H* (W, H) ) :
For K a maximal compact subgroup of G, by Corollary 2.9 and Remark 1.18,

it follows that there is induced a universal map
~ % *
EoE (@B ) -8 BT .

The map Z* has the property that if the G-foliation & is classified by a

ale

map f£:M - Bfé, then A, = £ o Z*.



26

An {e}-reduction of the G-bundle P - M is a trivialization of P.
Therefore, if P - M admits an {el}-reduction, then & is classified by a map

£:M - Ffé. By Remark 1.18, there is a universal characteristic map
"~ % * o
A H (W(e,e) JL) - H (FT,) .

Thé determination of the image_of Z* in either case is one of the central
problems in the theory of secondary invariants for G-foliations. This
problem is addressed in Chapters 8, 9 and 10 of this thesis.

For the remainder of this chapter, we consider a fixed subgroup H
of G and a fixed positive integer /4.

The cohomology of the algebra W(ﬂ’H)z has been studied in detail by
Kamber and Tondeur [34], [39]. The most general result is given by the

next proposition:

2,11 PROPOSITION. If G satisfies IQﬂ) = I1(G), then there is an iso-

morphism-

H (W) ) 8 Tory o (TE),1O) )

We will return to this description of H*(W(ﬁ’H)z) in Proposition 4.33
of this thesis.

In order to describe H*(W(%,H)Z) more concretely, it is necessary to
introduce some additional notation. Let P denote the space of primitives
in Aﬂ*‘ Recall that P consists of adﬂ-invariant elements, and the
inclusion NP gi(Aﬂﬁfi is an isomorphism of algebras [21]. Let g:I(G) - P
denote the suspension mapping, and choose a transgression T:P - I(ﬂ).

For the given subgroup H of G, let i:H C G denote the inclusion mapping.

« .
The induced map of algebras i :I(G) — I(H) is just the restriction
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homomorphism. Define a subspace P of P by setting

4

— *
7, def ofc € ker i :I(G) - I(H) |deg c < 24} .

The space EL consists of the elements in P which transgress to an element
in the kernel of i* of degree < 24. Note that the elements of Ez are
H-basic, [Proposition 5.103; 38].

We next introduce g differential algebra K("J’mg which gives a model

for W(a],H) o With the above notation, set:
' A def H .
Ay,H) , = P @ I(q), ® I(H) .
The differential in K(OJ,H) , is determined by setting, for b € 1(3)};,
¢ €I(H) and y €P:

d(1 ®b ®c) 0

*
dy @1 Q1) =1@r(y) 1 -1Q1Q1i ~(y) .

The following theorem is proven using techniques originating with

H. Cartan [127:

2.12 THEOREM [217], [34]. There exists a differential algebra homomorphism
A(°J sH)L - W(%’H)L
which induces an isomorphism of cohomology algebras.

Next we define a differential subalgebra A(G,H)'c of K(oJ,H) o For the

subspace P of P as defined above, set:

4

def —
A(G,H)ja = N ®I(G)z .

Y

The differential in this algebra is defined by setting, for ¢ € I(G) and

y EPL:
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0

il

d(l ®c)

d(y ® 1)

1 ®1(y) .

def
If H = {e}] is the trivial group, then we set A(G),Z = AG,{eD P
The natural inclusion A(G,H)z c :A:(QJ’H)E is a map of differential
algebras by the choice of the space F,@' The cohomology algebras of these

two algebras are then related by the result:

2.13 PROPOSITION [21]. The inclusion A(G,H) , < Zi(oJ ,H) , induces an

inclusion of algebras

B (AG,m ) B AeuB ) 2 1 (E,H )

"2.14 REMARK. While the universal cohomology invariants of a G-foliation
with an H-reduction of the normal bundle are gi&en by the algebra

H*(W(eJ,H) Z)’ we are principally interested in those in the subalgebra
H*(A(G,H) ,Z)' In Chapter 4, this subalgebra is related to the space of dual
homotopy invariants ﬂ*(I(G) ,(’,) which we define. For an arbitrafy pair of
Lie groups (G,H), there is, in general, no direct relationship between the
_ algebra H*(W(eJ,H) ,Z) and ‘the space ﬂ*(I(G) ,6)' However, in many cases of

interest there is an isomorphism
* A Lk
H ( (G’H) f;) = H (W(OJ’H) z) 3

so that there is no loss in generality in considering only the algebra

H*(A(G,H) ,(’,)' This is the situation for the following triples (G,H, #):

G

G4(q,R) ; H=0(q) or H

{e}s 224

(]
#

G4(n,T) ; H=U(n) or H

{fe}s £2n

. G any connected group ; H = {e} s 2>q.
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%*
A Basis for the Algebra H (A(G,H)E)

A basis of cocycles for the algebras H*(A(G)E) and H*(A(G,H)z) is
given in this section. To describe this basis, a notation is introduced
which will be used repeatedly in later chapters.

We assume that a transgression T:P - I(ﬂ) has been chosen. Pick a
basis {yl,...,yr} of PG, the Ad G-invariant elements in P, that satisfies

the conditions:

(a) There is a subset {y_,...,y 1} which is a basis of fz.

(b) Define ¢, = T, € I(G) for 1 £1i £ r; then the inequality

deg ¢, < deg cj is true for all i < j.

2.15 REMARK. The set {cl,...,cr} is an algebra basis for the polynomial

ring I(G),[21].

We use I to denote an s-tuple (il,...,is) of integers which satisfy
1 < il <... < iS < r, and J to denote an r-tuple (jl,...,jr) of integers

which satisfy jk > 0 for all k. We then define

¥i€3 =Y y ®ch ch
IJ i, ig 1 r
If I = ¢, we set yi€5 = 1® cy-
For each J as above, set |J| = % + deg c.

2.16 DEFINITION. An element ¥1¢1 in A(G)E is said to be admissible if

1,J satisfy:
(@ Il =<12

(b) degc, c.>24
1
(c) Jk = 0 if deg Cl < deg c; -

1

J
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The set of admissible elements in A(G)£ is denoted by Z(G)z.
The set Z(G)ﬂ is easily seen to consist of cocycles by condition (d).
Our next proposition says that Z(G)z is a basis for the vector space

1 (ACG) pE

2.17 PROPOSITION [39]. The vector space (Z(G)ﬁ) inherits an algebra

structure from A(G)z, and there is an isomorphism of algebras

n

@@ ) = u (A6 )

The basis Z(G)g of H*(A(G)ﬂ) is a generalization of the basis of
H*Gﬂ(gﬂ(qJR),e)q) which was first described by Vey [227], [6]. For this

reason, the set Z(G)z is often called a Vey basis.

The induced product in the space <Z(G)£> is easy to describe: For

any two admissible cocycles yIc and yii€ in Z(G)ﬂ, their product

‘ J J'
satisfies Yi€3 * YpiCq = 0. From condition 2.16(c), we have that
deg cJ > deg c; - Therefore, condition 2.16(b) implies that 2-.deg 5 > 24,
1

or deg cJ > f. Similarly, we conclude that deg cyr > 4. It follows that

deg c_ + deg cyr > 24 and henee c_. * c_, = 0.

J J o
There is a corresponding basis of H*(A(G,H)ﬂ) which consists of
elements in A(G,H)ﬂ satisfying conditions similar to 2.15(a)-(c). Recall

that {y_ ,...,y_ } is a basis of P
! %

i.
2.18 DEFINITION. An element Y1¢3 in A(G,H)z is said to be admissible if
I,J satisfy

@ <2

(b) deg cich > 24



31

(¢) j =01if deg c < deg c,
Oy o1 "1

(d) I£fI=¢, then jck =0 for 1 £k <.

The set of admissible elements in A(G’H)ﬂ is denoted by_Z(G,H)z.

The set Z(G,H)z again consists of cocycles, by condition (b), and the

vector space (Z(G,H)z) inherits an algebra structure from A(G,H)L.

2.19 PROPOSITION [39]. There is an isomorphism of algebras

<Z(G,H)L> = H(A(G,H) ).

Note that Definition 2.18 reduces to Definition 2.16 for H = {e}, so

that Proposition 2.17 is actually a special case of Proposition 2.19.

*
The algebra H (A(G,H)z) will, in general, have many non-trivial
products. If H is not a discrete group and ¢ is sufficiently large, then

this algebra contains as a non-trivial subalgebra the quotient

I(G) ,/Ideal{c, ,...,c., }. Further, the cocycles of the form y.c. in
& i, i, 1°J
Z(G’H)ﬂ need not have trivial product.
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CHAPTER 3

MINIMAL MODELS AND THE HOMOTOPY THEORY OF ALGEBRAS

We discuss the homotopy theory of algebras and.the special role played
by minimal algebras. This theory was developed by Sullivan as a solution
to the commutative cochain problem, and represents an extension of Quilleﬁ's
work on rational homotopy theory [54]. The end result is that there is a
functor M from the catégory of topological spaces and homotopy classes of
maps to the category of minimal algebras and algebra homotopy‘classes of
maps; the functor M is a "rational" equivalence of categories. It is this
relationship which makes the theory to be described so powerful.

All differential algebras are assumed to be homologically connected.
Recall that a map f:(A,dA) - (B,dB) is said to be a weak isomorphism if the
map f*:H*(A) - H*(B) is an algebra isomorphism.

We are interested in studying a category whose objects are algebras,
but whose maps are certain equivalence classes of algebra maps, an algebraic
counterpart of the homotopy equivalence of topological maps. For the
purpose of introducing this relation, we define an algebra {t,dt} which
will play the role of the unit interval. .

Let k[t] be the polynomial algebra on a variable t of degree zero.

Let A(dt) be the exterior algebra on a variable dt of degree one. We
define {t,dt} = A(dt) ® k[t], with a differential determined by setting

'd(l ®t) =dt ® 1. For any algebra (B,dB) and r E,k there is a differential
algebra map e :B ® {t,dt} - B, defined by setting e (b®t) =r -+ D and

e.(b ®dt) = 0. It follows that e. is the identity when restricted to

B ® 1 and is the evaluation at t = r when restricted to 1 ® {t,dt}. Using

these constructions we next define the basic notion of algebra homotopy.
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3.1 DEFINITION. Two differential algebra maps fo,fl;A — B are algebra

homotopic, written fo g f., 1f there is a differential algebra map

1

F:A—>B ® {t,dt} such that e, ¢ F = f_  and e, 0 F = £

1 1 0 0°

Algebra homotopy is clearly a reflexive and symmetric relation. It
is not, in general, a transitive relation. However, if A belongs to the
class of minimal algebras, to be defined shortly, then g is an equivalence

relation.

For a connected algebra A, let A denote the ideal @ Ap in A of
p>0
elements of positive degree., We denote by (A)r the ideal in A generated

by the r-fold products of elements in A,

Given an algebra (A,dA), the differential dA is said to be decomposable
if dA(K) c (K)z. This is equivalent to saying that for every x € K, the
differential dA(x) is a sum of products of elements of positive degree.

For a graded vector spaceIV, the free graded commutative algebra over
V is denoted by A(V). Decomposing V into a sum of odd and even degree

elements, V = VOdd @.Veven’ we have that A(V) is isomorphic to the exterior

algebra on VOdd tensored with the symmetric algebra on v&VeR . an algebra
A is free if it is isomorphic to the free algebra on a graded vector

space V,

Let (A,dA) be a differeritial algebra. A differential algebra (B,d,)

is said to be an elementary extension of (A,dA) if there is an isomorphism

B = A® A(V), for some graded vector space V, such that dB\A = dA and

dB(V) c A, If dA is decomposable, then dB is decomposable exactly if

-2
d (V) € @)°.

Following the work of Halperin [29], we give a generalization of the

idea of an elementary extension. Let V be a graded vector space with an
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ordered homogeneous basis {x }

oo € o Then we write A< a (resp. As CI.) for

the subalgebras of A(V) generated by the xB with B < @ (resp. B < ).

Note that Afd.g A<CL® A(xa).

3.2 DEFINITION., An algebra (B,dB) is said to be a Koszul-Sullivan (KS)
extension of an algebra (A,dA) if there exists a graded vector space V and

a homoogeneous basis {x of V, indexed by a well-ordered set ¢, such

cx}o. ed
that B € A ® A(V) with

d =d

BiA A

dpx,) €ABN 5 a€d.

Each algebra A ® A< o is an elementary extension of A ® A< <
A KS-extension (B,dB) of (A,dA) is minimal if the well-ordered homo=
geneous basis {x

of V can be chosen such that deg xa < deg x_, implies

c,}cx ea B
a <B. If (B,dB) is a minimal KS-extension of (A,dA) and dA is decomposable,

then dB is also decomposable.

3.3 DEFINITION. A connected algebra (m’dW() is said to be minimal if it

is a minimal KS-extension of the algebra (,h,dh =0).

A minimal algebra is always free and has a decomposable differential.
If a l-connected algebra ('M,dm) is free and dm is decomposable, then it is

minimal. For let M & A(V) and choose a basis {xa} of V consisting of

a €d
homogeneous elements. Order the set ¢ by setting ¢ < g if deg xcn < deg XB’
and by choosing an arbitrary ordering of the elements XG. within a given
degree. For this ordering of &, the algebra (A(V),dm) is a minimal KS-
extension of (,&,d’k = 0).

The minimal algebras are distinguished in that they are cofibrant

(621, [11]:
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3.4 PROPOSITION [Thm, 9.19; 29]. Let 7 be a minimal algebra, and suppose

a diagram of differential algebras is given,
by

where { is a weak isomorphism. Then there is a 1lift ¢:Mm - B, unique up

to algebra homotopy, such that ¢ o 5 : ¢. If { is surjective, then 5 may

be chosen such that § 6 ¢ = g¢.

It follows from Proposition 3.4 that g is a transitive relation when

the domain is a minimal algebra [16]:

3.5 COROLLARY [Prop. 5.14; 29]. Let (WLdW? be a minimal algebra and let
(A,dA) be any algebra. Then algebra homotopy is an equivalence relation on

the set of maps {¢:(th”? —’(A,dA)}.

- We use [M,A] to denote the set of algebra homotopy classes of
differential maps from 7 to A. We define a category Min Alg, whose

objects are minimal algebras and whose morphisms are algebra homotopy

classes of maps. It follows from Propositioms 5.14 and 5.15 of [29] that
this is a well-defined category. Let Alg denote the category of h-connected
differential algebras and differential algebra maps. We next head toward

the construction of a functor from Alg to Min Alg,

3.6 DEFINITION. A minimal model of an h-connected algebra (A,dA) consists
of a minimal algebra (W?,d”? and a weak isomorphism ¢:W% -+ A, A minimal

model is denoted by (Wk,qm,¢A), or by abuse of notation just by 7,.
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A central result is the following theorem of Sullivan [62]:

3.7 THEOREM [Thm. 6.1; 29]. If (A,d,) is an h-connected algebra, then it
has a minimal model (”k’qm’¢A)' Given another minimal model GﬂA,Qﬁ,¢A)
of (A,dA), there is an isomorphism w:(ﬁz,dwp —*(W?,dﬁ) such that

By ° ¥ 5 By

An immediate corollary of this theorem ?s that if ¢ch’dW? - Gm',dég
is a weak isomorphism of miﬁimal algebras, then ¢ is an isomorphism.

Let A be any connecged algebra. Define a differential by setting
dA = 0; then H*(A) = A. It follows from Theorem 3.7 that (A,dA) has a
ﬁdnimal model CmA’dM’¢A) with H*(Wk) € A, A minimal algebra (m,qm) of
this type is said to be formal, and for every connected algebra A there
is a corresponding formal minimal algebra. However, not all minimal
algebras are formal [30], [61].

The next proposition is a basic result which follows directly from

Proposition 3.4.

3.8 PROPOSITION. Let a map w:(A,dA) —>(B,dB) be given. Let (Wz,dm,¢A)
and GmB’%W’¢B) be minimal models of (A,dA) and (B,dB), respectively,
Then there is a map @, unique up to homotopy, such that the diagram below

commutes up to algebra homotopy:

A
¢AT %
Ty —> My y
Further, if wo g ¢l:(A,dA) - (B,dB) are two algebra homotopic maps, then

the induced maps Eo.and El are algebra homotopic.
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Equivalently, the map ¢B induces a bijection of sets

(¢B)#:[mA’mB] hig [mA’B]'

With this preparation, we define a functor 7 from the category Alg
of h-connected algebras to the category Min Alg. For each object (A,dA)
in Alg, choose a minimal model (Wg’dM’¢A)f Then.Wh(A,dA) - CWA’dw? is the
map oﬁ oﬁjects. For each differential algebra map w:(A,dA) —»(B,dB) of'
objects in Alg, let ﬁﬁﬂ%_—xﬂ% be a map chosen as in Proposition 3.8. Then
M) is defined to be the algebra homotopy class of §. By Proposition 3.8

we have that M:Alg - Min Alg is a well-defined functor. Note that M has

the additional property that if ¢O H ¥ then WK¢O) = Wle).

The Minimal Model of a Topological Space

Define a category Top whose objects. are the pointed, connected
topological spaces with the homotopy type of a CW complex. The morphisms
of Top are the pointed homotopy classes of maps. We are going to construct

a functor, again denoted by 7, from Top to Min Alg which defines a "rational"

equivalence of categories. The rest of this chapter is essentially devoted
to the study of this functor 7.

For a topological space X, let AX) denote the semi-simplicial
complex of singular simplices in X. Let 6*(X) denote the differential
algebra of R-valued, compatible polynomial forms on AX) [18], [63]. The
algebra 6*(X) can be thought of as a polynomial deRham complex of \aKx)\,
the lean realization of A(X) [7].

For a manifold M, there are several alternative complexes available.
Let ag(M) denote the semi-simplicial complex of smooth simplices in M, and

let 6;(M) denote the differential algebra of R-valued, compatible polynomial
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forms on A;(M). If k is R or €, then we also have the algebra 3:(M) of
compatible, R -valued smooth forms on g;(M) as .well as the algebra Q*(M),
the deRham complex of M. These differential algebras are related by

inclusions

* o k3 x
Q) c&ma480026an . (3.9)

The following theorem of Dupont-Sullivan-Swan asserts that these inclusions

are weak isomorphisms:

3.10 THEOREM (Generalized deRham [18], [637]).
(a) TFor any field k and X in Top, there is an isomorphism
% Lk &
H (X;R) 2 H (8 (X)).
(b) For ,k =ZR or [ and M a manifold, the inclusions in (3.9) induce

isomorphisms of cohomology algebras.

Let £:X - Y be a map of topological spaces. This induces a map
HE) 1/ X) - H(Y) of complexes, and hence a map 4(£):8 (Y) - & (X) of
differential algebras. Similarly, if £:M - N is a smooth map of manifolds,

then there are induced differential algebra maps

* *
8.(£):6. (W) ~ &_(w)
. §,(5):8. 0 - 3o

* *
df:qQ (N) - QM) .

We now come to the point of these constructions. Suppose X is an
object in Top; then 8" (X) is an object in Alg, an h-connected differential
algebra. By Theorem 3.7, we can choose a minimal model of § (X), denoted

me,gm,¢x). This defines a map from objects in Top to objects in
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Min Alg, X - Cﬂx,d”?. If £:X —.Y represents a morphism in Top, then

there is induced a map £(f):£*(Y) - 6*(X) and by Proposition 3.8 this
determines an algebra homotopy class of maps W@(f):”& -»W&. One of the
fundamental results is that the algebra homotopy class of M8(f) depends

only on the homotopy élass of £:X -» Y. Defining Mf to be the algebra
homotopy class of ME(f), we see that £ — Mf defines a map from the morphisms

in Top to the morphisms in Min Alg. Thus we have:

3.11 THEOREM [63], [29]. M is a contravariant functor from Top to

Min Alg.

If Mis a manifold and k =R or T, then there are alternative
constructions of Wh, obtained by choosing a minimal model of one of the
algebras 5:(M), g:(M) or (f(M). Correspondingly, a smooth map £:M = N
induces a morphism Mf from the algebra maps 6¢(f), 3m(f) or df. This again
gives rise to functors M', M" and MN"' respectively. However, it follows
from Theorem 3.10(b) that each of these functors is naturally equivalent
to M. We therefore identify these four functors, and speak only of the

model “%n’dw? of a space or manifold.

A Rational Adjoint to m

"For this section all algebras are over the field kK = Q. A topological
space X is said to be rational if the homotopy groups of X have a Qp-vector

space structure: for all n > 0, TB(X) = TB(X) ®N.
Z

Define full subcategories of Top whose objects X are given by

Top=sc : X is simply connected
Top : X is ratiomnal

Top_.~sc: X is rational and simply connected.
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For any category C, we denote by fC the full subcategory of G whose
objects are of finite type. Thus, we have full subcategories f Top,
£ EQEQ, f Alg and £ Min Alg of their respective categories.

Bousfield and Gugenhéim have constructed in [11] a contravariant
functor R from £ Min Alg to £ IQRQ, called the realization functor, which

is a "rational" adjoint to 7. For any space X in £ Top, set XQ = &W&.

* % *
Then there exist a map iX:X - X such that iX:H (XQ) - H (X) is an iso-

Q
morphism of algebras. If X is simply connected, then for each n > 0 the

groups nﬁ(X) ? 0 and nh(XQ) are isomorphic. In this case, X  is called

Q

the ratiomalization of X. If X is in £ Top -sc, then iX:X —*X02 is a

homotopy equivalence, and the functors ¥ and £ set up an equivalence of

catégories [117:

m£ Topm-sc = £ Min Alg-sc:R .

For a general X in f Top, the space X is called the Q-localization of X

Q
[11], and has the properties:

(a) - (XQ)Q is a homotopy equivalence,

:LXQ:XQ

(b) ﬂi(XQ) is the rational nilpotent completion of ni(X).

The rational homotopy.theory of a space X is the study of the spaces
ﬂh(X) ® @ and the homotopy operations defined on them. For a simply
connected space X of finite type, this is equivalent to studying the
homotopy properties of XQ’ which are determined by the minimal model
(W&,dwg. We will discuss in the next section how the homotopy properties
of XQ can be read off directly from (”%’d79°

Similarly, for R =R or T one defines the X -homotopy theory of a

simply connected space X to be the invariants of the homotopy type of X

which are determined by the minimal model (Wk,d”? defined over k. There
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is not a corregponding concept of k-localizing a space, so there can be
no realization functor R; the analysis of (77{X,dm) we make in the next
section will proceed along purely algebraic paths. Note that by

Theorem 3.10, the model (7ﬂx,dm) defined over K is obtained, up to iso-
morphism, by tensoring by k the minimal model model of X defined over Q.
Therefore, the rational homotopy théory of X determines the ]:g-homo‘topy

theory.

Whitehead Products and Graded Lie Algebras

We work over a field .k = D, R or T.
For a topological space X and any positive integers p,q there is a

Z-bilinear pairing [68]: [ , ]:ﬁP(X) ® rrq(X) - l(X). The bracket

Tp+q-
[a,8] of the homotopy classes o in ﬂp(X) and B8 in -rrq(X) is called the

Whitehead product of ¢ and 8. Up to a sign, [a,B8] is the obstruction to

extending the map f v g:SP vs?oxtoa map sP X 9 4 X where f:SP - X
and g:Sq - X are representatives of g and B, respectively. The Whitehead

product satisfies two general relations:
3.12 PROPOSITION [68]. 1If X is a topological space, if p,q,r are
integers and if @ € ﬁp+l(X), g € nq+l(X) and vy € ﬁr+1(X), then

(@ [a8]=- -1 [g,al ,

®) -1 [le,8],v] + -DPUB,v]sal (3.13)

+ (-1D¥[[y,a],8] = 0 .

‘A graded vector space L = © 0 P is a graded Lie algebra if there
P =

is a bilinear pairing, for each p,q positive integers, [ ,:|:Lp ®Lq - Lp+q,

and satisfying the relations, for all x € Lp, y € Lq, z € Al
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[x,y] = - (-1)PYy,x] (3.14)

GDP IIx,y1,2] + -1PULy,2z1,x] + (-1)"Y[z,x],y] =0 .

Denote by Lie Alg the category with objects the graded Lie algebras and
morphisms the grade preserving Lie algebra maps. Recall that Vect is the
category of graded vector spaces over R and grade preserving linear maps.
Define a functor s_l:yggg — Vect, which maps an object V to the graded
vector space s-lV with (s-lV)p = Vp+l, and which is the "identity" on maps.
Proposition 3.12 then asserts that the functor s-ln* ®k :Top - Vect
actually takes values in the category Lie Alg.

We next construct a functor Il from the category Min Alg to the
category of graded vector spaces with a pairing [ , ] satisfying conditioms

(3.13). It then follows that s-lH:Min Alg — Lie Alg and the main theorem

of this section is that the functors s-ln% ® R -and s—lﬂm from £ Top-sc
to Lie Alg are naturally equivalent.

For a connected algebra A, let QA denote the graded vector space of
indecomposable elements in A: QA = K/(K)z. For an element a in K, let a
denote its image in QA. If A has a differential dA’ then QA has an induced
differential QdA‘ 1f d, is decomposable, then QdA = 0 by definition. A
map of connected algebras ¢:A — B induces a map of graded vector spaces Q¢.

The following result is the basis for our next definition:

3.15 PROPOSITION [Lemma 8.3; 29]. If M and B are connected differential
algebras, if M is minimal and if fO z fl:WZ—*B are algebra homotopic maps,

then the induced maps on indecomposables are equal:

Qfo = Qfl:qm - QB .
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This proposition implies Q is a functor from Min Alg to Vect, and so

*
QN defines a functor 1 from either Top or Alg to Vect. The dual homotopy

of an algebra (A,dA) in Alg is defined to be the graded vector space

The dual homotopy of a space X in Top is the graded vector space
ul (X) QW%

Let Hom:Vect — Vect denote the contravariant functor Hom ( ,R). We

*
define a covariant functor H* = Hom 0 © from either Top or Alg to Vect.

Given a space X (resp. algebra (A,dA)), we will construct a bracket

operation [ , ] on I,(X) (resp. I.(A)) which satisfies conditioms (3.13).

It then follows that s-lH* is a functor from Top or Alg to Lie Alg.

Let X in Top be given and let (W%,d”? be its minimal model. Choose

an algebra basis {xl,xz,...} of ﬁ%; their residues mod(ﬁ&)z then give a

basis {;1’;2""} of QW%. The differential gm is decomposable, so there

are numbersaij intk such that

dm(xk) % _’z ali<j in A Xj mod(7—75<)3 s

i,]

' . deg x .
where for an element x in W&, Jx denotes (-1) * X. By requiring
that

Kk (deg x, -l)(deg x - k
aij = - (=1) Jl s (3.16)

we find that the aij are uniquely determined, Define a linear map

*
d ;qu - qu ® qnx of degree 1 by setting
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*
The map d 1is well-defined, independent of the choice of basis {xl,xz,...}

and depends only on the map Q(d):(‘jﬁX - dﬁx)z/(ﬁk)B.
*
The map d dualizes to an operation

[ ’ ]d:Hom(@rS{’}l) ®H°m(%3}?) "Hom(%’k) >

which satisfies 3.13(a) by the symmetry condition (3.16) and satisfies
3.13(b) because é; = 0. We give I, (X) the bracket operation defined by

L, ]d' With this preparation, we can state the fundamental theorem of

minimal model theory, due to Sullivan [62], [63]:

3.17 THEOREM [16], [1]. Given a simply connected space X of finite type,

there is a natural isomorphism

% = TT*(X) iHom(T[k(X),k) b

such that the diagram commutes:

o/ i > Hom (1, (X) ,k)
.d*l l CLT (3.18)
P ®Y _
M, ® Py ——> Hom(m, (X),R) @ Hom(m(X),K) .

Here [ , ]" denotes the dual of the Whitehead product in m.(X).

There is an equivalent formulation of this theorem in terms of the

functors constructed above,
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3.19 THEOREM. There is a natural equivalence between the functors

s_ln% ® &k and s_lném from the category f Top-sc to the category Lie Alg,

It follows as a corollary to Theorem 3.17 that the Whitehead product
*
in m (X) determines the map d via Diagram 3.18, and therefore the co-
. k
f - . . . . )
efficients aij in the expansion of dW*gk)' In this sense, it is said that
the Whitehead product in T, (X) determines the quadratic terms of the

differential in Wk, and vice-versa.

The Hurewicz Homomorphism

Let X be a space in Top with minimal model Wk. The quotient map
= — *
Wk - qu = 1 (X) is a map of differential, graded vector spaces, hence
* — * * =
induces a map H (Wk) = 1 (X). By Theorem 3.10, the cohomology H Gﬂx) is

naturally isomorphic to the reduced cohomology ﬁ*(X). The composition
ko~ *
:H X)) -1 X

is called the (algebraic) dual Hurewicz homomorphism. If X is in
—
f Top-sc, then W is related to the usual Hurewicz homomorphism

W (X) - H, (X;Z) by a natural commutative diagram:

E @&—s n®

L. b

Hom(H*(X;Z),k) —_— Hom(T@(X),k) .

* -
3.20 REMARK. The functors 1 :Top - Vect and s lH*:TOE - Lie Alg are

1ﬂ% R :Top - Vect when restricted to f Top-sc by

related to s~

Theorems 3.17 and 3.19. This relation can be extended to the category
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Top-sc. Any object X in Top-sc is the.direct limit of spaces in f Top-sc,

1i
say X = -——E; (X _4f ) where £ :X - X. The category Vect has inverse
wccaq &a o E—
limits, and we have T (X) & &IT ﬂ*(Xa). For each @ € ¢, Theorem 3.17

o ed.
*
gives a natural isomorphism ¢a:n <XG) - Hom(n*(xa),k). Passing to limits

we obtain

T 2 &R @)
o €a a
Vo y
& &= Hom(m,(X).R)
a €a

lim
Hom( —> X))k
. ccEdnk °‘JQ

n

Hom( T, (X),R) .

Similarly, Diagram 3,18 is preserved under limits and so Theorem 3,17
remains valid for any X in Top-sc.

Note that a similar extension is not possible for Theorem 3.19 because
I,(X) and &LE%% .H*(Xa) are not isomorphic if X is not of finite type.

If Y is an arbitrary simply connected space, then there is a space X
in Top-sc with a weak homotop; eduivalence £f:X - Y. The space X has a
unique homotopy type and £ is unique up to homotopy [Thm. 7.8.1; 60]. For
such a pair (X,f), we define WQ and n*(Y) to be W& and ﬁ?(X), respectively.
Thus, we can extend the functors M and n% to even more general spaces and
preserve the relation of Theorem 3.17 with the functor t,. This extension
is necessary in order to work with the various classifying spaces of

G-foliations that will arise.
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Higher Order Whitehead Products

Given a topological space X, the Whitehead product in (XD is. an

example of a second order operation which is defined for all pairs in

T, (X) ® M. (X). There are also s-th order Whitehead products in m.(X),

for any s > 2, but which are defined only for subsets of mM (X) ® .- ® m.(X),
s factors. If this product is defined for a set (“‘1""’“5) ‘0of elements in
T (X) and if the product [al,.. .,as] € TT,.C(X) 'is non-zero when tensored

by KR , then it can be 'detected" by an element of n*(X). We will describe
how this element can be found in terms of the differential in 77'8( We

first give the definition of an s-th order Whitehead product.

3.21 DEFINITION [1], [53]. An element ¢ in T\'n(X) is an s=-th order Whitehead
product of type (“1”"’°s)’ and we write g, =_[a1,...,qs], if the data in
(a), (b) and (c) below are given, for which (d) holds: .

- (a) There is a partitionn, + ... + n,=n + 1.

1

n,
(b) There are maps fj:S Iax representing G’j € us X) for 1 <j <s.

J

o1 g "1 RS
Define P =S ~ X ... XS "~ and lee W =S5 "~V ... V5  CP be the

wedge of the factors. Choose a point pl €P not in W and set T =P = {pl}'
n
The space T is homotopy equivalent to the fat wedge T(S L
' M,
in particular, for s = 2 we have T =S5 ~ VvV S ",

n
seeesS ), [11;

(e¢) Thé map £

1 \ cen vV fS:W -+ X extends to a map £:T - X.

Let D € P be a neighborhood of P, diffeomorphic to the closed unit

disc in ]Rn+1.

(d) @ is represented by the composition

_ £
£:8" =T -X .
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The obstruction to extending f to a map £:p X is exactly o € 'rrn(X).

For s = 2, it follows that q = [c.l,az] is, up to a sign, the Whitehead

product defined earlier.

3.22 REMARK. For a given set of elements (C{,l,...,d,s) in m,(X), Porter

has shown [53] there exists an extension £:T - X of fl V oeeo V fS:W - X

if and only if for each subset (a,jl,...,cx,jr), for 2 < r <s, the Whitehead
product [a,j sen el ] exists and is equal to zero.
1 T

An element x in a connected algebra A is said to have order p if
dx € &P but dx ¢ (HF.

Let X be a simply connected space, and suppose a Whitehead product
o= [G‘l?""a’s] in nn(X) is given. TFor an indecomposable element x in
7’3{ of order s we give a formula, due to Andrews and Arkowitz [1], for
determining the value of tb(z) € Hom(rrn(X) ,R) on the element g. This is a

very useful result, as it is inductive in nature. Let {xl,xz,...} be an

algebra basis of W?X For x 6776( of order s, we can write
dx = I X+ 8
L ex M

where X is a set of indices I = (11,...,is) with X, = xil A el A xiS and
. . 7 \S+1
i, ... 24, each}\IE/h forIé?{andB_&(Ws{) .

The elements {xl,xz,. } determine functions q,(;j) in Hom(rr_k(X) LR,

so for each T €% and Oy in (g,l,...,q,s) set

r _ ., = :
Ajk— \lf(xj)(ak) > 15_‘],1(55 .

I .
Note that Ajk will be zero unless the degree of Xij equals s that of % -
The matrix AI is a sort of lower order period formed from the basis of



.

49

m (X) and the factors of q = [(},l,...,cf,s]; For each permutation g of the

set {1,...,s}, let ¢(0) € {0,1} be determined by the rule

X, A ... ~x, = (-1)6(‘5%;i Nl ax, )
1 s o(l) *a(s)

For each I € X, define a number in,& by

I, = o 106(0) I I
K(A™) c’z;, (-1) Alo'(].)"'Aso(s) .
Setting N = E ninj, we then have the result:

1<i<j<s
3.23 THEOREM [1]. Let X be a simply connected space. Let x € 7)& have
order s > 2. Then ¢(§) € Hom(nn(X) »R) vanishes on all Whitehead products
of order less than s in Trn(X). For an s-th order product @ = [g,l,...,ct.s]
in Trn(X_) we have, with notation as above,

@@ = DYz akah . (3.24)
I eXx
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CHAPTER 4

CONSTRUCTION OF THE DﬁAL HOMOTOPY INVARIANTS

We define in this chapter the dual homotopy invariants of a foliated
manifold and study ;heir basic properties. We consider a fixed, connected
manifold M with a G-foliation & of codimension q. It is assumed that G

has a finite number of components and that & is either R or €. Also, it

'is assumed that ¢ is a positive integer for which one of the following

three conditions holds:

4.1(a) G is any group and £ > q.

4.1(b) G = 0(q) or S0(q) and 4 > [q/2].

4.1(c) G

G4(n,C) or U(n), the G-foliation & is integrable and 4 > n.
The group G being fixed throughout this chapter, we will often suppress

it from the notation. For example, Iz will denote the truncated algebra

I(G)z and A, will denote the algebra A(G)z. We will denote by

4

¢i:”KIz) —912 a minimal model of the algebra (Iz’dl) where dI = 0.

If w is a G-connection on P -~ M, adapted to &, then the truncated

Chern-Weil homomorphism h(w):Iz - QM) is well-defined. The following_

result is the basis for our construction of invariants of the G-foliation &.

4.2 PROPOSITION. The algebra homotopy class of the composition
h(w) © ¢I:WKI2) - (M) is independent of the choice of adapted connection

w and depends only on the G-concordance class of 3.

Proof. First note that the algebra homotopy class of h(w) © ¢I is well-

defined by Corollary 3.5.

Given two adapted connections ub and ®;5 we show that h(wb) g h(wl)

and hence h(wb) e ¢I z h(wl) 0 ¢I. Let p:M XR — M be the projection of
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the product manifold onto the first factor. This induces a foliation

P Fon M XR; an adapted G-connection for this foliation is given by

wt = twl + (l-t)wb, where t is the coordinate of R. The curvature of W,
is given by C% = d(wt) + ®, ~ ®» and this expression involves only dt,

powers of t and elements of Q(M). Therefore, the Chern-Weil homomorphism

is given by a composition
h(w):I, - a®) @ {t,dtlc oM xR) .

It is then clear that e e h(wt) = h(wr) for r = 0 or 1, so that
h(wo) H h(wl) as claimed.
Next, assume that 30 is a G-foliation on M which is G=-concordant to
~ *
31 = F: There is a G-foliation & on M X R such that irg = 3r for r =0

or 1. Let w be an adapted connection for & For any r €R there is an

algebra homotopy commutative diagram

di
h(w) r
Iﬂ — QM XR) e—’;—"‘ QM)
)
b1 T ' T on
Y
m ) > M,

where | is chosen, using Proposition 3.8, so that h(w) o ¢I g dp o ¢M e {.

Then we have
dlr o h(w) o ¢I H dir o dp © ¢M oy = ¢M oy ,
and setting r equal to 0 or 1 gives

dig e h(w) © ¢, £ di; © h(w) © ¢y -
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The composition dir o h(w) is clearly the Chern-Weil homomorphism of the

foliation 31_, completing the proof of the proposition. a

4.3 COROLLARY. The algebra homotopy class of the induced map of minimal

algebras, Mh(w) :7/‘((11) - M., depends only on the G-concordance class of 3.

We denote the morphism in Min Alg that h(w) determines by fh. This
morphism is the universal invariant of the concordance class of the
foliation &; from it is derived all the other invariants to be constructed.
We next investigate the functoriality of h. Let £:N - M be a smooth map
of manifolds and suppose that f is transverse to &. An adapted connection
for the G-f_oliation % on N that £ induces is given by w = f*(w). This

gives a commutative diagram

af
Q) — o)

h(wx /l(c—o)
I

4

from which we conclude Mh(w) g MmE o M(w). It follows that Mh is functorial

with respect to transversal maps f:N - M,

The next theorem is the result which defines the dual homotopy

invariants of &:

4,4 THEOREM. Let M be a connected manifold with a G-foliation &, and let
4 satisfy condition (4.1). Then the Chern-Weil homomorphism induces a

well-defined characteristic map of graded vector spaces

e ) - man
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which depends only on the G-concordance class of & Further, h is

functorial with respect to maps £f£:N — M which are transversal to &.

*
Proof. We define h# by applying the functor 7 :Min Alg - Vect. The

theorem then follows from Corollary 4.3. O

The elements in the image of h# are by definition the dual homotopy
invariants of &. There is an alternative invariant of & which is obtained

by applying the functor s-lnL to 7h:

4,5 THEOREM. Let M be a connected manifold with a G-foliation &, and
let ¢ satisfy condition (4.1l). Then the Chern-Weil homomorphism induces a

well-defined characteristic map of graded Lie algebras

- -1 -
syt L 00 — sTUL(T )

which depends only on the G-concordance class of &F. Further, s-lh# is

functorial with respect to maps f:N - M which are transversal to &.
\

Remark 1.18 and the functoriality of the maps h#

and s'lh# with respect
to pull-backs together imply there exist universal maps, for G and J

satisfying 4.1(a) or 4.1(b),

~F % * o~
h':m (IE) -7 (BFG)

-1~ -1 =~ -1
s hyrs TI(BI) —s (I,

If G and ¢ satisfy condition 4.1(a) or 4.1(c), then there are also universal

maps ﬁ# and s-lﬁ# for the classifying space BTG. The maps H#

and s-lﬁ# have
the property that if £:M —>be classifies the foliation & on M, then the

diagrams
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A _
M) €e—— 7 (BFG)

nt \ / ﬁ#

*
ﬂ(Iﬂ)
s'ln*<f>
I, ()
d #\ /

s II*(IQ)

(BI‘ )

commute. This is the meaning of the universality of ﬁ# and s-lﬁ#.

In Chapter 6 we will show that the fiber Ffb of the map v:Bfé - BG is
(q-1)-connected, for any group G. For G = G4(q,R) or S4(q,R), Haefliger
has shown that Ffé is at least (q-l)-connected [24]; for G = Gg(n,T),
Landweber has shown Ffé to be (n-1)-connected [42]. Consequently, for
q > 2 in these cases we have ﬂi(BfG) or ni(BTé) is isomorphic to ni(BG),
which is isomorphic to Tb(G) as a set, 1If G is connectedf then BG is simply

connected. By Remark 3.20 we conclude that
F(®F) £ H T }!
™ (BI,) = Hom, (T, (BI,).R) >

so that the universal invariants defined by ﬁ# are exactly dual homotopy

classes.
For a non-connected group G, let G0 be the connected component of the

identity. Then be -»th is the universal covering map, hence
0
ﬂ (Bf ) = r&(Bf ) for n > 1. Weé can then apply the above remarks to the
n G0 G
BT, .
space Iéo
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* -
The Spaces of Universal Invariants, 7 (I(G) ,(7,) and s ]'H*(I(G) ,@)

Recall that ¢ is a fixed integer satisfying (4.1). Let {cl,...,cr}

be an algebra basis of I = I(G)z with deg c__j < degc, <28 for j<k<r.

£ k
We assume that a closed, reductive subgroup H of G is given. Then
§£ = (yc'l,...,y ) denotes the vector space of H-basic primitives of tg
having degree less than 24. With the notation of Chapter 2, let T:P - Iz

be a transgression with fr(yj)‘ = cj. Then A(G,H)z denotes the algebra

Afz ® Iz, equipped with the differential d(ya ®l) =1 Cq.” For H = {e}
' ] ]

we let A(G)z denote A(G,{e?) 4 :

Recall that ¢I:M(I,€) - Iz is a minimal model of Iz, and xj denotes

the homogeneous element in M(IL) with .¢I(Xj) =cye Define a differential

algebra A?z ® M(Iz) whose differential d

A extends that of 7?2(12) by setting
dA(ya ®1) =1 ®xa for 1 € j £v. This algebra is a KS-extension of
| h|
the minimal algebra WZ(Iz). The map ¢I:M(I,€) - If, extends to a differential

algebra map

(a N
H

"~

1

e

id ®@¢:lp, ®MI) » P, ®L, = A(G,H) , . (4.6)

An immediate spectral sequence argument shows that 551 is a weak
isomorphism [28]. If we endow 1\51’ with the trivial differential, then there

is a commutative diagram of differential agebras.

i .
0 - I, —m> A(G,H)z

?, T | T B &.7)

" - —
0—>77((Iz) —_—> AP£®77((IL) - e, .
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From the bottom row of (4.7) we obtain an exact sequence of

differential, graded vector spaces by passing to indecomposables:

0~ QNI - QUE, ®M(T ) - QUE, -0 . 4.8)

The differential QdA in the middle term of (4.8) is non-trivial. Using

that g?)I is a weak isomorphism and the freeness of the algebra P ®M(I,@)’

4
we can identify the cohomology H*(Q(Afz ®77Z(Iz)) with

QN(A(G,H) ,0,) = 1 (A(G,H) z),[29]. Therefore, after passing to cohomology,
the exact sequeﬁce (4.8) gives a long exact sequence
*
*=1

- 8 % it % -
ST UR) STy S m A -

-— % e " —
The algebra APZ is minimal, hence =« (APE) = P and the map § is given by

4

é(ya ) = ;a . From these remarks, we conclude:
3 k|

4.9 PROPOSITION. There is an exact sequence of graded vector spaces

_ _ . # o, |
0 - (xcl,...,xc\)> ERACIOW S TAGH) ) -0 (4.10)

, %*
where the first map is inclusion and the second is 1 (i), for the inclusion

I(G) La G,H
’@ ( b )’Q"
We draw several important corollaries from this proposition.

4,11 COROLLARY., There is an exact sequence of graded vector spaces

IF
e A IO f—g- ™ (ACG) P -0, (4.12)

with a unique splitting b.
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Proof. The exact sequence (4.10) reduces to the exact sequence (4.12)
when H = {el]. A splitting b of (4.12) must be unique, since T (A(G) !,) =90

for n € 24 and deg_xjszz.for each 1< j<r. @O
4,13 COROLLARY. The map Mi:M(I(G) 2) - MA(G,H) ,@) is surjective.

Proof. The map Q?)Zi:Q‘M(IL) - QNA(G,H) 1') is surjective by Proposition 4.9,
hence the image of i contains a set of algebra generators of

MA(G,H) !,) . O

4,14 PROPOSITION. There is an exact sequence of graded Lie algebras

0 - sl (a el 1(G e x 0 4,15
- s T ( (G’H)f,)—’ s H*(()Z)—'s xal,...,xa) . (4.15)
Vv
Proof. Consider the sequence of minimal algebras
mi
k[x%,...,xavj — MG ) —> MAG,H) ) -0 . (4.16)

Passing to indecomposables gives the exact sequence (4.10), and applying
the functor s-lHom( ,&) gives the sequence (4.15), which is therefore exact.
The maps in (4.16) preserve differentials, so the induced maps in (4.15)

preserve the bracket operations. a

*
Corollary 4.11 reduces the problem of determining m (IE) to the task
*
of determining 11 (A(G) ,(6)’ which we next undertake. Recall from Chapter 2
that Z,@ is the set of admissible cocycles in A,@
Zz = {yIcJ\(I,J) admissible}. It was observed that yi€3 ° Ypicp = 0 in

= A(G) PE and we have

A!,’ so the vector space {(Z !,> inherits a trivial algebra structure from A!,'
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Since the inclusion <ZL> < A of algebras is a weak isomorphism, the

4

minimal model of AI, can be chosen to factor WZ(AL) - <Z,?,> c A,@'

The further analysis of the algebra WKAE) and the vector space

ﬂ*(Az) depends on the fact that the algebra <Z£>’ and hence Az, is both

formal and coformal [2], [30]. The formality of Az can be interpreted as

follows. For each index (I,J), choose a homogeneous cocycle ur 3 in WKAE)
b

- *

Denote by uI,J 1,d inm (Az).

denote a new variable of degree equal

the image of u For

Jl

each index (I,J), let s-la*
I,J

which maps onto yIc

a uI’J -

1
generators {s 1uI J\(I,J) admissible}. Then there is an isomorphism of
3

de 1. We denote by £ the free, graded Lie algebra on the set of

graded Lie algebras
-1 %* -1 -
s “Hom(m P R) =s I(a,) =4

' J =% .
I 6J , where up g denotes the element in
H
1=*

% -
Hom(m (A ),R) corresponding to s "u_ _.
¥ 1,7

which satisfies u

* - -
I,J(uI',J') =9

The coformality of A, 6 has the following interpretation. The set of

2
algebra generators {s-lzl J\(I,J) admissible} of £ gives rise to a Hall
3

-1 %

vector space basis'of £, which we denote {S-lwi,s WZ,...}. We will assume

-1 *

that for some N, {s'lwz,...,s Wy

-1—% *
1= {s 13 |(I,J) admissible}. Let w,
I,J 73
* - o
denote the element of Hom(1r (Al),k) corresponding to s lw;; the set
* *
{wl,wz,...} is a basis of this vector space, and we denote by {wl,wz,...}
*
the corresponding dual basis of 11 (AL)' As an algebra, the minimal model
MA ) of A, is isomorphic to the free algebra A((W,,W,s...)). We will use
£ 2 1°72

the Lie bracket [ , ] in £ to define a differential d, in this free algebra.

£

For i,j,k positive integers, let a?j be constants defined by the rule
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o T S N S I
[s W, 58 wj] = E aij s W . 4.17)

The differential d£ is then defined by setting

=1 K n
d£wk =3 iZ} aij Jwi Wj . (4.18)
3

The coformality of Az implies that WKAﬂ) is isomorphic, as a differential
graded algebra, to the algebra (A(<w1,wz,...>),d£),[501. Because of this,
we will henceforth identify these two algebras.

The above remarks are summarized in the next proposition.

4,19 PROPOSITION. Let £ be the free, graded Lie algebra on the set
-1 _* -]l—% A . .
s Zg = {s Uy J](I,.J') admissible}. Then there is an isomorphism of
3

differential algebras
MA D g (M(sHom(EL,R)),d,)

where d£ is given by formula (4.18). Theré is an isomorphism of graded
vector spaces
m(A) = sHom(L,k) .
-1 * -1 *
4.20 REMARK. Since {s WiseessS WN} is the generating set of the Hall
basis of £, it follows that dEWj =0 for 1 £ j £ N. The cocycles
{wl,...,wN} in WKAﬂ) map.onto the cocyles {yIcJ\I,J‘admissible} in Aﬂ,so
- .
they form a basis of H (WKAQ)). Moreover, they form a basis of the cocycles
in the span of {wl,wz,...}. let w = T xjwj satisfy dow = 0. Then for
N

some element w' = 3 a.wj, the difference w-w' is exact. The differential
j=1

d£ in M(Aﬂ) being decomposable, it follows that w-w' is in (WKAz))z. The
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‘elements {;7'1,;2,...} are a basis of CM(AL), so we must have w~w' = 0,

implying that w is in the span of {wl,. ..,WN}.

For W = (WN+1,WN+ sees 9, we conclude from the above discussion that

d W - (M(AI,))Z is injective. We rephrase this in terms of the mapping

* =

d . of Chapter 3:

2

4.21 LEMMA., Let W be a complement to the space of closed indecomposables

ale
~

in Q)ﬂ(Az). . Then d,SZ:W - Q??Z(Az) ® Q??Z(Af’) is injective.

4,22 REMARK. There is a version of Lemma 4.21 for the algebra M(IL)
which will be needed in the next chapter. It was shown in Corollary 4.13
that 7721:772(12) "M(Az) is surjective, and the kernel of 7i is the ideal
Id{Xi,...,xr} generated by {xl,...,xr}. For each j > 1, choose a

homogeneous element ﬁj in 7/‘1(12) which maps onto Wj in M(A Formula (4.18)

f,) :
then 1ifts to

~ _]; k ~ o~

dwk =3 izj aij Ja, Wj mod Id{xl,...,xr} . | (4.23)

The set {xl,...,xr,ﬁl,ﬁz,...} is an algebra basis of M(Iz), as its image
in QM(I-,Q,) gives a vector space basis by Corollary 4.12., Let d denote the

differential in 772(12), and suppose that u € WZ(IL) satisfies
du € (T ))3 + Idfx x_}
P TERRREE N I
For some constants bj and ¢ > We can write u in the form
= % bx + T o wd@T,))
u ) X, = ckwk m P .

Then

~ —.3
du = ¥ ¢ dw mod(?)z(Iz))' + Id{xl,...,xr} .
K>N
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So by (4.23), Lemma 4,20 and the assumption above, we must have ¢ = 0

for K > N. We summarize these remarks as follows:
4,24 TEMMA. Let u in WKIL) satisfy

— 3
du € (7)2(11’)) + Id{xl,...,xr} .

Then, for some constants b, and c, ,
j k
T N ' 9
u= ¥ b.x,+ % w. mod (T ))° .
je1 337 e Kk g

The Relation Between the Dual Homotopy Invariants and the Secondary Classes

For this section we assume that the G-foliation & on M admits an
H~reduction of the associated principal G-bundle P. - M, defined by a
section s:M - P/H. Secondary invariants of & are then defined by
A*:H*(A(G,H) L) - H*(M) . In Chapter 3, the algebraic dual Hurewicz map
?C*:H*(M) - 'rr*(M) was introduced. The composition ;C* ) ,A*:H*(A(G,H) E) - 'rr*(M)
defines a set of invariants of ¥, and a natural question is to ask what
relationship they have with the invariants ciefined by Theorem 4.4. This

. s /
is answered in the next proposition.

4,25 PROPOSITION. There exist a map of graded vector spaces
* * .
:H (A(G,H) L) - 1 (I(G) L) such that, for any G-foliation & admitting an

H-reduction, the diagram below commutes:

o
* *
m(I@E ) —> 7@
c T T % (4.26)
M

1¥(A(G,H) p —_ " .
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4,27 REMARK. Notice that h# 0 { determines the image of A, up to the

e
kernel of . 1In particular, the dependence of the map A, on the choice
of the H-reduction s is restricted to varying the image of A, by elements

in the kernel of ﬁ?. This is in agreement with various formulas that exist

for this variation [55].

Proof. Choose a splitting b of the exact sequence (4.10). The commutative

diagram

I(G)z

S

A(w)
A(G,H)’g —> QM)

gives rise to a commutative diagram

*
n(Iz)

: # |
bT J,i# \; ‘ (4.28)

I
* A *
m (A(G,H) z) —s M

—%
By the naturality of W, the following square commutes:

N

™ (AGG,B) ) > 1m0

T T T 7 (4.29)

* By *
H (A(G,H) z) —_—> H (M)

def -k %k *
We set {==Db o X :H (A(G,H)z) - 1 (I(G)£>' Then diagrams (4.28) and

- (4.29) combine to show that the conditions of the proposition are

satisfied. m}
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We next remark on a special case of this proposition, where H is the

trivial group.
* *
4.30 PROPOSITION. The map {:H (A(G) 2) - 11 (I(G) 2) is injective.

Proof. We have { =D © . The map b is clearly injective, so it will

- ' —
suffice to show ¥ is injective. By Remark 4.20, we can factor ¥ as

H(A) 5HMMAY) 5 Gpseesiy) S oy ) S0 A)

—%
from which it is clear that J{ 1is injective. a

If G is a connected group or if G = G4(q,R), and if ¢ > q, then by
Remark 2.14 there is an isomorphism H*(W(:g,{e}) ,6) = H*(A(G) 2) . Combining

this remark with Proposition 4.25 and 4.30 we obtain:

4,31 PROPOSITION. Let G be a connected group or G#(q,R) and suppose
2> q. Then there exists an injective map ( such that for any G-foliation
& with trivial normal bundle, the following diagram commutes:

h#

* *
m (I(G) ,6) _— (M)

ST

KW, {eh ) —> won .

There is an alternative construction of the map { in Proposition 4.31

%*
which is of interest, as it relates the vector spaces H (W(g,{e}) 2) and
Tr“(Iz) in a natural way. We assume the hypothesis of Proposition 4.31 is

in force. Recall from Proposition 2.11 that there is an isomorphism

TorI(G) (‘h’I,G) = H*(W(OJ,{G}) ,6)
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since I(G) = I(oJ). This isomorphism is constructed using a projective
resolution of the field R over the polynomial ring I(G) = ’Mcl""’cr]’
By calculating the space TorI(G)(‘&’I,(’,) using a projective resolution of

I,@ over I(G), we will obtain a relation with QNI ,(’,) = 11”(11’).

It was pointed out by Stasheff in [61] that the minimal model

¢I:M(Iﬂ) - Il is a projective resolution of I, over I(G). Define an

)/
algebra inclusion I(G) - WZ(I!I) by mapping the generators {cl,.. .,cr} of

I(G) to the elements {Xl,...,xr} in M(T As an algebra we have

!,)'
772(11) £ I1(G) ®7R(Aﬂ), so this makes 772(12) into a free I(G)-module. With

the appropriate filtering, M(Il) - I,(’, -0 is thus a resolution.

Let I(O) denote the local ring obtained by localizing I(G) at the

ideal generated by {cl,...,cr}. The algebra I!, is also a module over I(O)’

as we have I L ® I For the localization 7)2(111) (0) = M1 ,6) ® I(O)’

A ORI )

we therefore obtain a resolution M(Iﬂ) (0) -»I If, -0 of Ig over the

0)° A projective resolution which has an algebra structure

g1

local ring I

over a local ring, as 7)2(12) does, is called a graded Tate resolution,

(0)
and has been studied by Jozefiak [33], [64].
‘The property of resolutions over a local ring that we are interested

in is that there always exists minimal ones: Thetre exists a resolution

with the property that ¥° ® R has trivial
L)

differential [57]. Further, there is a universal property of such

. A
X —>I£—>0 of I, over I(0>

resolutions which asserts, in our case, that there exist a map & of

complexes over I

(0)
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¢I
& I ' “ (4.32)
A
X —_— I,Z -0 .

The map & is unique up to chain homotopy of I

- (0)

us to the next proposition, which is an alternative version of

-modules [57]. This leads

Proposition 4.31.
4,33 PROPOSITION. There exist a canonical inclusion

CiTory oy (BT = n"(IE) .

Proof, Let X" - I, - 0 be a minimai resolution of I, over I(O)' Siﬁce

£ £
X o R has trivial differential, there is a canonical isomorphism
I
(0)
TorI (,ﬁ,Iz) =X ® ,k . Noting that TorI(G) (&,IE) and Tc;)rI (_&,Iz)
0) I o) 0)

are naturally isomorphic, define E to be the composition

Q1 =
X ;@h > Mgy R TP = w Ty
(0) (0)

where &:X° _’M(I,ﬂ) is a map of complexes over I(O)‘ A different choice &'

. = * -
will produce a map [':X° ® h - m (I,Z> which is chain homotopic to (.
I
(0)

Since both vector spaces have trivial differential, we see that _z; = _z;' s

hence the map _Q defined above is unique. ]
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A Description of [ in Terms of the Structure of WZ(IZ)

* *
The map {:H (A(G,H) E> - 17 <IZ) was defined abstractly in the last
section. 1In this section, we give a concrete representation of [ in terms
of the structure of WZ(IE). This will prove to be very useful.

Recall that ¢I:m<1,@) - 1 maps Xj to cj for 1 < j < r. For a sequence

k| i
1 ..xrr; let |J}|

4

of non-negative integers J = (jl,...,jr) we have x X

g~ %
denote the integer %—-deg X;. We next chbose certain elements in WKI,@) by

specifying their differentials. The justification for the following
process will be given presently.

For each (i,J) with 1 <i<r, |J| < £ and deg X K > 24, choose a

homogeneous element ui,J in WZ(IB satisfying dui,J = - XX |

Assume that the elements u 3 have been chosen for I = (il,...,in)

I,

with n <s. For each I = (i.,...,i ) with 1 <i ,...,i < r, each J with
' 1 s -1 s =

|J] £ £ and deg x, x. > 24 for 1 <m < s, choose a homogeneous element

i™J
m
uI,J in WZ(IZ) satisfying
S m
duI,J = E} (-1 X, up ,J' (4.34)
m=1 m m
where Im = (11,...,1m,...,ls). For I = ¢, we define uI,J = %53 then

formula (4.34) is valid for u, I°
H

The sum on the right~hand side of (4.34) is a cocycle, and
¢I:’/7Z(I£) - I,Z is a weak isomorphism, so it is possible to choose some ur 3
2

satisfying (4.34). Notice that if ur g and u:'[ J are two different choices,
H 2

then u -

1.3 ui I is a cocycle, must be exact, and is therefore decomposable.
2 b

1,3 the

Thus, the choice of u; j is unique modulo n(1 Z))z' We denote by
3 -

*
element in 11 (I ,) determined by u .
£ I,J
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Recall that the set of admissible cocycles Z(G,H)z in A(G’H)f, consists
of elements of the form Yies for (I,J) admissible, and gives a basis of

1 (A(G,H) D

* *
4.35 PROPOSITION. The map (:H (A(G,H) ,(7,) = 17 (I(G) ,6) is given by

C‘:YICJ —'uI,J’ for I # ¢.

* b =
It follows from this that under the inclusion T (AJZ,) -7 (I!,)’ the
- * —
elements ur g in m (IJ?,) defined above and the elements ur g defined in the
b I’
last section will coincide.

Proof. The map [ is given by the composition

—% .#
i i .
Baen ) — facen,) = ray,
: b

where we may assume n > 24 as I # ¢. We first construct the map fc* on the
element level. Denote by Q')A:??Z(A(G,H) ,6) - A(G,H)z a minimal model of
A(G,H) e Let yc; in A(G,H)L be an admissible cocycle. Then because N
is a weak isomorphism, we can choose 'a cocycle ZI,J in 7(A(G,H) JZ,) such
that ¢A_(ZI,J) and ¥1€35 differ by a boundary in A(G,H) e The map :—S-C* then

sends the cohomology class of yIcJ to ZI,J’ the coset of ZI,J in
*
m (A(G,H) ,6) .
We next show that i# maps the coset EI I to the coset ;I I° implying
bl b

that b(EI J') = EI I and completing the proof of the proposition. The map
H H
-

i" is induced from a map Mi, defined to be any map making the square
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: ]
M(IZ) —_ Iz

mi : l i (4.36)
v ¢
A
MA@,H) ) ——> AGH,

algebra homotopy commute. We make a particular choice of i to suit our
purposes,

Recall that AF2®M(I£) is the KS~extension of M(Iz)' defined in (4.7);
the associated map &I;AFZ® M(I,%) - A(G,H)z is a surjection and a weak
isomorphism. By Proposition 3.4, it is possible to choose a lifting @A

making the diagram commute:

APL®7?2(IL)
by A N
/ \‘/¢I

P
772(A<G,H)z) _ A(G’H)z .

Note that @A is a weak isomorphism. Again using Proposition 3.4, we.can

choose a map & such that the diagram

3 _
mi) ——>  FeMI)

; l V lal (4.37)
®

A
MAG,H) ) ——>  AG,H,

algebra homotopy commutes. Since 6I o j=1p¢ ¢I’ we can take § to be the
representative of i in diagram (4.36).
It was noted that @A is a weak isomorphism; because the algebra

A%@M(Iz) is free, it follows that
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Q3,11 (AGH) ) ~ QUIF, 8 (T )
is injective [47]. Also, note that
% 5 om _ % _
Qjsm (Iz) "Q(APL® (Iz)) =1 <II,) ® (Pﬂ)

is just the inclusion. Therefore, using (4.37), it will suffice to show
that Qj (u. ) = Qaj (; ) to complete the proof of the proposition.
1,J AL,

The final step in the proof consists of exhibiting a cocycle VI 3
b

I,J) = VI,J and ¢I(v

this last condition we conclude g%A(z

in NP ®M(IZ) which satisfies Qj(u From

P = I8y

1 J) = VI’J + dq, for some ¢ in
’ .

P ®772(Iz). The assumption that deg =z = n is greater than 24 implies

1,J
deg o > 24. Therefore, dg is decomposable and

Py (zp P =y 5= U@ P .

To define the element vy g e introduce some notation. Given the
E

index I = (il,...,is) and integers 1 < kl < 4ea < km < s, set

I = (Lyyeensly seeesly seeesil) .
kyeeoko 1 lkl lkm s

For any m > 0, set e¢(m) = MT—ll. The element v is then defined by

I,J

the formula

s k.+...+k
v g = T (D@ > G

m=0 1<k, <...<k <s
=™ > ®m =

X ua,, . 'y
<lk1""’lkm)’J e ok
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A check shows that vI,J is a cocycle, and clearly satisfies ¢I(VI’J) = ¥1¢5-

Further, we have

J = (_l)€(s) (-1) l+2+. . .+SE =

0 i 0 S

=8

VI,
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CHAPTER 5

TECHNIQUES

This chapter contains several technical theorems which relate the
cohomology of a topological space X with its dual homotopy. These results
are then applied to the classifying spaces Ffb and be to derive properties
of their dual homotopy vector spaces. Note that all of the results of this
chapter are also true for the classifying spaces of integrable G-foliations,
Bfé and FFG. We assume throughout that the ground field R is either

R or €.

Generalizations of the Hurewicz Theorem

" The first theorem has been in the literature for several years. A

proof can be found in the paper [2].

5.1 THEOGREM. Let X be an n-connected space.

(a) The rational Hurewicz homomorphism Hkrh(x)ng Q- Hm(X;Q) is an
isomorphism for m < 2n and an epimorphism for m = 2n + 1.

(b) -If Hm(X;Q) is finite-dimensional for m < 2n + 1, then the dual
map H?:ﬁm(X;Q) —»Hom(qh(X),Q) is an isombrphism for m < 2n, and is

injective for m = 2n + 1.

Let e:Hm(X) - Hom(Hm(X;Q),k) be the evaluation map. If X is not

of finite type, then 5.1(b) must be weakened:

5.2 COROLLARY. Let X be an n-connected space. Then the kernel of
*
}C:H?(X) - ﬁn(X) is equal to the kernel of the evaluation map e, for

m < 2n + 1.
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Proof. This follows immediately from Theorem 5.1(a2), using the Universal

Coefficient Theorem.[60]. O

The homology groups H*(Bf 3Z) of the classifying space Bfé often
turn out to be uncountably generated. We give two definitions which, in
a sense, define a measure of how large these groups are. |

Let a connected topological space X be given. For a subset
{zl,...,zd} of Hm(X), the evaluation map e induces a homomorphism

z:Hm(X;Z) —',hd defined as follows: for c¢ & Hm(X;Z), set
2(e) = (e(2)(),..nre(z) (@) € RS .

5.3 DEFINITION. A set {z ..,zd} g:Hm(X) is said to be independently

e

continuously variable (I.C.V.) if the map z:Hm(X;Z) - ,&d is surjective,.

For a simply connected space X, there is a natural isomorphism
$:TF(X) - Hmm(qn(X),k). A set of elements {ul;...,ud} in T(X) gives rise

to a homomorphism u:r&(X) -',ﬁd defined as follows: for aq € qﬁ(X), set
-4d
a(@ = (4 (@5 4@ (@) € K .

5.4 DEFINITION. Let X be a simply connected space. A set
{ul,...,ud} g:ﬁm(X) is said to be I.C.V. if the map u:r&(X) -»,hd is

surjective,

The next proposition is an application of the rational Hurewicz

Theorem:

5.5 PROPOSITION. Suppose X is an n-connected space and let

{zl,;..,zd} c H'(X) be an 1.C.V. set, If m< 2n + 1, then
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* *
{5 zl,...,}(’. zd} c TTm(X) is an I.C.V. set. . That is, the composition

d . . .
z 9 ’.}C:rrn(X) - B is surjective.

Proof. By Theorem 5.1, the composition

e
m(X) ®Q - Hy(X;D) % ge

is surjective. The rationals can be written as a limit @ = li;m z[1/p];
therefore, for some p, Trm(X) ® Z[1/p] maps onto an open set in ,hd, and

the proposition follows. m]

*  ~ *
Relations Between 11 (BFG) and H (FFG)

Let G be a fixed group and suppose { satisfies condition (4.1). The

following is a very useful result relating ‘rrn(BfG) with Hn(FfG).

5.6 PROPOSITION. Let z be an admissible cocycle in A(G)z of degree n;
set u = ((z) € ‘rrn(I(G) ,Z)'

(a) Suppose there exists an @ € ﬁn(ch;) such that \)#(o.) € m (BG) is
torsion and E#(u) (o) # 0. Then &(,‘_(z) € Hn(FfG) is non-zero.

(b) 1If H#(u) is variable, then &.\_(z) is variable.

Proof of (a). Let N >0 be an integer for which N - \)#(c.) = 0. -Choose a

map £:8% o BfG representing N ¢ ¢@; the composition v o f:Sn - BG is then

homotopic to a constant. By Proposition 4.24, we have

E#

1 o 0(2) = BN @) ([ED = N - B () (@

which is non-zero by assumption. Therefore, A, (z) is non-zero in Hn(Sn)

and the claim of part (a) follows.
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Proof of (b). Assume that ﬁ#(u) € ﬂn(BfE) is variable. For any \ € k ,

this implies there exists a map f)\:sn - Bfé such that ﬁ#(u)([fx]) = A.
Since ﬂh(BG) is countable, the homotopy classes of the compositions

v o f)\:Sn - BG, for A €&, partition R into a countable union of dis-
joint sets. Therefore, for some A' the set U C K of A satisfying

v o fk' Tyvo fl contains an open subset of,k . Without loss of
generality, wé may assume vy © fx, is homotopic to a comstant. Applying

Proposition 4.24, we conclude that e(ﬁ*(z)):Hn(Ffb) —'ﬁ maps onto the

set U, Since U contains an open subset, this map must be surjective. o

The next set of propositions establishes a bootstrapping process by
which, given that some elements in n*(Bfé) are linearly independent, we
can construct a family of others which are linearly independent. These
techniques and Proposition 5.6 are at the heart of our methods for showing
the non-triviality of the dual homotopy invariants and the secondary
classes.

An element Y17 in the set ZZ igi Z(G)L of admissible cocycles is said
to have length s if I = (i,,...,1 ). This gives a grading of Z, by

setting
Zz(s) = {yIcJ € ZL\yIcJ has length s} ,

2
Suppose that subsets # < {1,2,...,r} and Z gizz(l) are given. We

S
and induces a filtration of Z , by setting FSZZ = U1 Zz(r).
r=

then define the extension of Z by & to be the set

A €2,y o5 €Z and (igseeesiy) S -
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Note that the filtration on ZZ induces one on Z' by setting

F°z' = 2' NF°Z 4 With the above notation, we have the following result:

5.7 PROPOSITION. Assume that BTG is simply connected, and suppose that

ﬁ# o :(Z)® ({c]__\i €s}) - -rr*(BfG) is injective; then H# o :(Z') - n*(BfG)

is injective.

%~
Proof. For r = 1, we are given that ﬁ# o (FrZ') - T (BI‘G) is injective.
Let s > 1 be given, and assume that the map ﬁ# © ¢ is injective for r = s;

we show it is injective for r = s + 1. Suppose that

v
T Ay ¢ 6(FS+1

z'

of degree n, is in the kernel of ﬁ# © (¢, with each )\CL # 0 and

#y .c ., for o # B. By the inductive hypothesis, some I% must have
a .a g ;8 : . : .
I*J I J
length s + ll_>_ 2. Let i be the largest integer occurring in the sets

{Ia\l < @< pand length I% > 2}. Then i € o, and we can choose an element

Yi in 'rrd(BfG) such that
0 for j €and j # i
f{#

a non-zero number for j = i

Define ¢ to be the set {q,]i € IG"}. Set p=n-d+ 1; for any element
Y € ﬁP(BfG); there 1is a corresponding Whitehead product [*{i,ﬂ € T[EI(BFG).

By our assumption and (3.24), we have:
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h (azl kaula’Ja)([YisY])

~f - it
= £ Ah(x)(y) c h(u ) (V)
e€qg ¢ * * 1%4,3%
=@y - Bz Mg PV (5.8)
a€qg % 1%i,0¢
1f 1% = (i), then we have that deg u = deg x < 24. By the choice
: 1%4,5° J¢

of i and ¢, there exists an q € ¢ with I® # (i). Therefore,

deg u > 24, which implies that I% # (i) for all g € ¢ This implies
1%, g%
that {y c |laedh c F°Z', so by the inductive hypothesis
1%-1 g% B
ﬁ#( X Au ) is non-zero. Thus, there exists an element v in

o €q % 1%1,3%
ﬂb(be) making the right-hand side of (5.8) non-zero, contrary to

assumption, |

5.9 REMARK. In the proof of the above proposition, it is actually shown
that for any z € Z') with z ¢ (Z), there is a Whitehead product [Yi,y] in

ﬂh(BTb) for which ﬁ# o g(z)([yi,yj) # 0.

This remark and Proposition 5.7 give us the following extension of

Proposition 5.6:

5,10 COROLLARY. Assume that be is simply comnected and let Z g:zzcl)

and # < {1,2,...,r} be given such that

B o @) @ (e, |t €)= m BE

is injective. Then Z*:CZ') - HA(Ffb) is injective.
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Proof. It is well known that the minimal model of BG is a polynomial
algebra [c ,...,é ] with the trivial differential. Therefore, the
1 t :

homotopy groups of BG in odd degrees are all torsion, and all Whitehéad

products in m.(BG) are torsion. By Proposition 5.7, we know that

~ * o
h# o g:{Z')y-»m (BI“G) is injective. Applying these last remarks to the

homotopy sequence of the fibration FTG - B'f"G - BG, we conclude that
ﬁ#

* o~
o {Z'y - m (FI‘G) is injective. The corollary then follows from

Proposition 5.6. (=]

~

Let a set V¥ C Zz(l) be given for which h™ o (%) < n“(Bf‘G) is I.C.V.

We define the extension ¥' of ¥ by a set o as above; then the techniques

used in proving Proposition 5.7 cdn be generalized to show that the set

ﬁ# © g(7') is also I.C.V. This is very useful, as there are many examples

of I.C.V. sets in the literature which can thus be extended to larger

I.C.V. sets.

5.11 PROPOSITION. Assume that Bf‘G is simply connected. Let subsets

J<{1,2,...,r} and ¥ C Zz(l) be given, If

& o g:({ci]i € JS}) - n*(BfG)

#

is injective and h

~F

o (M < ﬂ*(BfG) is I.C‘.V., then b © ¢(7') is I.C.V.

ﬁ# 0 g(Fl'V') is I.C.V. Assuming that

ﬁ-#

Proof. It is given that

E# S+17/"

o g(FS'V') is I.C.V., we will show that the set

o [(F ) is I.C.V.

Let VP be the elements in FS+]"V' of degree p, and let n be an integer for

5* o cv™) is I.C.V.

which v N 7' (s+1) is non-empty. We must show that
Let i be the largest integer occurring in the index sets

{1 \YICJ € v* and length I > 21}; it follows that i € 2 Enumerate the
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elements in V" as {v e 1 <a<yp) with i € 1% for a < 0y and 1 ¢ 1%
1% < ' -

for o > 0.0 As in the proof of Proposition 5.7, we have 1% # (i) for
s
< !
o< oy and {yla_icja\a < QO'} C,.F r.

Let u = ff# o t(y ¢ ); for the elements {u,,...,u }, form the
a 10 5O 1 v

corresponding evaluation map u:ﬂn(BT"G) - ,&p‘. Let d be the degree of x;

and set p =n -~ d + 1. By assumption, there exists an element Yi in

Trd(BI"G) for which

0 for j €/and j #1
~F = _
B Gy (yy) =

[l
ol
-

a non-zero number for j

de

Hh

For 1I nP(BT"G), let X be the space defined by X = V s™. A natural

Yy €1
map g:X - BfG is constructed by letting g restricted to the y=-th factor

be the Whitehead product [\(],-,y]:er1 - BfG.

& ~ . u
Consider the composition ﬂn(X) j nn(BI"G) - A“‘. Using (3.24), we
see that \y(ua) 0 &y = 0 for a > %- Further, using (3.24), the fact that

{y " c CI.‘CL < ao] E_FS’Z/" and the inductive hypothesis, we have that
I“-iJ

(§Ca;) 5 e s (u
o

Y) o g#:rrn(X) - ,&% is surjective. Therefore, the set

CIO

) g{ylacja\o,s go] is I.C.V. and independent of the image of the set

{y e \c, > c:,o] If this latter set is contained in F U', then we are
1% 5%
done. Otherwise, choose a new maximal index i € 1% for Qo > % and proceed

as before. O

The last result of this section is a direct consequence of

Propositions 5.6 and 5.11:
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5.12 COROLLARY. If ¥ and o are sets satisfying the conditions of

Proposition 5.11, then the set & (') c K (FF) is I.C.v.

The Lie Algebra Structure of s-lII*(I(G) 2,) and Variability

In this section, we use thé Lie algebra structure of snll'[*(I(G) z) and
s-ln*(B’f‘G) to construct infinite I.C.V. sets in the image of ﬁ#. For a
fixed group G and integer ¢ satisfying (4.1), we adopt the abbreviations

1 =I(G)£, Az=A(G)£and Z,(’,

£
: -1 * -1 %
recall that ;L[.(.i..;_ef s lwl,s lwz,...} is a Hall basis of g£. Via the

= 7Z(G) e With the notation of Chapter 4,

isomorphism Wz(Az) = Hom(sf,k) of Proposition 4.19, we have that
m(A,ﬁ) = N( <w1’W2’ ...)) and ¢A:M(A,@) - A,(’, maps {wl,_. . .,wN'} to the set

* *
{Zl,...,zN} = Z!'. Finally, we view (Az) as a subspace of T (I,(’,) via the

inclusion b of Corollary 4.11.

Let a subset ¥' € Z, be given, which we may assume to be the set

g/
{Zl,. . ,zm} for sbme m < N. There is a corresponding sub.set :

¥ = {S’lwi,...,s-lw:l} of the Lie algebra basis ¥ = {s-]'wi,...,s-lw;} of £;
let £' denote the free Lie subalgebra of g which %' generates. There is an
inclusion of Lie algebras g:£' - £ corresponding to the inclusion of bases
#' < %. Define a projection p:f£ — £' by mapping the generators s"]‘w;c to
themselves for 1 < j < m, and to zero for j > m. The composition

p o o':.s'. - p' fixes the generators of ', so must be the identity. The
map p gives rise to an inclusion of minimal algebras M( (V")) R* M(Az) by
suspending and dualizing the Lie algebra map. By Proposition 4.19, we can
identify M({V')) with the algebra A(Hom(sf',R)) whose differential is
determined by formula (4.18). TFor an element w in f£', we see that

* % % *
d(p (sw )) is a sum of products of elements in p (sg' ). This observation

will be used in the proof of the next proposition.
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We use ¥' to denote the Hall basis of £' generated by the set %'; the

1 *

set ¥' will be a subset of the Hall basis ¥ = {s-lwi,s- wz,...} of £

* *
generated by %. Let s¥' = {wi Wy seeet &M (Az) be the corresponding
1 2

subset of the algebra generators {wl,wz,...} of WAB' With this notation,

we have the following result:

5.13 PROPOSITION. Let 7' C Z
ﬁ#

’ be given such that ﬁ# e (') < Tr*(Bf‘G)

is I.C.V. Then the set A (sy'™) < n*(B'fG) is 1.C.V.

If 7' contains at least two elemgnts, then s¥'* is an infinite set.
In fact, if v denotes the number of elements in sﬁ('* of degree n, then
the sequence {vn'} has a ‘subsequence tending to infinity [10].

From the definition of an I.C.V. set, we also have the following

corollary:

5.14 COROLLARY. With the hypothesis of Proposition 5.13, for each n > 0

v
there is an epimorphism of abelian groups 'rrn(Bf‘G) - kT

For each 1 £ j < m,

Proof of Proposition 5.13. Let ¥' = {zl,...,zm} Sz,
let n, denote the degree of z,, and form a topological space

j n. , i
Y. def v s.d. Fory def V Y., the hypothesis of the proposition
T e ! =1

implies we can choose a map f:Y - BT"G such that the composition

~iF
f#, \ljh (Wk)
7 —_—
ﬂn.(Yj) & 1-Tn.(Y) - 1-Tn.(BFG)
J J ]
is surjective for j = k , and trivial otherwise. We will show that
* *
h#(sﬁt" ) € m (Y) is I.C.V., from which the claim of the proposition

follows.
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* *
Give the set s¥' a grading by setting SN;: equal to the subset of
s¥'" whose elements are dual to the elements in ¥' of bracket length t.
* * A
For example, s%[]'- is precisely the set s¥' = {wl‘,...,wm} corresponding

*
to 7'. Recall that s¥' = {wi Wy sees}; for each j > 1, let tj be the
1 2

unique integer for which w, € sﬁ[&n.
k| ]
Give the homotopy groups m . (Y) the lower central filtration of a

graded Lie algebra,which is defined by:

Fim () = m.(¥)

Ftnk(Y) s[s-lﬂ*(Y),s-lFt_lﬂ*(Y)] .

For each element Wj in the algebra basis {Wl,wz,...} of M(A,ﬂ)’ choose
an element V;j in M(Iy) mapping to Wj' From formula (4.23) for the
differential 4 in WKIﬂ)’ we have that

dw, = ZakJG AW ded{ X
I B N S Xpseee®, ]
1,]
forl some constants a?j = j; determined by the Lie bracket in f£. There are
two particular cases of this formula of interest: If k < N, then it was
k

noted in Remark 4.20 that aij = 0 for all i,j. That is, dﬁ'k lies in the

. * k. . .
ideal Id{xl,...,xr}. If Wy € s¥' , then aij is zero'if either w; or Wj
is not in s¥' ., This follows from the remarks preceding the statement of

Proposition 5.13.

With these constructions, we are in a position to prove the
- . . ¥ v * . -
proposition. It is given that h (sj&[l ) € m (YY) is I.C.V. Further, for

each 1 < j < m the element v?j satisfies dﬁj € Id{xl,...,xr}. Using
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Theorem 3.24, we see that the element ¢h#65j) in Hom(n%(Y),k) annihilates

the ideal FZTQk(Y)‘

Next, assume that for all t < y the following two conditions are

true:

v

¢h#(s&"*):F m.(Y) - ,& € is onto, where v,_ denotes
t t , t
(5.15)
the number of elements in s&%ﬂ ,
F, % s
th (s&E ) annihilates Ft+1ﬂ*(Y) . (5.16)

We will show that both (5.15) and (5.16) are then true for t = _, + 1.

n
We can assume the set s&;* is given by {wi seee Wy 1, with each

t=1 1 4l
*
W, in sw%., and the set s&Lil is given by {wi seveaWy 1. Then for
J J T n+vp,+l
l<k<v , there are constants bk defined by formula (4.17) such that
- = utl cd
~ k
dw, = EE b JW, AW, mod Id{x.,,...,x_} , (5.17)
lﬂ+k 1<c,d<n cd i i 1 T

k ; . =
where bcd # 0 implies that t,ttg =t 1.

By the inductive hypothesis and Theorem 3.23, it follows from (5.17)
that ¢h#(§i ) annihilates the ideal Fu+2ﬂ§(Y). This establishes (5.16) for
Tk
t =+ 1., It remains to show that (5.15) holds for t = p + 1.

By definition, the ideal Fu+1n%(Y) is the image under the Whitehead

product of the summand:

o [ ]
& B ®F (0 ——> F ) . (5.18)
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Using formulas (3.24) and (5.17), the composition of the mapping

v
1
Fo ¥ W g
th (s¥' ) = & b (w, )
SN Lo

with the map [ , ] in (5.18) can be written as

v
p:l-l _ _
& ( > b P @, ) ® ' G, 0
=1 1<ec,d<T c d

: (Sf19)
K jhvp#l

.

: Fori(D) ®F _oyq (D) -
t=

For any term ¢h#(§i ) ® ¢h#(§i ) in the sum on the left-hand side of
c d
k

(5.19) with bcd # 0, the inductive hypothesis (5.16) implies that this
functional vanishes when restricted to Ftn*(Y) ®2Furt+1n%(Y), if t # t,.

On the other hand, by (5.15), there is a subspace of Ft M. (Y) @th T, (¥)
C d
on which the term wh#(ai ) ® Wh#(;Q_) vanishes for € # c, but for € = ¢

g d

" takes on all values in j?. A similar remark holds with regard to the
index d. We conclude from this that the image of the map in (5.19) contains
the image of the quadratic mapping:

v

oS S

@ b, X ®X.: k. @k, - LS

=1 1<c,axn 4 T Fgre e 4

(5.20)

% *
Note that s¥' 1 N s¥% 1is empty since p + 1 > 2. Therefore, by Lemma 4.21,

iy

the quadratic forms

k
{ E b’ X ®X |l<k<v .}
T< cd'c d wtl
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are linearly independent. It follows that the image in hvm—l of the

mapping in (5.20) is an algebraic variety which is not contained in any
hyperplane. By the proposition in the appendix of [3], this algebraic
variety must generate /&vpﬂ-l additively., Since the image of the map in

v
(5.19) is an additive group, the image must be all of ,?2 p‘+l. o

~F

be given such that h

Let a set 7' €2 o (') is I.C.V. If 7'

4

contains more than one element, then it was seen in the proof of

Proposition 5.13 above that the subgroup of Whitehead products in ﬂn(BT'G)
Vn

maps onto /?? ,- Wwhere v, is positive for an infinite number of n. A

natural question is to ask what this means for the Lie algebra structure

of s-lﬂ*(BfG): Is there a continuum of Lie subalgebras over the integers

v
in S-]'TT*(B‘I:G) such that their elements of degree n map onto ,h %2  This

question is addressed in the next proposition.

Let the set ¥' be given by {zl,...,zm}, where deg z; =1, for

m n,

1< j<m. Define Y to be the space Y def s 3,

j=1
Recall that _ﬁ is the field R or T. Let (ﬁbe the algebraic closure

in 4 of the field Q) of rational numbers. Let X def {ka\c, Ed < }z

be a transcendence basis for the field ,9% over the algebraicly closed field

~

Q. The set ¢ is then uncountable, and the set X is also transcendental
over Q.
By the assumption that H# o (') is I.C.V., for each q € ¢ and

' P ¢
1 £ j < mwe can choose a map fé:s I Bl:G such that

o cepaelD =k b, 15z,
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Define a map fG.:YCI. =Y - BT‘G by setting the restriction of fCI. to the
n. : .
factor S J of Y equal to fé‘. With this notation, we state our last result

in this chapter:

5.21 PROPOSITION. Suppose that 7' C Z

P satisfies 171'# o (") < n*(BfG) is

I.C.V. Then the direct sum of maps

& (f),: © m(Y) 90 - w3l 90
0 € on#aed o G

is injective.

In other words, the graded Lie algebra s-lrg:(B'f'G) contains uncountably

many linearly independent, free Lie algebras.

Proof. Suppose that there exists an element

.

0
8= T N () = 0

M
with Y; € ﬂn(Yc.i) ® @), each A € @, and ‘such that i=21 A # 0, We will

reach a contradition from this assumption.
ota
With the notation of Proposition 5.13, let s¥' = {Wl,...,wm} be the

set corresponding to 7', and let £! be the free, graded Lie algebra on the

Q

set ¥#' over the field Q. Then m.(Y) ® Q is isomorphic to sg If &'

' *
]
denotes the Hall basis of £' constructed from the set %', then without loss

Q

of generality we can assume that each -

Y; € ﬂn(Yq,) ®q = 'r[n(Y) ®@Q = s.Slu'2

is an element of the vector space basis s¥'.
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*
Fix an integer ig with 1 <1, <y, and let w € s¥' be the dual to

Y, . Define an index set I = {i|y, =y, }. For each i € I, set
*0 Yo

T, = (fai)#(YiO) € m (BIy) ® Q. We can further assume that T, # I5~for

i # j. Then the functional ﬁ#(a) € ﬁp(be) evaluated on § gives
@@= = WF@a . (5.22)
iel .

We claim that each ﬁ#(G)(ri) is a non-zero polynomial in the ring

Q[ka ]+ This follows because the element I& = (f )#(Yi) is an iterated
: . .
Whitehead product of the maps {fi |1 £ j £m}, so by Theorem 3.23 and
< ’

formula (5.17) the evaluation of E#(E) on Ii>yie1ds a polynomial in ka .
i
This polynomial is non-zero since s-lw was chosen to be dual to Yi’
&
By the assumption that X A Yy # 0, we can assume that Ay # 0 for
i=1 :

some i € I. Therefore, the right~-hand side of (5.22) is a non-trivial
polynomial over 0, and our assumption that & = O makes this polynomial into

a relation between the algebraicly independent elements of the set

{kai\i €1}. o
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CHAPTER 6

THE HOMOTOPY GROUPS OF FT‘G

The classifying spaces BT s FT s BTé and Ffé defined in Chapter 1 were
first introduced by Haefliger in the paper [247]. Therein, the problem was
posed of determining the degree of connectivity of the spaces Ff& and Frb.
In this chapter, we will show that the space Ffé is always (gq-1)-connected.
For G = SO0(q) or G = S4(q,R), this is the best possible result.

The classifying space of foliations with trivial normal bundle, which

4 def .
we denote by FT* == FT >, was shown by Haefliger to be g-connected

G4(q;R)

[247]. Using entirely different techniques, Thurston and Mather extended
Haefliger's result, proving that FT® is (q+l)-connected [65]. It has been
conjectured that FT? is 2g~-connected, which is the greatest connectivity
this space can possibly have. To see this, suppose more generally that
the space Ffé is m~connected., This implies there is a section of VtBTé - BG
over the (mt+l)-skeleton of the CW complex BG. Therefore, the map
GﬂHn(BG) - Hn(Brb)>is injective for n < m + 1. On the other hand, the

Bott Vanishing Theorem implies that v* is the trivial map for n > 2q.
While the space H2q+1(BG) is always trivial, the space H2q+2(BG) may not be,
Therefore, the connectivity of Ffé can in general be no greater than 2q.

A similar comment applies to the space Ffé,

In some geometric contexts, the Bott Vanishing Theorem can be
sharpened. For example, the vanishing theorem of J. Pasternack [51] implies
that the map V*:Hn(BSO(q)) —»Hn(Bféo(q)) is trivial for n > q. If q is of
the form 4k + 3 for some integer k, then Hq+1(BSO(q)) # {0} and it follows
that Fféo(q) can be at most (q-1)-connected. By the next theorem, this is

a sharp upper bound on the connectivity of Fféo(q):
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6.1 THEOREM., The classifying space Ffb is (q-1)=-connected.

For the group G = SO(q), there are many other consequences of this
theorem which will be developed in Chapter 9 of this thesis.

An interesting special case of Theorem 6.1 is given by the group
G = S4(q.R). An S4(q,R)-foliation &F on a manifold M consists of a volume
form p,, on the normal bundle of the foliation &, which is parallel along
the leaves. It can be shown that this volume form p is always a local

pull-back of the standard volume form dx, A ... A dxq on RY [Remark 4.2;

1

17]. Hence, every S{(q,R)-foliation is integrable and there is a homotopy

~

5s s(q.m) 4(qR)

then obtain as a corollary to Theorem 6.1 the following result of

equivalence between the classifying spaces F We

and FI‘S

Haefliger [257:
6.2. COROLLARY. Ihe classifying space Fl"s 4(qR) is' (q~1)~-connected.

It was noted by Haefliger that there is an epimorphism

vol:rrq(BI‘S - R, defined by integrating the volume form y of an

o(qRY
S4(q,R)-foliation over the manifold sd, Therefore, Theorem 6.1 is the
best possible result when G = S {(q,R).

We state one further consequence of Theorem 6.1, which follows directly

from Theorem 5.1:

6.3 COROLLARY. The rational Hurewicz homomorphism
3 nm(FfG) ®N -~ Hm(FfG;Q) is an isomorphism for m < 2q - 2 and an

epimorphism for m = 2q - 1.

Proof of Theorem 6.1. Let M g]Rq be an open subset homotopic to the sphere

s™. Then Trn(FfG) is isomorphic to [M,FT‘G], the set of homotopy classes of
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maps f£:M - Ff‘G. By Theorem 1.16, there is a bijection between [M,FT"G] and
the set of integrable homotopy classes of G-foliations on M with trivial
G-structures., We will show that any two such foliations on M are
integrably homotopic.

Fix an integer n with 0 < n < q. Let (6,r) E]Rn+1 be polar coordinates,

with & € S® and r €R. For any a,b €R with a < b, define

B(a,b) = {(G,r) ERn+1 \a < r < b} X]Rq-n-l .

Set M = B(0,1); then M g]Rq is open and homotopic to s™,

A codimension q G-foliation on M must be the point foliation with a
G-structure on the tangent bundle TM. The tangent bundle is trivial, so
the G-structure is characterized by a smooth map q:M - Y, where Y is the
coset space GA(q,R)/G. We dnote by (M,q) the G-foliationm on M with
characteristic map a. The G-structure on (M,a) is trivial if @ is homotopic
to the constant map with image the identity coset of Y. For two G-
foliations (M,ao) and (M,a,l) with trivial G-structures, it is apparent
that G’O and o, are homotopic.

To prove the theorem, it will suffice to show that if a,o and o are
homotopic to the constant map, then there is an integrable homotopy through
G-foliations with trivial G-structure from (M,ao) to (M,a,l). To do this,
we will construct three integrable h'omotopies on M x [0,1], M x [1,2] and
M x [2,3] which combine to give the desired integ.rable homotopy.

Step 1. Choose a monotone, c”-function
1 fort <1/4

¢:[0,1] - [1/2,1] with ¢(t) = .
1/2 for t > 3/4
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Define H:M x [0,1] - M by

H (8,T,v) = (8,¢(t) « (v - 1/2) +1/2, v) .

For each t, the map Ht is a submersion; H, is the identity and H, maps M

0 1
to a subannulus of M. Also, Ht is constant with respect to t for t near O
or 1 (see Figure 6.4).
. . T — . -
Define a G-structure on M by setting ay = Gg © Hy:M X {1} - Y. Then
the submersion H:M Xx [0,1] - (M,ao) defines a G-foliation on M x [0,1]

which is an integrable homotopy from (M,co) to (M,aé).

Step 2. Define H":M X [2,3] - M by setting Hg =Hy_,- Define a G-
structure on M by setting ai =q ) Hg. Then the submersion

H':M x [2,3] - (M,dl) defines a G-foliation which is an integrable
homotopy from (M,a{) to (M,al).
Step 3. We next produce an integrable homotopy from (M,cé) to (M,ai) by

constructing a G-foliation (M,q) and a submersion H':M X [1,2] - M so that

GO =q © H1 apd al =q 0 H2

Define functions fo and f1 as follows:

£,:B(5/8,1) - B(0,3/4) by £,(8,7,v) = (8,21 = 5/4,v)
£ :8(0,3/8) - B(1/4,1) by £(8,1,v) = (8,27 + 1/4,v) .

Note that fo maps B(3/4,1) to the image of H1 and f1 maps B(0,1/4) to the

;.V The relationship between all of the maps defined so far is

given in Figure 6.4, for the case q = 2 and n = 1.

image of H

There are inclusions

1:8" x {3/61 xRT ™ < B(5/8,1)

1:8% x {1741 x®I™" ©'B(0,3/8)
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M X {1}‘

M, o) ' M, 0)

‘II’ ‘l . ’ M, q)

B(3/4,1) l B(0,1/4)

Figure 6.4
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and the compositions %y © fo ° i, and - 0 fl ¢ i, are homotopic by

assumption. Therefore, there exists a smooth extension
a:s™ x [1/4,3/4] xRY ™ = B(1/4,3/4) - ¥
of % 0 fo o} iO u a4 o} f1 0 i;. We define a smooth map ¢g:M — Y by

o © fo on B(3/4,1)
a = a on B(l/4,3/4) .

o ° f1 on B(0,1/4)

Finally, we construct the submersion H':M X [1,2] - M. Choose a

monotone, C*-function @:[1,2] - [0,3] with
3 for t<5/4
o(t) = .
0 for t > 7/4
Then H' at time t is given by

Hé(e,r,v) = (8,1/4(r + o(t)),v) .

The map H' has the effect of sliding the image of M x {t]} from image fal ¢ H

to image f;l o HE as t varies from 1 to 2.

1

Let M X [1,2] have the G-foliation defined by the submersion
H':M x [1,2] - (M,a). This gives an integrable homotopy from (M,q o Hi)
! =
0 0 H1 Hl and
f1 o Hé = HE. This implies that a6 =g 0 Hi and qi = @q 0 Hé, which finishes

to (M,a 0 Hj). A straightforward check shows that £

Step 3 and completes the proof of Theorem 6.1. a
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CHAPTER 7

RATIONALITY AND INTEGRALITY CRITERIA

In this chapter we give criteria for when the secondary classes and

dual homotopy invariants of a foliation are rational valued. For example,
if a Riemannian foliation is defineq by a submersion, the classes A*(YICJ
must be rational. Since there are Riemannian foliations whose character=
istic classes are variable, this shows that not all Riemannian foliations
can be defined by a submersion. Similar applications in other cases can
be given.
Let & be a given G-foliation of codimension q on a manifold M of

dimension m. Let ¢ be a positive integer for which the characteristic

map n

:h*(I(G)ﬁ) - n*(M) of & is well-defined.

The space ﬂ*(I(G)z) is defined over the field 2q=iR.or k = L. For
our purposes, we must identify a subspace which represents the rational
invariants. It is first necessary to make a normalization. For a
topological space X, an element z in H*(X) is integral if z is in the image
of the map kaH*(X;Z) - H*(X). We similarly deine the rational elements
in H*(X).to be those in the image of the map @&:H*(X;Q) - H*(X).

The classifying space BG has a universal Chern-Weil homomorphism
ﬁ*:I(G) - H*(BG); let {cl,...,cf} be homogeneous elements of I(G) which
form an algebra basis of I(G)l and such that each H*(Cj).e H*(BG) is
integral. With respect to this basis we have I(G)Z = ,&[cl,...,crjz.

Let IQ(G)Z denote the algebra Q[cl,...,crjz. There is a natural inclusion
IQ(G),@ c I1(6) 2 which induces an inclusion ﬂ*(IQ(G) ,6) o TT*(I(G) ,6) of
vector spaces, where ﬂ*(IQ(G)z) is the rational dual homotopy of the

algebra IQ(G)ﬂ'



*
For a topological space X, let ﬂQ(X) denote the ratiomal dual

homotopy of X. We now state our first result.

7.1 THEOREM. Let & be a G-foliation on a manifold M of dimension m.
If 4 satisfies 24 > m, then the characteristic map h# of & has a

factorization:

h#

* *
1
h#\ | /
) N |
%(M) .
Further, the map h# is completely determined by the Chern-Weil homo-

*
morphism h*:I(G)E - H (M.

7.2 COROLLARY. Let M, & and 4 be as in Theorem 7.1. If a G-foliation

F' on a manifold N is defined by a map £:N - M, with £ transverse to &,

i

then the characteristic map h" of &' has a factorization:

#
* h * X)
m (IQ(G) ,6) —_—> 7 (

oS

| 'I'Q(N) )

Proof of Corollary 7.2. The characteristic map h# is functorial with

respect to transversal maps f£:N - M, so the corollary follows directly

from Theorem 7.1. s

94
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A manifold M of dimension q with a G-structure on TM has a character-
istic map h#:r?(I(G)q,) - n%(M), where q' = [q/2], defined by giving M
the point foliation. For q even, Theorem 7.l then implies that the dual
homotopy invariants of the point foliation on M are completely determined
by the primary characteristic classes of the G-structure. Thus, no new

#

information is gained from h'. However, for q odd, Theorem 7.l only

implies that the dual homotopy invariants in the image of
h#:n*(I(G)z) - n*(M) for 4> q' are determined by the primary classes
h*(ci) € H*(M). The classes in the image of h#:ﬂq(I(G)q.) *.ﬂq(M) can
possibly give finer invariants of. the G-structure on M. For example,

when G = 0(q), the classes of degree q in the image of h# correspond to
the Chern-Simons invariants of the metric on M. These invariants have
been extensively studied by Chern and Simons [157], [59], and have been
shown to carry geometric information about the manifold M. 1In addition,

it is known they can vary continuously with variations in the metric on M,
and therefore need not be rational.

In constructing their invariants, Chern énd Simons showed that
certain of the secondary classes are integral for a foliation &' which
satisfies the conditions of Corollary 7.2. We next give a generalization
of this result. Let £:N - M be a smooth map of manifolds with £ transverse
to the G-foliation & on M. The map f induces a G-foliation &' on N.
Associated to the G-foliation & is a principal G-~bundle, P - M; let
P' - N denote the pull-back of P along £. The principal bundle P' - N
defines the G-structure on F'. We assume that for some closed
subgroup H of G, the bundle P' - N admits an H-reduction determined by a

section s':N - P/H. Let £ be a positive integer for which the character-

istic map A :H (A(G,H) R H¥(N) of the foliation F' is well-defined.
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The space H*(A(G,H) 1&) of invariants is defined over ,Qz =R or
Pz = L. We construct a lattice in this space which répresents the
integral secondary classes. Let {cl,...,cr} be the "integral" basis of
I(G)L chosen as above; let {yl,...,yr} c (Aoj)G denote the suspensions of
these elements. With respect to the subgroup H of G, let fzbe. the sub-
space of (yl, ces ,yr) which was defined in Chapter 2, where Fﬂlhas a basis

given by the subset {y ,...,y }. Denote by (Y. 5¢405y_ ) the free
RN "z o

o

exterior algebra over Z generated by the set {y_ ,...,y 1, and define

an algebra AZ (G,H) L) by:

Az(GsH)z = AZ(Y%’,---,YG\)) ®z[cl"..’cr]f, .

There is a natural inclusion AZ(G’H),Z < A(G’H)E which defines a differential

in A (G,H) ’ Such that
H A G,H ® =z H (A(G,H
( Z( 3 ),@) k = ( ( H) ),@) .

In fact, the set Z(G,H)ﬂ of admissible cocycles is an algebra basis of
H.'I:(AZ (G,H) JZ,) over the integers.

We make the following technical assumption, which is satisfied in the
situations of interest. The inclusion H € G induces a map of classifying
spaces BH - BG. 1If h*(cj) € H*(BG) is mapped to zero under H*(BG) - H*(BH),
then we assume that h*(cj) € H*(BG;Z) is also mapped to zero under

* *
H (BG;Z) - H (BH;Z).

7.3 THEOREM. Let N have a G-foliation ¥ defined by a map £:N - M as

above. If 4 satisfies 24 > m, then:
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(a) The characteristic map A, of 3" has a factorization

A

H4,6n ) ——s 1M
| 7
(Asz /

H' (N;0) :

In particular, each secondary class A*(YICJ) €  (N) is ratiomal.
(b) For I = (i), each secondary class A%(yicJ) is integral.

(¢) For J such that deg ¢;2m, the secondary class A*(yIcJ

is integral.

We state as corollaries the three special cases of this theorem

which are most common.

7.4 COROLLARY. Let &' be a codimension. q foliation with trivial normal
bundle on a manifold N, If &' is defined by a mpa £:N - M® transverse
to a foliation & on M, where m < 2q, then for each ¥1¢5 € Z(Gz(qJR))q,
the secopdary class A*(yici) € H*(N) is rational. 1If deg c;=2m, then

A*(yIcJ) is integral.

7.5 COROLLARY. Let ' be an SO(q)-foliation with trivial normal bundle
on a manifold N, If F' is defined by a submersion f:N —~Mg, then each
secondary class A*(yIcJ) € H (N) is rationmal for yi¢5 € Z(SO(q))[(q+l)/2],

and integral if deg c;=2- [(q+1)/2].

Note that for q even, Corollary 7.5 applies to all of the secondary:
. classes defined for a Riemannian foliation. For q odd, this corollary

only applies to the rigid secondary classes.



7.6 COROLLARY. Let J' be an integrable Gf(n,T)-foliation with trivial
normal bundle on a manifold N, If &' is defined by a submersion

£:N - M2n onto a complex manifold M, then each secondary class

A*(yIcJ) € H*(N) is rational for Y1C5 € Z(Gz(n,E))n, and integral if

deg cJ = 2n.

Statement (b) of Theorem 7.3 is a consequence of Corollary 3.17 of

[15]. Parts (a) and (¢) of Theorem 7.3 are generalizations of this
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corollary of Chern and Simons. It seems reasonable to conjecture that all

of the classes b*(yIcJ) are integral, though with our techniques this can

only be shown to hold in the E°° term of a spectral sequence, where
* %

*
- H (N). Our interest in this theorem began with the example of

J. H. C. Whitehead, which calculated the Hopf invariant of f:83 - 82 in

n

terms of the integral of the form A*(ylcl) over 83,[14], [69]. This

example is in fact the original source for the idea behind this thesis.,

%* *
Proof of Theorem 7.1. We must show that the map h#:ﬂ (IQ<G)z) - 11 (M)

factors through TE’;(M) o ‘TI'*(M).

Recall. that g:(M) denotes the differential algebra of compatible,

k -valued smooth forms on # (M), the semi-simplicial complex of c -

%
simplices in M. Let 6Q(M) denote the differential algebra of compatible,

%
Q-valued polynomial forms on & (M). In a natural way, we can view £Q(M)
ok
and the deRham complex (M) as subalgebras of the complex £Q(M). Note
i ; * * % %*
that the inclusion £Q(M) g;am(M) induces the map Qk:H (M;Q) - H (M;R)

in cohomology.



Let w be an adapted G-connection on the G~bundle P — M associated
. /3
to the foliation & on M. The characteristic map h#' is induced from the

Chern-Weil homomorphism

~%
h(w):IQ(G)z = Q[cl,...,cr]f, - Q) <8 () .

We will construct a homomorphism

hpilley,..eoe ], = ) < 6,0

and an algebra homotopy

H:Q[cl,. "’cr]f, - 3:(M) ® {t,dt}

*
such that e H = h(w) and e o H=nh_ Because ﬂ!Q(M) is defined using

0° )]
* .
a minimal model, over M, of the algebra GQ(M), the claim of the theorem

will follow.

’ def A .
For each generator cj, let bj = h(w) (cj) in Q(M); then b__.| is a

closed form. By choice, the coset [bj] € H*(M) is the pull-back of an
*

integral class in H (BG), hence is integral, 1In particular, [bj] is in

* *
the image of H (M;Q) - H (M), so there exist a rational homogeneous

* < ke
element &, i M h that b. = €. + da, in § (M) for some ¢..
§J in ém( ) suc a i gJ c:,J in w( ) fo m aJ

Defiﬁe an algebra homomorphism
vH:tQ[cl,. .. ,cr] - 3;(14) ® {t,dt}
by setting:

H(c.) = (l-t)b,. +t . €, + . ANdt , 1< j<r.
(J) ( )J g5 * oy <i=

99
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Note that each element H(cj) is closed, so H is a map of differential

algebras, 1t only remains to show that H(cJ) = 0 for c of degree p > 24,
' ke

for then there is induced a map H:IQ(G)L - £m(M) ® {t,dt} with

%
0 HC & (M) as desired.

e. 0 H="h(w and e 2

0 1

Let e; = cll...crr € Q[cl,...,cr] have degree p greater than 2J.

Since p is even, this implies p - 1 is also greater than 24. We now have:

r ji
0 H(ey)

i=1

H(cJ)

r 3.
igl {(1-t)b, + tg, + gt}

€ 31:1(1\4) ® klt] Adt eéﬂ(M) ® &lt] .

K
The forms in am(M) are compatible with respect to the degeneracy

o€

~

maps in HL(M); since M has &imension m, the complex £m(M) is trivial for
* >m. In particular, p - 1 > 24 >m implies that H(cJ) = 0.

Finally, we note that hg depends only on the cohomology class
[gj] € H*(N;Q). This follows using an argument similar to that above.
Since [gj] is equal to h*(cj), the j-th Chern class of the G-bundle

ot

P - M, we conclude that is determined by the primary classes of this

bundle. m]

Proof of Theorem 7.3. Recall that P' - N is the G-bundle associated to

the foliation ¥ on N, and there is given a section s':N - P'/H. This

data is summarized in the commutative diagram:
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N ———> M

Let P/H have the G-foliation determined by the pull-back via 7 of the
G-foliation & on M. Then the characteristic homomorphism of F' has a

factorization:

H (4,60 ) —> )

NN S

7 (2 /H)

It therefore suffices to consider just the case N = P/H.

Choose an adapted G-connection w on P — M. By the work of Narasimhan
and Ramanan on universal connections [49], there exists a G-connection 8

on the universal G-bundle EG - BG and a smooth map of G-bundles

g

P > EG

L

M —> BG

such that E*(e) = w. In this case, we consider BG and EG as a finite
dimensional Grassmannian and a Stiefel manifold, respectively, for which
EG is 2 g-connected, This implies that HP(EG;Z) = 0 for p < 24.

Let h(G):Q[cl,...,cr] - ((BG) be the Chern-Weil homomorphism with
respect to the universal connection §. For each 1 < j < r, set:

def
Bj = h(e)(cj) € Q(BG) .
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- %
Note that by our normalization, the cohomology class [ej] € H (BG) is

integral. For each 1 < j <r, set:

p, def

]

*
Then we have that g (gj) bj for1<j<r.
%* %
Let 6Q(BG) c 3@(BG) D (Q(BG) be differential algebras as in the proof
*
of Theorem 7.1. Let C (#_(BG) ;M) denote the cochain complex over Q) on

);(BG), and let
[ :6(86) - (o, (36)30)

denote the map of differential cochain complexes given by integration on
*

chains. Since Bj € 3@(3@) is an integral class, it follows from Example &

in the paper [13] by H. Cartan that there exists a closed from §j in

6;(BG) such that

= f -
By = 8y *day , for o, €6 (B6)

J & €T 36);2) .

That is, Qj is in the same cohomology class as Bj and the integration of
the form éj over any integral chain in HL(BG) always yields an integer.
Thus, éj exhibits [Ej] € H*(BG) as an integral class in the strongest
possible fashion.

Next consider the cohomology of the quotient space EG/H. There is
an associated fibration H - EG - EG/H. The cohomology of the Lie group H
is a free algebra with geﬁerators of odd degree; since HP(EG) = 0 for
P < 24, the spectral sequence of this fibration shows that HOdd(EG/H) =0

in degrees less than 24.
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We next lift the forms defined on BG to forms defined on EG/H. For

each 1 < j < r, set

3
1]
t+h

n*<sj> € Q(EG/H)

def n*<aj> € Q(EG/H)

S

[= 9

ef

on

8(m (3,) € a;wc/m

The Weil homomorphism with respect to the connection 6 gives a

differential algebra map
A(9) :A(G,H) - Q(EG/H)
In particular, note that for 1 < i <vy

dne) (¥ ) = A(8Y(c_ ) =B ,
y"'i &y B“i

so that the cohomology class [gui] € H*(EG/H) is zero. By assumption,
the corresponding integral class [5%] € H*(EG/H;Z) is also zero. Thus,
Example 4 of [13] implies that for each 1 < i <y, there exists a form

\bc'i € ég(EG/H) such that:

*
€ C (#/_(EG/H);Z) .
[ 4y, -

For each 1 < i <v, set:

*

Ty, = M® (G, ) € QEG/H) & (EG/H)

c‘i i
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~k
Then in 6@(EG/H) we have that

dr, = 8, = &, +dg, =dy, + a, = d(y, + a,
j =8 ¢ by + ooy = Ay +ap

o
for j = a,. Therefore (Tj -y - 5%) € 8_(EG/H) is a closed form of odd

degree less than 2¢. It is therefore exact; let ﬂj € g*(EG/H) satisfy
x

dﬂj = Tj - wj - Ej. With these constructions, we now have the key lemma.

7.7 LEMMA. For an admissible cocycle Y15 € Z(G,H)z, the element

A(e)(yIcJ) in 3:(EG/H) satisfies
M) (ye;) = Y&y + exact + 8(m(a)
where @ € 3:(BG) has degree greater than 24.

Proof. Expand A(B)(YICJ) = TI?J in terms of Tj = ¢j-+ aj + dnj and

. =8 +4dz. o
By = 85+ doy
The proof of part (a) of the theorem now follows immediately:

M) (yrep) = €@ (A®) (7))

£(8) (4,3) + £(3) © e(m (@) + exact

[

e(® (43 + &(m o (8)(e) + exact .

Since EZ(M) = 0 for p > m, the condition deg o > 24 > m implies that

€(g)(a) = 0. Therefore,

MGrpep) = [8) (4,8 ] € (B/H;0)

As remarked earlier, part (b) of the theorem follows directly from

Corollary 3.17 in [15].
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Part (c) of Theorem 7.3 follows from a more careful analysis of the

— ~ 3 .
class £(g)(¢I§J) in ﬁQ(P/H). By construction, each of the forms

T def

b = 6® (4

[=9
(®
Hh

8.
J

6(8)(§j)

*
in 5Q(P/H) corresponds to an integral cochain under the mapping I. We
would like to be able to assert that the product of forms EIEJ also

corresponds to an integral cochain. This would prove that all of the

classes A*(yIcJ) are integral. However, we can only assert that
[ Y3, €C (L (/m);52[1/al])

where ¢ is an integer depending only on the index (I,J). So in this
sense, the rational classes A*(YICJ) have a uniform bound on their
denominators.

We now return to thé proof of (c). The cohomology of the space P/H
can be computed from the Serre spectral sequence [60] of the fib;ation
G/H - P/H - M. This induces a grading on the cohomology of P/H which we
will denote by éﬁH*(P/H;R), where R is the coefficient ring. The
naturality of the spectral sequence with respect to change of coefficients

gives a commutative diagram:

S @ ;2) 2 5205 (2 /152)
) ! (7.8)

£§H5+t E:’t(P/H;Q)

n

(P/H;D)
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For some s,t we have that A*(YICJ) € £§HS+t

(P/H;DQ), and this class
is represented by the cocycle Eié&. Viewing this class as being in

EZ’t(P/H;Q), we see that EEIE&] originates in the spectral sequence as

the class
[7,] ® [3,] €5 (C/H:0) © B (M30)
= £’ S (/H;0) .
Noting that both [Ei] and [5&] reﬁresent integral cohomology classes,

it follows from (7.8) that A*(yIcJ) = [$153] is in the image of the map

S_.S+t

Lu%ttp/u;z) - S5t

(P/H;Q) .

For s >m = dim M, it is standard that both of these graded spaces are

*
subspaces of the ungraded cohomology H (P/H;R), and (c) follows. a
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CHAPTER 8

THE HOMOTOPY THEORY OF Bl"q

In this chapter we apply the machinery developed in the preceding
chapters to study the cohomology and homotopy algebras of the classifying

space of G4(q,R)-foliations. We adopt the standard notations:

q def oo
Go(q,R)

q def
F _—
T FFGE(C[ JR)

Recall that \):BI"q — BO(q) is the classifying map of the normal bundle of
the Iq-structure on qu, and FI"q is the homotopy theoretic fiber of v.
Let Bti denote the classifying space of foliations with an orientable
normal bundle. The classifying,map of the normal bundle is given by
v:Bfﬁ - BSO(q), and this map again has homotopy theoretic fiber frq. It
follows from Theorem 8.1 belo% that the space Bfi is simply connected.
Because of this, we actually study the space Brﬁ in this chapter. The
topology of Brﬁ can be easily relatéd to that of qu: there is a natural
"covering'" map Bri - BI"q whose homotopy theoretic fiber is the group
{#11. So for n greater than one, there is an isomorphism
ﬂh(Bri) = ﬂh(qu)' The sigple connectivity of Bfﬁ and Theorem 3.17 imply

there is a chain of isomorphisms

(81 2 Hom(m, (BTH) R)

n

Hom(n*(BFq)JR) .

The results we obtain about ﬂ?(BTi) thus can be related to the topology

of qu.
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For this chapter, we adopt the standard notation

def
Wq == AGLaR)) g -

The foundation upon which the results in this chapter are based

is the following theorem:

8.1 THEOREM. The classifying space Frq is (gq+l)-connected.

3

it was originall& shown by Haefliger in [247 that FIY is g-connected,
and this was extended by Thurston and Mather to the above result [65].

Theorem 8,1 is equivalent to the assertion that
V#:T%(BFE) - nh(BSO(q)) is an isomorphiém for n< q+ 1, and an epi=-
morphism for n = q + 2. In particular, since BSO(q) is simply connected,
it follows that Bfﬁ is simply connected.

The rational homotopy gfoups of BSO(q) can be computed using the
minimal model of this space. Recall that there are algebra isomcrphisms

[487:

Rlp,...5p,] q=2r+1

*
H (BSO(q)) =

R[Pys...5P 15 ] 4 =21

where deg pj = 4j and deg e = 2r. The minimal model of BSO(q) is
isomorphic to the cohomology algebra H*(BSO(q)),[47]. Therefore,

*
m (BSO(q)) has a vector space basis with elements in degrees:

0,4y00054(r=1) and 4r , q=2r + 1

0,4,...,4(xr=1) and 2r , q = 2r .
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def
We set k == [[g+2/4]. For each 1 < i < k, choose a map repre-

senting a generator of rhi(BSO(q)) ®R,given by gi:S41 - BSO(q) with
g;(pi) € H4l(S4l) non-zero. Theorem 8.1 implies that there exists a
41

lift gi:s - Bfi of 8;> and the composition v o gi satisfies

(v o gi)"(Pi) # 0. Equivalently, we see that the map
~F = - *
h :sz,...,XZk) - 17 (Bfi)-ls injective.
*
The calculation of the spaces 1 (BSO(q)) above also determines the
spaces T,(BSO(q)) ®R: for n odd or for n > 2q, the space
ﬂh(BSO(q)) ®R is zero, and the corresponding group TB(BSO(q)) must be

finite.

We draw one more conclusion from Theorem 8.1, using Theorem 5.1:

8.2 THEOREM. The rational Hurewicz homomorphism
K3T5(FIH) @0 — Hn(FIg;Q) is an isomorphism for n < 2q + 2 and an epi-

morphism for n = 2q + 3.

A Non-trivial Rigid Class and a Problem of Lawson

The first example we give of a non-trivial secondary invariant
relates to a problem derived from a result of Heitsch [31]. A cocycle
yi¢7 in H Gﬂq) is said to be variable if deg yich = 2q + 1, and rigid
if deg YilcJ > 2q + 1. For a foliation & of codimension q on M, the
Heitsch Rigidity Theorem states that the characteristic class

*
A (y;c ) €H (M) is invariant under deformations of & if y_c. is rigid.
I1J ) I1J
If yIcJ is variable, then A*(yIcJ) can vary as the foliation & is
deformed. The examples of foliated manifolds in the literature with

non-trivial secondary classes establish that some of the variable classes
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are non-trivial and do vary. However, there are no examples for which a
rigid class is non-trivial. It has been announced by Fuks in [19] that

every secondary class yIc can be realized non-trivially for some

J
foliated manifold. The proof of this theorem has not appeared. It has

been conjectured, in fact, that the rigid secondary classes must vanish

for all foliations. The next proposition shows this is not true.

8.3 PROPOSITION. For q = 4k - 2 or 4k - 1, the element E# o g(kaCZk)

. "\- - ~ * .
in (B[E) is non-zero. - Consequently, A*(y2kc2k) €H (Frq) is non-zero.
Note that when q is even, the class YorCok is rigid.

Proof. The second statement of the proposition follows from the first,
using Proposition 5.6.
- *
Let g(y2kc2k) = Yok, I in (I(GL(qJR»q); the algebra representative
of u = - x2
2k,J 2k,J 2k*
defined above satisfies (y © g&)*(pk) # 0. We evaluate the element

satisfies du Recall that the map gk:s4k - Bfi

~f — . - . q ) .
h (qu,J) on the Whitehead product [gk,gk] € (Br+), using (3.24):

B (o ) ([EeoBeD = 208 G G ¥

20 oz ey

#0 . 0

The proposition shows that the Whitehead product [gk,gk] in
ﬂ%(BFi) ®R is non-trivial. This fact was originally proved by Schweitzer
and Whitman [587], who used a theory of residues for singular foliatioms.

These residues correspond to a representation of the functiomal E#(Eék J)
2
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in terms of forms derived from the curvature of an adapted connection.
In fact, all of the various residue theories for foliations with a
singularity at a point [3], [46], [58] can be viewed as special cases

of the theory of dual homotopy invariants constructed in this thesis.

8.4 REMARK. The existence of a foliation with a non-trivial rigid class
can be used to answer a question posed by Lawson in the survey article
[43]. Problem 3 in this paper asks whether there exists, on some

manifold M, two non-homotopic foliations with homotopic plane fields.

\

The answer is "yes'", for q = 4k - 2, To see this, let p = 8k - 1
and consider the open manifold M = sP xqu. Choose a non-zero integer A

i . s 3 i .gP , grd
for which A V#([gk’gk]) € ﬂ%(BSO(q)) is zero. Let £:S BT; represent

0
. s = .qP _ d . rs = .qP _ .
A [gk,gk] and let fl.S BT, represent 21 [gk,gk]. Let g,:S BO(p)

classify the tangent bundle of SP. Then the maps

(£5584) » (£1585) M - BT} x BO(p)

satisfy Diagram 1.15. Therefore, by Theorem 1.16, they determine
foliations 30 and 31 on M whose normal bundles are homotopic to the
bundle SP x Y. The plane fields of &, and 31 are easily seen to be
homotopic. Howeﬁer, the foliations 30 and 31 have distinct rigid classes

A*(kaCZk) € HP(M), hence cannot be deformed into one another.

8.5 REMARK. A slightly stronger statement than given in Proposition 8.3
can be shown. Consider the foliation on S4k induced by the map §k.
Because ﬂ%(Sak) ®R is spanned by the elements [id] € ﬂﬁk(SAk) and the

Whitehead product [id,id] € nb(s4k), where p = 8k - 1, we can use
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*
Theorem 3.23 to determine the image of h# o Lin m (S4k) completely. 1In

fact, if yIc
#

h" o ;(yIcJ) is zero. Evaluating this functional on [id,id], we see by

P . . s \
I € H Oﬂq) is an admissible cocycle other than YorCok then

(3.24) that the result is zero unless duI 3 contains a non-trivial
. b

summand of X;k' The only admissible cocycle satisfying this condition
S YorCok-

For the foliation on SP induced by the map [§k,§k], we conclude from
#

- :
the above discussion that h" ¢ g(yIcJ) €n (SP) is zero unless

YICJ = Yo9rCor- Since the map H?:H*(Sp) - n*(Spj is an isomorphism, the
class A*(yIcJ) € H*(Sp) is zero unless Y1¢7 = YorSore Therefore, the
universal class E*(kaCZk) in H*(FIQ) is non-zero and independent of all
the other secondary classes.

Using techniques similar to those in Proposition 8.3 and Remark 8.5,

and by makiﬁg a careful analysis of the homotopy groups Th(Brﬁ) for

n < 2q, one can show:

8.6 PROPOSITION. The following classes are independent in the images

of the maps H#

* * % *
° GH (W) - m (Brj_) and AH (W) - H (FTY :
2
(a) for q =5, y2c2 s
3 3
(b) for q= 7’ y2c2, y2c2c4’ y2y4c2’ y2y4c2c4 s
4 2 2
(e) for q =9, 5,9, ¥9€,¢,5 ¥5C,
4 2
Y9¥4%92 Yo¥4%9%,> T294% -

If the space F1"q could be shown to be (g+2)-connected, then the above

list could be greatly extended,
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Independent Variation of the Secondary Classes

* *

A more systematic study of the vector spaces T (Bri) and H (Frq)
requires the use of the machinery developed in Chapter 5. Our approach
to the problem is as follows. It has been shown that there exists a

~ *
set 7 in H2q+l(Wq) with A (7 C H (FT?) an I.C.V. set. The space FT7
*
is (gq+l)-connected, so there is a corresponding I.C.V. set in n-(Frq).
. . . n,..q) . N,..d .
Using the isomorphism nﬂ(Br+3 Z 7 (FT*) for n > 2q, we obtain an I.C.V,
ﬁ#

set o (Y in nzq+l(BIﬁ). The maps {gl,...,gk} constructed earlier

allow us to extend the set ¥ to a larger I.C.V. set,
E# o (7" E.ﬂ%(Bri). This, in turn, gives an I,C.V, set Z*(W“) in
H*(Frq). By this means, we show that many of the secondary classes of
foliations are independently variable.

Qur results have some’overlap with those of Heitsch [32]. However,
we note that the independent variation results we obtain are complementary,"
in part, to those obtained by Heitschj; these two different approaches

combine to give us Theorem 8.14 below. Also,. in the process of

establishing the independent variation of the secondary classes in

*

r' cH (Wq), it is shown that these classes are non-trivial for foliations
on an open manifold with the homotopy type of a sphere, a result unique -
to our approach.

Finally, we use the I.C.V. set H#

*
o (V') in (Brﬁ) to construct
v,
surjections of ﬂh(Bri) onto R n’ where va is positive for infinitely many

n, and to prove the existence of uncountably many linearly independent,

free Lie algebras in s_ln%(BIi).
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We recall the following theorem of Heitsch [32].

8.7 THEOREM. For each odd integer q > 3, there exists a set ¥ C Zq of

admissible cocycles of degree 2q + 1 such that Z¢(%ﬁ E:H2q+l(Frg) is

I.C.V., and 7 contains at least two elements.

The exact number of elements in Y varies with q. A precise

description of this set is given in [32].

A more general result than Theorem 8.7 has been announced by Fuks

in [19], [20]:

8.8 THEOREM. The composition

* Ay * q e q
H (Wq) —> H (FT'') —> Hom(H_(FT'";Z),R)

: *
is injective, and the image of a basis of the variable classes in H (Wq)

is mapped to an I.C.V. set in H*(qu).

Recall that Zq denotes the set of admissible cocycles in Wq' The
set Zq is called the Vey basis of H*Cwq), as it was first derived by fhe
late J. Vey [22]. 1If we let Z denote the set of elements in Z
having degree < 2q + 3, then using Theorem 8.2, we have as a consequence

of Theorem 8.8:

*
8.9 COROLLARY. The map fl o C:¢Z) » w (BTY) is injective.

For k = [[q+2/4], let o denote the set {2,4,...,2k}. Form the

extension Z' of the set Z by #, as in Chapter 5. It was shown earlier

— - *
that the map H#=¢x2:-~-’X2k> - m (Bri) is injective; by Proposition 5.7,

we can draw the following conclusion from Theorem 8.8:
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8.10 COROLLARY. The map h" © ¢@Z') -~ m (BT;) is injective,

These two corollaries assert that using Fuk's Theorem, it follows
that the secondary classes in Z' can be realized independently on open
manifolds with the homotopy type of a sphere.

We next consider the independent variability of the secondary
classes in H*(Wq). Let ¥ C Zq be the largest set of admissible'cocycles

of degree 2q + 1 such that AN S H*(FI'Q) is an I.C.V. set.
~fF * ooy
8.11 PROPOSITION. The set h o (V) < m (BI"+) is I.C.V.

Proof. Proposition 5.5 and Theorem 8.1 imply that ﬁ# ° M c Tr"(Fl"q)
is I.C.V. From the homotopy sequence of the fibration FI"q - BI"_?_ - BSO(q),
the map ﬁn(FI"q) - nn(Bl"_c'l_) is seen to be an isomorphism modulo torsion

N

for n greater than 2q. Therefore, the set ° (M g-n*(BI"_cll_) is also

I.C.V. )

Let 7' denote the extension of ¥ by the set o/, where we recall the

definition:
, def ) .
'U'_ {YICJ Ezq\yich'E’lfand (12”“’18) < (2:4’-‘~:2k>} .

The conditions of Proposition 5.11 are then satisfied for the sets 7 and

&, so we conclude:

§.12 THEOREM. The set i o ') < rr*(Brjl_) is I.C.V.

This theorem yields, by Corollary 5.12, the following result on

the independent variability of the secondary classes of foliations:
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8.13 COROLLARY. The set K (7') < H (FTY) is I.C.V. , In particular, the
map A:(U') - B (FTY) is injective.

Using Theorem 8.7 above on the existence of a set ¥ with A, (7) an
I.C.V. set, and forming the extension 7' as above, Co‘rollary 8.13 then
implies that E_k('Zr') consists of independently variable classes in H*(Fl"q).
We noté that Heitsch has shown [Theorem 6.12; 327 that there exists a
larger set 7 than 7, with rorc H*(Wq), for which '&k(ﬁ) is I.C.V.

The set 7 of Heitsch and our set 7' have many elements in common, but do
not coincide. For example, the set ¥' contains the cocycles of the type

yie; =¥,

i oYy Vo1 for yich € 'Vénd (i2"_"’is-l) c (2,4,...,2k-2),

and many if thez;lare not in the set 7, Therefore, Corollary 8.13
represents an extension of the results in [32].

In fact, a much stronger statement can be shown. For an index
I=(i.,...,i), set I def (i,s+4+51_). Then for any y.c. € ¥ with

1 s 1 2 s IJ
Il Z (2,4,...,2k), the class E*(YICJ) varies independently of the set
Z_k(‘v") in H*(Fr‘q). The proof of this uses the same techniques as in
Remark 8.5. Note that the proof of Proposition 5.11 éctually shows that
the set ﬁ# o (') is independently variable on the iterated Whitehead
products in ﬂ*(BI‘_cll_) formed from the elements of qu+l(BF§) and the maps
{gl,...,gk}. 1f £:57 - Bl“q represents one of these iterated Whitehead
products, then it follows from Proposition 4.35 and Theorem 3.23 that
~

h" o g(yIcJ)([f]) =0 if Il & (2,4,...,2k). Our claim then follows as

in Remark 8.5. Thus, setting

|d_ef 1] kY
W‘ — ’V U {YICJ E'Z/'lll z (2’43-":2k)} H
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and combining the above remarks with Theorem 6.12 of Heitsch [32], we

obtain the following theorem on the variability of the secondary classes:

8.14 ~THEOREM. TFor 7" as defined above, the set Z;(W") g:H*(FTq) is

~ %
I.C.V. 1In particular, the map A*:(W“) - H (qu) is injective.

We finish this chapter with some results on the ranks of the higher
homotopy groups of Bri. With the notation of Chapter 5, there is a
subset ¥' = s-lw“* of the set ¥ = s‘lz:. The set %' corresponding to ¥
generates a free, graded Lie subalgebra §' of the Lie algebra £, and there
is a canonical inclusion of the dual space to L' into the space of dual
homotopy invariants, st c n*(I(Gz(q;R))q). We let %' denote the Hall

basis of ' which is generated by the set #'. Then by Proposition 5.13,

we have the result:
*
8.15 THEOREM. The set f' (s¥'™) cm (Brjl_) is I.C.V.

The set %' will be infinite if ¥' contains at least two elements.
If we let v denote the number of elements in s¥'~ of degree n, then the
sequence {Vn} has a subsequence tending to infinity. Theorem 8.15 asserts
that for each positive integer n, there is an epimorphism of abelian
groups nh(Bfi) AI;GE It follows that the homotopy groups nh(Bri) become
extremely large as n tends to infinity, not only in the sense of being
uncountable, but in that they have a vector space structure whose
dimension tends to infinity.

Finally, let the set %' be enumerated as {zl,...,zd}, Zhere z, has

def n,

degree nj. Let Y be a wedge of spheres, defined by Y = _Vl s 4, with
- J=
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the notation of Proposition 5.22, the following result is a consequence

of Theorem 8.12 and Proposition 5.22:

8.16 THEOREM., There exists an uncountable set ¢ and maps fa:Y - BFE

for a € ¢ such that the direct sum of maps

® (), © m(Y) O8N -~ m(BIH) @1
vea %P geaq | *

is injective.

In other words, the rational, graded Lie algebra S-lT&(BTE) ®0Q
contains uncountably many, linearly independent, free graded Lie sub=-
algebras. We remark that Haefliger established a method in [27] for
showing that each of the maps (fa)# is injective, Theorem 8.16 represents
a continuation of the ideas in [27], where we use the more extensive

machinery of Chapter 5 to achieve a sharper result.
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CHAPTER 9

THE HOMOTOPY THEORY OF BT
Is0(q)

The classifying space of SO(q)~-foliations is denoted by Bf%o(q).

the literature, an SO(q)-foliation is also called an orientable Riemannian

In

foliation, and this classifying space is sometimes denoted by BRTE,[&S].

The map v:Bf; - BSO(q) classifying the normal bundle has homotopy

0(q)
theoretic fiber FT We will show that all of the dual homotopy

S0(q)*

invariants of S0(q)-foliations are non-trivial in Tr(B?éO(q))’ and variable
when possible; all of the indecomposable secondary classes are non-trivial
() * o~ . .
in H (Fréo(q))’ and variable when poss%ble.

For this chapter we assume q > 1 and work over the ground field
,ﬁ =R. Since the space BSO(q) is simply connected, Theorem 6.1 implies
that BT is simply connected. Certain indices occur frequently, so we

$0(q)
adopt them as part of our notation. Set

q' = [q/2] 5 = [@-/2] 5 k = [q/4] + 1 .

We use the notation Aq' i:i A(SO(q))q..

The vector space of universal secondary invariants defined for an
S0(q)-foliation with trivial normal bundle is given by the algebra
H"(W(so(q),{e})q,). We next describe a factorization of this algebra.

Recall that there 1is an algebra isomorphism

R[pys--+5P,] q=2q¢"+1
I(S0(q)) = >
R[pl’."’pk’eq] q 2q

it
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where Pj has degree 4j and eq has degree q. Let y, denote the suspension

of Pj' Then there is an isomorphism of graded algebras
% ~ % '
H (W(so(q),{e})q,) =H (Aq.) ® A(yk,...,y)) .

We let Zq, denote the set of admissible cocycles in A ,. An element

yICJ in Zq' is sald to be variable if the degree of yiicJ

Let ?’E-Zq. denote the subset of variable elements; note that 7 is empty

equals 2q' + 1.

unless q =4k - 2 or q = 4k - 1.
The first theorem of this chapter asserts that all of the dual

homotopy invariants of SO(q)~foliations are non-trivial:

9.1 THEOREM. The characteristic homomorphism

ﬁ#:'rr*(I(SO(Q))q') - “*(sto(@)

is injective.

2q'+1

Let V denote the subset of 7 consisting of elements of degree

2q' + 1. The following result was proven by Lazarov and Pasternack [46]:

9.2 THEOREM. For q = 4k - 2, the set

~F 2q'+1

]
5 o rv 1_‘_2q +1

) € (Bf‘so(q))

is I.C.V.

Using Theorem 9.2, we establish the complete variability of the

variable classes in the image of ﬁ# o (:
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9.3 THEOREM. For all q, the set

o < n*(BT"SO(q))

is I.C.V.

As a consequence of Theorems 9.1 and 9.3, we show that all of the

indecomposable secondary classes of SO(q)-foliations are non-trivial, and

variable when possible:

9.4 THEOREM

(a) The restriction of the characteristic homomorphism,

. % ’ * o~
Bl (A1) © Ay eensyy) = B gy ),

is injective.

(b) The set A (7) C H (FF y is I.C.V.

1qSO(q)

The degree of each class yj is 4j - 1, so for k € j € A we have that
deg yj < 2q - 1. We conclude from Corollary 6.3 that each class
Z*(yj) € H4J-1(Fféo(q)) is non-zero on a spherical class., This observation,

together with Theorem 9.1, yields the following result:

)

9.5 PROPOSITION. The homomorphism

o *
L (W(§0(q),{e})qv) il (FTSO(q))

is injective.
Finally, we apply Propositions 5.13 and 5.22 to case G = SO(q). Let

* *
s¥' cm (I(SO(q))q,) be the set corresponding-to the Hall basis of the

-1, %
free, graded Lie algebra ' generated by the set %' = s 1?‘. Let v denote
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the number of elements in s¥'~ of degree n. If q =4k - 2 with k > 2 or
if ¢ = 4k - 1l with k > 3, then the sequence of integers {vn} has a sub-
sequence which tends to infinity. The next theorem follows directly from

Proposition 5.13.

* * .
9.6 THEOREM. The set E#(s%‘ YT (Bféo(q)) is I.C.V. 1In particular,

for each n > 0 there is an epimorphism of abelian groups

v
n

GNCHISROIES S

Let ¥ be given by {zl,...,zd} gﬁZq,, where zj has degree nj. Let Y
d ns '
be the space defined by Y = J. With the notation of Proposition 5.22,

j=1
we then have the last result of this chapter.

9.7 THEOREM. There exists an uncountable set (¢ and maps foY - Bféo(q)

for o € & such that the direct sum of maps

& (F),: © ) 80 - (. ) 80
wea %t qeq $0(a)

is injective.

Proof of Theorem 9.1. Let X be a g-dimensional, simply connected CW

complex with a map f£:X - BSO(q) inducing an algebra isomorphism

* ~
£ :Hn(BSO(q)) - H'(X) for n < q. By Theorem 6.1, there is a lifting f

of f:
-
l-‘SO(q)
% |
lv
X >  BSO0(q) .
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Je
The Chern-Weil homomorphism h:I(SO(q))q, - & (X) is a weak isomorphism;
therefore, the composition

¢I
h =
VR(I(SO(q))qJ - I(SO(q))q. -8 (X)

is a minimal model for X. Any two minimal models for X are isomorphic,

. % *
so the induced map h#:n (I(SO(q))q,) -1 (X) is an isomorphism. a

Proof of Theorem 9.3. First note that for q = 4k = 4 or q = 4k - 3, the
set ¥ is empty so there is nothing to prove.

For q = 2 (resp. q = 3), the set 7 consists of a single element xe,
(resp. yl) of degree 3, and these classés were shown by Lazarov and
Pasternack [45] to take on a continuum of values for a family of foliations

on 83.

For q = 4k - 2 with k > 2, Theorem 9.2 states that

t %~
ﬁ# 0 g(qu fl) cmn (Bféo(q)) is I.C.V. It follows from Theorem 6.1 that
* o~
the map ﬁ# 0 g:(pl,...,pk_l} - (Bréo(q)) is injective. The set ¥ is the

.
extension oﬁ qu +1 by the set &= {1,2,...,k-1}, so by Proposition 5.11 -

we are done.

The last case, for q = 4k - 1 with k > 2, follows from the next

lemma, whose proof is obvious.

9.8 LEMMA. For each q > 1, there is a commutative diagram

~F
* h * o~
T (I(SO(q'l))q') - om (Brso(q-l))
t t
& oo .
T (I(SO(q))q,) - (BT‘SO(q)) .
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To complete the proof of Theorem 9.3, it only remains to note that
for q = 4k - 1, the set ¥ Zq' is mapped bijectively to the corresponding

trc i i .
set I c (q-1)" in the above diagram o

~ * o
Proof of Theorem 9.4. (a) The injectivity of A :H (Aq,) - H (Fféo(q))

follows directly from Theorem 9.1, Proposition 5.6 and the injectivity of

* *
C:H (Aq,) - (I(SO(q))q.). It is thus only necessary to show that the

~ * ~
vector space A*:(A(yk,...,yx))fg H (Fl"S ) is linearly independent with

0(q)
respect to the vector space Z*H*(A 1) e

We first consider the case q = 2q'. It was shown by Kamber and Tondeur
[Theorem 6.52; 37] that Z* is injective when restricted to the ideal
generated by A(xeq) ® A(yk""’yx) in H*(W(so(q),{e})q,). Suppose that a
non-zero element y € AP(Yk""’yx) exists such that E*(y) is in the
space Z* Hn(Aq,) EZHn(Fféo(q)). Observing that eq.Aq' =0 in
W(so(q),{e})q., we conclude that E*(y-xeq)“= Z*(y)-z*(xeq) = 0. This-
contradicts the injectivity of E* on the ideal generated by xeq.

The case q = 2q' + 1 is a consequence of the injectivity of the natural

mapping
B (W(so(q);{e]) 1) ~ B ((so(q-1),{eD 1)
for q = 2q' + 1, and the following lemma which corresponds to Lemma 9.8:

9.9 LEMMA. For all q > 1, there is a commutative diagram:

~

* * o~
B (W(so(a-1),{eD) ) - H Flgyeoqy)
t i
« | [
H (W(so(@),{eD) ) = H (Flgy ) .
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Part (b) of Theorem 9.4 follows from Theorem 5.9 and Proposition

5.6. o
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CHAPTER 10

THE HOMOTOPY THEORY OF BIE

The classifying space of integrable G4(n,T)-foliations will be denoted
' o def e
by BT, =—= BT . The classifying map of the G4(n,L)-structure on the
T G4(n,T)
normal bundle is given by the map V:BTE - BU(n); we let FTE denote the
homotopy theoretic fiber of v. The ground field will be & = T throughout,
We adopt the standard notation Wn = A(Gz(n,m))n, and let Zn = z(cz(n,m))n
be the set of admissible cocycles in Wn'
The results we obtain on the spaces BIE and FTE will be based on the

work of Baum and Bott on residues of holomorphic foliations [3], and the

following theorem of Landweber [42]:
10.1 THEOREM. The classifying space FTE is (n=l)-connected.

The complex Bott Vanishing Theorem [5] states that the map
v*:Hm(BU(n)) -»HP(BTE) vanishes for m > 2n.» Therefore, the space FIE can\
be at most 2n-connected. If it can be shown that FI; is 2n-connected,
thén we point out that the techniques used in Chapter 9 to analyze Bféo(q)
can be applied to show that all of the dual homotopy invariants are non-
trivial in T?(Brg)’ and all of the secondary classes are non-trivial in

H*(Frg).

We next give three corollaries of Theorem 10.1.
10.2 COROLLARY. For n > 1, the space BTE is simply connected.

Proof. Observe that BU(n) is simply comnected for all n > 1, as U(n) is

always a connected group. For n > 1, the corollary then follows directly
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from Theorem 10.1. For n = 1, it was shown by Haefliger that Ffé is

simply connected [25], so that BT% is also simply connected. ml
10.3 COROLLARY. The rational Hurewicz homomorphism

e (FTg) ® R = B (FIp;0)
~is an isomorphism for m < 2n - 2, and an epimorphism for m = 2n - 1.

Proof. Apply Theorem 5.1. ]

Recall that the cohomology of the space BU(n) is isomorphic to a

polynomial algebra

1 (BU(n)) & Cle,...oc ] & 1(GAm,D)) ,

where c, is the j-th universal Chern class with deg ;= 2j,[48]. The
minimal algebra WKI(Gz(n,E))n) then contains homogeneous elements

{Xl,...,xn}, where xj maps to the Chern class cj.

10.4 COROLLARY. For 1 < j < [n/2], the element u (Ej) in an(BIE) is

non-zero.

Proof. For each 1 £ j < n, there is a map gj:S2J - BU(n) such that

(gj)*(cj) € HZJ(Szj) is non-zero. For 1 < j < [n/2], Theorem 10.1 implies

93

that there exists a lifting §j:S Ja BIE of gj. The map §j then satisfies

ok
(v o gj) (cj) #0. 0O

There is a second result which we need for our analysis of the space

BTE. Recall that an admissible cocycle Y1€3 in Wn is of the form
j1 jn
yIcJ = yil...yis ® Cp +eeCh s where:
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1<i, <...<1 <n
=14 s =

g, |3|+ i,2n+1

4<i =>j,e,=0'

1

An admissible cocycle y ¢  is said to be variable if 9|+ i, =n+ 1, and

1
is said to be rigid otherwise. Note that for a variable cocycle Y150 the
cocycle yich has degree 2n + 1. Let 7 denote the subset of Zn consisting
of elements of degree 2n + 1; the set ¥ is equivalently defined to be the
variable cocycles yicJ in Zn' It was shown by Baum and Bott that the

elements of ¥ map to independently variable elements in TF(BIE):

10.5 THEOREM [3]

(a) The set i o (1) < ﬂ2n+l(Bl";) is 1.C.V.

(b) The set R (1 < B (FIY) is I.C.V.

Let o denote the set {1,2,...,[n/2]}. With the notation of Chapter 5,

let ¥' be the extension of ¥ by o; that is, V1S5 is in V' if
deg y; e5 = 2n + 1 and {iz,...,is} < . Applying Theorem 5.11 gives our

1
first result:

10.6 THEOREM. The set ﬁ# o ¢(r") girf(BIg) is T1.C.V.

As a corollary, we obtain the following result on the non-triviality

and variability of the secondary classes in Hﬁ(ng).

~ *
10.7 THEOREM. The set A (¥') CH (Fr’;:‘) is I.C.V. Im particular, the

map Z*:(W“> - H*(FTE) is injective.
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It is interesting to note that the secondary classes z*(yIcJ) which
are shown to be non-zero in Theorem 10.7 are all variable classes. There
does not exist an example in the literature of an integrable complex
foliation with a non-trivial rigid secondary class. However, if it can be
shown that FTE is (nfl)~-connected, then the non-triviality of a rigid
class would follow as in Proposition 8.3.

Finally, we draw from Theorem 10.6 our final set of theorems. These
are in the same spirit as the work of Haefliger in [27], but the care
taken in the proof of Propositions‘5.13 and 5.22 gives much sharper

results.

* * '
Let s¥' Cn (I(Gz(n,m))n) be the set corresponding to the Hall basis
of the free, graded Lie algebra f' generated by the set %' = s-lw"*. Let

*
Vm denote the number of elements in s¥' of degree m. As a consequence

of Proposition 5.13, we then have:

10.8 THEOREM
* *
(a) The set G (sg'™) c o (BTg) is I.C.V.
(b) TFor each m > 0, there is an epimorphism of graded abelian
v
m
groups ﬂﬁ<BTg> -T .
Let U' be given by {zl,...,zd}, where z, has degree ny for 1 < j < d.
d n,
Let Y be the wedge of spheres defined by Y = 'Vl s J. With the notation
J=

of Proposition 5.22, the following result follows from Theorem 10.6:

10.9 THEOREM, There exists an uncountable set ¢ and maps fq:Y - Bfg

for o € ¢ such that the direct sum of maps
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& (£),: © m(Y) ®0 - m(BTy) &N
wea “Tacqa e

is injective,
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