GROWTH OF LEAVES AND SECONDARY INVARIANTS OF FOLIATIONS

Steven Hurder‘fr
The secondary classes of a foliation are global differential in-
variants which are obstructions to it being concordant to a foliation with
simpler structure: for example, to one with trivial secondary classes. An
intringuing unsolved problem is to find an interpretation of the secondary
classes in terms of the global geometry of the given foliation., In this note,
we relate the differential invariants of a codimension q Cz-foliation with
the growth type of its leaves. OQur work suggests that if the leaves with ex-
ponential growth are sparse in the sense of Lebague measure, then the secondary
classes must wvanish,
Given a compact viemannian manifcld (M,g and immersed submanifold
L& M , the growth type of L 1in the relativized metric is well defined and
independent of g ., (See [6].). The growth function of L at a point
x €L is
grL(r,x) = volume D(x,r)
where D(x,r) 1is the ball of radius r in L <centered at x , If there is
a polynomial p(r) with grL(r,x) <p(r) Tr>0C , then L has polynomial
growth, If lim inf % 1og(grL(r,x)) = 0 then L has subexponential growth,
@
Otherwise, w: :;y L has exponential growth. A foliation has subexponential
growth if every leaf has subexponential growth., It was conjectured by Sullivan

that the Godbillon-Vey class, gv(<F) , of a codimension cne, Cz-foliation

& with subexponential growth on a compact manifold must vanish (p. 247, [9]).
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A Cz-foliation.S# which is almeost without holonomy on a compact
manifold ¥ has subexponential growth and gv(éﬁ) =0 [5], For a
Cz-foliation,?; with subexponential growth which is transverse to a
fibration of M , it is proven in 2] that gv(&) = 0. Thus, Sullivan's
conjecture in codimension one is very close to being established [10]., Our
purpoese is to consider the case of foliations with codimension greater
than omne,

For higher codimensions, the secondary classes of E? are given by a
map [1,4] A* : H*(qu) ——#-H*(M) . Also, for each leaf L <M , there
are leaf classes [8] defined for the flat nmormal bundle to the leaf,
and given by x: : H*(gﬁq,oq) — H*(L) .

THEOREM 1, Let % be a codimension g , transversely analytic foliation

.
on a compact manifold M , Assume that M fibers smoothly as Fl —>M — 3B

and E; is transverse to the fibers of T .

(a) LIf the leaves of J with growth of degree > mt+l have measure zero,

then all secondary classes for 5 of degree > g+m wvanish.

(b) If the leaves of «* with exponential growth have measure zero, then

all leaf classes of 3# vanish, except possibly for the generator

1
gy €H (84,0 -

This theorem gives the first known restrictions on the behavior of the
leaves in an amalytic foliation of codimension > 2 with non-trivial

secondary classes.

The assumption of analyticity in Theorem ! can be replaced with a

transverse regularity condition; e.g., if F is a hyperbolic, C2-foliation,

then the theorem is valid [3].
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Given # as in Theorem 1, it is well known that the foliatiom
w 2
determines a map h : ﬂi(B) —> Diff (F) € Diff (F) . The image I' of h is
called the total holonomy of F . If the actionof T on F is sufficiently

regular, then the growth conditioms can be relaxed:

THEOREM 2. Let %% , M , I Dbe as above. Suppese I containsg a subgroup of

finite index Tb c T such that TO =G C Difsz , where G is a finite-

dimensional, connected Lie group. If the leaves of 5% with exponential growth have

measure zero then all of the secondary classes of % vanish, except possibly

gv(&) .

The foliations considered in Theorem 2 are the prototypes for the con-
struction of examples with non-trivial secondary classes, Thus, all such
examples must have a dense set of leaves with exponential growth,

A foliation has uniformly bounded growth if there is a function f£(r) such

that for each leaf L , the growth function satisfies grL(r,x) < f(r) .

THEOREM 3. Let F be a Cz-foliation 0of a (possibly non-compact) manifold.

(a) If é; is a riemannian foliation with subexponential growth, then all

leaf classes wvanish.

(b) If £ has uniformly bounded subexponential growth. then all leaf classes

vanish, except possibly ¥y -

For a foliation with all leaves compact (growth of degree 0), the first
leaf class 1 always vanishes [3]., The class yy can be non=-trivial for
a foliation on the torus {growth of degree 1), If a higher leaf class is non-
zero, then the linear holonomy of the leaf must have expomential growth, and
one conjectures that some leaf must have exponential growth as well., Theorem &

points to a global geometric interpretation of the leaf classes of a foliatiom.



SKETCH OF PROOFS OF THEOREMS

The transverse analyticity assumption in Theorems 1 and 2 implies that the
growth of the total holonomy [ is dominated by that of the leaves. If F has
subexponential growth, then [ does, and the linear holonomy of each leaf
must also., Thus, the linear holonomy of each leaf is almost nilpotent, A flat
bundle with nilpotent structure group has trivial Euler class (as is well known),
and the other H*(gﬁq,oq)-classes also vanish (except yl). This proves lb,

If T has polynomial growth of degree at most m , then HH(T; B) = 0 for
n>m . Using standard classifying space techniques, the secondary classes
of J in degrees > g+m are seen to vanish, proving la,

In Theorem 2, by passing to a finite covering we can assume that T S G is
contained in a connected, solvable subgroup N . 3By somewhat standard tech-
niques we are reduced to considering a foliation of the type N é F . This is
diffeomorphic to the foliation om N/I X F with leaves given by the diagonal
action of N ., Such a foliation has a reduction to a solvable transverse
structure group, and the secondary classes consequently vanish,

The proof of Theorem 3 also depends on showing the linear holonomy of each
leaf is almost nilpotent, The details of the proofs of the above results

will appear in [3].
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