Select alternative format: BibTeX $\mid \underline{\text { ASCII }}$

MR656626 (83h:57036)
Hurder, Steven
Independent rigid secondary classes for holomorphic foliations.
Invent. Math. 66 (1982), no. 2, 313-323.
57R30 (32L05 32L99)

Doc

References: 0

Reference Citations: 1

Review Citations: 0

A foliation \mathcal{F} on a smooth manifold M is said to be transversely holomorphic if \mathcal{F} is locally defined by submersions into \mathbf{C}^{n}, and the associated transition functions are biholomorphic (i.e. have values in the topological groupoid $\Gamma_{n}^{\mathbf{C}}$ of germs of local analytic automorphisms of \mathbf{C}^{n}). The purpose of this paper is to study the characteristic classes of transversely holomorphic foliations.
First, the universal Chern classes for transversely holomorphic foliations of codimension n are shown to be independent up to degree $2 n$; in degrees $>2 n$ they must vanish. Namely, the author shows the following proposition. Let $B \Gamma_{n}^{\mathrm{C}}$ be Haefliger's classifying space of transversely holomorphic foliations of codimension n, and let $\nu: B \Gamma_{n}^{\mathrm{C}} \rightarrow B \mathrm{U}(n)$ be defined by taking the differential.
Proposition: The map $\nu^{*}: H^{m}(B \mathbf{U}(n) ; \mathbf{Q}) \rightarrow H^{m}\left(B \Gamma_{n}^{\mathbf{C}} ; \mathbf{Q}\right)$ is injective for all $m \leq 2 n$.
Using this result, the author then constructs for all even complex dimensions the first examples of transversely holomorphic foliations for which a set of rigid secondary classes is nontrivial in $H^{*}\left(F \Gamma_{n}^{\mathbf{C}}\right)$, where $F \Gamma_{n}^{\mathbf{C}}$ is the homotopy fibre of the map $\nu: B \Gamma_{n}^{\mathrm{C}} \rightarrow B \mathrm{U}(n)$. He gives such examples using his dual homotopy techniques [the author, Topology 20 (1981), no. 4, 365-387: MR 83a:57039] and a detailed study of the topology of the map $\nu: B \Gamma_{n}^{\mathrm{C}} \rightarrow B \mathrm{U}(n)$.
Applications of the independence results stated above are given to the study of $B \Gamma_{2}^{\mathrm{C}}$ and to the study of the space of foliations on an open manifold.

Reviewed by Masahisa Adachi

(C) Copyright American Mathematical Society 1983, 2004

