THE GODBILLON-VEY CILASS FOR ANALYTIC
FOLTATIONS OF CODIMENSION ONE

Steven Eurder

ABSTRACT
We prove that 1f a transversely analytic foliaticon of codimension one
con a compact manifeld has non-vanishing Godbillon-Vey class, then there is

an open saturated set of leaves with exponential growth,

§1. MAIN TEEOREM

The geometry of codimension one, Ce-foliations on a compact manifold
has been greatly clarified by the recent works of many people. A notion
of particular significance in these works is the growth of the leaves of
a foliation, Growth also has relevance to the problem of relating the
Godbillon-Vey class GV(F) & HS(M) to the global geometry of a foliation F
cn M, Several impcrtant results have been obtained on this problem: Fer
a C2—f01iation of codimension one which is almost without helonomy,
Gv(F) = 0, [3,8]., For a ¢°_foliation transverse to a circle fibration of
M and having all leaves of subexponential growth, GV(F) = 0, [U],

Our aim in this ncote is to show:

THEOREM 1. Let F be a transversely analytic foliation of codimension one
on a compact manifold M. T GV(F) does not vanish, then there {5 a non-emply,

satunated open subset of M consisting of Leaves with exponential growth,
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This theorem confirms the analytic case of a conjecture made by
Sullivan [p. 247; 13] that if all leaves of a Cg-foliation F have
subexponential growth, then GV{(F) = 0,

For transversely analytic foliations of higher codimension which

are transverse to a fibration ¥ > M > B, a generalization of the
above theorem is given in [6].
The author is grateful to the Institute for Advanced Study for its

hospitality and support provided while this work was done.

§2. BSOME BASIC NOTIONS

Let F be a ccdimension one feliation on a compact riemannian manifold M,
Let L < M be the immersion of a leaf of F in M, The metric on M induces a
metric on L, and we denote the corresponding distance function on L by d( , J.
The growth of the leaf L {with respect to the metric on M and a point x € L)

is the function
(r) = vol D(r,x)

vhere D(r,x) = {y € L |d(y,x) < r} and volume is calculated in the induced
metric,
Given two functions f(r), g(r) we say f dominates g if there are positive

constants A,B,C such that
f(r) > A + g(Br+C) for all r > O.

Dominance is denoted by f > g, and forms an equivalence relation. For a
leaf L of F, the dominance class of gL(r) is independent of the choice of

basepoint x € L and the metric on M, [7,10]. The growth class of L is the
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class of the function gL(r). Thus, for a compact manifeld M the growth

class of a leaf is a geometric invariant, We say a leaf L has exponential

X , . n
growth if gL(r) > exp(r), and polynomial growth if for some n, gL{r) <r.,

Given a finitely generated group G, there is also a notion of the growth
cf G. Let T be a finite generating set of G which is symmetric: 1if g€ T

1

then g_l 6T, and e € T, BSet I'" =T, and inductively define r = F'Tnpl.

For a set S, let |S| denote the cardinality of S, Then define a function
n
g{n) = 7| ,

The dominance class of g(n) is independent of the choice of ', so we have a
well-defined growth ¢lass associated to the group G. For more details,
see Milnor [7], Bass [1] or Plante [10].

Another geometric idea needed is the holonomy group of a leaf [5], f12].

For a closed path v: [0,1] > I, and a transverse embedding e: (R,C) > (M.T.)
with ¢(0) = y(0) = ¥(1) = x, the foliation in a neighborhood of L determines
a germ of a diffeomorphism hY: (R,0) —> (R,0), Then hY depends only on the

homotopy class of y, giving a2 map h: = (L,x) —— GQGR,O). Here, G'(R,0)

1

denotes the group of germs of Cr—diffeomorphisms. The image of h depends

up to conjugation on the choice of transversal e; for F transversely analytic

and e chosen to be transversely anzlytic, we then have Gl = image h E_G?GR,O).
The idea of the procof of Theorem 1 is to relate the growth of the

leaves of F with the growth of the holonomy groups of the leaves. This is

not usually possible, but for transversely analytic feliations of codimension

one, we show that polynomial growth of the leaves implies polynomial growth

of the holoncmy groups.
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§3. A REDUCTICN OF THE THEOREM

In the following, F will denote a codimension one transversely analtyic
foliation on a compact manifold M, Tt was shown by Tsuchiya [Theorem 5; 1L]
that the leaves of polynomial growth of F form a closed set in M., Further,
a leaf which dces not have polynomial growth must have exponential growth
[Theorem 6.13; 2], Therefore, if F does not have an open, saturated set of
leaves with exponential growth, then all leaves have polynomial growth., To
prove Theorem 1, it suffices to show GV(F) = 0 if all leaves of F have

polynomial growth., We need:

PROPOSITION 1, Let F be a transversely analytic foliation of codimensien one
which 4s transversely ontented. Let L < M be a Leaf of F. 1§ the set of
Leaves with exponential growth has measure zeno in a nedghborhood of 1, then
the holfonomy group G, 0f L A8 abelian.

Theorem 1 is a consequence of this proposition. We can assume F is
transversely oriented by passing to a double covering if necessary. If
there is no non-enpty open set of leaves with exponential growth, then all
leaves have polynomial growth and, by Proposition 1, abelian holconomy. Ve now
use a theorem of Tsuchiya [15,9] that if F is a Cg—foliation of a compact
manifeold such that all leaves have polynomial growth and abelian holonomy

then GV{F) = 0.

§4, PROOF OF PROPCSITION 1,

Fix a leaf L ¢ M and basepoint x € L. Set G = image h: nl(L,x) —s GYR,0).
For f,g € Gwith T # e # g, let <§:§> dencte the subgroup they generate,
We will show <f,§'>is abelian. By Theorem 5.2 of Plante-Thurston [11], if
<?,E> has subexpcnential growth, then <?}§>.is abelian, We will

show that if 4?2%} has exponential growth, then in a neighborhood of L



-5

almost all leaves have exponential growth, This will establish the

prcposition and the theorem,

Let f,g be diffeomorphisms representing the germs f,éﬂ Replacing f,g
by their inverses if necessary, we can assume that for some § > O,

f,e: [0,86] =—— [0,8]. The analyticity implies we can write

m
f{x) = R R
glx) = blx + bnxn + ...

where 0 < al, bl < 1 and if al = 1 then & < 0y if b1 = 1 then bn < G,
Further, we can assume al < bl’ and if al = b1 =1 then m <n, and if m = n
then a < bm. Finally, if eguality holds above (al =5b, <1, or if al = bl

1
m = n and a, = bm) then set A = fg; otherwise, set & = f.

1 -1

Set I = {r,g,f " ,2 ",e} , and define inductively T = r.ril

>

where Fl T'. By assumption, <f,g> has exponential growth, so there is a

constant ¢ » 1 such that anl z_cn for all n > 1.
We will show there exists an € > 0 such that the set Fn An acts a.e.

effectively on [0,1], More precisely, there is a countable set K such that

for all x € [0,e1\K , [T7ea™{x)] = [r™a"!. Then for such x, we have
P30 ()| > [rea®(x)]
= |tfea™]
= [r"
n

C

1v

=
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The orbit of x under the holenomy group G of L thus has exponential growth,
and it is standard that the leaf through x has exponential growth. Tt fcllows
that at most a countable number of leaves in a neighborhocd of L do not
have exponential growth,
It remains to exhibit & and the set K, The choice of X was made so
-1

that for x near 0, fox , £ "mX , geA and g_lck are all decreasing functions,

Let e be a number such that 0 < e < § and for all x with 0 < x < ¢,
A(x) < £lx), elx) < x

and

{0,e] < Domain (l_l) n Domain (8~l)-

Consequently, for all 0 <y < g,

_]_(

y) > £y, ) >y

IR%

We claim now that for 21l n > 1 and h € Fn, the function hoA” is defined
on [0,e]. More precisely, h A" is actually decreasing on [0,e]. Forn = 1,

the choice of ¢ implies that hel is defined and decreasing on [0,e], Now

n-1

let h e I'" and write h = hl°h2 where hl € ''and h, €T . Inductively,

2

assume héﬁhn_l is defined and decreasing on [0,e]. Since A{[0,e]) ¢ [0,e],

we can write for x € [0,e]:

e (x) = hoch okn-l(k(x))

i A
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Now define

Kn = {x € [0,e]] nea(x) = htea™(x) for some

h,h' € T with h # h'} ,

For h # h', the set of x with hoa"(x) = h'eA"(x) is a finite set by the

identity theorem, Therefore, the set Kn is finite, and the union
f=n]

K= u K is countable. By definition, for every x ¢ fOo,e]\NK  we have
n=1

"(x) # h'ea"(x) if h # h'. It follows that |[P"-a"(x)]| = [T"=2"| and

hed (x

we are done,
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